

Compositional Probabilistic Model Checking with String Diagrams of MDPs

Kazuki Watanabe^{1,2}, Clovis Eberhart^{1,3}, Kazuyuki Asada⁴, Ichiro Hasuo^{1,2}

1: National Institute of Informatics, Tokyo, Japan 2: SOKENDAI (The Graduate University for Advanced Studies), Japan 3: Japanese-French Laboratory for Informatics (IRL 3527), Tokyo, Japan 4: Research Institute of Electrical Communication, Tohoku University, Sendai, Japan

Supported by ERATO HASUO Metamathematics for Systems Design Project No. JPMJER1603 and the JST Grant No. JPMJFS2136.

Outline

$$\left[\!\!\left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] = \left[\!\!\left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] ; \left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] \right]$$

- Target problem: optimal expected reward of MDPs
- Composition formalism: string diagrams of MDPs
- Compositional solution of MDPs
- Upgrading compositional solution for free
- Experimental evaluation
- Conclusions

Optimal Expected Reward of MDPs: Scheduler Synthesis + Its Performance Guarantee

Markov Decision Process (MDP)

- State-based model with actions (a, b, ...) and probabilistic uncertainties
- Basic framework in many research areas (e.g. reinforcement learning)
- General modeling formalism for decision making in an uncertain environment

Goal: Compute Optimal Expected Reward

Problem:

- Given an MDP,
- <u>Compute</u> the optimal scheduler
 (~ controller, strategy; it chooses actions)
 and its expected cumulative reward

Applications:

- Scheduler synthesis "what is the best strategy?"
 - Formal verification

 "How much cumulative reward can I expect?"

 "Is the expectation correct?"

Outline

$$\left[\!\!\left[\begin{array}{ccc} \overrightarrow{\rightarrow} & \overrightarrow{\mathcal{A}} & \overrightarrow{\rightarrow} & \overrightarrow{\mathcal{B}} \\ \end{array}\right] = \left[\!\!\left[\begin{array}{ccc} \overrightarrow{\rightarrow} & \overrightarrow{\mathcal{A}} & \overrightarrow{\rightarrow} \\ \end{array}\right] ; \left[\begin{array}{ccc} \overrightarrow{\rightarrow} & \overrightarrow{\mathcal{B}} \\ \end{array}\right] \right]$$

- Target problem: optimal expected reward of MDPs
- Composition formalism: string diagrams of MDPs
- Compositional solution of MDPs
- Upgrading compositional solution for free
- Experimental evaluation
- Conclusions

A Paradigm with Conceptual Value, Performance Advantage, and Mathematical Blessing

$$\mathcal{S}(\mathcal{A}\star\mathcal{B})=\mathcal{S}(\mathcal{A})\star\mathcal{S}(\mathcal{B})$$
Composition of **systems**
(seqComp, parComp, sum, ...)

Conceptual Value

- "Divide-and-Conquer": simplifies a problem into smaller subproblems
- S(A), S(B) are summaries of components A, B.
 Unnecessary details get abstracted away

Performance Advantage

 Clear adv. when there are duplicates (reuse S(A)!)

$$S(A \star \cdots \star A)$$

$$= S(A) \star \cdots \star S(A)$$

 (In some cases you don't need duplicates, e.g. mergesort)

Mathematical Blessing

 Compositionality means that the solution

$$\mathcal{S} \colon \mathbb{M} \longrightarrow \mathbb{S}$$

is a **homomorphism**, preserving the operation ★

String Diagrams of MDPs: Planar Composition with SeqComp; and Sum \oplus

String Diagram of MDPs

Sequential composition;

$$\exists \mathcal{A} \vDash \; ; \; \exists \mathcal{B} \vdash = \quad \exists \mathcal{A} \vDash \mathcal{B} \vdash$$

Sum ⊕

- and some "constants" (,) , X ,
- → planar composition of MDPs (mostly sequential composition; not parallel)
- Loop is a derived operation:

Background: Monoidal Categories

- Well-established topic of category theory (Mac Lane, Kelly, Joyal, Street, ...)
- Used for many applications:
 quantum field theory (Khavanov, ...),
 quantum computation (Abramsky, Coecke, Vicary,
 Heunen, ...),
 linguistics (Sadrzadeh, Coecke, ...),
 signal flow diagrams (Bonchi, Sobocinski, Zanasi, ...)
- String diagrams as a graphical syntax for monoidal categories [Joyal & Street, Adv. Math. 1991]
 - nicely expressive (planar composition, see left)
 - comes with a rich metatheory (see later)

Composition Formalism: String Diagrams of MDPs

- Open MDPs extend MDPs with open ends: (left, right) × (entrance, exit)
- An open MDP thus comes with an arity. E.g. $\mathcal{A}\colon (2,1) \longrightarrow (1,3)$
- Open MDPs are combined with algebraic operations; (seqComp) and ⊕ (sum)

$$\frac{\mathcal{A}: (m_{\mathbf{r}}, m_{\mathbf{l}}) \longrightarrow (n_{\mathbf{r}}, n_{\mathbf{l}})}{\mathcal{A}: \mathcal{B}: (m_{\mathbf{r}}, m_{\mathbf{l}}) \longrightarrow (k_{\mathbf{r}}, k_{\mathbf{l}})}$$

$$rac{\mathcal{A}: (m{m_r}, m{m_l}) \longrightarrow (n_r, n_l)}{\mathcal{A} \oplus \mathcal{B} : (m{m_r} + m{k_r}, m{m_l} + m{k_l}) \longrightarrow (n_r + l_r, n_l + l_l)}$$

<u>Def.</u> (open MDP, oMDP) Let A be a non-empty finite set, whose elements are called *actions*. An *open MDP* A (*over* the action set A) is the tuple $(\overline{m}, \overline{n}, Q, A, E, P, R)$ of the following data. We say that it is $from \overline{m}$ to \overline{n} .

- 1. $\overline{m} = (m_{\rm r}, m_{\rm l})$ and $\overline{n} = (n_{\rm r}, n_{\rm l})$ are pairs of natural numbers; they are called the *left-arity* and the *right-arity*, respectively. Moreover, elements of $[m_{\rm r} + n_{\rm l}]$ are called *entrances*, and those of $[n_{\rm r} + m_{\rm l}]$ are called *exits*.
- 2. Q is a finite set of positions.
- 3. $E: [m_r + n_1] \to Q + [n_r + m_1]$ is an *entry function*, which maps each entrance to either a position (in Q) or an exit (in $[n_r + m_1]$).
- 4. $P: Q \times A \times (Q + [n_r + m_l]) \to \mathbb{R}_{\geq 0}$ determines transition probabilities, where we require $\sum_{s' \in Q + [n_r + m_l]} P(s, a, s') \in \{0, 1\}$ for each $s \in Q$ and $a \in A$.
- 5. R is a reward function $R: Q \to \mathbb{R}_{\geq 0}$.
- 6. We impose the following "unique access to each exit" condition. Let exits: $([m_{\mathbf{r}} + n_{\mathbf{l}}] + Q) \to \mathcal{P}([n_{\mathbf{r}} + m_{\mathbf{l}}]) \text{ be the } exit \text{ function } \text{that collects all } \text{ immediately reachable exits, that is, 1) for each } s \in Q, \text{ exits}(s) = \{t \in [n_{\mathbf{r}} + m_{\mathbf{l}}] \mid \exists a \in A.P(s, a, t) > 0\}, \text{ and 2) for each entrance } s \in [m_{\mathbf{r}} + n_{\mathbf{l}}], \text{ exits}(s) = \{E(s)\} \text{ if } E(s) \text{ is an exit and exits}(s) = \emptyset \text{ otherwise.}$
 - For all $s, s' \in [m_r + n_l] + Q$, if $\operatorname{exits}(s) \cap \operatorname{exits}(s') \neq \emptyset$, then s = s'.
 - We further require that each exit is reached from an identical position by at most one action. That is, for each exit $t \in [n_r + m_l]$, $s \in Q$, and $a, b \in A$, if both P(s, a, t) > 0 and P(s, b, t) > 0, then a = b.

$$\exists \mathcal{A} \vDash ; \exists \mathcal{B} = \exists \mathcal{A} \vDash \mathcal{B}$$

$$\exists \mathcal{A} \vDash \oplus \exists \mathcal{B} = \exists \mathcal{A} \vDash \mathcal{B}$$

; (seqComp) of String Diagrams of MDPs

(sum) of String Diagrams of MDPs

String Diagrams of MDPs: (Usual) MDPs as Open MDPs

 $: (1,0) \to (1,0)$

Outline

- Target problem: optimal expected reward of MDPs
- Composition formalism: string diagrams of MDPs

- Compositional solution of MDPs
- Upgrading compositional solution for free
- Experimental evaluation
- Conclusions

CompMDP: a Compositional MDP Model Checking Algorithm

```
function CompMDP(\mathcal{A})
      Input:
           a "string diagram" \mathcal{A}: (m_r, m_l) \to (n_r, n_l) of open MDPs,
           composed with; (seqComp) and \oplus (sum)
      Output:
          a set \left\{\left.\left(p_{\pmb{i},\pmb{j}}^{\pmb{	au}},r_{\pmb{i},\pmb{j}}^{\pmb{	au}}
ight)_{\pmb{i}\in[m_{\mathrm{r}}+n_{\mathrm{l}}],\;\pmb{j}\in[n_{\mathrm{r}}+m_{\mathrm{l}}]}\right.
ight\}_{\pmb{	au}}
      if \mathcal{A} is atomic then
          \left\{ \left( \mathrm{RPr}(\mathcal{A}^{\tau})(\pmb{i}, \pmb{j}), \; \mathrm{ERw}(\mathcal{A}^{\tau})(\pmb{i}, \pmb{j}) \right)_{\pmb{i} \in [m_{\mathrm{r}} + n_{\mathrm{l}}], \; \pmb{j} \in [n_{\mathrm{r}} + m_{\mathrm{l}}]} \middle| \begin{matrix} \tau \; \text{is a memoryless} \\ \text{scheduler of } \mathcal{A} \end{matrix} \right\}_{\tau}
      elsif \mathcal{A} = \mathcal{B}; C then
           return CompMDP(\mathcal{B}); CompMDP(\mathcal{C})
      elsif \mathcal{A} = \mathcal{B} \oplus \mathcal{C} then
           return CompMDP(\mathcal{B}) \oplus CompMDP(\mathcal{C})
```

CompMDP: a Compositional MDP Model Checking Algorithm

```
function CompMDP(\mathcal{A})
      Input:
          put: a "string diagram" \mathcal{A}: (m_{\rm r},m_{\rm l}) \to ??? composed with ; (seqComp) and
      Output:
           a set \left\{\left.\left(p_{\pmb{i},\pmb{j}}^{	au},r_{\pmb{i},\pmb{j}}^{	au}
ight)_{\pmb{i}\in[m_{	ext{r}}+n_{	ext{l}}],\,\pmb{j}\in[n_{	ext{r}}+m_{	ext{l}}]}
ight.
ight\}_{	au}
      if \mathcal{A} is atomic then
           \left\{ \left( \mathrm{RPr}(\mathcal{A}^{\tau})(\pmb{i}, \pmb{j}), \; \mathrm{ERw}(\mathcal{A}^{\tau})(\pmb{i}, \pmb{j}) \right)_{\pmb{i} \in [m_{\mathrm{r}} + n_{\mathrm{l}}], \; \pmb{j} \in [n_{\mathrm{r}} + m_{\mathrm{l}}]} \middle| \begin{matrix} \tau \; \text{is a memoryless} \\ \text{scheduler of } \mathcal{A} \end{matrix} \right\}_{\tau}
      elsif \mathcal{A} = \mathcal{B}; C then
            return CompMDP(\mathcal{B}); CompMDP(\mathcal{C})
      elsif \mathcal{A} = \mathcal{B} \oplus \mathcal{C} then
            return CompMDP(\mathcal{B}) \oplus CompMDP(\mathcal{C})
```

Outline

$$\left[\!\!\left[\begin{array}{ccc} \overrightarrow{\mathcal{A}} & \overrightarrow{\mathcal{B}} & \overrightarrow{\mathcal{B}} \\ \end{array}\right]\!\!\right] = \left[\!\!\left[\begin{array}{ccc} \overrightarrow{\mathcal{A}} & \overrightarrow{\mathcal{B}} \\ \end{array}\right]\!\!\right]; \left[\!\!\left[\begin{array}{ccc} \overrightarrow{\mathcal{B}} & \overrightarrow{\mathcal{B}} \\ \end{array}\right]\!\!\right]$$

- Target problem: optimal expected reward of MDPs
- Composition formalism: string diagrams of MDPs
- Compositional solution of MDPs

- Upgrading compositional solution for free
- Experimental evaluation
- Conclusions

Upgrading Frameworks for Free: Compositional Solutions for MC, MDP, and bi-dir. MDP

Upgrading Frameworks for Free: Compositional Solutions for MC, MDP, and bi-dir. MDP

Decomposition Equalities for (rightward open) Markov Chains Watanabe (NII, Tokyo)

	reachability probability	expected reward
seq. comp.	$ \mathbf{RPr} \left\{ \begin{array}{c} i \\ \downarrow \\ \downarrow \\ \downarrow \end{array} \right\} = \\ \sum_{k} \mathbf{RPr} \left\{ \begin{array}{c} i \\ \downarrow \\ \downarrow \end{array} \right\} \times \mathbf{RPr} \left\{ \begin{array}{c} k \\ \downarrow \\ \downarrow \end{array} \right\} \right\} \tag{Folklore} $	
trace i		

Decomposition Equalities for (rightward open) Markov Chains Watanabe (NII, Tokyo)

	reachability probability	expected reward
seq. comp.	$ \mathbf{RPr} \left\{ \begin{array}{c} i \\ \downarrow \\ \downarrow \\ \downarrow \end{array} \right\} = \\ \sum_{k} \mathbf{RPr} \left\{ \begin{array}{c} i \\ \downarrow \\ \downarrow \end{array} \right\} \times \mathbf{RPr} \left\{ \begin{array}{c} k \\ \downarrow \\ \downarrow \end{array} \right\} \right\} $ (Folklore)	
trace i → g i → j (trace is primitive in a uni-dir. setting)	$\Pr\left[\bigcup_{i \to \mathcal{G}} \int_{j}\right] = \Pr\left[\bigcup_{i \to \mathcal{G}} \int_{j}\right] + d \text{ times}$ $\sum_{d \in \mathbb{N}} \Pr\left[\bigcup_{i \to \mathcal{G}} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \int_{0}$	

Decomposition Equalities for (rightward open) Markov Chains Watanabe (NII, Tokyo)

	reachability probability	expected reward
seq. comp.	$ \mathbf{RPr} \left\{ \stackrel{i}{\leftarrow} \stackrel{\downarrow}{\leftarrow} \stackrel{\downarrow}{\rightarrow} \right\} = \sum_{\mathbf{k}} \mathbf{RPr} \left\{ \stackrel{i}{\leftarrow} \stackrel{\downarrow}{\leftarrow} \right\} \times \mathbf{RPr} \left\{ \stackrel{k}{\rightarrow} \stackrel{\downarrow}{\rightarrow} \right\} $ (Folklore)	$ \mathbf{ERw} \left\{ \begin{array}{c} i \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \end{pmatrix} \right\} = \\ + \sum_{k} \mathbf{ERw} \left\{ \begin{array}{c} i \\ \downarrow \\ \downarrow \\ \end{pmatrix} \times \mathbf{ERw} \left\{ \begin{array}{c} k \\ \downarrow \\ \downarrow \\ \end{pmatrix} \right\} \\ + \sum_{k} \mathbf{ERw} \left\{ \begin{array}{c} i \\ \downarrow \\ \downarrow \\ \end{pmatrix} \right\} \times \mathbf{RPr} \left\{ \begin{array}{c} k \\ \downarrow \\ \downarrow \\ \end{pmatrix} \right\} \\ \text{(Prop. 3.2)} $
trace i definition of the setting o	$\Pr\left[\bigcup_{i \to \mathcal{G}} j\right] = \Pr\left[\bigcup_{i \to \mathcal{G}} j\right] + \frac{d \text{ times}}{d \in \mathbb{N}}$ $Q(Girard's execution formula)$	$\begin{bmatrix} \mathbf{E} \mathbf{R} \mathbf{w}^{\mathrm{tr}_{l;m,n}(\mathcal{E})}(i,j) \big]_{i,j} \\ = \begin{bmatrix} \mathbf{E} \mathbf{R} \mathbf{w}^{\mathcal{E}}(l+i,l+j) \big]_{i,j} \\ \\ + \sum_{d \in \mathbb{N}} \begin{bmatrix} \left(\begin{bmatrix} \mathbf{R} \mathbf{P} \mathbf{r}^{\mathcal{E}}(l+i,k) \big]_{i,k} & \begin{bmatrix} \mathbf{E} \mathbf{R} \mathbf{w}^{\mathcal{E}}(l+i,k) \big]_{i,k} \right) \\ \\ \cdot \begin{pmatrix} \begin{bmatrix} \mathbf{R} \mathbf{P} \mathbf{r}^{\mathcal{E}}(k,k') \big]_{k,k'} & \begin{bmatrix} \mathbf{E} \mathbf{R} \mathbf{w}^{\mathcal{E}}(k,k') \big]_{k,k'} \\ \\ \begin{bmatrix} 0 \end{bmatrix}_{k,k'} & \begin{bmatrix} \mathbf{R} \mathbf{P} \mathbf{r}^{\mathcal{E}}(k,k') \big]_{k,k'} \end{pmatrix}^{d} \\ \cdot \begin{pmatrix} \begin{bmatrix} \mathbf{E} \mathbf{R} \mathbf{w}^{\mathcal{E}}(k',l+j) \big]_{k',j} \\ \\ \begin{bmatrix} \mathbf{R} \mathbf{P} \mathbf{r}^{\mathcal{E}}(k',l+j) \big]_{k',j} \end{pmatrix} \end{bmatrix} \end{bmatrix} $ (Prop. 3.2)

Decomposition Equalitie For ERW,

record RPr as well!

Watanabe (NII, Tokyo) en) Markov Chains

reachability pro

expected reward

seq. comp.

$$\mathbf{RPr}\left\{ \begin{array}{c} i \\ \end{array} \right\} =$$

$$\sum_{k} \mathbf{RPr} \left\{ \stackrel{i}{\rightarrow} \stackrel{k}{\rightarrow} \right\} \times \mathbf{RPr} \left\{ \stackrel{k}{\rightarrow} \stackrel{j}{\rightarrow} \right\}$$

(Folklore)

$$\mathbf{ERw}\left\{ \begin{array}{c} i \\ \end{array} \right\} =$$

$$\sum_{k} \mathbf{RPr} \left\{ \stackrel{i}{\rightarrow} \left\langle \stackrel{k}{\rightarrow} \right\rangle \times \mathbf{ERw} \left\{ \stackrel{k}{\rightarrow} \right\rangle \right\}$$

$$+ \sum_{k} \operatorname{ERw} \left\{ \stackrel{i}{\longrightarrow} \right\} \times \operatorname{RPr} \left\{ \stackrel{k}{\longrightarrow} \right\}$$
(Prop. 3.2)

(trace is primitive in a uni-dir. setting)

$$\sum_{d \in \mathbb{N}} \Pr \left[\bigcap_{i \to \infty} \mathbb{S} \bigcap_{\infty} \mathbb{S$$

(Girard's execution formula)

$$egin{aligned} \left[\mathbf{ERw}^{\mathrm{tr}_{l;m,n}(\mathcal{E})}(i,j)
ight]_{i,j} \ &= \left[\mathbf{ERw}^{\mathcal{E}}(l+i,l+j)
ight]_{i,j} \ &+ \sum_{d \in \mathbb{N}} \left[egin{aligned} \left[\mathrm{RPr}^{\mathcal{E}}(l+i,k)
ight]_{i,k} & \left[\mathbf{ERw}^{\mathcal{E}}(l+i,k)
ight]_{i,k}
ight) \ &\cdot \left[\left[\mathrm{RPr}^{\mathcal{E}}(k,k')
ight]_{k,k'} & \left[\mathrm{ERw}^{\mathcal{E}}(k,k')
ight]_{k,k'}
ight)^{d} \ &\cdot \left[\left[\mathrm{ERw}^{\mathcal{E}}(k',l+j)
ight]_{k',j}
ight) \ &\cdot \left[\left[\mathrm{RPr}^{\mathcal{E}}(k',l+j)
ight]_{k',j}
ight) \end{aligned}$$

(Prop. 3.2)

CompMDP: a Compositional MDP Model Checking Algorithm

```
function CompMDP(\mathcal{A})
     Input:
         a "string diagram" \mathcal{A}:(m_r,m_l)\to(n_r,n_l) of open MDPs,
         composed with; (seqComp) and \oplus (sum)
    Output:
    if \mathcal{A} is atomic then
                           \left( \operatorname{RPr}(\mathcal{A}^{\tau})(i, j), \ \operatorname{ERw}(\mathcal{A}^{\tau})(i, j) \right)_{i \in [m_r + n_l], \ j \in [n_r + m_l]} \left| egin{array}{c} 	au \ 	ext{ is a memoryless} \ 	ext{ scheduler of } \mathcal{A} \end{array} \right|
                                                                                              concretely, string diagram in S_{\mathbf{r}}^{\mathbf{MC}}
    elsif \mathcal{A} = \mathcal{B}; C then
         return CompMDP(\mathcal{B}); CompMDP(\mathcal{C}
    elsif \mathcal{A} = \mathcal{B} \oplus \mathcal{C} then
                                                                                               concretely,
         return CompMDP(\mathcal{B}) \oplus CompMDP(\mathcal{C}
                                                                                                                        f \in \text{CompMDP}(\mathcal{B})
```

Upgrading Frameworks for Free: Compositional Solutions for MC, MDP, and bi-dir. MDP

Change of Base for Accommodating Actions, Schedulers, Optimality

[Eilenberg & Kelly '66] [Cruttwell, PhD thesis, '08] ...

We apply change of base, wrt. the powerset functor $\mathcal{P}\colon\mathbf{Set}\longrightarrow\mathbf{Set}$, to $upgrade\ \mathbb{S}^{\mathbf{MC}}_{\mathbf{r}}$ (for MCs) to $\mathbb{S}_{\mathbf{r}}$ (for MDPs).

Concretely,

 $\frac{\text{Def.} (\mathbb{S}_{\mathbf{r}})}{\text{Object: natural number } m}$ Arrow: $\frac{F \colon m \longrightarrow n \text{ in } \mathbb{S}_{\mathbf{r}}}{F \text{ is a set } \{f_i \mid f_i \colon m \rightarrow n \text{ in } \mathbb{S}_{\mathbf{r}}^{\text{MC}}\}}$

 $\mathbb{S}_{\mathbf{r}}$ is a TSMC with pointwise extension of opr. of $\mathbb{S}_{\mathbf{r}}^{\mathbf{MC}}$. E.g. $F\circ G=\{f_i\circ g_j\}_{i,j}$

(Being a category: by general theory of change of base.

Being traced monoidal: not covered, but easy.)

The solution functor $\mathcal{S}_{\mathbf{r}} \colon \mathbf{roMDP} \longrightarrow \mathbb{S}_{\mathbf{r}}$ is defined by bunding up different schedulers' behaviors

Thm.

 $\overline{\mathcal{S}_{\mathbf{r}} \colon \mathbf{roMDP}} \longrightarrow \mathbb{S}_{\mathbf{r}}$ is a traced symmetric monoidal functor, i.e. a homomorphism of TSMCs.

→ compositional model checking of MDPs!

Upgrading Frameworks for Free: Compositional Solutions for MC, MDP, and bi-dir. MDP

The Int Construction from

Unidirectional to Bidirectional

The Int construction: [Joyal, Street & Verity '96] a general construction that turns

unidirectional string
diagrams with loops

(traced sym. monoidal categories (TSMC))

bidirectional string diagrams

(compact closed categories (compCC))

by twisting:

In particular, the bidirectional seqComp ${\mathcal A}$; ${\mathcal B}$ is

Int extends to functors (and 2-cells):

 $\mathbf{Int}\colon \mathbf{TSMC} \longrightarrow \mathbf{CompCC}$

We thus apply Int to $\mathcal{S}_{\mathbf{r}} \colon \operatorname{roMDP} \longrightarrow \mathbb{S}_{\mathbf{r}}$ and get

$$\mathcal{S} \colon \mathrm{oMDP} \longrightarrow \mathbb{S}$$

This is a compact closed functor.

Outline

$$\left[\!\!\left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] = \left[\!\!\left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right]; \left[\!\!\left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] \right]$$

- Target problem: optimal expected reward of MDPs
- Composition formalism: string diagrams of MDPs
- Compositional solution of MDPs
- Upgrading compositional solution for free

- Experimental evaluation
- Conclusions

• Compositional algorithm can be arbitrary faster (reuse S(A)!)

$$S(A \star \cdots \star A)$$

$$= S(A) \star \cdots \star S(A)$$

- Overall, we do indeed witness the performance advantage of compositionality
- We need MDPs given in a compositional formalism.
 This is realistic. Our *Patrol* benchmark:

(a) A $task A_i^{task}$. bines tas

(b) A room A_i^{room} combines tasks.

(d) A building $\mathcal{A}_i^{\text{bldg}}$ combines floors.

(c) A floor $\mathcal{A}_i^{\text{floor}}$ combines rooms.

$\longrightarrow {\cal A}_1^{ m bldg}$	$\longrightarrow \cdots \longrightarrow$	${\cal A}_{m_4}^{ m bldg}$	\longrightarrow
--	--	----------------------------	-------------------

(e) A neighborhood \mathcal{A}^{nbd} combines buildings.

			ех	kec. time [s	s]
benchmark	Q	$ oldsymbol{E} $	DI-high	DI-mid	DI-low
Patrol1 Patrol2 Patrol3 Patrol4	10^8 10^8 10^9 10^9	10^8 10^8 10^9 10^9	21 23 22 30	42 48 43 60	83 90 89 121
Wholesale1 Wholesale2 Wholesale3 Wholesale4	10^{8} 10^{8} $2 \cdot 10^{8}$ $2 \cdot 10^{8}$	$2 \cdot 10^{8}$ $2 \cdot 10^{8}$ $4 \cdot 10^{8}$ $4 \cdot 10^{8}$	130 92 6 129	260 179 12 260	394 274 23 393

			exec. time [s]		
benchmark	Q	$ m{E} $	FZ-none	FZ-int.	FZ-all (PRISM)
Packets1	$2.5\cdot 10^5$	$5\cdot 10^5$	ТО	1	65
Packets2	$\boldsymbol{2.5\cdot 10^5}$	$5\cdot 10^5$	TO	3	64
Packets3	$\boldsymbol{2.5\cdot 10^5}$	$\mathbf{5\cdot 10^5}$	TO	1	56
Packets4	$2.5\cdot 10^5$	$5\cdot 10^5$	TO	3	56
Patrol5	10^8	$\mathbf{10^8}$	${\bf 22}$	22	TO
Wholesale5	$5\cdot 10^7$	10^{8}	ТО	14	ТО

|Q| is the number of positions; |E| is the number of transitions (only counting action branching, not probabilistic branching); execution time is the average of five runs, in sec.; timeout (TO) is 1200 sec.

Apple MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 16GB of RAM

• Compositional algorithm can be arbitrary faster (reuse S(A)!)

$$S(A \star \cdots \star A)$$

$$= S(A) \star \cdots \star S(A)$$

- Overall, we do indeed witness the performance advantage of compositionality
- We need MDPs given in a compositional formalism.
 This is realistic. Our *Patrol* benchmark:

(a) A $task A_i^{task}$. bines tasks.

(d) A building $\mathcal{A}_i^{\text{bldg}}$ combines floors.

(c) A floor $\mathcal{A}_i^{\text{floor}}$ combines rooms.

(e) A neighborhood \mathcal{A}^{nbd} combines buildings.

DI (degree of identification): how much the same components are indeed recognized to be identical

				L	J
benchmark	Q	E	DI-high	DI-mid	DI-low
Patrol1 Patrol2 Patrol3	$10^8 \ 10^8 \ 10^9 \ 10^9$	$10^8 10^8 10^9 10^9$	21 23 22	42 48 43	83 90 89
Patrol4			30	60	121
$ \begin{array}{c} \text{Wholesale1} \\ \text{Wholesale2} \end{array} $	$10^8 \\ 10^8$	$\begin{matrix}2\cdot10^8\\2\cdot10^8\end{matrix}$	$130 \\ 92$	$\begin{array}{c} 260 \\ 179 \end{array}$	$394 \\ 274$
Wholesale3	$2\cdot 10^8$	$4 \cdot 10^8$	6	12	23
Wholesale4	$2 \cdot 10^8$	$4\cdot 10^8$	129	260	393

performance improves

exec. time [s]

benchmark	Q	$ m{E} $	FZ-none	FZ-int.	FZ-all (PRISM)
Packets1 Packets2	$2.5\cdot10^5 \\ 2.5\cdot10^5$	$5\cdot 10^5 \ 5\cdot 10^5$	TO TO	1 3	65 64
Packets3 Packets4	$2.5 \cdot 10^{5}$ $2.5 \cdot 10^{5}$	$5\cdot 10^5 \\ 5\cdot 10^5$	TO TO	$\frac{1}{3}$	56 56
Patrol5 Wholesale5	$5\cdot 10^8 \\ 5\cdot 10^7$	$10^8 \\ 10^8$	22 TO	22 14	TO TO

|Q| is the number of positions; |E| is the number of transitions (only counting action branching, not probabilistic branching); execution time is the average of five runs, in sec.; timeout (TO) is 1200 sec.

Apple MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 16GB of RAM

Scalability:

big MDPs are model checked in realistic time

• Compositional algorithm can be arbitrary faster (reuse S(A)!)

$$S(A \star \cdots \star A)$$

$$= S(A) \star \cdots \star S(A)$$

- Overall, we do indeed witness the performance advantage of compositionality
- We need MDPs given in a compositional formalism.
 This is realistic. Our *Patrol* benchmark:

(a) A $task \mathcal{A}_i^{task}$. bines tasks.

(d) A building $\mathcal{A}_i^{\text{bldg}}$ combines floors.

(e) A neighborhood \mathcal{A}^{nbd} combines buildings.

benchmark $ oldsymbol{Q} $ $ oldsymbol{E} $ DI-high DI-mid DI-lo	ow
	83
	90
Patrol3 10^9 10^9 22 43	89
Patrol4 10 ⁹ 10 ⁹ 30 60 1	21
	94
Wholesale 2 10^8 $2 \cdot 10^8$ 92 179 2	74
Wholesale 3 $2 \cdot 10^8$ $4 \cdot 10^8$ 6 12	23
Wholesale $4 \cdot 10^8 4 \cdot 10^8 129 260 3$	93

				е	xec. time [$[\mathbf{s}]$
benchmark	Q	$ m{E} $	F	Z-none	FZ-int.	FZ-all (PRISM)
Packets1	$2.5\cdot 10^5$	$5\cdot 10^5$		ТО	1	65
Packets2	$2.5\cdot 10^5$	$5\cdot 10^5$		ТО	3	64
Packets3	$2.5\cdot 10^5$	$5\cdot 10^5$		ТО	1	56
Packets4	$ullet 2.5 \cdot 10^5$	$5\cdot 10^5$		ТО	3	56
Patrol5	10^{8}	10^8		22	22	TO
Wholesale5	$5\cdot 10^7$	108		ТО	14	ТО

 $|\boldsymbol{Q}|$ is the number of positions; $|\boldsymbol{E}|$ is the number of transitions (only counting action branching, not probabilistic branching); execution time is the average of five runs, in sec.; timeout (TO) is 1200 sec.

Apple MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 16GB of RAM

Compositional algorithm can be arbitrary faster (reuse S(A)!)

$$S(A \star \cdots \star A)$$

$$= S(A) \star \cdots \star S(A)$$

- Overall, we do indeed witness the performance advantage of compositionality
- We need MDPs given in a compositional forma This is realistic. Our *Patrol* benchmark:

(a) A task $\mathcal{A}_i^{\text{task}}$. bines tasks.

(d) A building $\mathcal{A}_i^{\text{bldg}}$ combines floors.

(c) A floor $\mathcal{A}_i^{\text{floor}}$ combines rooms.

(e) A neighborhood \mathcal{A}^{nbd}

buildings.

			exec. time [s]		
benchmark	Q	$ oldsymbol{E} $	DI-high	DI-mid	DI-low
Patrol1	10 ⁸	108	21	42	83
Patrol2	$\mathbf{10^8}$	${\bf 10^8}$	23	48	90

FZ (freezing):

We can stop doing compositionally at a certain depth

(FZ-all = no compositionality; we used PRISM)

			exec. time [s]		
benchmark	Q	$ m{E} $	FZ-none	FZ-int.	FZ-all (PRISM)
Packets1	$2.5\cdot 10^5$	$5\cdot 10^5$	ТО	1	65
Packets2	$2.5\cdot 10^5$	$\mathbf{5\cdot 10^5}$	TO	3	64
Packets3	$2.5\cdot 10^5$	$5\cdot 10^5$	TO	1	56
Packets4	$2.5\cdot 10^5$	$5\cdot 10^5$	TO	3	56
Patrol5	10^8	$\mathbf{10^8}$	22	22	TO
Wholesale 5	$5\cdot 10^7$	10^8	ТО	14	ТО

|Q| is the number of positions; |E| is the number of transitions (only counting

average of

- Compositionality helps
- But going all the way down may not be a good idea

Outline

$$\left[\!\!\left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] = \left[\!\!\left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] ; \left[\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}\right] \right]$$

- Target problem: optimal expected reward of MDPs
- Composition formalism: string diagrams of MDPs
- Compositional solution of MDPs
- Upgrading compositional solution for free
- Experimental evaluation

Conclusions

Related Work (Compositional Probabilistic MC)

- Probabilistic model checking is an active field (Baier, Larsen, Katoen, Kwiatkowska, Parker, Raskin, ...)
- Compositionality in model checking is an old problem [Clarke, Long & McMillan, LICS'89] [Tsukada & Ong, LICS'14] ...
- Two closely related works on **compositional probabilistic** model checking:

Probabilistic Model Checking wrt. Parallel Composition || [Kwiatkowska, Norman, Parker & Qu, Inf. Comp. '13]

- Compositional model checking of parallel composition $\mathcal{A} \parallel \mathcal{B}$
- ... but assume-guarantee "contracts" betw. \mathcal{A} and \mathcal{B} must be devised
- Harder problem in general

Parametric MDP Model Checking for Sequential Composition [Junges & Spaan, CAV'22] Sequential composition of parametric MDPs

Unidirectional composition

- Assumption: locally optimal schedulers are globally optimal, too (It holds if component exits are unique. We don't need this assumption)
- Compositional solution of parametric components $\mathcal{A}(p)$ (We don't do this)

Monoidal Categories Guiding Planer-Compositional Model Checking

"Our general methodology":

- Semantic domains from category theory
- Upgrading frameworks for free

We applied it to MDP model checking

 semantic categories by decomposition
 equalities

esition
$$\frac{\text{ERw}\left\{\frac{i}{2}\right\}}{\sum_{k} \text{RPr}\left\{\frac{i}{2}\right\}} = \sum_{k} \text{RPr}\left\{\frac{i}{2}\right\} \times \text{ERw}\left\{\frac{k}{2}\right\}$$

$$+ \sum_{k} \text{ERw}\left\{\frac{i}{2}\right\} \times \text{RPr}\left\{\frac{k}{2}\right\}$$

• a compositional $+\sum_{k} ERw \{4\sqrt{t}\}$ algorithm with clear performance advantage

Future work

- parallel composition
- other problems
 - mean payoff games [Watanabe+, arXiv'23]