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Target Problem

Watanabe (NII, Tokyo)

Optimal Expected Reward of MDPs:
Scheduler Synthesis + Its Performance Guarantee

Markov Decision Process (MDP)

State-based model with actions (a, b, ...) and
probabilistic uncertainties

Basic framework in many research areas
(e.g. reinforcement learning)

General modeling formalism for decision
making in an uncertain environment

Goal: Compute Optimal Expected Reward

Problem:
 Given an MDP,

 Compute the optimal scheduler
(~ controller, strategy; it chooses actions)
and its expected cumulative reward

Applications:

 Scheduler synthesis
“what is the best strategy?”

Formal verificaiton
“How much cumulative reward can | expect?”
“Is the expectation correct?”
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Compositionality in Computer Science

Watanabe (NII, Tokyo)

A Paradigm with Conceptual Value,
Performance Advantage, and Mathematical Blessing

S5(Ax B) = S(A) x 5(B)
/ N\

Composition of systems Composition of semantics
(seqComp, parComp, sum, ...)

Conceptual Value Performance Advantage Mathematical Blessing

“Divide-and-Conquer”: e Clear adv. when there are * Compositionality means that
simplifies a problem into duplicates (reuse S(A) ) the solution

zr(“;)'e;é;)bprob'ems | S(Ax---x.A) S:M—S
, are summaries
of components A, B. =S(A)x---xS(A) is a homomorphism,

Unnecessary details get *  (In some cases you don't preserving the operation %
abstracted away need duplicates, e.g. mergesort)



Categorical Backgrounds

* and some “constants” C , ) X, ..

=> planar composition of MDPs
(mostly sequential composition; not parallel)

String Diagram of MDPs

Sequential composition ;

A
Sum 6@

A
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B

—

—

—
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Watanabe (NII, Tokyo)

String Diagrams of MDPs:
Planar Composition with SeqComp ; and Sum @

A

B

Loop is a derived operation:

A

Background: Monoidal Categories

Well-established topic of category theory
(Mac Lane, Kelly, Joyal, Street, ...)

Used for many applications:
guantum field theory (Khavanoy, ...),

quantum computation (Abramsky, Coecke, Vicary,
Heunen, ...),

linguistics (Sadrzadeh, Coecke, ...),
signal flow diagrams (Bonchi, Sobocinski, Zanasi, ...)

String diagrams as a graphical syntax for
monoidal categories [Joyal & Street, Adv. Math. 1991]

* nicely expressive (planar composition, see left)
 comes with a rich metatheory (see later)



Composition Formalism:
String Diagrams of MDPs

. on

{—>

r A [ Un
%

* Open MDPs extend MDPs with open ends:
(left, right) X (entrance, exit)

* An open MDP thus comes with an arity.
Eg. A: (2,1) — (1, 3)

 Open MDPs are combined with
algebraic operations ; (seqComp) and @ (sum)

A (me,my) — (n.,n)

B : (n.,n) — (k. k)

A;B : (me,my) — (kp, k)

A (me,my) — (n.,n)) B : (keyk) — (s 1))

AdB

. (mr + kra m + kl) — (nr + lra ny + ll)

Def. (open MDP, oMDP) Let A be a non-empty finite set, whose elements are
called actions. An open MDP A (over the action set A) is the tuple (77,7, Q, A,
E, P, R) of the following data. We say that it is from m to m.

1. m = (m,, m;) andm = (n_, n,;) are pairs of natural numbers; they are called

the left-arity and the right-arity, respectively. Moreover, elements of [m + n,]
are called entrances, and those of [n, 4+ m,] are called exits.

. @ is a finite set of positions.

. E:[m.+n)] = Q+[n,.+m] is an entry function, which maps each entrance

to either a position (in Q) or an exit (in [n, + m,]).

. P:QxXAX(Q+[n,+m]) = R>q determines transition probabilities, where

we require ZS'EQ-HTLT-le] P(s,a,s’) € {0,1} for each s € Q and a € A.

. Ris a reward function R : Q — R>q.

. We impose the following “unique access to each exit” condition. Let exits :

(fm, + n)] + Q) — P([n, + m,]) be the exit function that collects all
immediately reachable exits, that is, 1) for each s € Q, exits(s) = {t €
[n, +m)]|3a € A.P(s,a,t) > 0}, and 2) for each entrance s € [m_ + n],
exits(s) = {E(s)} if E(s) is an exit and exits(s) = @ otherwise.

e For all 5,5’ € [m, + n;] + Q, if exits(s) N exits(s’) # 0, then s = s’

e We further require that each exit is reached from an identical position by
at most one action. That is, for each exit t € [n, + m,], s € Q, and
a,b € A if both P(s,a,t) > 0 and P(s,b,t) > 0, then a = b.

1L

1L

A5 B = DA Bl
—— A
A @SB =




; (seqComp) of String Diagrams of MDPs

Jl}m al], b[1]>m bl R alzl, b[1] ~ b3l .
a3l a[1] a[1], b[] . 1 1 1 -
bit] ;E :(1,0) - (1,1) aly] a[zbl[l] a[1], bZ] :(1,1) - (1,0)
T a3 al1], b[1]
a[3], b[1] b[L] al3], b[1] b[3]
e al3]| |al1] a[1], b[2] aly| | a3l a[1], b2] (1.0) = (1.0
A; B = - O (1,0) = (1,0)
a[l],b[l]‘J a[1], b[1]



@ (sum) of String Diagrams of MDPs

VANV N alt], b[1] b
alz] | |all] [A,bl . ] . , _
” a[1], bf; :(1,0) - (1,1) alf]| |al ]b[l] a[1], b2] :(1,1) - (1,0)
W 1
- L] alL],bi1]
SR
A B = — — g
@ - :(2,1) - (2,1)

A
«—
al3 a[1], b3}
b[1]



String Diagrams of MDPs: (Usual) MDPs as Open MDPs

:(1,0) - (1,0)
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CompMDP: a Compositional MDP Model Checking Algorithm

function CompMDP(A)
Input:
a “string diagram” A: (m,, m;) - (n,, n;) of open MDPs,
composed with ; (seqComp) and @ (sum)
Output:

T T
a set (pi,j7 Ti,j)ie[mr—km], JE[ne+mi] }7-

if A is atomic then

7 is a memoryless

return L o
(RPF(A HE g0, ER (A )(Z’J)> scheduler of A

1€ [m,+n1], jE [N +m]

elsif A= B; C then
return CompMDP(B) ; CompMDP(C )

elsif A= B® C then
return CompMDP(B) & CompMDP(C )



CompMDP: a Compositional MDP Model Checking Algorithm

function CompMDP(A)
Input:
a “string diagram” A: (m,, m)) —
composed with ; (seqComp) and &
Output:
a set

T T
{ (pi,j’ri,j)ie[mr+n1], jE[n-+mi] }T

if A is atomic then

i€[my+ni], j€[nr+m] | scheduler of A

return
{ (RPr(.AT)(z',j), ERW(AT)(i,j)>

7 is a memoryless }
-

elsif A= B; C then
return CompMDP(B) ; CompMDP(C )

elsif A= B® C then
return CompMDP(B) & CompMDP(C )



[l

n=ri=

Outline |

* Target problem: optimal expected reward of MDPs
* Composition formalism: string diagrams of MDPs
 Compositional solution of MDPs

# * Upgrading compositional solution for free
* Experimental evaluation
* Conclusions

Tl

[Tl

(!




Semantical Constructions, Summary

Upgrading Frameworks for Free:
Compositional Solutions for MC, MDP, and bi-dir. MDP

my Ny o on Ny .
— ] A m]

A >
oMDP S peirmElw

the Int construction bidirectional
— — _
roMDP > Sy AL =
Sy S
B i ——
change of base w/ P non-determinism AL = <ﬁ><> T
SMcC . R
i N N
roMC 3 Syc N
SMC 2 2
r - .

- P1,1.111) A
— HEEN - -
AMC = (P124112) (P21 72,1)
—_ —
SMC




Watanabe (NII, Tokyo)

Semantical Constructions, Summary

Upgrading Frameworks for Free:
Compositional Solutions for MC, MDP, and bi-dir. MDP

My Ny My

— — v
<— nl(A

A <
S M h I, e
oMDP > S A B,

the Int construction bidirectional

roMDP 3 > Sy

2 2
AT (_»«/ LR :
. — DP12471,2) P21 T2,1)
change of base w/ P non-determinism N N ><
SMcC
r - (P22:T2 -/

16



Watanabe (NII, Tokyo)

Decomposition Equalities for (rightward open) Markov Chains

reachability probability expected reward
ree [+l | -
seq.

S| el

(Folklore)

trace

(trace is
primitive
in a uni-dir.
setting)

17



Watanabe (NII, Tokyo)

Decomposition Equalities for (rightward open) Markov Chains

reachability probability expected reward
ree {4 |
seq.

S| el

(Folklore)

i—>j d times
(trace is —~ .
primitive furd [o—_'{ ) m g e ]

in a uni-dir.
setting)

(Girard’s execution formula)

18



Decomposition Equalities for (rightward open) Markov Chains

reachability probability

Watanabe (NII, Tokyo)

expected reward

seq.
comp.

_”.QEIDJ;

Ree |+ |
S wer (<) xrer {4

(Folklore)

R~ |
5 wee (= rw { -]

L5 ] mee [

(Prop. 3.2)

trace

(trace is
primitive

in a uni-dir.

setting)

d times

(Girard’s execution formula)

[ERw*Tumn (&) (4, 5) ],

= [ERw* (I +4,0+7) ], .

[ ([RPrP(+4,k) ],
([ [RPr®(k, k) ],

[ERWE(L+14,k) ], )
[ERwE (k, k') }k,k,>d

+) (0] u [RPrS(k,k’)}k, ,
deN [ERW‘S(k’ l—I—])}
' [RPr® (K, l-|—g)}

(Prop. 3.2)

19



Decomposition Equaliti

reachability pr

For ERw,

record RPr as well!

seq.
comp.

AQ;DA

Ree |~

S wee (< xrer (]

(Folklore)

en) Markov Chains

Watanabe (NII, Tokyo)

expected reward

R |+ |

% e it o 1

L5 ] mee [

(Prop. 3.2)

(trace is
primitive

in a uni-dir.

setting)

d times

.

(Girard’s execution formula)

[BRwHmn (i, 5) ],
= [ERw* (I +4,0+7) ], .

+ 2

deN

[ ([RPrP(+4,k) ],

[ERwE (L + i, k) }k)
(IRPrE(k, k)], [ERwE(E,K)], "
[O]kk [RPrg(k,k’)}k,k,

[ERWg(k’ l—I—])}
' [RPrE(kz’l—l—g)}

(Prop. 3.2)

20



CompMDP: a Compositional MDP Model Checking Algorithm

function CompMDP(A)
Input:
a “string diagram” A: (m,, m;) - (n,, n;) of open MDPs,
composed with ; (seqComp) and @ (sum)
Output:

\
H B — —
a set {(pi,jari,j)ie[mr+n1],jE[nr—I—ml] }T ﬁ_} A _)N -
S
AT = e~ T
([, - = |}

if A is atomic then

i€[my+ni], j€[nr+m] | scheduler of A

return
{ (RPr(.AT)(z',j), ERW(AT)(i,j)>

7 is a memoryless }
-

concretel Sy )
: _mD. Yy quring diogra™ " =x

elsif A= B; C then I Pl t—) f € CompMDP(B)
return CompMDP(B) ; CompMDP(C ) g € CompMDP(C)

A

elsif A= B® C then concretely, A
return CompMDP(B) & CompMDP(C) f € CompMDP(B)

[ g | g € CompMDP(C) )
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Semantical Constructions, Summary

Upgrading Frameworks for Free:
Compositional Solutions for MC, MDP, and bi-dir. MDP

My Ny My

— — ¥ 7
nl\A

<—

A

oMDP S .S

the Int construction bidirectional

change of base w/ P non-determinism
roMC > SMC
MC

- ’ @117, X
— —> -
AMC = (p1,27 ’"1,2) (Pz,l’ 21
—_ —
SMC

22



Change of Base for Accommodating

Actions, Schedulers, Optimality

[Eilenberg & Kelly '66] [Cruttwell, PhD thesis, ‘08] ...

We apply change of base,
wrt. the powerset functor P: Set — Set,
to upgrade SN (for MCs) to S, (for MDPs).

Concretely,

Def. (S;)
Object: natural number m
Arrow:

F:m—mn inS,
Fisaset {fi| fi: m — n in SM€}

r

Eg. FoG ={fi09;}i;
(Being a category: by general theory of change of base.
Being traced monoidal: not covered, but easy.)

S.. is a TSMC with pointwise extension of opr. of SM€ .

bidirectional, MDPs
(compact closed)
the Int
constr. <
unidirectional, MDPs
(traced monoidal)

change <‘

of base
unidirectional, MCs
(traced monoidal)

Si=Int(S,)
—_—

oMDP := Int(roMDP) Int(S,)

: S
-
roMDP - Sy

roMC —» SMC
Sll}/IC

The solution functor S, : roMDP — S,
is defined by bunding up different schedulers’ behaviors

— -
BEIN
— - s

2 2
. P11, N,
— A‘I‘ — (P12y12) P25 72,1)
SMC

: T R

RPr and ERw,
under a scheduler

)

Thm.
S.: roMDP — S, is a traced symmetric monoidal
functor, i.e. a homomorphism of TSMCs. ]

=» compositional model checking of MDPs!
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Semantical Constructions, Summary

Upgrading Frameworks for Free:
Compositional Solutions for MC, MDP, and bi-dir. MDP

the Int construction bidirectional

roMDP 3 > Sy

2 2
AT (_»«/ LR :
. — DP12471,2) P21 T2,1)
change of base w/ P non-determinism N — || e ><

. QMC —
roMC ——— Oy ~

r i (P1,17 V1,1) A
MC —
A —_— (P124712) (P2,1,72,1
SMC
(

24



The Int Construction from

bidirectional, MDPs oMDP := Int(roMDP) S:=Int(Sy) Tnt(S.) = S
: : : H H H (compact closed) r
Unidirectional to Bidirectional oo |
unidirectional, MDPs ro .
The Int construction: [Joyal, Street & Verity '96] e C (traced monoidal) WIDIP ——a——8
1 of base
a general construction that turns o, BV —
unidirectional string bidirectional
diagrams with loops string diagrams In particular, the bidirectional seqComp A ; Bis
. — - Z
— — 77@7tr :A(— 77@ b Ly N Ny
— A — i A B
e — My m N L
A C.o & ) f
— — — A — oy —
— —
- Int extends to functors (and 2-cells):
r m. monoidal compact close
sl ey (o Int: TSMC —s CompCC
categories (TSMC)) categories (compCC))
We thus apply Intto S,.: roMDP — S, and get
by twisting: Al T Al S: oMDP — S
ny my \
Object: (m,, my) This is a compact
My Ny my Ny AFFOW A : (mr,ml) — (nr? ’I’L]) in oMDP
v N — closed functor.
AL T AL m {3 4 =
my n an open MDPm, = :}"1/
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Watanabe (NII, Tokyo)

Experiment Results

« Compositional algorithm can be exec. time [s]
Patroll 108 108 21 42 83
S(Ax---xA) Patrol2 108 108 23 48 90
Patrol3 10° 10° 22 43 89
=S(A)x---xS(A) Patrol4 10° 10° 30 60 121
 Qverall, we do indeed witness Wholesalel 108 2.10% 130 260 394
- : Wholesale2 108 2.108 92 179 274
the performance advantage of compositionality Wholosale3 2. 10° 4. 108 p 1o 03
Wholesale4 2-.10% 4.108 129 260 393

* We need MDPs given in a compositional formalism.
This is realistic. Our Patrol benchmark:

exec. time [s]

benchmark Q| |E| FZ-none FZ-int. FZ-all

(PRISM)
Packets1 2.5.10° 5.10° TO 1 65
Packets2 2.5.10° 5.10° TO 3 64
Packets3 2.5.10° 5.10° TO 1 56
Packets4 2.5-.10° 5.10° TO 3 56
Patrol5 108 108 22 22 TO
Wholesaleb 5.107 108 TO 14 TO

(b) A room A°°™ com-
(a) A task A!**.  bines tasks. (c) A floor A%°°" combines rooms.

floor
A Ly

|@Q| is the number of positions; | E| is the number of transitions (only counting
) — — action branching, not probabilistic branching); execution time is the average of
1A [ A five runs, in sec.; timeout (TO) is 1200 sec.

floor
A

—

(e) A neighborhood A" combines Apple MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 16GB of RAM

(d) A building AP'*® combines floors. buildings. 21



4 N Watanabe (NII, Tokyo)

EXpe ri ment Res u ItS DI (degree of identification):

how much the same components are
indeed recognized to be identical

 Compositional algorithm can be \\ - J exec. time [
Patroll 108 108 21 42 83
S(Ax---xA) Patrol2 108 108 23 48 90
Patrol3 10° 10° 22 43 89
=S(A)x---xS(A) Patrol4 10° 10° 30 60 121
 Qverall, we do indeed witness Wholesalel 108 2.10% 130 260 394
- : Wholesale2 108 2.108 92 179 274
the performance advantage of compositionality Wholosale3 2. 10° 4. 108 p 1o 03
Wholesale4 2-.10% 4.108 129 260 393

* We need MDPs given in a compositional formalism.
This is realistic. Our Patrol benchmark:

—

performance improves

benchmark Q| |E| FZ-none FZ-int. FZ-all

(PRISM)
Packets1 2.5.10° 5.10° TO 1 65
Packets2 2.5.10° 5.10° TO 3 64
Packets3 2.5.10° 5.10° TO 1 56
Packets4 2.5-.10° 5.10° TO 3 56
Patrol5 108 108 22 22 TO
Wholesaleb 5.107 108 TO 14 TO

(b) A room A°°™ com-

A task A{**.  bines tasks. A f°°r combi : : i : . :
(&) & task A, iy {6) 4. floor g™ eombines ropms |@Q]| is the number of positions; | E| is the number of transitions (only counting

( ) - — action branching, not probabilistic branching); execution time is the average of
Afloor . : Afioor AT [ A five runs, in sec.; timeout (TO) is 1200 sec.
(e) A neighborhood A™? combines Apple MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 16GB of RAM

(d) A building AP'*® combines floors. buildings. 28
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Experiment Results (scaabiy

big MDPs are model checked in realistic time

H H \/ ]
« Compositional algorithm can be evEEEREERETRY exec. time [s]
Patroll ™ 108 108 = 21 42 83
S(Ax---x A Patrol2 - 108 108 " 23 48 90
] ]
Patrol3 m 10° 10° 22 43 89
— S(A) Kook S(A) Patrold = 10° 10° = 30 60 121
- L
 Qverall, we do indeed witness Wholesal®1 108 2.10% = 130 260 394
o : Wholesal¢2 108 2.10% " 92 179 274
the performance advantage of compositionality Wholesaled 2 -10°  4.10% - p 12 03
- - o - Wholesale4 2.10% 4.10® = 129 260 393
* We need MDPs given in a compositional formalism. o .
. . . . . | | .
This is realistic. Our Patrol benchmark: = = .
. - exec. time [s]
benchmark ® Q| |E| FZ-none FZ-int. FZ-all
= = (PRISM)
|| ||
Packetsl ® 2.5.10° 5.10° " TO 1 65
Packets2 , 2.5-10° 5.10° . TO 3 64
Packets3 @ 2.5-10% 5.10° = TO 1 56
Packetsd ® 2.5.10° 5.10° = TO 3 56
Patrol5 n 108 108 = 22 22 TO
Wholesale5 , 5 - 107 10 . TO 14 TO
(b) A room A°°™ com- * o ‘0
task . floor . E B EEEEEEEDR
(a) & fask Ao Dines tasks. (6) 44 floor ™" combings Fooms. |@Q]| is the number of positions; | E| is the number of transitions (only counting
( ) — — action branching, not probabilistic branching); execution time is the average of
I meen R A2e>x AT e five runs, in sec.; timeout (TO) is 1200 sec.
(e) A neighborhood A" combines Apple MacBook Pro 2.3 GHz Dual-Core Intel Core i5 with 16GB of RAM
29

(d) A building AP'*® combines floors. buildings.
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Experiment Results

« Compositional algorithm can be exec. time [s]
Patroll 10% 10® 21 42 83
S(Ax---xA) Patrol2 108 108 23 18 90
=S(A) x---xS(A) "F2 (freezing):

\
* Overall, we do indeed witness We can stop doing compositionally a'
the performance advantage of compositionalit] at a certain depth

- = 1+ H . FZ
* We need MDPs given in a compositional formar\(FZ all = no compositionality; we used u
This is realistic. Our Patrol benchmark:

exec. time [s]

benchmark Q| |E| FZ-none FZ-int. FZ-all

(PRISM)

Packets1 2.5.10° 5.10° TO 1 65

Packets2 2.5.10° 5.10° TO 3 64

| Packets3 2.5.10°> 5-10° TO 1 56

ot Packets4 2.5.10° 5.10° TO 3 56

5 Patrol5 108 108 22 22 TO

Q Wholesale5 5.107 10® TO 14 TO
(b) A room A°°™ com-

(a) A task AY*.  bines tasks. (c) A floor A%°°" combines rooms. I '

|@Q| is the number of positions; |E| is the number.of+ ons (only counting
verage of

( oor ) l;ldg S .A],D,idg ng. .
e S oo [ AT ARl o Compositionality helps

(e) A neighborhood A™? cd o ) .
(d) A building A”& combines floors. buildings. But going all the way down may not be a good idea
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Watanabe (NII, Tokyo)

Related Work (Compositional Probabilistic MC)

* Probabilistic model CheCking is an active field (Baier, Larsen, Katoen, Kwiatkowska, Parker, Raskin, ...)
* Compositionality in model checking is an old problem (ciarke, Long & McMillan, LICS’89] [Tsukada & Ong, LICS'14] ...
* Two closely related works on compositional probabilistic model checking:

e o TS [e0) (Yo CIR & T ([ 3F=8 «  Compositional model checking of parallel composition A || B
wrt. Parallel Composition || ... but assume-guarantee “contracts” betw. A and B must be devised

[Kwiatkowska, Norman, Parker & Qu, H .
arder problem in general
Inf. Comp. '13] P & a

Sequential composition
of parametric MDPs

Unidirectional composition

Mo p=1/2

Parametric MDP Model
. . Ours is — - — .
Checking for Sequential pidirectional A= B | e w = Ms p=25/s2

Composition
[Junges & Spaan, CAV’'22] Assumption: locally optimal schedulers are globally optimal, too

(It holds if component exits are unique. We don’t need this assumption)

Compositional solution of parametric components A (p)
(We don’t do this)




Conclusions

Monoidal Categories Guiding
Planer-Compositional Model Checking

We applied it to MDP model checking
* semantic categories =~
by decomposition Erw“ED |

“Our general methodology”:
e Composition by

string diagrams = ; 45 = HJ4={5
- equalities 5 rer (= x prw | )
JabkedBr = l X * acompositional +ZERW{ e (]
B algorithm with clear performance
* Semantic domains from category theory advantage

* Upgrading frameworks for free
Future work

e - * parallel composition

I gt o * other problems

e rove— e * mean payoff games [Watanabe+,
arXiv'23]



