Quality Assurance of Cyber-Physical Systems

Mathematical Metatheory, Machine Learning and Automated Driving

物理情報システム研究の新地平
自動運転や機械学習をも包括する数学的基盤

Ichiro Hasuo 蓮尾 一郎

National Institute of Informatics, SOKENDAI
ERATO HASUO Metamathematics for Systems Design Project

Slides available: bit.ly/2SdJpIY
On ERATO MMSD

- JST ERATO Project, 2016/10-2022/03

- Our goal:
 form methods for cyber-physical systems (CPS)
 - Extend form methods, from software to CPS
 - Safety, reliability, V&V (Verification & Validation).
 “Check if a system behaves as expected”
 - Automated driving as a strategic target domain.
 Collaboration with U Waterloo: www.autonomoose.net

- Our principle: broaden the realm of CPS research
 - Theory:
 abstract mathematical metatheory
 ➔ scale out to diverse applications
 - Practice: real-world systems (not only toy examples)
On ERATO MMSD

- JST ERATO Project, 2016/10-2022/03

- Our goal: formal methods for cyber-physical systems (CPS)
 - Extend formal methods, from software to CPS
 - Safety, reliability, V&V (Verification & Validation). “Check if a system behaves as expected”
 - Automated driving as a strategic target domain. Collaboration with U Waterloo: www.autonomoose.net

- Our principle: broaden the realm of CPS research
 - Theory: abstract mathematical metatheory ➔ scale out to diverse applications
 - Practice: real-world systems (not only toy examples)
Our Organization

International and multi-disciplinary. “creative chaos”

Group 0 @ NII: Metatheoretical Integration
Leader: Shin-ya Katsumata
Featured today:
Kenta Cho
Clovis Eberhart
Natsuki Urabe

Group 1 @ NII: Heterogeneous Formal Methods
Leader: Ichiro Hasuo
Featured today:
Etienne Andre
Akihisa Yamada
Toru Takisaka
Chao Huang

Group 2 @ U Waterloo: Formal Methods in Industry
Leader: Krzysztof Czarnecki

Group 3 @ NII: Formal Methods and Intelligence
Leader: Fuyuki Ishikawa
Featured today:
Masaki Waga
Paolo Arcaini

Kyoto U RIMS Site: Categorical Infrastructure
Leader: Masahito Hasegawa

Kyushu U Site: Optimization for CPS V&V
Leader: Hayato Waki

Osaka U Site: Control Theory for CPS
Leader: Toshimitsu Ushio
Cyber-Physical Systems:
Control Theory and Formal Methods/Software Science

- Cyber-Physical System (CPS)
 - "A mechanism that is controlled or monitored by computer-based algorithms, tightly integrated with the Internet and its users" (Wikipedia)
 - Physical plant (continuous) + Digital control (discrete)
 - In US: NSF Key Area of Research (2006-)

- Formal methods: Logical proofs for "correctness" of (discrete) programs
 - Model checking [Pnueli, Clarke, Emerson, Sifakis, …]
 - Theorem Proving (Coq, Agda, …) [Milner, Coquand, Leroy, Voevodsky, …]

- Control Theory: Analysis of continuous dynamics
 - Stability, Lyapunov function, …

Their similarity is widely recognized
- Toru Takisaka’s talk on martingale synthesis for probabilistic programs (later)
CPS Research, So Far (the V&V Aspect)

CPS (esp. hybrid systems)

Formal Methods

Analysis

Control Theory

Collaboration

\[x' = f(x, u) \]
CPS Research, So Far (the V&V Aspect)

- Problem: **scalability**, esp. for real-world CPSs
 - Require **complete understanding** of a **white-box model**
 - Insist on being **absolutely sound and correct**
 - Little **tolerance to uncertainty and noise**
 → don’t get along with statistical machine learning
CPS Research: Our Comprehensive Approach

Control Theory

Formal Methods
CPS Research: Our Comprehensive Approach

- Control Theory
- Formal Methods
- Statistical Machine Learning
- Software Engineering
CPS Research:
Our Comprehensive Approach

Mathematical
Metatheory

Control Theory

Formal Methods

Statistical
Machine
Learning

Software
Engineering
Bidirectional Collaboration with Statistical Machine Learning

<table>
<thead>
<tr>
<th>Statistical ML</th>
<th>Inductive (learn from data)</th>
<th>Uncertainty (data is noisy)</th>
<th>(Typically) Black Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Methods, Control Th.</td>
<td>Deductive (Infer from absolute axioms)</td>
<td>Mathematical & Logical Rigor</td>
<td>White Box</td>
</tr>
</tbody>
</table>

*
Bidirectional Collaboration with Statistical Machine Learning

<table>
<thead>
<tr>
<th>Statistical ML</th>
<th>Inductive (learn from data)</th>
<th>Uncertainty (data is noisy)</th>
<th>(Typically) Black Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Methods, Control Th.</td>
<td>Deductive (Infer from absolute axioms)</td>
<td>Mathematical & Logical Rigor</td>
<td>White Box</td>
</tr>
</tbody>
</table>

Formal Methods
- Control Theory

Statistical ML

Formal Methods, Control Th.

Statistical ML
Bidirectional Collaboration with Statistical Machine Learning

<table>
<thead>
<tr>
<th>Statistical ML</th>
<th>Inductive (learn from data)</th>
<th>Uncertainty (data is noisy)</th>
<th>(Typically) Black Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Methods, Control Th.</td>
<td>Deductive (Infer from absolute axioms)</td>
<td>Mathematical & Logical Rigor</td>
<td>White Box</td>
</tr>
</tbody>
</table>

Formal Methods, Control Theory ↔ *Statistical ML*
Bidirectional Collaboration with Statistical Machine Learning

<table>
<thead>
<tr>
<th>Formal Methods, Control Th.</th>
<th>Statistical ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deductive (Infer from absolute axioms)</td>
<td>Inductive (learn from data)</td>
</tr>
<tr>
<td>Mathematical & Logical Rigor</td>
<td>Uncertainty (data is noisy)</td>
</tr>
<tr>
<td>White Box</td>
<td>(Typically) Black Box</td>
</tr>
</tbody>
</table>

Accelerate search/constraint solving/optimization
Bidirectional Collaboration with Statistical Machine Learning

<table>
<thead>
<tr>
<th>Statistical ML</th>
<th>Inductive (learn from data)</th>
<th>Uncertainty (data is noisy)</th>
<th>(Typically) Black Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Methods, Control Th.</td>
<td>Deductive (Infer from absolute axioms)</td>
<td>Mathematical & Logical Rigor</td>
<td>White Box</td>
</tr>
</tbody>
</table>

- Accelerate search/constraint solving/optimization
- Acknowledge that ML components are unreliable
- Wrap them with “safety envelopes,” within which ML optimizes

(Akametalu, Kaynama, Fisc, Zeilinger, Gillula & Tomlin, CDC’14)
Bidirectional Collaboration with Statistical Machine Learning

<table>
<thead>
<tr>
<th>Statistical ML</th>
<th>Inductive (learn from data)</th>
<th>Uncertainty (data is noisy)</th>
<th>(Typically) Black Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Methods, Control Th.</td>
<td>Deductive (Infer from absolute axioms)</td>
<td>Mathematical & Logical Rigor</td>
<td>White Box</td>
</tr>
</tbody>
</table>

Accelerate search/constraint solving/optimization

- Acknowledge that ML components are unreliable
- Wrap them with “safety envelopes,” within which ML optimizes

Key: system-level architecture for collaboration between logic and ML. Separation of concerns

* (Akametalu, Kaynama, Fisac, Zeilinger, Gillula & Tomlin, CDC’14)
Software Engineering and Empirical Application of Formal Methods and Control Theory

- Challenges in industrial application
 - **Scalability**: real systems are complex
 - Need complete **white-box models**
 - Unrealistic. Components from suppliers, neural nets, ...
 - Industry practitioners need not appreciate rigorous proofs
 - How do we check axioms (= environmental assumptions)?
Software Engineering and Empirical Application of Formal Methods and Control Theory

- Challenges in industrial application
 - **Scalability**: real systems are complex
 - Need complete white-box models
 - Unrealistic. Components from suppliers, neural nets, ...
 - Industry practitioners need not appreciate rigorous proofs
 - How do we check axioms (= environmental assumptions)?

- We focus on supporting empirical quality assurance methods (i.e., testing)
 - What software engineering has been doing for years
 - Testing, runtime verification, ...
 - Ample use of deductive techniques from formal methods
 - Examples: from specifications to score functions, optimize test cases, ...
 - Talks by Etienne Andre, Masaki Waga, Paolo Arcaini
Exit Strategy (in Application)

- **Outlets**
 - **Industry collaboration**: a few companies
 - **Automated Driving Vehicle Project** “Autonomoose” (U Waterloo).
 (Mostly) nonproprietary software stack for automated driving
Exit Strategy (in Application)

- **Outlets**
 - **Industry collaboration:** a few companies
 - **Automated Driving Vehicle Project** “Autonomoose” (U Waterloo).
 (Mostly) nonproprietary software stack for automated driving
Exit Strategy (in Application)

🌟 Outlets

🌟 Industry collaboration: a few companies

🌟 Automated Driving Vehicle Project “Autonomoose” (U Waterloo).
(Mostly) nonproprietary software stack for automated driving

🌟 Goal 1: our advanced quality assurance techniques, put to real use

🌟 Safety is rarely a competition area

🌟 we aim at standards (ISO 26262, SOTIF, …)
Exit Strategy (in Application)

Outlets

- **Industry collaboration**: a few companies
- **Automated Driving Vehicle Project** “Autonomoose” (U Waterloo).
 (Mostly) nonproprietary software stack for automated driving

Goal 1: our advanced quality assurance techniques, put to real use
- Safety is rarely a competition area
- ➜ we aim at standards (ISO 26262, SOTIF, …)

Goal 2: offer software platform for developing, verifying and validating automated driving software
- For industry and academia
- Perception ➔ Object Recognition ➔ **Path Planning** ➔ Path Tracing,
 + Simulation + **Testing, V&V**
- Improvement of each component
 + Interface between components, DSL (domain specific language)
 ➜ the whole framework
- Our unique strength: advanced V&V techniques + their theoretical foundation + programming language theory

Strategic contribution areas
CPS Research: Our Comprehensive Approach

Mathematical metatheory

Control Theory

Formal Methods

Statistical Machine Learning

Software Engineering
CPS Research: Our Comprehensive Approach

Mathematical metatheory

Control Theory

Formal Methods

Statistical Machine Learning

Software Engineering

Etienne Andre
Masaki Waga
Akihisa Yamada
Kenta Cho
Clovis Eberhart
Natsuki Urabe
Toru Takisaka
Chao Huang
Paolo Arcaini
CPS Research: Our Comprehensive Approach

Mathematical metatheory

Control Theory

Formal Methods

Statistical Machine Learning

Software Engineering

- Etienne Andre
- Masaki Waga
- Akihisa Yamada
- Kenta Cho
- Clovis Eberhart
- Natsuki Urabe
- Toru Takisaka
- Chao Huang
- Paolo Arcaini
CPS Research: Our Comprehensive Approach

Mathematical metatheory

Control Theory

Formal Methods

Statistical Machine Learning

Software Engineering

Etienne Andre
Masaki Waga
Akihisa Yamada
Kenta Cho
Clovis Eberhart
Natsuki Urabe
Toru Takisaka
Chao Huang
Paolo Arcaini