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Abstract This paper presents a novel semantics for a quantum pro-
gramming language by operator algebras, which are known to give a for-
mulation for quantum theory that is alternative to the one by Hilbert
spaces. We show that the opposite of the category of W ∗-algebras and
normal completely positive subunital maps is an elementary quantum flow
chart category in the sense of Selinger. As a consequence, it gives a deno-
tational semantics for Selinger’s first-order functional quantum program-
ming language. The use of operator algebras allows us to accommodate
infinite structures and to handle classical and quantum computations in
a unified way.
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§1 Introduction
Aiming at high-level and structured description of quantum computa-

tion/information, many quantum programming languages have been proposed
and their semantics studied.17,55) Selinger, in his seminal work,50) proposed a
first-order functional quantum programming language QFC (and QPL), and
gave its denotational semantics rigorously in terms of categories. Selinger and
Valiron successively studied a higher-order quantum programming language, or
the quantum lambda calculus.51–53) It turned out to be challenging to give a de-
notational semantics for the quantum lambda calculus (with full features, such
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as the ! modality and recursion). The satisfactory denotational semantics was
first given via Geometry of Interaction;22) but different approaches have been
proposed.31,39) As Pagani et al. stated,39, §1) the difficulty lies in that (particu-
larly, higher-order) programming languages contain infinitary concepts such as
infinite types and recursion, while quantum computation is traditionally mod-
elled via finite dimensional Hilbert spaces.

The present paper proposes a novel denotational semantics for a quan-
tum programming language by operator algebras. Operator algebras, specifically
C∗-algebras and W ∗-algebras (the latter are also known as von Neumann alge-
bras), give an alternative formulation of quantum theory (sometimes called the
algebraic formulation30)). It is worth mentioning that von Neumann himself, who
formulated quantum theory by Hilbert spaces,58) developed the theory of opera-
tor algebras34–36,56,57) (partly in collaboration with Murray), and later preferred
the algebraic approach for quantum theory.43) Operator algebras have been suc-
cessfully used in areas such as quantum statistical mechanics5) and quantum field
theory.2,19,20) They have also been of growing importance in the area of quantum
information27); for example, D’Ariano et al.12) reexamined the impossibility of
quantum bit commitment in the algebraic formalism.

1.1 Contributions and related work
In this paper it is shown that the category WstarCPSU of W ∗-algebras

and normal completely positive subunital maps is aDcppo⊥-enriched symmetric
monoidal category with Dcppo⊥-enriched products. It follows that the opposite
(WstarCPSU)op is an ωCppo-enriched elementary quantum flow chart category.
As a consequence, it gives a denotational semantics for a first-order functional
quantum programming language QFC designed by Selinger.50)

Selinger himself gave a denotational semantics for QFC by the category
Q.50) In comparison to his original model, our model by operator algebras is
more flexible in the following two points. First, our semantics accommodates
infinite structures, since we discuss general W ∗-algebras, not restricting them
to finite dimensional ones. Hence our model can interpret infinite types such as
the type of natural numbers. In fact, we will see that Selinger’s category Q is
(dually) equivalent to the category of finite dimensional W ∗-algebras, in §7.2.
Second, classical computation naturally arises in commutative operator algebras.
There is a categorical ‘Gelfand’ duality between commutative C∗-algebras and
compact Hausdorff spaces,16,37) and similarly commutative W ∗-algebras have a
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relationship to certain measure/measurable spaces. In §8, we will see that several
‘classical’ categories can be embedded into the categories ofW ∗-algebras. It will
allow us to handle classical and quantum computations in a unified way.

Traditionally, quantum computation is modelled based on finite dimen-
sional Hilbert spaces Cn (or matrix algebras Mn

∼= B(Cn)),22,31,39,50) rather
than using operator algebras explicitly. Recently there are works using C∗-
algebras,16,25) which led the author to the present work. The use of W ∗-algebras
in this context appeared independently and coincidentally in Rennela’s thesis44)

and the present work (the author’s thesis8)). Rennela also showed that the
category WstarPSU of W ∗-algebras and normal positive subunital maps are
Dcppo-enriched,44, Theorem 3.8) which is a similar result to Theorem 4.3 in the
present paper. In his latest paper45), he further showed that WstarPSU is alge-
braically compact for a certain class of functors. This result enables us to have
inductively defined types.

Similar results appeared in the paper by Chiribella et al.,7) which studied
spaces of “quantum operations” betweenW ∗-algebras, and “quantum supermaps”
between them. For instance, they showed that (in our terminology) each homset
WstarCP(M,N) is bounded directed complete.7, Proposition 7)

1.2 Organisation of the paper
In §2 we give preliminaries on operator algebras, which contain stan-

dard definitions and results. Some less standard results are shown in §3. In
§4 we study the order/domain-theoretic aspect of W ∗-algebras; in particular
we show that WstarCPSU is a Dcppo⊥-enriched symmetric monoidal category
with Dcppo⊥-enriched products. We review the notion of quantum operations
in §5, and Selinger’s work on QFC in §6. In §7 we discuss a semantics for QFC
by operator algebras. In §8 we investigate classical computation in commutative
operator algebras. We give a conclusion in §9.

This paper is based on the author’s master thesis.8) An earlier version
of this paper was presented at the 11th workshop on Quantum Physics and
Logic (QPL 2014).9) Compared to the workshop version, major differences are
as follows. New results on the full embeddings of categories are added in §8; in
the earlier version we only had the embedding of Set (without fullness). The
current version also has more detailed preliminaries on operator algebras in §2.
A number of proofs deferred to appendices are now included in the main text,
except results on (cartesian) traces.
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§2 Preliminaries on operator algebras
Here we give preliminaries on operator algebras, i.e. C∗-algebras and

W ∗-algebras. In particular, we would like to collect basic results on categories
of them, which rarely appear in textbooks on operator theory. Almost all results
in this section, however, can be found in the papers by Guichardet,18) Meyer33)

and Kornell.28)

Let us first introduce basic notations. We denote by N the set of natural
numbers, by R the set of real numbers, and by C the set of complex numbers.
We also write R+ = [0,∞) for the set of non-negative real numbers.

2.1 C∗-algebras and their constructions

Definition 2.1 (C∗-algebra)
1. A ∗-algebra is a complex vector space A with a bilinear and associative

‘multiplication’ · : A × A → A and an ‘involution’ (−)∗ : A → A that
satisfies: for x, y ∈ A and λ ∈ C,

(x+ y)∗ = x∗ + y∗ (λx)∗ = λx∗ (x∗)∗ = x (xy)∗ = y∗x∗ .

2. A norm ‖−‖ on a ∗-algebra A is called a C∗-norm if it satisfies (besides
the usual axioms) ‖xy‖ ≤ ‖x‖‖y‖ and ‖x∗x‖ = ‖x‖2 for all x, y ∈ A.

3. A C∗-algebra is a ∗-algebra A with a C∗-norm with respect to which
A is complete.

In this paper, we additionally require that C∗-algebras be unital, i.e. they have
multiplicative units 1. In other words, we refer to unital C∗-algebras as C∗-
algebras. A C∗-algebra is commutative if the multiplication is commutative;
and finite dimensional if it is finite dimensional as a vector space.

Definition 2.2
A linear map f : A → B between C∗-algebras is called a ∗-homomorphism if it
is both multiplicative, i.e. f(xy) = f(x)f(y), and involutive, i.e. f(x∗) = f(x)∗.
It is said to be unital if f(1) = 1.

Although the definition of ∗-homomorphism is purely algebraic, metric
properties automatically follow.

Proposition 2.1 (41, Theorem 1.5.7))
Every ∗-homomorphism f : A→ B between C∗-algebras is short (a.k.a. contrac-
tive), i.e. ‖f(x)‖ ≤ ‖x‖ for all x ∈ A (equivalently ‖f‖ ≤ 1). Moreover, f is
isometric if (and only if) it is injective.
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It follows that for any ∗-algebra, there is at most one norm under which it is a
C∗-algebra.

Here are a few examples of C∗-algebras.

Example 2.1
1. For a Hilbert space H, the set B(H) of bounded operators on H is a

C∗-algebra.
2. As a special case of the previous one, the setMn

∼= B(Cn) of complex
n× n matrices is a finite dimensional C∗-algebra.

3. For a compact Hausdorff space X, the set C (X) of complex valued
continuous functions on X is a commutative C∗-algebra. In fact, any
commutative C∗-algebra is of this form (up to ∗-isomorphism).

It is important that every C∗-algebra can be represented on a Hilbert
space.

Definition 2.3
A representation of C∗-algebra A is a pair (H, π) of a Hilbert space H and a
unital∗1 ∗-homomorphism π : A→ B(H). It is said to be faithful if π is injective.

Theorem 2.1 (54, Theorem I.9.18))
Every C∗-algebra admits a faithful representation.

It follows that C∗-algebras characterise norm-closed ∗-algebras of bounded op-
erators on a Hilbert space.

Next, we describe a couple of important constructions of C∗-algebras.
Products of C∗-algebras are simple.

Definition 2.4 (Product of C∗-algebras)
Let (Ai)i∈I be a family of C∗-algebras. The product of (Ai)i, denoted by

∏
iAi,

has the underlying set∏
i∈I

Ai :=
{

(xi)i∈I
∣∣ xi ∈ Ai and supi‖xi‖ <∞

}
with coordinatewise operations and a norm ‖(xi)i‖ = supi‖xi‖. Note that

∏
iAi

is a subset of the set-theoretic product of (Ai)i. The empty product is the trivial
C∗-algebra {0}, which is denoted by 1.

If the index set I is finite, say I = {1, . . . , n}, then the product is denoted by
A1×· · ·×An. In this case, the underlying set is simply the set-theoretic product.
∗1 Note that the unitality may not be assumed in the literature.
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In the subsequent sections, we mostly use finite products.

Remark 2.1
Products of C∗-algebras are known under various names, such as direct sum,48, Definition 1.1.5)

`∞-direct sum6, §1.3) and direct product.4, §II.8.1) We nevertheless call it simply
‘product’, since it is a product in the categorical sense; see Proposition 2.6.

Tensor products of C∗-algebras are much more involved than products.
For C∗-algebras A and B, we denote by A � B the algebraic tensor product of
A and B. It is not hard to see that A�B is a ∗-algebra in an obvious manner.
The ∗-algebraMn(A) of matrices with entries from A is a special case by virtue
of the ∗-homomorphismMn(A) ∼=Mn�A (whereMn =Mn(C)). In this case
the situation is simple.

Proposition 2.2 (54, §IV.3))
For any C∗-algebra A, there is a (unique) C∗-norm on Mn(A) under which it
is complete, that is, Mn(A) is a C∗-algebra. The norm satisfies the following
inequalities. For [xij ]ij ∈Mn(A),

max
i,j
‖xij‖ ≤

∥∥[xij ]ij
∥∥ ≤∑

i,j

‖xij‖ .

To obtain a C∗-algebra in the general case, we need to complete the ∗-algebra
A�B under some C∗-norm. The following fact is highly nontrivial; for a proof
we refer to the textbook by Takesaki54, §IV.4) or by Brown and Ozawa.6, Chapter 3)

Theorem 2.2
Let A�B be the algebraic tensor product of C∗-algebras A and B.

1. There is a least and a greatest C∗-norm on A�B.
2. Every C∗-norm α on A�B is a cross norm in the following sense:

• α(x⊗ y) = ‖x‖‖y‖ for x ∈ A and y ∈ B;
• α∗(ϕ ⊗ ψ) = ‖ϕ‖‖ψ‖ for ϕ ∈ A∗ and ψ ∈ B∗, where ϕ ⊗ ψ is

identified with a functional on A� B, and α∗ is the dual norm
of α on (A�B)∗.

A least and a greatest C∗-norm are different in general, and hence there are
different kinds of tensor products of C∗-algebras. We use the following one.

Definition 2.5 (Tensor product of C∗-algebras)
Let A and B be C∗-algebras. The least C∗-norm on A�B is called the spatial
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C∗-norm. The spatial C∗-tensor product of A and B, denoted by A⊗B, is the
completion of A�B under the spatial C∗-norm.

The spatial C∗-norm (resp. C∗-tensor product) is also referred to as the minimal
(or injective) C∗-norm (resp. C∗-tensor product). The term ‘spatial’ is explained
in the following result.

Theorem 2.3 (54, Theorem IV.4.9))
Let A and B be C∗-algebras, and (HA, πA) and (HB , πB) be faithful representa-
tions of A and B respectively. The map πA� πB : A�B → B(HA⊗HB), given
by a⊗b 7→ πA(a)⊗πB(b), extends to a faithful representation πA⊗πB : A⊗B →
B(HA ⊗HB) of A⊗B on HA ⊗HB .

Since faithful representations are isometric, spatial C∗-norms can be obtained
via faithful representations.

2.2 Various maps and categories of C∗-algebras

Definition 2.6
Let A be a C∗-algebra. An element x ∈ A is self-adjoint if x∗ = x; positive if
there exists y ∈ A such that x = y∗y; an effect if both x and 1− x are positive;
a projection if x∗ = x = x2. We write Asa for the set of self-adjoint elements,
A+ for the set of positive elements, [0, 1]A for the set of effects, and Pr(A) for
the set of projections. It is easy to see inclusions Pr(A) ⊆ [0, 1]A ⊆ A+ ⊆ Asa.

There is a standard partial order in a C∗-algebra.

Definition 2.7
Let A be a C∗-algebra. We define a relation ≤ on Asa by x ≤ y ⇐⇒ ‘y − x is
positive’. Then, ≤ is a partial order.54, Theorem I.6.1)

We may write x ≥ 0 for ‘x is positive’. Note also that x is an effect if and only
if 0 ≤ x ≤ 1, which justifies the notation [0, 1]A.

The following lemma relating the order and the norm is useful.

Lemma 2.1
Let A be a C∗-algebra and x ∈ A a self-adjoint element. For any M ∈ R+,
‖x‖ ≤ M if and only if −M1 ≤ x ≤ M1. In particular, for any self-adjoint
element x ∈ A one has −‖x‖1 ≤ x ≤ ‖x‖1.
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Proof For any x ∈ A, let

Sp(x) := {λ ∈ C | x− λ1 is not invertible}

denote the spectrum. Note that Sp(αx + β1) = α · Sp(x) + β for any α, β ∈ C
(α 6= 0). We will use the following basic facts: for x ∈ Asa,

• ‖x‖ = supλ∈Sp(x)|λ|;54, Proposition I.4.2)

• Sp(x) ⊆ R;54, Proposition I.4.3)

• x ≥ 0 ⇐⇒ Sp(x) ⊆ R+.54, Theorem I.6.1)

We then reason as follows.

‖x‖ ≤M ⇐⇒ sup
λ∈Sp(x)

|λ| ≤M

⇐⇒ ∀λ ∈ Sp(x).−M ≤ λ ≤M

⇐⇒ ∀λ ∈ Sp(x).M − λ ≥ 0 and λ+M ≥ 0

⇐⇒ Sp(M1− x) ⊆ R+ and Sp(x+M1) ⊆ R+

⇐⇒ M1− x ≥ 0 and x+M1 ≥ 0

⇐⇒ −M1 ≤ x ≤M1

Definition 2.8
A linear map f : A → B between C∗-algebras is positive if x ≥ 0 implies
f(x) ≥ 0; and completely positive if Mn(f) is positive for all n ∈ N, where
Mn(f) : Mn(A)→Mn(B) is a map defined byMn(f)([xkl]kl) = [f(xkl)]kl. A
(completely) positive map f : A→ B is subunital if f(1) ≤ 1.

For the sake of convenience, we introduce shorthand for kinds of maps
as follows: M for multiplicative; I for involutive; P for positive; CP for com-
pletely positive; U for unital; and SU for subunital. For example, a CPSU-map
refers to a completely positive subunital map, and a MIU-map—a multiplicative
involutive unital map—is a synonym for a unital ∗-homomorphism.

Proposition 2.3
For maps between C∗-algebras, there are the following implications.

MIU

��

+3 MI

��
CPU

��

+3 CPSU

��

+3 CP

��
PU +3 PSU +3 P +3 I
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Proof MI =⇒ CPSU: Assume that f is a MI-map. It is easy to see that
Mn(f) is MI too. Because MI implies positive, f is CP. It is also subunital since
f(1) is a projection, hence below 1.

A positive map is involutive since any element of a C∗-algebra can be
written as a linear combination of positive elements.54, §I.4) The other implications
are easy.

Proposition 2.4
A positive map f : A → B between C∗-algebras is bounded and ‖f‖ = ‖f(1)‖.
Moreover, f is subunital if and only if it is short.

Proof For the first statement see e.g. Paulsen’s book.40, Corollary 2.9) Then, the
latter follows from ‖f(1)‖ ≤ 1 ⇐⇒ f(1) ≤ 1 by Lemma 2.1.

The following result is useful.

Proposition 2.5 (54, Corollary IV.3.5 and Proposition IV.3.9))
A positive map f : A→ B between C∗-algebras is completely positive if at least
one of A and B is commutative.

Now we introduce categories of C∗-algebras.

Definition 2.9
Let X be a kind of maps (we use one of MIU, MI, CPU, CPSU, PU, PSU, CP

and P). We denote by CstarX the category of C∗-algebras and X-maps; by
CCstarX the full subcategory of CstarX containing commutative C∗-algebras;
and by FdCstarX the full subcategory of CstarX containing finite dimensional
C∗-algebras.

There are inclusions of categories of C∗-algebras corresponding to Propo-
sition 2.3, e.g. CstarMI ⊆ CstarCPSU.

Proposition 2.6
For X ∈ {MIU,MI,CPU,CPSU,PU,PSU}, products of C∗-algebras with obvi-
ous projections are categorical products in CstarX. In particular, the trivial
C∗-algebra 1 is a final object.

Proof Let (fi : A → Bi)i∈I be a family of X-maps between C∗-algebras
(X ∈ {MIU,MI,CPU,CPSU,PU,PSU}). There is a map 〈fi〉i : A →

∏
iBi

given by 〈fi〉i(x) = (fi(x))i, which is well-defined thanks to the shortness of
X-maps. For the projections πi :

∏
iBi → Bi, we have πi ◦ 〈fi〉i = fi for all
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i ∈ I, and such a map is unique. It is not hard to see that if fi is a X-map, so is
〈fi〉i; for complete positivity, use the ∗-isomorphismMn(

∏
iBi)

∼=
∏
iMn(Bi),

which is obtained using the inequalities of Proposition 2.2.

Remark 2.2
Finite products of C∗-algebras are biproducts in CstarX (X ∈ {CP,P}). The
trivial C∗-algebra 1 is initial (hence a zero object) inCstarX (X ∈ {MI,CPSU,PSU,CP,P}).

We wish to make the category CstarX symmetric monoidal via the
spatial C∗-tensor product ⊗. For this we need to consider the tensor product
of maps f ⊗ g. Let f : A → A′ and g : B → B′ be maps between C∗-algebra.
It is easy to form the algebraic tensor product f � g : A � B → A′ � B′. If
f � g is bounded under the spatial C∗-norms, then f � g extends uniquely to
f ⊗ g : A⊗B → A′ ⊗B′. If at least one of f and g is merely positive, however,
f�g may be unbounded. Even in the finite dimensional case, the tensor product
of positive maps may not be positive. This is why we need complete positivity.

Proposition 2.7
For X ∈ {MIU,MI,CPU,CPSU,CP}, the categoryCstarX is symmetric monoidal
with the spatial C∗-tensor product ⊗ and the C∗-algebra C of complex numbers
as a unit object.

Proof If f : A→ A′ and g : B → B′ are MI-maps (resp. CP-maps) between
C∗-algebras, then f � g extends to a MI-map (resp. CP-map) f ⊗ g : A⊗ B →
A′ ⊗ B′ between the spatial C∗-tensor products.54, Propositions IV.4.22 and IV.4.23) It is
easy to see that f and g are (sub)unital, then f ⊗ g is (sub)unital, and therefore
the spatial C∗-tensor product ⊗ forms a bifunctor on CstarX .

It is easy to see that C is the unit object, and the tensor product is sym-
metric (up to MIU-isomorphism). To see the associativity, one may take faithful
representations and use Theorem 2.3, with the associativity of the Hilbert space
tensor product: (H1 ⊗H2)⊗H3

∼= H1 ⊗ (H2 ⊗H3).

2.3 W ∗-algebras
We define W ∗-algebras via Sakai’s characterisation,47) as a special kind

of C∗-algebras.

Definition 2.10 (W ∗-algebra)
A W ∗-algebra is a C∗-algebra M that admits a predual, i.e. a Banach space X
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with an isometric isomorphism X∗ ∼= M . It turns out that a predual of a W ∗-
algebra M is unique (up to isometric isomorphism).48, Corollary 1.13.3) The weak*
topology on M induced by the predual is referred to as the ultraweak topology.
A linear map between W ∗-algebras is said to be normal if it is ultraweakly
continuous. We denote the set of normal functionals on M by M∗ (⊆M∗); it is
standard that M∗ is a predual of M .

Remark 2.3
In this paper, W ∗-algebras are unital by definition, since we require that C∗-
algebras be unital. In fact, W ∗-algebras are necessarily unital. In other words,
if a not necessarily unital C∗-algebra admits a predual, then it has a unit.48, §1.7)

Since the ultraweak topology is by definition the weak* topology, we
may apply results for the weak* topology to the ultraweak topology. For exam-
ple, the addition and the scalar multiplication of a W ∗-algebra are ultraweakly
continuous. The following basic fact also comes from a general result for the
weak* continuity.

Proposition 2.8 (42, Proposition 2.4.12))
A linear map f : M → N between W ∗-algebras is normal if and only if there is
a bounded map g : N∗ →M∗ that makes the following diagram commute.

M
∼= ��

f
// N
∼=��

(M∗)
∗ g∗

// (N∗)
∗

Because such g is unique, it establishes a bijective correspondence between nor-
mal maps f : M → N and bounded maps g : N∗ → M∗. We call such g the
predual map of f and write f∗ = g. Moreover, this correspondence is isometric:
i.e. ‖f∗‖ = ‖f‖.42, Proposition 2.3.10)

The following nontrivial fact is important.

Proposition 2.9 (48, §1.7))
Let M be a W ∗-algebra. Both Msa and M+ are ultraweakly closed. The invo-
lution (−)∗ : M → M is ultraweakly continuous (i.e. normal), and the multipli-
cation · : M ×M →M is separately ultraweakly continuous.

Example 2.2
1. Recall that for a Hilbert space H, B(H) is a C∗-algebra. It is well-

known that B(H) is dual of the space T (H) of trace class operators.



12 K. Cho

Hence B(H) is a W ∗-algebra.
2. An ultraweakly closed ∗-subalgebra of aW ∗-algebra is aW ∗-algebra.48, Definition 1.1.4)

In particular, an ultraweakly closed unital ∗-subalgebra of B(H) is a
W ∗-algebra, which is usually called a von Neumann algebra.

3. Mn
∼= B(Cn) is a W ∗-algebra. The predual is itselfMn

∼= T (Cn) with
the trace norm.

4. For a localisable measure space (X,Σ, µ), the (complex-valued) L∞

space L∞(X,Σ, µ) is a commutativeW ∗-algebra with a predual L1(X,Σ, µ).
In fact, any commutative W ∗-algebra is of this form.48, §1.18)

5. Less generally, for a set X, the `∞ space `∞(X) is a W ∗-algebra with
a predual `1(X). We will investigate this kind of W ∗-algebras in §8.

Remark 2.4
Any finite dimensional C∗-algebra A is a W ∗-algebra with the predual A∗ = A∗,
since A∗∗ ∼= A. In the light of Proposition 2.8, every linear map from finite
dimensional W ∗-algebra to any W ∗-algebra is normal.

A representation (H, π) of a W ∗-algebra M behaves well when it is
normal, i.e. the map π : M → B(H) is normal. In that case the image π(M)

is ultraweakly closed in B(H),48, Proposition 1.16.2) that is, π(M) is a von Neumann
algebra. Moreover one has the following theorem.

Theorem 2.4 (48, Theorem 1.16.7))
Every W ∗-algebra admits a faithful normal representation.

Therefore,W ∗-algebras characterise von Neumann algebras. In fact,W ∗-algebras
are more often studied as concrete von Neumann algebras than as abstract W ∗-
algebras. Via representations, nonetheless, we may apply results for von Neu-
mann algebras to abstract W ∗-algebras.

Products of W ∗-algebras are simply products as C∗-algebras. It is well-
defined because of the following fact.48, Definition 1.1.5)

Lemma 2.2
Let (Mi)i∈I be a family of W ∗-algebras. Let

∏
iMi be the product of (Mi)i as

C∗-algebras. Then the `1-direct sum
⊕1

i Mi∗ of the preduals, where the norm
is given by ‖(ϕi)i‖ =

∑
i‖ϕi‖, is a predual of

∏
iMi, i.e. (

⊕1
i Mi∗)

∗ ∼=
∏
iMi.

On the other hand, the tensor product of W ∗-algebras differs from that
of C∗-algebras. We shall sketch the construction, which follows the textbooks by



Semantics for a Quantum Programming Language by Operator Algebras 13

Sakai48, §1.22) and by Takesaki.54, §IV.5) LetM and N beW ∗-algebras, andM∗�N∗
the algebraic tensor product of the preduals M∗ and N∗. We equip M∗ � N∗
with the dual spatial C∗-norm via the following embedding:

M∗ �N∗ ↪−→M∗ �N∗ ↪−→ (M ⊗N)∗ .

Let M∗ ⊗N∗ denote the completion of M∗ �N∗ under this norm, and let

I = (M∗ ⊗N∗)⊥ = {ϕ ∈ (M ⊗N)∗∗ | ∀x ∈M∗ ⊗N∗. ϕ(x) = 0}

be the annihilator of M∗ ⊗ N∗. It is standard that (M ⊗ N)∗∗/I ∼= (M∗ ⊗
N∗)

∗.10, Theorem V.2.3) Moreover the composite map

M ⊗N ↪−→ (M ⊗N)∗∗ −� (M ⊗N)∗∗/I ∼= (M∗ ⊗N∗)∗

has weak* dense image, and is injective since (M ⊗N)∩ I = {0}. Now we apply
the following two results: for a C∗-algebra A, 1) if I is a closed ideal of A, the
quotient A/I is a C∗-algebra; 2) the double dual A∗∗ is a C∗- and hence W ∗-
algebra. We can show that I is a closed ideal of (M ⊗N)∗∗, so that (M∗⊗N∗)∗

is a W ∗-algebra. Moreover the spatial C∗-tensor product M ⊗N is ultraweakly
densely embedded into (M∗ ⊗N∗)∗.

Definition 2.11 (Tensor product of W ∗-algebras)
For W ∗-algebras M and N , the W ∗-algebra (M∗ ⊗ N∗)

∗ is called the spatial
W ∗-tensor product of M and N , and denoted by M ⊗N .

As the term ‘spatial’ suggests, one has the following result (cf. Theorem 2.3).

Theorem 2.5 (54, Definition IV.5.2))
Let M and N be W ∗-algebras, and (HN , πM ) and (HN , πN ) be faithful normal
representations of M and N respectively. The representation πM ⊗ πN : M ⊗
N → B(HM ⊗ HN ) of M ⊗ N (see Theorem 2.3) extends to a faithful normal
representation πM ⊗πN : M ⊗N → B(HM ⊗HN ) of M ⊗N .

Now we define categories of W ∗-algebras.

Definition 2.12
Let X be a kind of maps. We denote by WstarX the category of W ∗-algebras
and normal X-maps; by CWstarX the full subcategory of WstarX containing
commutative W ∗-algebras; and by FdWstarX the full subcategory of WstarX

containing finite dimensionalW ∗-algebras. Note thatWstarX (resp.CWstarX)
is a non-full subcategory of CstarX (resp. CCstarX), since we require that



14 K. Cho

maps be normal. In the light of Remark 2.4, however, one has FdWstarX =

FdCstarX .

Proposition 2.10
For X ∈ {MIU,MI,CPU,CPSU,PU,PSU}, products of W ∗-algebras with obvi-
ous projections are categorical products in WstarX.

Proof It is almost done in Proposition 2.6. The normality of the maps
involved can be checked using Proposition 2.8.

Let us think about the functoriality of the spatial W ∗-tensor product.
Let f : M → M ′ and g : N → N ′ be normal maps between W ∗-algebra, and
f∗ : M ′∗ → M∗ and g∗ : N ′∗ → N∗ be the predual maps. Then, the algebraic
tensor product f∗ � g∗ : M ′∗ �N ′∗ →M∗ �N∗ is bounded under the dual spatial
C∗-norm if f � g : M � N → M ′ � N ′ is bounded under the spatial C∗-norm,
since the following diagram commute.

M ′∗ �N ′∗� _
��

f∗�g∗ // M∗ �N∗� _
��

(M ′ ⊗N ′)∗
(f⊗g)∗

// (M ⊗N)∗

In that case we obtain a normal map (f∗ ⊗ g∗)∗ : (M∗ ⊗ N∗)∗ → (M ′∗ ⊗ N ′∗)∗,
which we denote by f ⊗ g : M ⊗N → M ′⊗N ′. The normal map f ⊗ g extends
f ⊗ g in the sense that the following diagram commutes.

M ⊗N� _
��

f⊗g
// M ′ ⊗N ′� _

��

M ⊗N
f ⊗ g

// M ′⊗N ′

Proposition 2.11
For X ∈ {MIU,MI,CPU,CPSU,CP}, the categoryWstarX is symmetric monoidal
with the spatialW ∗-tensor product ⊗ and theW ∗-algebra C of complex numbers
as a unit object.

Proof If f and g are normal MI-maps, then f ⊗ g constructed above is MI
too, since f ⊗ g extends f ⊗ g, M ⊗N is ultraweakly dense in M ⊗N , and the
operations of W ∗-algebras are ultraweakly continuous.48, §1.7) It works similarly
for CP-maps.54, Proposition IV.5.13) It is easy to see that ⊗ preserves (sub)unitality.
To check that (⊗,C) is a symmetric monoidal structure is straightforward except
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the associativity, for which we may rely on faithful normal representations and
Theorem 2.5.

§3 Miscellaneous results on C∗- and W ∗-algebras

Here we give several (less standard) results on C∗- and W ∗-algebras,
which will be needed later.

3.1 Distributivity of tensor products
We will show the distributivity of the spatial C∗- and W ∗-tensor prod-

ucts over finite products. We do not use the distributivity for C∗-algebras in
this paper, but include it for completeness. Such distributivity is very common:
for example, the tensor product of vector spaces distributes over direct sums
(categorically, biproducts), and the tensor product of Hilbert spaces also dis-
tributes over direct sums. These give examples of rig categories (or bimonoidal
categories), categories with two monoidal structures satisfying distributivity.

For later use, we explicitly state the distributivity for vector spaces.

Lemma 3.1
Let U, V,W be a vector space. The canonical maps 〈id� π1, id� π2〉 : U � (V ×
W )→ (U�V )×(U�W ) and [id�κ1, id�κ2] : (U�V )×(U�W )→ U�(V ×W )

are inverses of each other. Here × and � denote the direct sum (biproduct)
and the tensor product of vector spaces respectively. Finite direct sums are
biproducts in the category of vector spaces, so that we have obvious projections
πi, coprojections κi, and tupling 〈−,−〉 and cotupling [−,−] operations.

Although products of C∗-algebras are not necessarily coproducts in a
category of C∗-algebras, we still use coprojections κi and the cotuple notation
[f, g](x, y) = f(x) + g(y) for finite products, which coincide with direct sums of
vector spaces.

Theorem 3.1
Let A,B,C be C∗-algebras. Then the canonical maps

! : A⊗ 1 −→ 1

〈id⊗ π1, id⊗ π2〉 : A⊗ (B × C) −→ (A⊗B)× (A⊗ C)

are (unital) ∗-isomorphisms. Therefore, for each C∗-algebra A, a functor A⊗(−)
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on CstarMIU preserves finite products.

Proof Note that A � 1 ∼= 1 and the only possible norm is the trivial one.
Therefore A⊗ 1 ∼= A� 1 ∼= 1 and the first one is proved.

We will show the latter one. Let

ι1 : A� (B × C) ↪−→ A⊗ (B × C) ,

ι2 : A�B ↪−→ A⊗B , ι3 : A� C ↪−→ A⊗ C

be the canonical dense embeddings. It is easy to check that the following diagram
commutes.

A� (B × C)
〈id�π1,id�π2〉

//

ι1
��

(A�B)× (A� C)

ι2×ι3��

A⊗ (B × C)
〈id⊗π1,id⊗π2〉

// (A⊗B)× (A⊗ C)

Note that the injection maps κ1 : B → B×C and κ2 : C → B×C are CP, so that
we have the spatial C∗-tensor products of maps id⊗ κ1 : A⊗B → A⊗ (B ×C)

and id⊗ κ2 : A⊗ C → A⊗ (B × C). Then the following diagram commutes.

(A�B)× (A� C)
[id�κ1,id�κ2]

//

ι2×ι3 ��

A� (B × C)

ι1
��

(A⊗B)× (A⊗ C)
[id⊗κ1,id⊗κ2]

// A⊗ (B × C)

Now, it is easy to see that ι2 × ι3 : (A � B) × (A � C) → (A ⊗ B) × (A ⊗
C) has dense image. By Lemma 3.1, 〈id � π1, id � π2〉 and [id � κ1, id � κ2]

are inverses of each other, and therefore the commutativity of the above two
diagrams shows that 〈id⊗π1, id⊗π2〉 and [id⊗κ1, id⊗κ2] are inverses on dense
subsets. Since both maps are bounded (i.e. norm-continuous), they are inverses
of each other. Therefore 〈id ⊗ π1, id ⊗ π2〉 is a bijective ∗-homomorphism, and
hence a ∗-isomorphism.

The result for W ∗-algebras is shown similarly, but we need the following
lemma.

Lemma 3.2
Let M and N be W ∗-algebras. Suppose that M ′ ⊆ M and N ′ ⊆ N are ul-
traweakly dense subsets. Then M ′ × N ′ is ultraweakly dense in the product
M ×N .
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Proof Use the fact that the predual ofM×N is the `1-direct sumM∗⊕1N∗

of the preduals.

Theorem 3.2
Let M,N,L be W ∗-algebras. Then the canonical maps

! : M ⊗ 1 −→ 1

〈id⊗π1, id⊗π2〉 : M ⊗(N × L) −→ (M ⊗N)× (M ⊗L)

are (normal unital) ∗-isomorphisms. Therefore, for each W ∗-algebra M , a func-
tor M ⊗(−) on WstarMIU preserves finite products.

Proof Note that 1∗ ∼= 1. Hence M∗ ⊗ 1∗ ∼= M∗ � 1∗ ∼= 1 and M ⊗ 1 =

(M∗ ⊗ 1∗)
∗ ∼= 1, which proves the first one.

The latter is shown in the same way as the latter of Theorem 3.1, using
the ultraweak density and continuity instead of the norm. Note that the canon-
ical embedding M �N →M ⊗N is ultraweakly dense, and use Lemma 3.2.

3.2 Results on ultraweak limits
We will show some results on the spatial W ∗-tensor products and the

ultraweak limits. For a net (xi)i in a W ∗-algebra, we denote the ultraweak limit
of (xi)i, if exists, by uwlimi xi.

Lemma 3.3
Let A be a finite dimensional W ∗-algebra (note that A∗ = A∗), and let M be
a W ∗-algebra. Then, the algebraic tensor product A∗ �M∗ is already complete
under the dual spatial C∗-norm. Moreover, the canonical embedding

A�M ↪−→ (A∗ �M∗)∗

is surjective, so that A�M ∼= (A∗ �M∗)∗. Therefore, A�M is a W ∗-algebra
with the predual A∗ �M∗.

Proof Fix a normalised basis {a1, . . . , an} of A. We denote its dual basis
by {â1, . . . , ân}, which is a basis of A∗. Note that every element χ ∈ A∗ �M∗
is uniquely written as χ =

∑n
i=1 âi ⊗ ϕi. For arbitrary x ∈M with ‖x‖ ≤ 1, we
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have ‖ai ⊗ x‖ = ‖ai‖‖x‖ = ‖x‖ ≤ 1 because a C∗-norm is a cross-norm. Then

|ϕi(x)| =
∣∣∣( n∑
i=1

âi ⊗ ϕi
)

(ai ⊗ x)
∣∣∣

= |χ(ai ⊗ x)|

≤ sup{|χ(z)| | z ∈ A⊗M, ‖z‖ ≤ 1} =: ‖χ‖ ,

so that ‖ϕi‖ := sup{|ϕi(x)| | x ∈ M, ‖x‖ ≤ 1} ≤ ‖χ‖ for each i. Now, assume
that (χj)j = (

∑n
i=1 âi ⊗ ϕij) is a Cauchy sequence in A∗ �M∗. Because

‖ϕik − ϕij‖ ≤
∥∥∥ n∑
i=1

âi ⊗ (ϕik − ϕij)
∥∥∥ = ‖χk − χj‖ ,

(ϕij)j is a Cauchy sequence for each i. Let ϕi = limj→∞ ϕij and χ =
∑n
i=1 âi⊗

ϕi. Then

‖χ− χj‖ =
∥∥∥ n∑
i=1

âi ⊗ (ϕi − ϕij)
∥∥∥ ≤ n∑

i=1

‖âi‖‖ϕi − ϕij‖ → 0 when j →∞ .

Hence A∗ �M∗ is complete.
Let θ : A�M → (A∗�M∗)∗ be the canonical embedding. Take arbitrary

Φ ∈ (A∗ �M∗)∗. For each i, define Φi : M∗ → C by Φi(ϕ) = Φ(âi ⊗ ϕ). Clearly
Φi is linear, and bounded because

‖Φi(ϕ)‖ = ‖Φ(âi ⊗ ϕ)‖ ≤ ‖Φ‖‖âi ⊗ ϕ‖ = ‖Φ‖‖âi‖‖ϕ‖ .

Hence Φi ∈ (M∗)
∗. Then we have θ(

∑n
i=1 ai ⊗ ι−1(Φi)) = Φ, where ι : M →

(M∗)
∗ is the canonical isomorphism, because

θ
( n∑
i=1

ai ⊗ ι−1(Φi)
)

(âj ⊗ ϕ) =

n∑
i=1

âj(ai)ϕ(ι−1(Φi))

= ϕ(ι−1(Φj))

= Φj(ϕ) = Φ(âj ⊗ ϕ) .

Lemma 3.4
In the setting of Lemma 3.3, fix a basis {a1, . . . , an} of A. Let (zj)j = (

∑n
i=1 ai⊗

xij)j be a net in A �M , and let z =
∑n
i=1 ai ⊗ xi ∈ A �M . Then, zj → z

ultraweakly in A � M if and only if xij → xi ultraweakly in M for all i ∈
{1, . . . , n}.
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Proof Assume that zj → z ultraweakly in A �M . It means for all χ ∈
A∗ �M∗ one has χ(zj)→ χ(z). Then for all i and for all ϕ ∈M∗,

ϕ(xij) = (âi ⊗ ϕ)
( n∑
i=1

ai ⊗ xij
)
→ (âi ⊗ ϕ)

( n∑
i=1

ai ⊗ xi
)

= ϕ(xi) ,

that is, xij → xi ultraweakly.
Conversely, assume xij → xi ultraweakly in M for all i ∈ {1, . . . , n}.

Then, for
∑n
i=1 âi ⊗ ϕi ∈ A∗ �M∗,∣∣∣( n∑

i=1

âi ⊗ ϕi
)

(z − zj)
∣∣∣ =

∣∣∣( n∑
i=1

âi ⊗ ϕi
)( n∑

i=1

ai ⊗ (xi − xij)
)∣∣∣

=
∣∣∣ n∑
i=1

ϕi(xi − xij)
∣∣∣

≤
n∑
i=1

|ϕi(xi)− ϕi(xij)| → 0

because ϕi(xij)→ ϕi(xi) for all i. Hence zj → z ultraweakly in A�M .

In particular, taking A =Mn, we obtain the following result.

Corollary 3.1
Let M be a W ∗-algebra. Then Mn(M) is also a W ∗-algebra. Let (xj)j =

([xklj ]kl)j be a net in Mn(M), and let x = [xkl]kl ∈ Mn(M). Then, xj → x

ultraweakly inMn(M) if and only if xklj → xkl ultraweakly in M for all k, l ∈
{1, . . . , n}. In other words, one has uwlimj [xklj ]kl = [uwlimj xklj ]kl.

The following result shows the compatibility of the ultraweak limit and
the W ∗-tensor product.

Lemma 3.5
Let M,N be W ∗-algebras. Let x ∈ M , and assume that a norm-bounded net
(yi)i converges ultraweakly to y in N . Then a net (x⊗yi)i converges ultraweakly
to x⊗ y in M ⊗N .

Proof Recall that

yi → y ultraweakly in N ⇐⇒ ∀ϕ ∈ N∗. ϕ(yi)→ ϕ(y)

x⊗ yi → x⊗ y ultraweakly in M ⊗N ⇐⇒ ∀ξ ∈ (M ⊗N)∗. ξ(x⊗ yi)→ ξ(x⊗ y) .
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For any ϕ ∈M∗ and ψ ∈ N∗,

(ϕ⊗ ψ)(x⊗ yi) = ϕ(x) · ψ(yi)

→ ϕ(x) · ψ(y) = (ϕ⊗ ψ)(x⊗ y) ,

because ψ(yi)→ ψ(y). Hence we have χ(x⊗yi)→ χ(x⊗y) for all χ ∈M∗�N∗.
Now, take arbitrary ξ ∈ M∗ ⊗ N∗ ∼= (M ⊗N)∗. There exists a sequence (χj)j

in M∗ �N∗ convergent to ξ under the dual spatial C∗-norm (therefore, we have
inequality like |ξ(z)| ≤ ‖ξ‖‖z‖). Then

|ξ(x⊗ y)− ξ(x⊗ yi)|

≤ |ξ(x⊗ y)− χj(x⊗ y)|+ |χj(x⊗ y)− χj(x⊗ yi)|+ |χj(x⊗ yi)− ξ(x⊗ yi)|

≤ ‖ξ − χj‖‖x⊗ y‖+ |χj(x⊗ y)− χj(x⊗ yi)|+ ‖ξ − χj‖‖x⊗ yi‖

= ‖ξ − χj‖‖x‖‖y‖+ |χj(x⊗ y)− χj(x⊗ yi)|+ ‖ξ − χj‖‖x‖‖yi‖

= |χj(x⊗ y)− χj(x⊗ yi)|+ ‖ξ − χj‖‖x‖(‖y‖+ ‖yi‖) .

Take arbitrary ε > 0. Because (yi)i is norm-bounded and χj → ξ, we have, for
large enough j,

|χj(x⊗y)−χj(x⊗yi)|+‖ξ−χj‖‖x‖(‖y‖+‖yi‖) < |χj(x⊗y)−χj(x⊗yi)|+ε .

Since χj(x⊗ yi)→ χj(x⊗ y), for sufficiently large i we have

|ξ(x⊗ y)− ξ(x⊗ yi)| < |χj(x⊗ y)− χj(x⊗ yi)|+ ε < 2ε .

This proves ξ(x⊗ yi) → ξ(x⊗ y). Hence x⊗ yi converges ultraweakly to x⊗ y
in M ⊗N .

§4 Order and domain theory in operator algebras

4.1 Recap of complete partial orders
We will briefly review the notion of complete partial orders, which plays

a central role in domain theory,1) and is fundamental for denotational semantics
of programming languages.

Definition 4.1
A poset is directed complete if every directed subset has a supremum; bounded
directed complete if every directed subset that is bounded from above has a supre-
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mum; ω-complete if every ω-chain ((xn)n∈N with xn ≤ xn+1) has a supremum;
and pointed if it has a least element (denoted by ⊥).

A (bounded) directed complete poset is abbreviated as a (b)dcpo, and
an ω-complete poset as an ωcpo.

A monotone net, a net (xi)i on a poset satisfying i ≤ j =⇒ xi ≤ xj , gives
a convenient description of a directed subset.1, §2.1.4) Each directed subset is a
monotone net indexed by itself. We use directed subsets and monotone nets
interchangeably.

Definition 4.2
A map between posets is Scott-continuous if it preserves suprema of directed
subsets; and ω-(Scott-)continuous if it preserves suprema of ω-chains. A map
between pointed posets is strict if it preserves the least element.

Note that every dcpo is an ωcpo, and every Scott-continuous map is ω-continuous.
The next theorem is very fundamental.

Theorem 4.1
Every ω-continuous endomap f on a pointed ωcpo has a least (pre-)fixed point,
which is given by

∨
n f

n(⊥).

We fix the notations of categories we use in this paper.

Definition 4.3
We denote byDcppo⊥ the category of pointed dcpos and strict Scott-continuous
maps, and by ωCppo the category of pointed ωcpos and ω-continuous maps.

The product of posets is given by the product of the underlying sets with the co-
ordinatewise order. They are categorical products in bothDcppo⊥ and ωCppo.
The following fact is useful.

Lemma 4.1 (1, Lemma 3.2.6))
Let P,Q,R be posets. Then a map f : P × Q → R is Scott-continuous (resp.
ω-continuous) if and only if it is separately Scott-continuous (resp. separately
ω-continuous).

The category ωCppo is a cartesian closed category, and Dcppo⊥ is a
symmetric monoidal closed category via the smash product.1, §3.2–3) It allows us
to speak of ωCppo- and Dcppo⊥-enrichment of categories.26) In this paper we
use the following explicit definition.
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Definition 4.4
A category C is ωCppo-enriched (resp. Dcppo⊥-enriched) if each homset
C(X,Y ) is a pointed ωcpo (resp. a pointed dcpo) and the composition ◦ : C(Y,Z)×
C(X,Y )→ C(X,Z) is ω-continuous (resp. bi-strict Scott-continuous). Here ‘bi-
strict’ means strictness in each variable, i.e. f ◦ ⊥ = ⊥ and ⊥ ◦ g = ⊥.

Furthermore, a monoidal structure (⊗, I) onC is ωCppo-enriched (resp.
Dcppo⊥-enriched) if the monoidal product ⊗ : C(X,Y ) ×C(Z,W ) → C(X ⊗
Z, Y ⊗W ) is ω-continuous (resp. bi-strict Scott-continuous).

We also use the following term, which comes from a general notion of enriched
(conical) limits.26, §3.8)

Definition 4.5
Let C be an ωCppo-enriched category (resp. a Dcppo⊥-enriched category). A
product

∏
iXi in C is ωCppo-enriched (resp. Dcppo⊥-enriched) if the canon-

ical bijections C(Y,
∏
iXi) ∼=

∏
iC(Y,Xi) are isomorphisms in ωCppo (resp. in

Dcppo⊥), where the right-hand side is the product of posets. In both cases, it
just means that C(Y,

∏
iXi) ∼=

∏
iC(Y,Xi) are order-isomorphisms.

4.2 Orders in operator algebras
Recall from Definition 2.7 that C∗-algebras are equipped with partial

orders ≤ on self-adjoint elements defined by: a ≤ b⇐⇒ ‘b−a is positive’. Many
notions in operator algebras can be characterised by the order ≤. For example, it
is easy to see that a linear map f : A→ B between C∗-algebras is positive if and
only if it is restricted to a monotone map f : Asa → Bsa. It turns out that the
order in a W ∗-algebra has a significant property, called monotone completeness,
which distinguishes W ∗-algebras from C∗-algebras.

Definition 4.6
A C∗-algebra A is monotone complete (or monotone closed) if every norm-
bounded directed subset of Asa has a supremum in Asa.

Proposition 4.1 (48, Lemma 1.7.4))
Every W ∗-algebra is monotone complete. Moreover, the supremum of a norm-
bounded directed set of self-adjoint elements is obtained as the ultraweak limit.

Furthermore, the normality of positive maps between W ∗-algebras is charac-
terised as follows.
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Proposition 4.2 (11, Corollary 46.5))
Let f : M → N be a positive map between W ∗-algebra. Then f is normal
(i.e. ultraweakly continuous) if and only if it preserves the supremum of every
norm-bounded directed subset of Msa.

It is worth noting that W ∗-algebras can be characterised by the mono-
tone completeness with an additional condition.

Theorem 4.2 (54, Theorem III.3.16))
A C∗-algebra is a W ∗-algebra if and only if it is monotone complete and admits
sufficiently many normal positive functionals (i.e. they separate the points). Here
the normality is defined by the latter condition in Proposition 4.2.

We can rephrase monotone completeness in terms of domain theory.

Proposition 4.3
Let A be a C∗-algebra. The following are equivalent.

1. A is monotone complete.
2. Asa is bounded directed complete.
3. A+ is bounded directed complete.
4. [0, 1]A is directed complete.

Proof Without loss of generality, we may assume directed subsets are bounded
from below. Then, in the light of Lemma 2.1, norm-boundedness and order-
boundedness coincide. It follows that 1 ⇐⇒ 2.

2 =⇒ 3 =⇒ 4 is trivial. For the converse, note that Asa is an ordered
R-vector space with a (strong) order unit 1 (by Lemma 2.1). Then, a bounded
directed subset of Asa can be shifted into a bounded directed subset of A+, which
can be scaled into a directed subset of [0, 1]A. Because shifting and scaling (by
a positive number) preserve suprema, the converse follows.

For any W ∗-algebra M , therefore, Msa is a bdcpo; M+ is a pointed bdcpo; and
[0, 1]M is a pointed dcpo. We have a corresponding result for normal maps, which
is proved in a similar ‘shifting and scaling’ argument using Proposition 4.2.

Proposition 4.4
Let f : M → N be a positive map between W ∗-algebras. The following are
equivalent.

1. f is normal.
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2. The restriction f |Msa : Msa → Nsa is Scott-continuous.
3. The restriction f |M+ : M+ → N+ is Scott-continuous.

Moreover, a positive subunital map f : M → N between W ∗-algebras is normal
if and only if the restriction f |[0,1]M : [0, 1]M → [0, 1]N is Scott-continuous.

4.3 Dcppo⊥-enrichment of the category of W ∗-algebras
The goal of this subsection is to show that the category WstarCPSU is

Dcppo⊥-enriched. We also see that products and the monoidal structure (⊗,C)

on WstarCPSU are Dcppo⊥-enriched.

Definition 4.7
Let M,N be W ∗-algebras. We define a partial order v on WstarCPSU(M,N)

by

f v g def⇐⇒ g − f is completely positive .

We use the following lemma.

Lemma 4.2
Let A and B be C∗-algebras. Any PSU-map f : A → B can be restricted to a
map f : [0, 1]A → [0, 1]B between their effects such that f(0) = 0; f(x + y) =

f(x) + f(y) for all x, y ∈ [0, 1]A with x + y ≤ 1; and f(rx) = rf(x) for all
x ∈ [0, 1]A and r ∈ [0, 1]. Conversely, any such map f : [0, 1]A → [0, 1]B can be
extended to a PSU-map f : A→ B uniquely.

Proof The first statement is straightforward. Let f : [0, 1]A → [0, 1]B be a
map satisfying the conditions. By Lemma 2.1, one has x ≤ ‖x‖1 and hence
x/‖x‖ ≤ 1, Then define f : A+ → B+ by f(x) = ‖x‖f(x/‖x‖), which satisfies
f(0) = 0, f(x + y) = f(x) + f(y), and f(rx) = rf(x) for all x, y ∈ A+ and
r ∈ R+. It is standard that the map f : A+ → B+ extends to a positive linear
map f : A→ B, using the fact that any element of a C∗-algebra can be written
as a linear combination of positive elements.54, §I.4) The map is subunital since
f(1) ∈ [0, 1]B . It is easy to see that this extension is unique.

Note in particular that a PSU-map f : A → B is determined by the values on
[0, 1]A.

Proposition 4.5
For anyW ∗-algebrasM andN , WstarCPSU(M,N) with the order v is a pointed
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dcpo.

Proof First of all, it is easy to see that WstarCPSU(M,N) is a pointed
poset; the zero map is a least element. We will show the direct completeness.

Let (fi)i be a monotone net in WstarCPSU(M,N). For each x ∈ [0, 1]M ,
(fi(x))i is a monotone net in a dcpo [0, 1]N . Hence we define f(x) := supi fi(x)

for x ∈ [0, 1]M . It is easy to see that f : [0, 1]M → [0, 1]N satisfies the conditions
of Lemma 4.2, so that we obtain a PSU-map f : M → N .

Each map fi : M → N is normal, therefore by Proposition 4.4, the
restriction fi : [0, 1]M → [0, 1]N is Scott-continuous. Then, for a monotone net
(xj)j in [0, 1]M ,

f
(

sup
j
xj

)
= sup

i
fi

(
sup
j
xj

)
= sup

i

(
sup
j
fi(xj)

)
= sup

j

(
sup
i
fi(xj)

)
= sup

j
f(xj) .

Hence f : [0, 1]M → [0, 1]N is Scott-continuous, i.e. f : M → N is normal.
Note that f(x) := supi fi(x) = uwlimi fi(x) for all x ∈ [0, 1]M by Propo-

sition 4.1. Recall from the proof of Lemma 4.2 that any x ∈ M can be decom-
posed to a (finite) linear combination x =

∑
j λjxj with xj ∈ [0, 1]M . Then

f(x) =
∑

j
λjf(xj)

=
∑

j
λj uwlimi fi(xj)

?
= uwlimi

∑
j
λjfi(xj)

= uwlimi fi(x) ,

where the equality ?
= holds by the ultraweak continuity of the addition and the

scalar multiplication. Therefore we have f(x) = uwlimi fi(x) for all x ∈M .
Finally we show that f is CP, and that f is indeed a supremum of (fi)i.

For [xkl]kl ∈Mn(M)+,

Mn(f)([xkl]kl) = [f(xkl)]kl

= [uwlimi fi(xkl)]kl

= uwlimi[fi(xkl)]kl by Corollary 3.1

= uwlimiMn(fi)([xkl]kl) .

Note that fi is CP, so thatMn(fi)([xkl]kl) is positive for all i. Moreover, fi v
fj implies Mn(fi)([xkl]kl) ≤ Mn(fj)([xkl]kl). Hence (Mn(fi)([xkl]kl))i is a
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positive monotone net inMn(N), which is bounded because each fi is subunital
and so isMn(fi). By Proposition 4.1 we obtain

Mn(f)([xkl]kl) = uwlimiMn(fi)([xkl]kl) = supiMn(fi)([xkl]kl) .

ThusMn(f)([xkl]kl) ≥Mn(fi)([xkl]kl) ≥ 0, so that f is CP and fi v f for all i.
Let f ′ ∈WstarCPSU(M,N) with fi v f ′ for all i. Then, for [xkl]kl ∈Mn(M)+,
we have Mn(fi)([xkl]kl) ≤ Mn(f ′)([xkl]kl) for all i. Hence Mn(f)([xkl]kl) =

supiMn(fi)([xkl]kl) ≤Mn(f ′)([xkl]kl). It follows that f v f ′.

We denote the supremum of (fi)i by
⊔
i fi. As shown in the proof, one has

(
⊔
i fi)(x) = uwlimi fi(x) (= supi fi(x) for x ∈ M+). Next, we show that the

composition in WstarCPSU has a desired property.

Proposition 4.6
Let M,N,L be W ∗-algebras. The composition

◦ : WstarCPSU(N,L)×WstarCPSU(M,N) −→WstarCPSU(M,L)

is bi-strict Scott-continuous.

Proof The bi-strictness is obvious because bottom maps ⊥ are zero maps.
We show the Scott-continuity separately in each variable (Lemma 4.1). Let (gi)i

be a monotone net in WstarCPSU(N,L) and let f ∈ WstarCPSU(M,N). It
is easy to see (−) ◦ f is monotone, and hence (gi ◦ f)i is a monotone net in
WstarCPSU(M,L). Then for each x ∈ [0, 1]M ,((⊔

i
gi
)
◦f
)
(x) =

(⊔
i
gi
)
(f(x)) = supi gi(f(x)) = supi(gi◦f)(x) =

(⊔
i
(gi◦f)

)
(x)

so that (
⊔
i gi) ◦ f =

⊔
i(gi ◦ f).

Let (fi)i be a monotone net inWstarCPSU(M,N) and let g ∈WstarCPSU(N,L).
It is easy to see g ◦ (−) is monotone, and hence (g ◦ fi)i is a monotone net in
WstarCPSU(M,L). Then for each x ∈ [0, 1]M ,(
g◦
(⊔

i
fi
))

(x) = g(supi fi(x)) = supi g(fi(x)) = supi(g◦fi)(x) =
(⊔

i
(g◦fi)

)
(x) ,

where we used the normality of g (and Proposition 4.2) for the second equality.
It shows g ◦ (

⊔
i fi) =

⊔
i(g ◦ fi).

Therefore, we proved:

Theorem 4.3
The category WstarCPSU is Dcppo⊥-enriched.
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We furthermore show that products and the monoidal product (⊗,C)

are Dcppo⊥-enriched.

Theorem 4.4
Products (i.e. products) in WstarCPSU are Dcppo⊥-enriched.

Proof It is straightforward to see that the canonical bijections

WstarCPSU

(
N,
∏

i
Mi

) ∼= ∏
i
WstarCPSU(N,Mi)

are order isomorphisms.

Theorem 4.5
The monoidal structure (⊗,C) on WstarCPSU is Dcppo⊥-enriched. Namely,
for W ∗-algebras M,M ′, N,N ′, the map

⊗ : WstarCPSU(M,M ′)×WstarCPSU(N,N ′) −→WstarCPSU(M ⊗N,M ′⊗N ′)

is bi-strict Scott-continuous.

Proof By Lemma 4.1 and the symmetry, it suffices to show that, for f ∈
WstarCPSU(M,M ′),

f ⊗(−) : WstarCPSU(N,N ′)→WstarCPSU(M ⊗N,M ′⊗N ′)

is strict Scott-continuous. Let ⊥ ∈WstarCPSU(N,N ′) be the least element, i.e.
the zero map. Then

(f ⊗⊥)(x⊗ y) = f(x)⊗⊥(y) = f(x)⊗ 0 = 0

for all x ∈M,y ∈ N . Hence (f ⊗⊥)(z) = 0 for all z ∈M�N . BecauseM�N is
ultraweakly dense in M ⊗N and f ⊗⊥ is normal (i.e. ultraweakly continuous),
we obtain (f ⊗⊥)(z) = 0 for all z ∈M ⊗N . Therefore f ⊗⊥ = ⊥.

Let g, g′ ∈ WstarCPSU(N,N ′) with g v g′. By definition g′ − g is
completely positive, and so is f ⊗(g′−g). Notice that f ⊗(g′−g) = f ⊗ g′−f ⊗ g
because they coincide on M � N . Then f ⊗ g′ − f ⊗ g is completely positive,
and f ⊗ g v f ⊗ g′. Hence f ⊗(−) is monotone.

Let (gi)i be a monotone net in WstarCPSU(N,N ′). By the monotonic-
ity, (f ⊗ gi)i is a monotone net in WstarCPSU(M ⊗N,M ′⊗N ′). By a sim-
ilar argument to above, to prove f ⊗(

⊔
i gi) =

⊔
i(f ⊗ gi), it suffice to show

(f ⊗(
⊔
i gi))(x⊗ y) = (

⊔
i f ⊗ gi)(x⊗ y) for all x ∈ M,y ∈ N . This is shown as
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follows.(
f ⊗
(⊔

i
gi
))

(x⊗ y) = f(x)⊗
(⊔

i
gi
)
(y)

= f(x)⊗ (uwlimi gi(y))

= uwlimi(f(x)⊗ gi(y)) by Lemma 3.5

= uwlimi(f ⊗ gi)(x⊗ y)

=
(⊔

i
f ⊗ gi

)
(x⊗ y)

Remark 4.1
It is worth noting that CstarCPSU is not a Dcppo⊥-enriched category, nor an
ωCppo-enriched category. We have an order-isomorphism CstarCPSU(C, A) ∼=
[0, 1]A, whereas there is a C∗-algebra A such that [0, 1]A is not even ω-complete;
consider A = C ([0, 1]) for instance.

Remark 4.2
The order v defined in Definition 4.7 does not agree with the order f v′ g def⇐⇒
g − f is positive. It happens that the difference of two completely positive
maps is positive but not completely positive.59) The order v′ still works well for
WstarPSU, which turns out to be Dcppo⊥-enriched too.45)

Remark 4.3
One can define a partial sum > on the homset WstarCPSU(M,N) by ‘f > g

is defined’ if f + g ∈ WstarCPSU(M,N) (⇐⇒ f + g is subunital ⇐⇒ f(1) +

g(1) ≤ 1), and in that case f > g := f + g. It is straightforward to see that
WstarCPSU(M,N) is a generalised effect algebra with this partial sum >, and
the order v coincides with the canonical order ≤ in a generalised effect algebra:

f ≤ g def⇐⇒ ∃h. f >h = g. The fact that the order v is directed complete allows
us to define the infinite partial sum as the supremum of finite sums. It then
turns out that (WstarCPSU)op is partially additive in the sense of Arbib and
Manes.3,32)

§5 Quantum operations
In this section we discuss quantum operations, which are now a fun-

damental notion in quantum theory, and has a close connection with operator
algebras.
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Recall that for a Hilbert spaceH, B(H), i.e. the set of bounded operators
on H, is aW ∗-algebra with the predual T (H), i.e. the set of trace class operators
on H. For every normal map f : B(H) → B(K), there exists a corresponding
bounded map f∗ : T (K) → T (H) between preduals. Since the duality B(H) ∼=
T (H)∗ is given by S 7→ tr(S(−)), we have the following equation that relates f
and f∗

tr(f(S) · T ) = tr(S · f∗(T )) (1)

for all S ∈ B(H) and T ∈ T (K). Although T (H) is not a C∗-algebra in general,
we still have the notion of positivity of operators (i.e. positivity in B(H)), so that
we can define positivity of maps f∗ : T (K)→ T (H). We can also define complete
positivity via the identification Mn(T (H)) ∼= Mn � T (H) ∼= T (Cn ⊗ H). We
write T (H)+ = B(H)+ ∩ T (H) for the set of positive trace class operators.

Proposition 5.1 below was essentially already shown in Kraus’s early
work on quantum operations,29, §2) and also found in Heinosaari and Ziman’s
book23, §4.1.2) (although both books assume separability of Hilbert spaces). For
completeness and for later reference, we include a proof.

Lemma 5.1
Let H be a Hilbert space. A bounded operator S ∈ B(H) is positive if and only
if tr(ST ) ∈ R+ for all T ∈ T (H)+.

Proposition 5.1
In the correspondence between normal maps f : B(H) → B(K) and bounded
maps f∗ : T (K) → T (H), f is positive (resp. CP) if and only if f∗ is positive
(resp. CP). In that case, moreover one has:

1. f is subunital if and only if f∗ is trace-nonincreasing, i.e. tr(f∗(T )) ≤
tr(T ) for all T ∈ T (K)+.

2. f is unital if and only if f∗ is trace-preserving, i.e. tr(f∗(T )) = tr(T )

for all T ∈ T (K).

Proof The first part follows easily from the equation (1) and Lemma 5.1.
To see 1, note that

tr(T )− tr(f∗(T )) = tr(T )− tr(f(1) · T ) = tr((1− f(1)) · T ) .

By Lemma 5.1, therefore, tr(f∗(T )) ≤ tr(T ) for all T ∈ T (H)+ if and only if
1− f(1) is positive, i.e. f is subunital. We can show 2 similarly.
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Therefore, there is a bijective correspondence between normal CPSU-
maps (resp. normal CPU-maps) f : B(H) → B(K) and CP trace-nonincreasing
maps (resp. CP trace-preserving maps) f∗ : T (K) → T (H).∗2 Such maps are
physically meaningful “operations”,29) and widely used in quantum theory; see
e.g. the textbooks by Nielsen and Chuang38, §8.2) and by Heinosaari and Ziman.23, Chapter 4)

Definition 5.1
LetH andK be Hilbert spaces. A CP trace-nonincreasing (resp. trace-preserving)
map E : T (K)→ T (H) is called a quantum operation (resp. quantum channel).

The correspondence of f : B(H) → B(K) and f∗ : T (K) → T (H) is un-
derstood as the well-known duality between the Heisenberg and Schrödinger pic-
ture: f transforms observables (i.e. self-adjoint operators), while f∗ transforms
states (i.e. density operators).

In the context of quantum computation, finite dimensional Hilbert spaces
Cn are often concerned. In that case, the situation is much simpler, since
B(Cn) = T (Cn) ∼= Mn and maps are always continuous. Quantum operations
are CP trace-preserving maps E : Mm →Mn, which are in bijective correspon-
dence with CPSU-maps E∗ : Mn →Mm.

§6 Selinger’s QFC and its semantics
Quantum flow chart, or QFC, is a first-order functional quantum pro-

gramming language equipped with loop and recursion, proposed by Selinger.50)

In this section we only review the semantics for this language; for the other
details we refer to the original paper.50)

Selinger gave a denotational semantics of QFC by the category Q, which
is described in what follows.

Definition 6.1
For n ∈ N, letMn denote the algebra of complex n× n matrices. The category
CPMs is defined as follows.

• An object is a natural number.
• An arrow f : m→ n is a CP-map f : Mm →Mn.

The category CPM is the finite biproduct completion of CPMs. Specifically:
• An object is a sequence ~n = (n1, . . . , nk) of natural numbers.
• An arrow f : ~m → ~n, say ~m = (m1, . . . ,ml) and ~n = (n1, . . . , nk), is

a l × k matrix [fij ]ij of arrows fij : mj → ni in CPMs, i.e. CP-maps
∗2 Positive maps T (K)→ T (H) are always bounded w.r.t. trace norm.13, Lemma 2.1)
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fij : Mmj →Mni (i = 1, . . . , l and j = 1, . . . , k).

Note that matrices (fij : Mmj
→ Mni

)ij are in bijective correspondence with
maps f :

∏
jMmj

→
∏
iMni

between (algebraic) products, which are biprod-
ucts in the category of vector spaces. We define the trace of a tuple of matrices
(Aj)i ∈

∏
jMni

to be the sum of traces: tr((Ai)i) =
∑
i tr(Ai). Then, we say a

map f :
∏
jMmj

→
∏
iMni

in CPM is trace-nonincreasing if tr(f((Aj)j)) ≤
tr((Aj)j) for all (coordinatewise) positive (Aj)j ∈

∏
jMmj

. More explicitly,
f = [fij ]ij is trace-nonincreasing if

∑
ij tr(fij(Aj)) ≤

∑
j tr(Aj).

Definition 6.2
The category Q is the subcategory of CPM containing all the objects, but only
trace-nonincreasing maps.

Arrows f : ~m→ ~n in Q are precisely quantum operations f : Mm →Mn when
~m = (m) and ~n = (n), i.e. their lengths are 1. Therefore arrows in Q can be
understood as “generalised” quantum operations.

Selinger showed that the category Q has enough structures to give a
denotational semantics for QFC; that is, each quantum flow chart can be in-
terpreted as an arrow in Q.50, §6.5) Furthermore, he axiomatised a category that
gives semantics for QFC.

Definition 6.3 (Selinger50, §6.6))
An elementary quantum flow chart category is a symmetric monoidal category
(C,⊗, I) with traced finite coproducts (+, 0,Tr) such that:

• for each A ∈ C, A⊗ (−) is a traced monoidal functor;
• there is a distinguished object qbit ∈ C with arrows ι : I+ I → qbit and

p : qbit→ I + I such that p ◦ ι = id.

Theorem 6.1 (Selinger50, §6.6))
Let C be an elementary quantum flow chart category. Let η be an assignment of

an arrow ηS : qbit⊗n → qbit⊗n in C to each built-in n-ary operator symbol S.
Then we have an interpretation J−Kη of quantum flow charts without recursion
in C, mapping each quantum flow chart X to an arrow JXKη in C. If C is
additionally ωCppo-enriched, then quantum flow charts with recursion can be
interpreted in C.

The category Q is, of course, an example of an elementary quantum flow
chart category which is also ωCppo-enriched. In fact, Selinger first showed that
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Q is ωCppo-enriched, and then constructed a trace Tr for coproducts using
the ωCppo-enrichment. As Selinger mentioned50, §6.4) (though he did not give
a proof), the construction of a trace from the ωCppo-enrichment works in the
general case. Specifically, we have the following theorem.

Theorem 6.2
1. Every ωCppo-enriched cocartesian category with right-strict compo-

sition (i.e. f ◦ ⊥ = ⊥) is traced.
2. Let C and D be ωCppo-enriched cocartesian categories with right-

strict composition, which are traced by 1. Every ωCppo-enriched
cocartesian functor between C and D satisfying F⊥ = ⊥ is traced.

Here, a cocartesian category refers to a monoidal category whose monoidal struc-
ture is given by finite coproducts. For the sake of completeness, the proofs are
included in Appendix. To summarise, the following is sufficient to obtain an
ωCppo-enriched elementary quantum flow chart category.

Theorem 6.3
A category is an ωCppo-enriched elementary quantum flow chart category if
it is an ωCppo-enriched symmetric monoidal category (C,⊗, I) with ωCppo-
enriched finite coproducts (+, 0) such that:

• the composition is right-strict (i.e. f ◦ ⊥ = ⊥);
• for each A ∈ C, a functor A⊗ (−) preserves finite coproducts and bottom

arrows;
• C has a distinguished object qbit with arrows ι : I + I → qbit and

p : qbit→ I + I such that p ◦ ι = id.

§7 Semantics for QFC by operator algebras

7.1 (WstarCPSU)
op is an elementary quantum flow chart

category
We have proved that WstarCPSU is an Dcppo⊥-enriched symmetric

monoidal category with Dcppo⊥-enriched products (Theorems 4.3, 4.4 and 4.5).
Moreover, the monoidal product distributes over finite products (Theorem 3.2).
In the light of Theorem 6.3, we have almost already shown that the opposite
category (WstarCPSU)op is an ωCppo-enriched elementary quantum flow chart
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category.∗3 What remains is to give a distinguished object qbit with arrows ι,
p.

Not surprisingly, we take qbit := M2, the algebra of complex 2 × 2-
matrices. We define two maps ι : C × C → M2 and p : M2 → C × C in
(WstarCPSU)op, i.e. ι : M2 → C × C and p : C × C → M2 in WstarCPSU

by

ι

([
x y

z w

])
= (x,w) , p(x, y) =

[
x 0

0 y

]
.

It is straightforward to check that the two maps are positive, hence CP by
Proposition 2.5. They are clearly unital, and automatically normal because
they are finite dimensional. Therefore ι and p are indeed maps in WstarCPSU.
It is clear that ι ◦ p = id, hence p ◦ ι = id in (WstarCPSU)op. Now, we showed:

Theorem 7.1
The opposite category of WstarCPSU is an ωCppo-enriched elementary quan-
tum flow chart category with qbit =M2.

Moreover, we have all unitary operators in WstarCPSU. Let U be an
n-ary unitary operator, i.e. a 2n × 2n unitary matrix. We assign an arrow
ηU : (M2)⊗n → (M2)⊗n in WstarCPSU by:

(M2)⊗n ∼=M2n −→M2n ∼= (M2)⊗n , A 7−→ U†AU .

Therefore, by Theorem 6.1, quantum flow charts with recursion, in which any
unitary operators may be used, can be interpreted in (WstarCPSU)op.

7.2 Revisit of Selinger’s original semantics
We here study Selinger’s category Q from an operator algebraic point of

view. Recall from §5 that there is a bijective correspondence between CP-maps
f : Mn →Mm and g : Mm →Mn, when we consider finite dimensional Hilbert
spaces. Namely CPMs(n,m) ∼= CPMs(m,n), and we have the categorical
self-duality (CPMs)

op ∼= CPMs. It easily extends to CPMop ∼= CPM: for
f = [fji]ji : ~n → ~m, take g = [gij ]ij : ~m → ~n where gij : mj → ni is the arrow
corresponding to fji : ni → mj .

Recall again from §5 that the corresponding maps fji : Mni →Mmj and
gij : Mmj →Mni are related via trace, by the equation (1). It is straightforward

∗3 Note that the Dcppo⊥-enrichment implies the ωCppo-enrichment.
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to see that the maps f = [fji]ji :
∏
iMni →

∏
jMmj and g = [gij ]ij :

∏
jMmj →∏

iMni in correspondence are also related via (extended) trace:

tr
(
f((Ai)i) · (Bj)j

)
= tr

(
(Ai)i · g((Bj)j)

)
(2)

for (Ai)i ∈
∏
iMni

and (Bj)j ∈
∏
jMmj

. Here the trace is defined as the
sum of traces of coordinates, as in §6, and the multiplication is coordinatewise:
(Ai)i · (A′i)i = (Ai ·A′i)i.
We can easily generalise Lemma 5.1 to the current situation. Note that the
positivity here is the coordinatewise positivity.

Lemma 7.1
A tuple of matrices (Ai)i ∈

∏
iMni is positive if and only if tr((Ai)i ·(Bi)i) ∈ R+

for all positive (Bi)i ∈
∏
iMni .

Using this lemma and the equation (2), we obtain the following result by a
similar reasoning to Proposition 5.1.

Proposition 7.1
Let f :

∏
iMni →

∏
jMmj and g :

∏
jMmj →

∏
iMni be maps corresponding

via CPMop ∼= CPM. Then f is subunital, i.e. f((1)i) ≤ (1)j if and only if g is
trace-nonincreasing, i.e. tr(g((Bj)j)) ≤ tr((Bj)j) for all positive (Bj)j ∈ Mmj .

This proposition identifies the maps that are dual to the ones in Q. Let
us define the category QH to be the subcategory of CPM containing all the
objects, but only subunital maps (H stands for ‘Heisenberg picture’). Then the
previous proposition gives the following isomorphism of categories.

Proposition 7.2
We have an isomorphism of categories QH

∼= Qop.

This can be considered as a categorical expression of the duality of the Heisenberg
versus Schrödinger picture in the finite dimensional case. Note that QH(~n, ~m) ∼=
WstarCPSU(

∏
iMni

,
∏
jMmj

) by definition. Therefore, by defining I(~n) =∏
iMni

, we obtain a full embedding I : QH →WstarCPSU.∗4 In fact, we have
the following better result.

Theorem 7.2
We have an equivalence of categories QH ' FdWstarCPSU (= FdCstarCPSU).
∗4 By an embedding (of categories) we mean a faithful functor that is injective on objects.
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Proof We can clearly restrict the full embedding I : QH → WstarCPSU

to I : QH → FdWstarCPSU. It is known that every finite dimensional C∗-
algebra is of the form

∏
iMni , up to ∗-isomorphism.54, Theorem I.11.2) Therefore

I : QH → FdWstarCPSU is essentially surjective, and hence an equivalence.

Thus we also have an equivalence Q ' (FdWstarCPSU)op. Let us make two
observations on the results of this subsection. First, our semantics is dual
to Selinger’s: namely, our semantics by WstarCPSU is given in the Heisen-
berg picture, while Selinger’s semantics by Q is in the Schrödinger picture.
Our semantics is also related to quantum weakest preconditions of D’Hondt
and Panangaden.14) Healthy predicate transformers in their work correspond to
CPSU-maps f : B(H)→ B(K), because such maps restricts to maps f : [0, 1]B(H) →
[0, 1]B(K) between the sets of effects (predicates in their work).

Second, in the light of the equivalence QH ' FdWstarCPSU, the cat-
egory WstarCPSU can be thought of as an infinite dimensional extension of
QH
∼= Qop. Working in the category WstarCPSU rather than Q enables us to

handle infinite types. The classical type bit in QFC is interpreted by JbitK =

C×C. We can obviously interpret the type trit by JtritK = C×C×C, and more
generally the type of n-level classical system by

∏n
i=1 C. It will be then natu-

ral to interpret the type nat of natural numbers by JnatK =
∏
i∈N C, as Selinger

also suggested.50, §7.3) The infinite product
∏
i∈N C exists in WstarCPSU, but not

in Q. As a quantum analogue, interpretations such as JqbitK = M2
∼= B(C2)

and JqtritK = M3
∼= B(C3) can be generalised to an interpretation of the type

of countable level quantum system (“quantum natural numbers” in a sense) by
B(`2), where `2 = `2(N) is the Hilbert space of countable dimension. We have
B(`2) in WstarCPSU, but not in Q.

Remark 7.1
We also have a full embedding CPM→WstarCP, and an equivalence CPM '
FdWstarCP.

§8 Classical computation in commutative opera-
tor algebras

As mentioned in the previous section, the category WstarCPSU can ac-
commodate the infinite classical type nat. In this section we generalise this
observation, and show that the categories of commutative W ∗-algebras can ac-
commodate any classical data types modelled by sets, and classical computation
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between such data types, including probabilistic computation. Categorically
speaking, we will prove that the following four categories can be embedded to
the categories of commutative W ∗-algebras.

Definition 8.1
We denote by Set the category of sets and functions, and by Pfn the category
of sets and partial functions. We denote by D the (infinite) distribution monad
on Set, and by K`(D) the Kleisli category of D. Specifically, objects of K`(D)

are sets; and arrows f : X →7 Y of K`(D) are functions f : X → DY , where
DY = {ϕ : Y → [0, 1] |

∑
y∈Y ϕ(y) = 1} is the set of probability distributions.

The identities ηX : X →7 X in K`(D) are functions ηX : X → DX defined by
ηX(x)(x) = 1 and ηX(x)(y) = 1 (x 6= y). For f : X →7 Y and g : Y →7 Z in
K`(D), the composition g ◦· f in K`(D) is g# ◦ f in Set, where g# : DY → DZ
is the Kleisli extension of g, defined by g#(ϕ)(z) =

∑
y∈Y g(y)(z)ϕ(y). Finally,

we denote by D≤1 the (infinite) subdistribution monad on Set, and by K`(D≤1)

the Kleisli category of D≤1. The set D≤1Y = {ϕ : Y → [0, 1] |
∑
y∈Y ϕ(y) ≤ 1}

consists of subdistributions, and the Kleisli category K`(D≤1) is defined in a
similar manner to D.

The category Set models deterministic computation, while K`(D) mod-
els probabilistic computation. The categories Pfn and K`(D≤1) model partial
variants (i.e. computation which may not terminate) of the two computations.

Definition 8.2
Let X be a set. We define:

c00(X) := {ϕ : X → C | ϕ has finite support}

`∞(X) :=
{
ϕ : X → C

∣∣∣ sup
x∈X
|ϕ(x)| <∞

}
`1(X) :=

{
ϕ : X → C

∣∣∣ ∑
x∈X
|ϕ(x)| <∞

}
.

It is standard that `∞(X) and `1(X) are Banach spaces with pointwise opera-
tions, and norms ‖ϕ‖∞ = supx∈X |ϕ(x)| and ‖ϕ‖1 =

∑
x∈X |ϕ(x)| respectively.

Moreover c00(X) is a dense subspace of `1(X). We write δ : X → c00(X) for
Kronecker’s delta, which is defined by δ(x)(x) = 1 and δ(x)(x′) = 0 (x 6= x′).
Then {δ(x)}x∈X forms a basis of c00(X).
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Proposition 8.1
For a set X, `∞(X) is a commutative W ∗-algebra with a predual `1(X).

Proof One has `∞(X) ∼=
∏
x∈X C and (

∏
x∈X C)∗ ∼=

⊕1
x∈X C∗ ∼=

⊕1
x∈X C ∼=

`1(X), using Lemma 2.2. Alternatively, it is easy to directly check that `∞(X)

is a C∗-algebra with pointwise operations, and the duality `∞(X) ∼= `1(X)∗ is
well-known.

Notice that `∞(2) ∼= C×C = JbitK, `∞(3) ∼= C×C×C = JtritK . . . , `∞(N) ∼=∏
i∈N C = JnatK areW ∗-algebras interpreting familiar classical types. In general,

if a type t is interpreted by a set X (i.e. JtK = X ∈ Set), then we may interpret
t by a W ∗-algebra `∞(X). We also wish to interpret a program between such
classical types as a map between W ∗-algebras. For this, we will investigate the
structure of `∞(X) and maps between them. Because `∞(X) is commutative, we
do not need to care about the complete positivity of maps, see Proposition 2.5.

The following is an immediate consequence from definition.

Lemma 8.1
Let X be a set, and ϕ ∈ `∞(X) an element of a W ∗-algebra `∞(X).

1. ϕ is self-adjoint if and only if ϕ(x) ∈ R for all x ∈ X.
2. ϕ is positive if and only if ϕ(x) ∈ R+ for all x ∈ X.
3. ϕ is an effect if and only if ϕ(x) ∈ [0, 1] for all x ∈ X.
4. ϕ is a projection if and only if ϕ(x) ∈ {0, 1} for all x ∈ X.

Similarly, the order structure is simply pointwise.

Lemma 8.2
Let X be a set. For self-adjoint elements ϕ,ψ ∈ `∞(X), ϕ ≤ ψ if and only if
ϕ(x) ≤ ψ(x) for all x ∈ X. Moreover, if (ϕi)i is a norm-bounded monotone
net of self-adjoint elements in `∞(X), then the supremum supi ϕi is calculated
pointwisely: one has (supi ϕi)(x) = supi ϕi(x) for each x ∈ X.

For a set X, we denote by Pfin(X) the finite powerset of X, i.e. the set
of finite subsets of X. Note that Pfin(X) is a directed set via the inclusion order.
Then, the following is easily obtained using the previous lemma.

Lemma 8.3
Let X be a set. Then (

∑
x∈F δ(x))F∈Pfin(X) is a norm-bounded monotone net
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of positive elements in `∞(X), and we have

sup
F∈Pfin(X)

∑
x∈F

δ(x) = 1 .

Lemma 8.4
Let X be a set. Then c00(X) is ultraweakly dense in `∞(X).

Proof By Proposition 4.1 and Lemma 8.3, one has uwlimF∈Pfin(X)

∑
x∈F δ(x) =

1. Recall that the multiplication in a W ∗-algebra is separately ultraweak con-
tinuous (Proposition 2.9). For each ϕ ∈ `∞(X), therefore,

ϕ = ϕ · 1 = ϕ · uwlim
F∈Pfin(X)

∑
x∈F

δ(x) = uwlim
F∈Pfin(X)

ϕ
∑
x∈F

δ(x) ,

and it is easy to see that ϕ
∑
x∈F δ(x) ∈ c00(X) for F ∈ Pfin(X).

Lemma 8.5
Let X,Y be sets and f : `∞(Y ) → `∞(X) a normal positive map. For each
x ∈ X, one has

∑
y∈Y f(δ(y))(x) = f(1)(x).

Proof Consider a norm-bounded monotone net (
∑
y∈F δ(y))F∈Pfin(Y ) of pos-

itive elements in `∞(Y ). Then (f(
∑
y∈F δ(y)))F∈Pfin(Y ) is also a norm-bounded

monotone net of positive elements in `∞(X), and we have

sup
F∈Pfin(Y )

∑
y∈F

f(δ(y)) = sup
F∈Pfin(Y )

f
(∑
y∈F

δ(y)
)

= f
(

sup
F∈Pfin(Y )

∑
y∈F

δ(y)
)

since f is normal

= f(1) by Lemma 8.3 .

Hence, for x ∈ X,∑
y∈Y

f(δ(y))(x) = sup
F∈Pfin(Y )

∑
y∈F

f(δ(y))(x) (def. of the infinite sum)

= sup
F∈Pfin(Y )

(∑
y∈F

f(δ(y))
)

(x)

=
(

sup
F∈Pfin(Y )

∑
y∈F

f(δ(y))
)

(x) by Lemma 8.2

= f(1)(x) .
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Proposition 8.2
Let X,Y be sets and f : `∞(Y )→ `∞(X) a normal positive map.

1. f is subunital if and only if
∑
y∈Y f(δ(y))(x) ≤ 1 for all x ∈ X.

2. f is unital if and only if
∑
y∈Y f(δ(y))(x) = 1 for all x ∈ X.

3. f is MI if and only if f is subunital and f(δ(y))(x) ∈ {0, 1} for all
x ∈ X and y ∈ Y .

Proof 1 and 2 follow immediately from Lemmas 8.1 and 8.5. To show 3,
assume that f is MI. Note that MI-maps preserve projections, and always sub-
unital. For each y ∈ Y , δ(y) is a projection, so that f(δ(y)) is a projection
too. Hence f(δ(y))(x) ∈ {0, 1} for all x ∈ X. Conversely, assume that f
is subunital and f(δ(y))(x) ∈ {0, 1} for all x ∈ X and y ∈ Y . By 1 one has∑
y∈Y f(δ(y))(x) ≤ 1 for all x ∈ X. If y 6= y′, therefore, at least one of f(δ(y))(x)

and f(δ(y′))(x) must be zero, i.e. f(δ(y))(x)f(δ(y′))(x) = 0. Hence y 6= y′ im-
plies f(δ(y))f(δ(y′)) = 0. Then f(δ(y)δ(y′)) = f(δ(y))f(δ(y′)) for all y, y′ ∈ Y ,
since: if y = y′ then f(δ(y)δ(y)) = f(δ(y)) = f(δ(y))f(δ(y)); and if y 6= y′ then
f(δ(y)δ(y′)) = f(0) = 0 = f(δ(y))f(δ(y′)). It follows that f is multiplicative on
c00(Y ), and by the ultraweak density, f is multiplicative. Since positive maps
are involutive, f is MI.

Now, we obtain the embedding result for K`(D≤1).

Theorem 8.1
The mapping X 7→ `∞(X) gives rise to a full embedding

`∞ : K`(D≤1)→ (WstarPSU)op .

For a function f : X → D≤1Y , a map `∞(f) : `∞(Y ) → `∞(X) is given by
`∞(f)(ϕ)(x) =

∑
y∈Y ϕ(y)f(x)(y).

Proof It is easy to see `∞(f) is linear and positive. It is subunital because

`∞(f)(1)(x) =
∑
y∈Y

1 · f(x)(y) =
∑
y∈Y

f(x)(y) ≤ 1 .

It is also normal since we can give a predual map `1(f) : `1(X) → `1(Y ) by
`1(f)(ϕ)(y) =

∑
x∈X f(x)(y)ϕ(x), which is bounded and makes the following
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diagram commute.

`∞(Y )
∼= ��

`∞(f)
// `∞(X)

∼=��
`1(Y )∗

`1(f)∗
// `1(X)∗

The mapping is functorial. Recall that an identity ηX : X → D≤1X in K`(D≤1)

is given by ηX(x)(x) = 1 and ηX(x)(x′) = 0 (x 6= x′). Then for ϕ ∈ `∞(X) and
x ∈ X,

`∞(ηX)(ϕ)(x) =
∑
x′∈X

ϕ(x′)ηX(x)(x′) = ϕ(x) .

Hence `∞(ηX)(ϕ) = ϕ, so that `∞(ηX) = id. For f : X → D≤1Y , g : Y → D≤1Z,
ϕ ∈ `∞(Z), and x ∈ X,

`∞(g ◦· f)(ϕ)(x) =
∑
z∈Z

ϕ(z)(g ◦· f)(x)(z)

=
∑
z∈Z

ϕ(z)g#(f(x))(z)

=
∑
z∈Z

ϕ(z)
(∑
y∈Y

g(y)(z)f(x)(y)
)

=
∑
z∈Z

∑
y∈Y

ϕ(z)g(y)(z)f(x)(y)

=
∑
y∈Y

∑
z∈Z

ϕ(z)g(y)(z)f(x)(y)

=
∑
y∈Y

(∑
z∈Z

ϕ(z)g(y)(z)
)
f(x)(y)

=
∑
y∈Y

`∞(g)(ϕ)(y)f(x)(y)

= `∞(f)(`∞(g)(ϕ))(x)

= (`∞(f) ◦ `∞(g))(ϕ)(x) .

Hence `∞(g ◦· f)(ϕ) = (`∞(f) ◦ `∞(g))(ϕ), so that `∞(g ◦· f) = `∞(f) ◦ `∞(g).
Therefore `∞ is a functor, which is obviously injective on objects.

To show that the functor is full and faithful, we will define an inverse to
the map

`∞ : K`(D≤1)(X,Y )→WstarPSU(`∞(Y ), `∞(X)) .
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Note the following equation

`∞(f)(δ(y))(x) =
∑
y′∈Y

δ(y)(y′)f(x)(y′) = f(x)(y) . (3)

for f : X → D≤1Y . Keeping it in mind, we define a map

Φ: WstarPSU(`∞(Y ), `∞(X))→ K`(D≤1)(X,Y )

by Φ(g)(x)(y) = g(δ(y))(x). This is well-defined because
∑
y∈Y Φ(g)(x)(y) =∑

y∈Y g(δ(y))(x) ≤ 1 by Proposition 8.2. We show that the map Φ is indeed an
inverse to `∞. For f : X → D≤1Y , x ∈ X and y ∈ Y ,

Φ(`∞(f))(x)(y) = `∞(f)(δ(y))(x)
(3)
= f(x)(y) .

Hence Φ(`∞(f)) = f . For g : `∞(Y )→ `∞(X), y ∈ Y and x ∈ X,

`∞(Φ(g))(δ(y))(x)
(3)
= Φ(g)(x)(y) = g(δ(y))(x) .

Hence `∞(Φ(g))(δ(y)) = g(δ(y)) for each y ∈ Y . Because g and `∞(Φ(g)) are
normal, and c00(Y ) is ultraweakly dense in `∞(Y ), it follows that `∞(Φ(g)) = g.
Therefore `∞ is full and faithful.

This embedding of K`(D≤1) is in a sense the most general case. It is not
hard to restrict this embedding to the other cases.

Corollary 8.1
The mapping X 7→ `∞(X) gives rise to the following full embeddings.

`∞ : Set −→ (CWstarMIU)op

`∞ : Pfn −→ (CWstarMI)
op

`∞ : K`(D) −→ (CWstarPU)op .

Proof Note the following (non-full) embeddings and inclusions of categories,
all of which are identity on objects.

Set //

��

Pfn

��

K`(D) // K`(D≤1)

WstarMIU
//

��

WstarMI

��

WstarPU
//WstarPSU

Here Set→ K`(D) is the canonical (left adjoint) functor for the monad D, and
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F : Pfn→ K`(D≤1) is defined by, for a partial function f : X ⇀ Y ,

Ff(x)(y) =

1 if f(x) = y

0 if f(x) 6= y or f(x) is undefined .

The embeddings Set→ Pfn and K`(D)→ K`(D≤1) are obvious ones.
Let f : X →7 Y be an arrow in K`(D≤1), i.e. a function f : X → D≤1Y .

Note that:
• f comes from K`(D) if and only if

∑
y∈Y f(x)(y) = 1 for all x ∈ X.

• f comes from Pfn if and only if f(x)(y) ∈ {0, 1} for all x ∈ X and y ∈ Y .
• f comes from Set if and only if it satisfies both of the previous two

conditions.
Recall, from the equation (3), that `∞(f)(δ(y))(x) = f(x)(y). In the light of
Proposition 8.2, we can restrict the embedding `∞ : K`(D≤1) → (WstarPSU)op

of Theorem 8.1 to the desired three embeddings.

As a consequence, Set, Pfn, K`(D) and K`(D≤1) can be simply thought
of as full subcategories of commutative W ∗-algebras with corresponding kind
of maps. If programs are interpreted in Set, Pfn, K`(D) or K`(D≤1), they are
also interpreted in the categories of commutative W ∗-algebras. Furthermore,
the cartesian product of sets corresponds to the spatial W ∗-tensor product.

Theorem 8.2
LetX and Y be sets. There is a (normal unital) ∗-isomorphism: `∞(X)⊗ `∞(Y ) ∼=
`∞(X × Y ).

Proof It is known that, when at least one of W ∗-algebras M,N is com-
mutative, the dual spatial C∗-norm on M∗ � N∗ coincides with the projec-
tive (i.e. greatest) cross norm.48, Proposition 1.22.12) The projective tensor product
`1(X)⊗ `1(Y ) of `1(X) and `1(Y ) can be concretely given by:46, Example 2.6)

`1(X; `1(Y )) :=
{
f : X → `1(Y )

∣∣∣ ∑
x∈X
‖f(x)‖1 <∞

}
.

It is then easy to see that `1(X; `1(Y )) ∼= `1(X × Y ), so that we have `1(X) ⊗
`1(Y ) ∼= `1(X × Y ) (isometrically). By dualising it, we obtain a normal isomor-
phism

`∞(X)⊗ `∞(Y ) ∼= (`1(X)⊗ `1(Y ))∗ ∼= `1(X × Y )∗ ∼= `∞(X × Y ) .
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We need to show that it is a ∗-isomorphism. Let Θ: `∞(X)� `∞(Y )→ `∞(X×
Y ) be a map given by Θ(ϕ ⊗ ψ)(x, y) = ϕ(x)ϕ(y) on the elementary tensors.
Then it is straightforward to check that Θ is a ∗-homomorphism, and that the
following diagram commutes.

`∞(X)� `∞(Y )
��

��

Θ

((

`∞(X)⊗ `∞(Y ) ∼=
// `∞(X × Y )

It follows that the isomorphism `∞(X)⊗ `∞(Y ) ∼= `∞(X×Y ) is a ∗-isomorphism,
because the canonical embedding `∞(X) � `∞(Y ) → `∞(X)⊗ `∞(Y ) is ultra-
weakly dense.

Thus, the classical product type corresponds precisely to the spatial
W ∗-tensor product. For example, assume that a program f : nat, nat→ nat with
multiple inputs is interpreted by a function JfK : N×N→ N between sets. Then
it can also be interpreted by a map

`∞(N)
`∞(JfK)

// `∞(N× N) ∼= `∞(N)⊗ `∞(N)

between W ∗-algebras.

Remark 8.1
W ∗-algebras are often referred to as noncommutative measure/measurable spaces.
Indeed, the following results have been known for a long time.

• For a measure space (X,Σ, µ), L∞(X,Σ, µ) is a commutativeW ∗-algebra
if (and only if) (X,Σ, µ) is localisable.49)

• Any commutative W ∗-algebra is ∗-isomorphic to L∞(X,Σ, µ) for some
localisable measure space (X,Σ, µ).48, Proposition 1.18.1)

For C∗-algebras, which are called noncommutative topological spaces, a categor-
ical ‘Gelfand’ duality between commutative C∗-algebras and compact Hausdorff
spaces has been known, since early times.37) In contrast, it seems that an anal-
ogous categorical result relating W ∗-algebras to measure/measureable spaces
was not fully elaborated until Robert Furber did so very recently.15) In his the-
sis, he showed that the category of commutative W ∗-algebras and normal unital
∗-homomorphisms is dually equivalent to the category of strictly localisable com-
pact complete measure spaces and certain equivalence classes of “normal” mea-
sureable maps, and also that strict localisability and compactness are necessary
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Q
' // (FdWstarCPSU)op

� w

full

""

Set �
� full // (CWstarMIU)op

� y

,,

Pfn
� � full // (CWstarMI)

op �
�

// (WstarCPSU)op

K`(D) �
� full // (CWstarPU)op

% �
22

K`(D≤1) �
� full // (CWstarPSU)op

& � full

<<

Fig. 1 An equivalence and full embeddings to the categories of W ∗-algebras

for the duality. Given the general duality result, at least the first embedding of
Corollary 8.1 can be obtained as a special case, by considering sets as measure
spaces via counting measures. Because the general case is so involved, it would
be nice to have the simple special case separately.

§9 Conclusion
We studied operator algebras from a domain-theoretic and categorical

point of view, and showed that the category WstarCPSU of W ∗-algebras and
normal CPSU-maps is a Dcppo⊥-enriched symmetric monoidal category with
Dcppo⊥-enriched products. In particular, the opposite (WstarCPSU)op is an
elementary quantum flow chart category, which gives a denotational semantics
for QFC. We furthermore obtained an equivalence and full embeddings of various
familiar categories to the categories of W ∗-algebras, see Fig. 1.

In parallel with the present work, Rennela45) recently showed thatWstarPSU

is algebraically compact for a certain class of (“von Neumann”) functors. His
and our results demonstrate that operator algebras, especially W ∗-algebras,
provide a flexible and promising model for quantum computation. It is still
an open problem to give a denotational semantics by operator algebras for a
higher-order quantum programming language, or the quantum lambda calculus.
Kornell’s (unpublished) paper28) showed that the symmetric monoidal category
((WstarMIU)op,⊗,C) is closed. This result may be helpful.
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§A Traces on ωCppo-enriched cartesian categories

In this appendix, we will give a proof of Theorem 6.2. We in fact show
the dual statement as Theorems A.1 and A.3 below, because cartesian categories
are more standard than cocartesian categories.

First, let us clarify the terminology. A cartesian category is a (symmet-
ric) monoidal category whose monoidal structure is given by finite products. In
other words, it is just a category with (a choice of) finite products. A functor
between cartesian categories is cartesian if it preserves finite products. For an
ωCppo-enriched cartesian category, we require that the cartesian product func-
tor × be ωCppo-enriched, or equivalently, the tupling 〈−,−〉 be ω-continuous.

The following is the first theorem we wish to prove.

Theorem A.1
Every ωCppo-enriched cartesian category with left-strict composition (i.e. ⊥ ◦
f = ⊥) is traced. For f : A×X → B ×X, the trace Tr(f) : A→ B is given by

Tr(f) := π1 ◦
∨
n∈N

Tr(n)(f) , (4)

where Tr(n)(f) : A→ B ×X is defined by

Tr(0)(f) = ⊥

Tr(n+1)(f) = f ◦
〈
idA, π2 ◦ Tr(n)(f)

〉
.

We use the well-known theorem of Hasegawa and Hyland. The complete proof
is found in Hasegawa’s thesis.21, Theorem 7.1.1)

Theorem A.2 (Hasegawa/Hyland)
A cartesian category is traced if and only if it has a Conway operator. A trace
operator Tr and a Conway operator Fix are related bijectively as follows:

Tr(f) = π1 ◦ f ◦
〈
idA,Fix(π2 ◦ f)

〉
(5)

for f : A×X → B ×X, and

Fix(g) = Tr(∆X ◦ g)

for g : A×X → X, where ∆X = 〈idX , idX〉 is the diagonal map.
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Thanks to this theorem, the problem is reduced to a little easier problem on a
Conway operator. The result we need is already shown by Hoshino et al.24, Lemma A.1)

Lemma A.1
Every ωCppo-enriched cartesian category with left-strict composition (i.e. ⊥ ◦
f = ⊥) has a Conway operator Fix. For g : A×X → X, Fix(g) : A→ X is given
by

Fix(g) :=
∨
n∈N

Fix(n)(g) , (6)

where Fix(n)(g) : A→ X is defined by

Fix(0)(g) = ⊥

Fix(n+1)(g) = g ◦
〈
idA,Fix(n)(g)

〉
.

Remark A.1
In the light of Theorem 4.1, the arrow Fix(g) is the least (pre-)fixed point of a
ω-continuous map g ◦ 〈idA,−〉 : C(A,X)→ C(A,X).

Now we prove Theorem A.1 as follows.

Proof of Theorem A.1 Let C be an ωCppo-enriched cartesian category
with left-strict composition. Then, by Theorem A.2 and Lemma A.1 C is traced.
We still need to check the equation (4). For f : A×X → B ×X,

Tr(f) = π1 ◦ f ◦
〈
idA,Fix(π2 ◦ f)

〉
by (5)

= π1 ◦ f ◦
〈

idA,
∨
n∈N

Fix(n)(π2 ◦ f)
〉

by (6)

= π1 ◦
∨
n∈N

(
f ◦
〈
idA,Fix(n)(π2 ◦ f)

〉)
.

It is straightforward to see, by induction on n, that

Tr(n)(f) ≤ f ◦
〈
idA,Fix(n)(π2 ◦ f)

〉
≤ Tr(n+1)(f)

for all n ∈ N, which shows∨
n∈N

(
f ◦
〈
idA,Fix(n)(π2 ◦ f)

〉)
=
∨
n∈N

Tr(n)(f) .
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Hence we have

Tr(f) = π1 ◦
∨
n∈N

Tr(n)(f) .

Next, we will show the theorem on cartesian functors.

Lemma A.2
Let C and D be traced cartesian categories, which also have the corresponding
Conway operators by Theorem A.2. For a cartesian functor F : C → D, the
following are equivalent.

1. F is traced, that is, for each arrow f : A×X → B ×X in C, one has
F Tr(f) = Tr(φB,X ◦ Ff ◦ φ−1

A,X).

2. For each arrow g : A×X → X in C, one has F Fix(g) = Fix(Fg◦φ−1
A,X).

Here φA,X := 〈Fπ1, Fπ2〉 : F (A × X) → FA × FX denotes the canonical iso-
morphism.

Proof We will use the relationship between Tr and Fix in Theorem A.2, and
the equations πi ◦ φA,X = Fπi and φA,X ◦ F 〈h, k〉 = 〈Fh, Fk〉.

Assume the condition 1. For g : A×X → X in C,

F Fix(g) = F Tr(∆X ◦ g)

= Tr(φX,X ◦ F (∆X ◦ g) ◦ φ−1
A,X)

= Tr(∆FX ◦ Fg ◦ φ−1
A,X)

= Fix(Fg ◦ φ−1
A,X) .

Conversely, assume the condition 2. For f : A×X → B ×X in C,

F Tr(f) = F (π1 ◦ f ◦ 〈idA,Fix(π2 ◦ f)〉)

= π1 ◦ φB,X ◦ Ff ◦ φ−1
A,X ◦ 〈idFA, F Fix(π2 ◦ f)〉

= π1 ◦ φB,X ◦ Ff ◦ φ−1
A,X ◦ 〈idFA,Fix(F (π2 ◦ f) ◦ φ−1

A,X)〉

= π1 ◦ φB,X ◦ Ff ◦ φ−1
A,X ◦ 〈idFA,Fix(π2 ◦ φB,X ◦ Ff ◦ φ−1

A,X)〉

= Tr(φB,X ◦ Ff ◦ φ−1
A,X) .

Theorem A.3
Let C and D be ωCppo-enriched cartesian categories, which are traced by
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Theorem A.1. Then, every ωCppo-enriched cartesian functor between C and
D satisfying F⊥ = ⊥ is traced.

Proof By Lemma A.2, it suffices to show F Fix(g) = Fix(Fg ◦ φ−1
A,X) for

g : A×X → X inC. By definition of a Conway operator, one has g◦〈idA,Fix(g)〉 =

Fix(g), so that

F Fix(g) = F (g ◦ 〈idA,Fix(g)〉) = Fg ◦ φ−1
A,X ◦ 〈idFA, F Fix(g)〉 .

By Remark A.1 we obtain Fix(Fg ◦ φ−1
A,X) ≤ F Fix(g). On the other hand, we

can show F Fix(n)(g) ≤ Fix(n+1)(Fg ◦ φ−1
A,X) by induction on n (here we use

F⊥ = ⊥), so that F Fix(g) ≤ Fix(Fg ◦ φ−1
A,X) by the ω-continuity of F .
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