
Generic Forward and Backward Simulations

Ichiro Hasuo?

Institute for Computing and Information Sciences
Radboud University Nijmegen, the Netherlands

http://www.cs.ru.nl/~ichiro

Abstract. The technique of forward/backward simulations has been
applied successfuly in many distributed and concurrent applications.
In this paper, however, we claim that the technique can actually have
more genericity and mathematical clarity. We do so by identifying for-
ward/backward simulations as lax/oplax morphisms of coalgebras. Start-
ing from this observation, we present a systematic study of this generic
notion of simulations. It is meant to be a generic version of the study by
Lynch and Vaandrager, covering both non-deterministic and probabilis-
tic systems. In particular we prove soundness and completeness results
with respect to trace inclusion: the proof is by coinduction using the
generic theory of traces developed by Jacobs, Sokolova and the author.
By suitably instantiating our generic framework, one obtains the appro-
priate definition of forward/backward simulations for various kinds of
systems, for which soundness and completeness come for free.

1 Introduction

The theory of forward/backward simulations for non-deterministic automata has
been extensively studied, notably by Lynch and Vaandrager [LV95]. It has been
applied successfully in many distributed and concurrent applications, described
as transition systems. For example, in [KMST06] trace-based anonymity prop-
erties for network protocols are proved by building backward simulations. The
notions of forward/backward simulations are also extended to different kinds of
state-based systems such as probabilistic ones [SL95].

In this paper we claim that this theory of forward/backward simulations can
actually have more genericity and mathematical clarity. We do so by revealing
a simple mathematical structure hidden behind various notions of simulations
defined for different kinds of systems. The slogan is:

Forward/backward simulations are lax/oplax morphisms
of coalgebras in Kleisli categories.

Based on this observation, we aim at presenting a generic version of the
systematic study [LV95]. The outcome is satisfactory. We employ the generic
theory of traces in [HJS06] and show:

? Part of this work was done during the author’s stay at Research Center for Verifi-
cation and Semantics, National Institute of Advanced Industrial Science and Tech-
nology (AIST), Japan. The author is grateful for the hospitality.

– Soundness. Existence of a forward or backward simulation implies trace in-
clusion.

– Completeness. Trace inclusion implies existence of a certain kind of hybrid
simulation, namely a backward-forward simulation.

The important point is that all these definitions and proofs are stated in ab-
stract coalgebraic terms, hence come with ample genericity. In fact they are
parametrized by:

– The type of branching. It can be either non-determinism (with a set of possi-
ble transitions) or probabilism (with a distribution over possible transitions).

– The type of transitions. For example, a context-free grammar can be consid-
ered as a state-based system—non-terminals as states—with non-deterministic
branching. It has a different transition type from, say, LTS’s: a CFG tran-
sits to a word over symbols and states, while an LTS transits to a pair of
a symbol and a (next) state. Our result covers a wide variety of transition
types.

Hence for each application from such a wide variety, one can obtain a definition
of forward/backward simulations by instantiating our general framework with
suitable parameters. Moreover one is assured that this definition is the right one:
good properties such as soundness and completeness come for free. Therefore we
expect abundant practical implication of this work.

Now let us take a completely different standpoint, namely that of a coalgebra-
theorist. This work cultivates a new field of coalgebraic methods in computer
science: coalgebras in a Kleisli category. The standard theory of coalgebras (e.g.
[Rut00]) is based in Sets, establishing the (successful) second row of the table.
This paper, following the previous work [HJS06], extends this table downwards.

base category morphisms of coalgebras coinduction gives
Sets functional bisimulation bisimilarity

Kleisli
lax · · · forward simulation
oplax · · · backward simulation

[this paper]
trace semantics

[HJS06]

The paper is organized as follows. In Section 2 our basic (coalgebraic) setting
is presented. State-based systems are formulated as coalgebras with explicit start
states in Section 3. The key notion of generic forward/backward simulations is
presented in Section 4. In Section 5 we recall the generic theory of coalgebraic
traces from [HJS06]. The materials of the previous two sections are combined in
Section 6 to prove soundness and completeness. We conclude in Section 7.

Notation and terminology. In diagrams, triangles and squares with no v or w
inside are designated to commute. The word coinduction refers to an argument
using the finality of a final coalgebra.

2 Preliminaries

This section presents preliminaries from category theory and theory of coalge-
bras. They are put in an elementary and descriptive manner. For more details
the reader is referred to [HJS06].

In this paper we identify forward/backward simulations as lax/oplax mor-
phisms of coalgebras in a Kleisli category K`(T) for a monad T on Sets. This
observation is inspired by a series of work [PT99,Jac04,HJ05,HJS06] on trace
semantics for/via coalgebras: a Kleisli category is a suitable base category there.
Our basic story is as follows.

We model a state-based system as a coalgebra X → TFX in Sets, with T a
monad, F a functor and a distributive law FT ⇒ TF implicit. The intuition is:

– a monad T describes the type of branching (non-determinism, probabilism,
etc.) of the system;

– a functor F describes the transition type of the system, which determines
the type of linear-time behavior (e.g. words over action symbols);

– a distributive law FT ⇒ TF describes the way how T ’s effect of branching
is distributed over the transition type represented by F .

It turns out that having X → TFX in Sets is equivalent to having a coalgebra
X → FX in the Kleisli category K`(T), where F : K`(T)→ K`(T) is a canonical
lifting of F : Sets → Sets with FX = FX. This lifting F is induced by the
distributive law. To summarize:

– In modelling a system as a coalgebra X → TFX, we separate the type of
branching T from the transition type F .

– By moving from Sets to K`(T), this coalgebra becomes a coalgebraX → FX
for a functor F—instead of a combination TF . Then we can start the usual
coalgebraic business such as morphisms, final coalgebras and coinduction.

2.1 Monads for types of branching

A monad T on Sets is an endofunctor on Sets equipped with two kinds of

functions: for each setX, the unit X
ηX

→ TX and the multiplication TTX
µX

→ TX.
These functions must satisfy certain coherence conditions.

The use of monads in computer science is most notably announced in the
seminal paper [Mog91]. There monads are used for modelling computations with
effects. This leads to monadic types in functional programming languages such
as Haskell.

In coalgebraic settings, it is shown in [HJS06] that monads with a certain
order structure are suitable for modelling state-based systems with branching,
especially for analyzing their trace semantics. We are interested in such monads
in this paper. We have two examples:

– The powerset monad P, modelling the non-deterministic branching.

– The subdistribution monad D, modelling the probabilistic branching. For a
set X, DX is given by: DX = { ξ : X → [0, 1] |

∑

x∈X ξ(x) ≤ 1 } . Here ξ
is called a probability subdistribution over X. It is “sub” because the sum of
all probabilities is not necessarily equal to 1.

The reason that we take the subdistribution monad D, instead of the distribution
monad D=1X = {ξ |

∑

x ξ(x) = 1}, is that the latter lacks a suitable order
structure. This point is elaborated in Section 2.3.

2.2 Kleisli categories for monads

For each monad T on Sets, we construct the Kleisli category for T , denoted by
K`(T), in the following way. The crucial part is that an arrow X → Y in K`(T)
is actually a function X → TY in Sets.

– Objects in K`(T) are the same as in Sets: they are just sets.
– An arrow X → Y in K`(T) is a function X → TY in Sets.
– Composition of arrows is defined using multiplication µX : TTX → TX.

– The identity arrow X
id
→ X in K`(T) is the unit X

ηX

→ TX in Sets.

This K`(T) will be our base category. Notice that when we write X → Y in
K`(T), a branching nature of this arrow is implicit because it is a function
X → TY .

For the monads P and D of our interest, we shall describe more details of
their Kleisli categories.

The category K`(P) is in fact isomorphic to the category Rel of sets and
relations. That is, an arrow X → Y in K`(P) is a relation between X and Y
via the standard “relation-into-fuction” trick: given a function f : X → PY in
Sets we obtain a relation Rf = {(x, y) | y ∈ f(x)}. In particular, composition
of arrows in K`(P) is given by the relational composition S ◦ R = {(x, z) |
∃y. xRy ∧ ySz} of the corresponding relations. The identity arrow idX is the
diagonal relation {(x, x) | x ∈ X}.

In K`(D) an arrow X → Y assigns to each x ∈ X a probability subdistri-

bution over Y . The identity arrow X
id
→ X maps x ∈ X to the so-called Dirac

distribution for x. The composition of arrows X
f
→ Y

g
→ Z in K`(D) is such

that: for x ∈ X and z ∈ Z, (g ◦ f)(x)(z) =
∑

y∈Y f(x)(y) · g(y)(z) .

2.3 Order-enriched structure of Kleisli categories

The notion of branching—such as non-determinism and probabilism—come with
natural notions of order. For non-determinism we have the inclusion order be-
tween sets of possible transitions. For probabilism a subdistribution ξ is bigger
than ψ if, to each possible transition, ξ assigns bigger probability than ψ does.

These natural orders accompanying the notion of branching appear in our
setting as a DCpo⊥-enriched structure of Kleisli categories. This order structure
is fully exploited in the definition of forward/backward simulations: a system
simulates another one if it has more behavior.

For T = P or D, the Kleisli category K`(T) is DCpo⊥-enriched. This means:

– For any pair of sets X and Y , the set HomK`(T)(X,Y) of the arrows from
X to Y has a dcpo structure v with bottom. In particular we can take the
supremum

⊔

n<ω fn of an increasing chain f0 v f1 v · · · of arrows, and there
is the minimum arrow ⊥X,Y : X → Y .

– Composition of arrows is continuous: g ◦ (
⊔

n fn) =
⊔

n(g ◦ fn) and (
⊔

n fn) ◦
h =

⊔

n(fn ◦ h). In particular composition is monotone.

Indeed, for T = P or D, a set TY has a DCpo⊥ structure vTY . This extends
to the order between arrows in K`(T) in a pointwise manner: for f, g : X ⇒ Y ,
f v g if for each x ∈ X, f(x) vTY g(x).

We need the minimum arrow ⊥X,Y : X → Y in K`(T) for the trace semantics
results in Section 5. It is not available for the distribution monad D=1: that is
why we use the subdistribution monad D instead.

2.4 Shapely functors for transition types

We restrict a functor F—which models the transition type of a system—to be
shapely. The reason to do so is: we know the results on coalgebraic trace seman-
tics in Section 5 hold for shapely functors,1 and also in most of the interesting
examples we can take as F a shapely functor. The family of shapely functors is
almost as broad as that of polynomial functors: it is defined inductively by the
following BNF notation.

F,G, Fi ::= id | Σ | F ×G |
∐

i∈IFi ,

where Σ denotes the constant functor into an arbitrary set Σ, and I is an
arbitrary index set. Here are some virtue of shapely functors which we will
exploit.

– An initial F -algebra exists, obtained via the initial sequence of length ω.
– For T = P or D, there is a canonical distributive law FT ⇒ TF . Equiva-

lently, F has a canonical lifting F on K`(T). On objects FX = FX, and on
arrows F ’s action is what one might think of at first sight.

3 Coalgebraic modelling of systems

In this section we model a wide variety of branching state-based systems as
what we call (T, F)-systems. A (T, F)-system is a F -coalgebra in the Kleisli
category K`(T) plus explicit start states. This definition of (T, F)-systems will
be motivated by several illustrating examples.

Two parameters in the notion of (T, F)-systems are: T is a monad, being
either P or D, representing the branching type; F is a shapely functor describing
the transition type. In the sequel we assume that T and F are such.

1 This does not say that those results hold exclusively for shapely functors.

Definition 3.1 ((T, F)-systems) A (T, F)-system is a pair of arrows

1
s

X
c

FX in the Kleisli category K`(T).

That is, a pair of functions (s : 1→ TX, c : X → TFX) in Sets, recalling that
FX = FX. The arrow s is called the start states map, and the F -coalgebra c
is called the dynamics. The set X is called the state space. The only element of
the singleton 1 appearing here2 is denoted by ∗.

In most literature on coalgebras the start state (or the set of start states) is usu-
ally left implicit. However in this paper start states are explicit as one ingredient
of the notion of systems. The reason is explained in Appendix A.2.

Example 3.2 (Non-deterministic automata) Let us take the powerset monad
P for T , hence non-deterministic branching. For an endofunctor F we take
1 + Σ × , where 1 = {X} is a singleton and Σ is a non-empty set of sym-
bols. A (T, F)-system then is a pair of functions in Sets,

(

1
s
PX, X

c
P(1 +Σ ×X)

)

,

which should be interpreted as follows. The subset s(∗) of X is the set of possible
start states. For a state x ∈ X, the set c(x) contains X if x is an accepting state;

it contains a tuple (a, x′) if there is a (possible) transition x
a
→ x′. In this way a

(T, F)-system for these T and F is thought of as a non-deterministic automaton.

Example 3.3 (Probabilistic automata) Let us take T = D instead of P in
the previous example. A (T, F)-system is a pair of functions in Sets:

(

1
s
DX, X

c
D(1 +Σ ×X)

)

.

This is understood as follows. The subdistribution s(∗) over X represents the
probability with which each state x ∈ X is chosen as a starting state. An ex-
ecution successfully terminates at x with the probability c(x)(X); a transition

x
a
→ x′ is made with the probability c(x)(a, x′). Such a system is called a gen-

erative probabilistic transition system [vGSS95,Sok05]: in this paper we shall
call it simply a probabilistic automaton. Here is an example of a probabilistic
automaton.

x
(a, 1

3
)

(a, 1
3
)

1
3

y

1
2

(a, 1
2
)

z(a, 1) X

with start states:

[

x 7→ 1/3
y 7→ 2/3

]

.

This is modelled as the following (D, 1 +Σ ×)-system.

2 In this paper we will have singletons with different computational meanings. Ac-
cordingly, their only elements will be denoted by different symbols.

– The start state map 1
s
→ DX is such that s(∗) =

[

x 7→ 1/3
y 7→ 2/3

]

, and

– the dynamics coalgebra X
c
→ D(1 +Σ ×X) is such that

c(x) = [(a, y) 7→ 1/3, (a, z) 7→ 1/3, X 7→ 1/3], etc.

Example 3.4 (Systems with distinct input/output actions) In some cases
we would like to distinguish two different kinds of transitions: those with an in-
put action and with an output action. This is the case for (non-deterministic)
I/O automata [LT89] and probabilistic I/O automata [WSS97]. This is done by
replacing the functor F in the previous examples: we take F = 1+I× +O×
instead, where I and O are disjoint sets of input and output actions.

Remark 3.5 (Example 3.4 vs. probabilistic I/O automata [WSS97]) (D, F)-
systems in the previous example have two significant differences from the well-
studied notion of probabilistic I/O automata. One is that successful termination
is explicit by the presence of 1 = {X} in F . This is due to our choice of finite
traces—which have good characterization via coinduction—as the semantics:
without explicit termination the set of finite traces is always empty.

The other is that probabilistic I/O automata have both non-deterministic and
probabilistic branching at the same time, while (D, F)-systems in the previous
example lack non-deterministic branching. Modelling the combination of non-
determinism and probabilism using a suitable monad is left as future work.3

Example 3.6 (Context-free grammar, [HJ05]) When T = P and F =
(Σ +)∗, a (T, F)-system is thought of as a context-free grammar (without
finiteness assumptions), together with a set of possible starting non-terminals.

The notion of morphisms of coalgebras extends to (T, F)-systems.

Definition 3.7 (Morphisms of systems) Let 1
s
→ X

c
→ FX and 1

t
→ Y

d
→

FY be (T, F)-systems, presented in K`(T). A morphism of (T, F)-systems from
(s, c) to (t, d) is an arrow f : X → Y in K`(T) that makes the following diagram
commute.

FX
Ff

FY

X

c
f Y

d

1
s t

4 Forward/backward simulations, coalgebraically

This section presents the key notions of this paper: generic forward, backward
and backward-forward simulations. The intuition about order accompanying the

3 In [VW05] a monad for the combination of non-determinism and probabilism is
proposed. However we have not yet found a suitable dcpo structure for this monad.

notion of “branching”—now substantiated as the DCpo⊥-enriched structure of
a Kleisli category—is fully exploited here.

In this section again T = P or D, and F is a shapely functor.

Definition 4.1 (Forward simulation) Let 1
s
→ X

c
→ FX and 1

t
→ Y

d
→ FY

be (T, F)-systems, presented in K`(T). A forward simulation from (t, d) to (s, c)
is an arrow f : X → Y in K`(T) such that:

t v f ◦ s and d ◦ f v Ff ◦ c ,

where v refers to the order available due to the DCpo⊥-enriched structure of
the Kleisli category. Diagramatically presented,

FX
Ff

FY

X

c
f
w

Y
d

1
s t

w
.

(1)

In other words, a forward simulation is a lax morphism from (s, c) to (t, d).
We write (t, d) vF (s, c) if there is a forward simulation from (t, d) to (s, c).

The use of lax morphisms in categorical accounts of simulation/refinement is
found in [KP00]. In a coalgebraic setting, [Fio96] uses lax morphisms of coalge-
bras to investigate order-enriched version of bisimulation. However, to the best
of our knowledge, we are the first to notice the significance of lax morphisms in
Kleisli categories.

The dual notion, with the order of arrows opposed, has also a significant
computational meaning.

Definition 4.2 (Backward simulation) Let 1
s
→ X

c
→ FX and 1

t
→ Y

d
→

FY be (T, F)-systems, presented in K`(T). A backward simulation from (s, c) to
(t, d) is an arrow f : X → Y in K`(T) such that: f ◦ s v t and Ff ◦ c v d ◦ f .
Diagramatically presented,

FX
Ff

FY

X

c
f
v

Y
d

1
s t

v
.

(2)

Hence a backward simulation is an oplax morphism of systems.
We write (s, c) vB (t, d) if there is a backward simulation from (s, c) to (t, d).

Remark 4.3 Note the direction of forward/backward simulations and lax/oplax
morphisms. In general, the system which appears on the smaller sides of inequal-
ities is simulated by the other one. For example, a lax morphism from (s, c) to
(t, d) in Diagram (1) is a forward simulation from (t, d) to (s, c), through which
(s, c) forward-simulates (t, d); hence (t, d) vF (s, c).

Let us be convinced of these abstract definitions by looking at examples.

Example 4.4 (Non-deterministic automata) In the setting of Example 3.2,
an arrow X → Y in K`(T) is a relation R from X to Y since K`(P) ∼= Rel. The
previous definitions boil down as follows: R is a forward simulation from (t, d)
to (s, c) if and only if it satisfies the following conditions.

y ∈ start(t,d) =⇒ ∃x ∈ start(s,c). xRy ,
xRy ∧ y →d X =⇒ x→c X ,

xRy ∧ y
a
→d y

′ =⇒ ∃x′ ∈ X.
(

x
a
→c x

′ ∧ x′Ry′
)

,

where start(s,c) denotes the set s(∗). These conditions are much like those in the
standard literature [LV95]. Notice in particular that the third condition is of the
following familiar form, working “forwards”.

x

R
y a

y′

=⇒
x

a

R

∃x′

R
y a

y′

Similarly, a relation R from X to Y is a backward simulation from (s, c) to
(t, d) if and only if:

x ∈ start(s,c) ∧ xRy =⇒ y ∈ start(t,d) ,
x→c X =⇒ ∃y ∈ Y.

(

xRy ∧ y →d X
)

,

x
a
→c x

′ ∧ x′Ry′ =⇒ ∃y ∈ Y.
(

xRy ∧ y
a
→d y

′
)

.

The third condition here works “backwards” in the following way.

x
a

x′

R

y′

=⇒
x

a

R

x′

R

∃y
a

y′

Example 4.5 (Probabilistic automata) In the setting of Example 3.3, the
abstract Definition 4.1 is instantiated as follows: a function f : X → DY in Sets
is a forward simulation from (t, d) to (s, c) if and only if:

t(∗)(y) ≤
∑

x∈X s(∗)(x) · f(x)(y) ,
∑

y∈Y f(x)(y) · d(y)(X) ≤ c(x)(X) ,
∑

y∈Y f(x)(y) · d(y)(a, y′) ≤
∑

x′∈X c(x)(a, x′) · f(x′)(y′) .

(3)

It is also straightforward to instantiate Definition 4.2 of backward simulations.
One may wonder why we can call such f a forward simulation, although one

can notice that a “forward” argument similar to the previous example is going
on. The point is that, however, by the abstract theorems in the following sections
we know that this definition (3) of forward simulations—derived from the coal-
gebraic definition—satisfies desirable properties such as soundness/completeness
with respect to trace inclusion.

We define a simulation from one probabilistic system to another to be a func-
tion X → DY . This is different from the approach in [HJ04]: there a simulation
is always a relation between state spaces X and Y .

It is also straightforward to instantiate notions of generic forward/backward
simulations with T and F in Example 3.6. Then we get appropriate notions of
simulations for context-free grammars.

Forward and backward simulations will be shown to be sound with respect to
trace inclusion. But they in general fail to be complete. Instead, a completeness
result is proved for a certain combination of forward and backward simulations
(hybrid simulations), as is done in [LV95].

Definition 4.6 (Backward-forward simulations) Let (s, c) and (t, d) be (T, F)-
systems. A backward-forward simulation from (s, c) to (t, d) is a pair of

– a backward simulation f from (s, c) to some intermediate (T, F)-system
(r, b), and

– a forward simulation g from the intermediate system (r, b) to (t, d).

Diagramatically presented in K`(T) (note the direction of arrows),

FX
Ff

FU FY
Fg

X

c
f
v

U
b v

Y
d

g

1s
v

t
vr

.

(4)

We write (s, c) vBF (t, d) if there is a backward-forward simulation from
(s, c) to (t, d). Obviously,

(s, c) vBF (t, d) ⇐⇒ ∃(r, b).
(

(s, c) vB (r, b) ∧ (r, b) vF (t, d)
)

.

Remark 4.7 (Forward-backward simulations) It is straightforward to de-
fine the notion of forward-backward simulations and the relation vFB, as a suit-
able dual of Definition 4.6. This is done in [LV95] for a restricted class of non-
deterministic systems. In the same paper vBF and vFB are shown to coincide.

However we have not yet found the coincidence of vBF and vFB in general:
in the light of Theorem 6.2, it seems that vBF is the more fundamental notion.
The coincidence for non-deterministic systems in [LV95] may be because K`(P)
is self-dual, i.e. K`(P) ∼= K`(P)op. Details are yet to be elaborated.

5 Finite trace semantics via coinduction

In this paper we take (finite) traces as our semantics for systems. It is with
respect to trace semantics that soundness and completeness of forward/backward
simulations are shown. This section establishes the basics of trace semantics for
systems by revisiting our previous work [HJS06]. The main points are:

– a final coalgebra in the Kleisli category K`(T) is (interestingly) induced by
an initial algebra in Sets;

– the principle of coinduction, when employed in K`(T), yields finite trace
semantics for branching systems.

We also cite a fact from [Fio96] about an order-theoretic property of a final
coalgebra. Again in this section a monad T is P or D and F is a shapely functor.

The following result identifies a final coalgebra in the Kleisli category.

Theorem 5.1 (Main theorem of [HJS06]) Let α : FA
∼=→ A be an initial

F -algebra in Sets.

1. An initial F -algebra in K`(T) is induced by α as ηA ◦ α : FA
∼=→ A in K`(T).

2. In K`(T), an initial F -algebra and a final F -coalgebra coincide. The latter
is given as follows. We shall denote this coalgebraic structure map by ζ.

ζ = (ηA ◦ α)−1 = ηFA ◦ α
−1 : A

∼=
FA in K`(T) .

Proof. The first point is standard [Par01]. Due to the distributive law the Kleisli
adjunction on the bottom is lifted to the top one, which preserves initial objects.

Alg(F) ⊥ Alg
`

F
´

Sets ⊥F K`(T) F

The second point of initial algebra/final coalgebra coincidence essentially follows
from the classic work [SP82] of limit-colimit coincidence. ut

As a corollary we obtain the final coalgebra semantics for an F -coalgebra.
Recall that such a coalgebra is a dynamics of a (T, F)-system.

Corollary 5.2 (Finite trace semantics for coalgebras, [HJS06]) Given an

F -coalgebra X
c
→ FX in K`(T), there exists a unique morphism trc which makes

the following diagram commute. Here α : FA
∼=→ A is an initial F -algebra in

Sets.

FX
F (trc)

FA

X

c

trc
A

∼= ζ (final) (5)

ut

The induced map

trc : X → A in K`(T), that is, trc : X → TA in Sets,

in fact becomes what is usually called the finite trace map: it assigns to each
state its “trace” in a suitable sense. The following examples show that the com-
mutation of Diagram (5) actually amounts to standard and natural recursive
definition of finite trace maps.

Example 5.3 (Non-deterministic automata) In the setting of Example 3.2,
an initial F -algebra in Sets is carried by finite lists, or words, over Σ.

1 +Σ ×Σ∗
[nil, cons]
∼=

Σ∗

Now Diagram (5) commutes if and only if the function trc : X → P(Σ∗) satisfies
the following conditions. For each a ∈ Σ and σ ∈ Σ∗.

〈〉 ∈ trc(x) ⇐⇒ x→ X ,

a · σ ∈ trc(x) ⇐⇒ ∃x′ ∈ X.
(

x
a
→ x′ ∧ σ ∈ trc(x

′)
)

.

This is the standard recursive (or corecursive, if you like) definition of the ac-
cepted languages of non-deterministic automata. The language trc(x) ⊆ Σ∗ is
the set of all the linear-time behavior of x which eventually terminates within a
finite number of steps (hence the name finite trace).

Example 5.4 (Probabilistic automata) Let us look at the example of a prob-
abilistic automaton in Example 3.3. What is the “trace” of the state x of this
system? A natural answer, as suggested in [JS90], is the probability subdistri-
bution over lists on Σ:

〈〉 7→
1

3
, a 7→

1

3
·
1

2
, aa 7→

1

3
·
1

2
·
1

2
, · · · , an 7→

1

3
·

(

1

2

)n−1

·
1

2
, · · ·

(6)
This is explained as follows. For the state x to output the list aa, it has to take
the path of transitions: x

a
→ y

a
→ y → X. This path occurs with the probability

1
3 ·

1
2 ·

1
2 .

This notion of “probabilistic trace” is again obtained via coinduction in the
Kleisli category. Let us instantiate Diagram (5) with T and F in Example 3.3.
The commutativity of the diagram amounts to the following (co)recursive defi-
nition of a function trc : X → D(Σ∗):

trc(x) =

[

〈〉 7→ c(x)(X)

a · σ 7→
∑

y∈X c(x)(a, y) · trc(y)(σ)

]

.

Here the probability c(x)(a, y) · trc(y)(σ) is for the event that x makes an a-move
to y and then y yields the list σ as its trace. Taking the sum over all the possible
successors y of x, we get a natural recursive definition of the probability with
which x yields a · σ as its trace.

As an additional remark we point out that the subdistribution (6) sums

up only to 2/3. The remaining 1/3 is for the path x
a
→ z

a
→ z

a
→ · · · : the

probability for aω, or livelock. This entry aω 7→ 1/3 is absent in trc(x) because
trc : X → D(Σ∗) is the finite trace. This also demonstrates why we use the
subdistribution monad D instead of the distribution monad D=1: although the
system can be described using D=1, we do not get trc of the type X → D=1(Σ

∗).

Example 5.5 (Context-free grammar, [HJ05]) Let us take T and F as in
Example 3.6. Via coinduction in K`(T) we get a trace map trc: this assigns to
each non-terminal x the set of finite-depth parse trees generated by the context-
free grammar c starting from x.

From a different point of view, the previous examples are seen as proofs that
standard recursive definitions uniquely determine trace maps, due to the finality
result in Corollary 5.2.

The trace map trc, being a morphism of coalgebras, automatically becomes
a lax morphism of coalgebras. It is in fact characterized as the biggest lax mor-
phism.

Proposition 5.6 (Trace map as the biggest lax morphism) In the situa-
tion of Diagram (5), the trace map trc is the biggest one among the lax coalgebra
morphisms from c to the final ζ. That is, in K`(T):

FX
Ff

FA

X

c

f

w

A

ζ∼= =⇒ X

f

trc

v

A .

Dually, the trace map trc is the smallest one among the oplax coalgebra mor-
phisms from c to the final ζ.

Proof. Although the proposition follows from a general result [Fio96, Proposition
6.7], in this specific setting of the Kleisli category we can give another proof. It
does not depend on the local continuity of F but only on the local monotonicity.
This alternative proof is in Appendix A.1. ut

So far the trace map induced by coinduction gives the semantics for a single
state of a coalgebra. This is extended to the semantics of a (T, F)-system—a
coalgebra with explicit start states—in the obvious way.

Definition 5.7 (Finite trace semantics of (T, F)-systems) Given a (T, F)-

system 1
s
X

c
FX in K`(T), its finite trace (or just trace) tr(s,c) is the

following composite in K`(T).

FX
F (trc)

FA

X

c
trc

A

∼= ζ

1

s

tr(s,c)

Notice that Diagram (5) of coinduction is appearing in this diagram.

Proposition 5.8 (Morphisms of systems yield trace equivalence) Assume

we have a morphism f of (T, F)-systems from 1
s
→ X

c
→ FX to 1

t
→ Y

d
→ FY .

Then tr(s,c) = tr(t,d).

Proof. By Definition 3.7 of morphism of systems, f is in particular a morphism
of coalgebras. By finality we have trc = trd ◦ f . Hence

tr(s,c) = trc ◦ s = trd ◦ f ◦ s = trd ◦ t = tr(t,d) . ut

6 Soundness and completeness theorems

In the last two sections we have built up the notions of (and some results on) for-
ward/backward simulations and trace semantics, with a high level of genericity
and abstraction. In this section we relate those materials—with the same gener-
icity and abstraction—by proving soundness of vF,vB,vBF and completeness
of vBF with respect to trace inclusion. This is the main technical result of this
paper.

In the rest of this section we assume 1
s
→ X

c
→ FX and 1

t
→ Y

d
→ FY to be

(T, F)-systems, where T = P or D and F is shapely.

Theorem 6.1 (Soundness of vF,vB,vBF)

1. (s, c) vF (t, d) =⇒ tr(s,c) v tr(t,d) ,
2. (s, c) vB (t, d) =⇒ tr(s,c) v tr(t,d) ,
3. (s, c) vBF (t, d) =⇒ tr(s,c) v tr(t,d) .

Proof. 1. By definition of vF we have a forward simulation f : Y → X. In
particular we have in K`(T),

FY
Ff

FX
F (trc)

FA

Y

w

f

d
X

=

trc

c

A

∼= ζ (final)

where the coinduction diagram appears on the right. This shows that the arrow
trc ◦ f is a lax coalgebra morphism from d to the final coalgebra. Indeed,

ζ ◦ trc ◦ f = F (trc) ◦ c ◦ f (trc is a morphism of coalgebras)

v F (trc) ◦ Ff ◦ d (Composition is continuous)

= F (trc ◦ f) ◦ d .

Since the trace map is the biggest lax coalgebra morphism (Proposition 5.6),
we have trc ◦ f v trd. This inequality is combined with f ’s condition on start
states.

A

Y f

trd
w

w
X

trc

1
t s

, hence

A

Y w
trd

X
trc

1
t s

tr(t,d) tr(s,c) .

This proves 1. Similar arguments prove 2.
3. The relation vBF is a relational composition vF◦vB. We use 1. and 2. of

the theorem and transitivity of the order v between arrows 1 ⇒ A. ut

Completeness—the converse of the soundness result above—does not hold
for vF,vB but does hold for the weaker notion of vBF. For a restricted class of
non-deterministic systems the completeness result is shown in [KS89,LV95].

Theorem 6.2 (Completeness of vBF)

tr(s,c) v tr(t,d) =⇒ (s, c) vBF (t, d) .

Proof. From a (T, F)-system (s, c), we construct its “canonical system” as

1
tr(s,c)

A
ζ
∼=

FA in K`(T) .

That is, the dynamics is the final F -coalgebra and the start states map is the
trace of the system. It is obvious by definition that the map trc is a morphism of
systems from (s, c) to this canonical system (the left side of Diagram (7) below).
We apply the same construction to (t, d) yielding the right side of the diagram.
Then the assumption tr(s,c) v tr(t,d) fits in the lower middle of the diagram.

FX
F (trc)

FA FY
F (trd)

X

c
trc

A

∼= ζ

Y

d
trd

1s

tr(s,c)

t

tr(t,d)v

(7)

From this we have two diagrams of backward-forward simulations—like Diagram
(4) in Definition 4.6—depending on our choice of the intermediate system.

FX FA FY

X

c

A

∼=
Y

d

1

tr(s,c) v

or

FX FA FY

X

c

A

∼=
Y

d

1
v tr(t,d)

Either diagram shows (s, c) vBF (t, d). ut

Next we shall prove that three kinds of simulation relations vF,vB and
vBF are indeed preorders. The proof has been postponed until now because: for
transitivity of vBF we need the soundness and completeness results for vBF.

For vF and vB the proof is straightforward.

Proposition 6.3 (vF,vB are preorders) The forward/backward simulation
relations vF and vB are preorders. That is, they are reflexive and transitive.

Proof. Reflexitivity is obvious: take the identity arrow in the Kleisli category
as a forward (or backward) simulation. Assume (s, c) vF (t, d) vF (r, b). There
exist forward simulations f and g such that

FU
Ff

FY
Fg

FX

U
b

f
w

Y
d w

g X

c

1r
w

s
wt

, hence

FU
F (g ◦ f)

FX

U
b

g ◦ f
w

X

c

1r s
w

.

This shows (s, c) vF (r, b). Transitivity of vB is proved in a similar way. ut

Proposition 6.4 (vBF is a preorder) The backward-forward simulation re-
lation vBF is a preorder.

Proof. Reflexitivity is trivial by taking the system itself as an intermediate one.
Assume (s, c) vBF (t, d) vBF (r, b). By soundness of vBF in Theorem 6.1 and
transitivity of v, we have tr(s,c) v tr(r,b). This in turn yields (s, c) vBF (r, b) by
completeness of vBF in Theorem 6.2. ut

7 Conclusions and future work

We have developed a generic theory of branching state-based systems in terms
of coalgebras in Kleisli categories. Notions such as forward/backward simula-
tions and traces are defined and related via soundness and completeness results.
Several illustrating examples suggest practical implications of this theory.

There are a number of issues on branching systems that remain to be elab-
orated in our generic framework. To name a few: composition of systems, com-
positionality of semantics, modal logic, preservation of logical formulas, infinite
traces and internal actions.

As mentioned in Remark 3.4, systems with both non-deterministic and prob-
abilistic branching do not fit in our general framework. There are many seman-
tical questions (see e.g. [Che06]) around this combination of different branching:
hopefully categorical approaches will contribute to clarify the picture.

More examples of types of systems to which our framework applies are to
be found. For example, the author is interested in a probabilistic version of
anonymous simulations [KMST06] .

IOA Toolset [GLV97] is a formal verification tool in which systems are de-
scribed as I/O automata and analyzed using simulations. Now that its base the-
ory is made generic, one might as well work on a generic version of the toolset
itself.

Acknowledgements

Thanks are due to Chris Heunen, Bart Jacobs, Yoshinobu Kawabe, Koki Nishizawa,
Ana Sokolova, Frits Vaandrager and Hiroshi Watanabe for helpful discussions.

References

[Che06] L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD
thesis, Radboud Univ. Nijmegen, 2006.

[Fio96] M. Fiore. A coinduction principle for recursive data types based on bisim-
ulation. Inf. & Comp., 127(2):186–198, 1996.

[GLV97] S. Garland, N. Lynch, and M. Vaziri. IOA: a language for specifying, pro-
gramming, and validating distributed systems. MIT Laboratory for Com-
puter Science, 1997.

[HJ04] J. Hughes and B. Jacobs. Simulations in coalgebra. Theor. Comp. Sci.,
327(1-2):71–108, 2004.

[HJ05] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace seman-
tics. In Algebra and Coalgebra in Computer Science (CALCO’05), volume
3629 of Lect. Notes Comp. Sci., pages 213–231. Springer, Berlin, 2005.

[HJS06] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory. In Coalgebraic
Methods in Computer Science (CMCS 2006), Elect. Notes in Theor. Comp.
Sci. Elsevier, Amsterdam, 2006.

[Jac04] B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius,
editors, Coalgebraic Methods in Computer Science, number 106 in Elect.
Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2004.

[JS90] C. Jou and S. Smolka. Equivalences, congruences and complete axiomatiza-
tions for probabilistic processes. In CONCUR’90, volume 458 of Lect. Notes
Comp. Sci., pages 367–383. Springer-Verlag, 1990.

[KMST06] Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Backward simula-
tions for anonymity. In International Workshop on Issues in the Theory of
Security (WITS ’06), 2006.

[KP00] Y. Kinoshita and J. Power. Data refinement and algebraic structure. Acta
Informatica, 36:693–719, 2000.

[KS89] N. Klarlund and F. Schneider. Verifying safety properties using infinite-state
automata. Technical Report 89-1039, Department of Computer Science,
Cornell University, Ithaca, New York, 1989.

[LT89] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219–246, 1989.

[LV95] N. Lynch and F. Vaandrager. Forward and backward simulations. I. Un-
timed systems. Inf. & Comp., 121(2):214–233, 1995.

[Mog91] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92,
1991.

[Par01] A. Pardo. Fusion of recursive programs with computational effects. Theor.
Comp. Sci., 260(1–2):165–207, 2001.

[PT99] J. Power and D. Turi. A coalgebraic foundation for linear time semantics.
In Category Theory and Computer Science, number 29 in Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 1999.

[Rut00] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci.,
249:3–80, 2000.

[SL95] R. Segala and N. Lynch. Probabilistic simulations for probabilistic pro-
cesses. Nordic Journ. Comput., 2(2):250–273, 1995.

[Sok05] A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis, TU
Eindhoven, 2005.

[SP82] M. Smyth and G. Plotkin. The category theoretic solution of recursive
domain equations. SIAM Journ. Comput., 11:761–783, 1982.

[vGSS95] R. van Glabbeek, S. Smolka, and B. Steffen. Reactive, generative, and
stratified models of probabilistic processes. Inf. & Comp., 121:59–80, 1995.

[VW05] D. Varacca and G. Winskel. Distributing probabililty over nondeterminism.
Math. Struct. in Comp. Sci., 2005. To appear.

[WSS97] S.H. Wu, S.A. Smolka, and E.W. Stark. Composition and behaviors of
probabilistic I/O automata. Theor. Comp. Sci., 176(1–2):1–38, 1997.

A Appendix

A.1 Proof of Proposition 5.6

Our proof here heavily relies on the constructions in our previous paper [HJS06],
to which the reader is referred for details.

Let us consider the final sequence 1
!
← F1

F !
← · · · for F in K`(T). The following

facts are standard.

– A final F -coalgebra (which coincides with an F -initial algebra in Sets,
Theorem 5.1) is an ω-limit of this final sequence. We denote this limit by
(ζn : A→ Fn1)n<ω.

– An F -coalgebra c : X → FX yields a cone (γn : X → Fn1)n<ω over the
final sequence, in an inductive manner.

– The unique coalgebra morphism trc from c to the final coalgebra is the unique
mediating arrow X → A from the cone (γn) to the limit (ζn).

Hence we have the following situation in K`(T).

A (limit)

trc· · · Fn1

ζn

γn

Fn!
Fn+11

ζn+1

γn+1

· · ·

X

In the proof of the initial algebra/final coalgebra coincidence (Theorem 5.1.2), it
is crucial that the limit (ζn) is also characterized by the order-theoretical notion
of O-limit. In particular we can take the corresponding embedding ζE

n : Fn1→ A
of each ζn : A→ Fn1, and moreover, we have idA =

⊔

n<ω ζ
E
n ◦ ζn.

Now we can prove the first statement of the proposition.

trc =
(
⊔

n<ω ζ
E
n ◦ ζn

)

◦ trc (idA =
⊔

n<ω ζ
E
n ◦ ζn)

=
(
⊔

n<ω ζ
E
n ◦ ζn ◦ trc

)

(Composition is continuous)

=
(
⊔

n<ω ζ
E
n ◦ γn

)

(trc is a mediating arrow)

w
(
⊔

n<ω ζ
E
n ◦ ζn ◦ f

)

(ζn ◦ f v γn for each n, †)

=
(
⊔

n<ω ζ
E
n ◦ ζn

)

◦ f = f , (Composition is continuous)

where the inequality (†) is proved by induction, using that f is a lax morphism.
In this proof the local monotonicity of F has been used in showing that the limit
(ζn) is also an O-limit.

The dual statement is proved in a similar way.

A.2 Why explicit start states?

We shall explain the reason why we have explicit start states incorporated in
the notion of (T, F)-systems. First let us look at the following diagram in Sets.

FX

F (behc)

Ff
FY

F (behd)
FZ

X
f

c

behc

Y
behd

d

Z

∼= ζ (final) (8)

The maps behc and behd—since they are induced by coinduction in Sets—give
the semantics respecting bisimilarity. In particular, by finality we have for each
x ∈ X,

behd

(

f(x)
)

= behc(x) .

Hence a coalgebra morphism (the map f here) in Sets is a behavior-preserving
map, respecting bisimilarity.

Now let us try the same trick in the Kleisli category K`(P) of the powerset
monad. In Diagram (8), the maps behc and behd give trace semantics, and the
map f is now a relation. By finality we have again behd ◦ f = behc. However in
K`(P) the computational meaning of this equality is unclear. It means: for each
x ∈ X,

⋃

y∈f(x) behd(y) = behc(x) .

That is, x has more behavior than any y ∈ f(x), but at the same time any
behavior of x is simulated by some y ∈ f(x). We do not immediately see the
significance of this notion.

This clumsiness in comparing “one x vs. many y’s” is immediately mended
by considering explicit start states. In Proposition 5.8 the comparison is made
between “many x’s vs. many y’s” instead. The conclusion tr(s,c) = tr(t,d) of the
proposition is interpreted as

⋃

x∈s(∗) behc(x) =
⋃

y∈t(∗) behd(y)

in the context of this remark.

