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Quantum Operation [Kraus]
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: Hilbert spacesH1,H2

T (Hi) : the set of trace class operators on Hi
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         it is completely positive and trace-nonincreasing.def()

E : T (H1) ! T (H2)

T (Cn) ⇠= Mn
the set of 
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(aka. superoperator)
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is completely positive (CP)
def() 8n 2 N

is positive

E : T (H1) ! T (H2)

id⌦ E : Mn ⌦ T (H1) ! Mn ⌦ T (H2)
⇠= T (Cn ⌦H1) ⇠= T (Cn ⌦H2)

id

E
Cn Cn

Compatibility with composition (i.e. tensor product) of systems

H1 H2

Cn ⌦H1 Cn ⌦H2

Complete positivity
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: the set of bounded operators on HiB(Hi)
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weak*-continuous (called normal)

E : T (H1) �! T (H2)
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QO, i.e. CP trace-nonincreasing

normal CP pre-unital

This correspondence restricts to:

(sub-unital)
E⇤(I)  I
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Schrödinger vs Heisenberg picture

8

QOs arise in two equivalent (dual) forms:

CP trace-nonincreasing

normal CP pre-unital

span of density operators
space of states

span of self-adjoint operators
algebra of observables

is a QO in the Schrödinger picture (states evolve)
is a QO in the Heisenberg picture (observables evolve)

E

E⇤

E : T (H1) �! T (H2)

E⇤ : B(H2) �! B(H1)
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q : qbit

q : qbit, p : qbit
KJ

J
q : qbit

q : qbit q : qbit

K= ??

q : qbit

q : qbit, b : bit

J K= ??
Kraus’ “simple” QO is 

not suitable for 
classical control/data

M2 �! M2 ⌦M2
⇠= M4:

QO (in Schrödinger picture)

T (Cn) ⇠= Mn
the set of 

n×n matrices
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Selinger’s solution: generalise QOs into maps of type

E :
kM

j=1

Mnj �!
lM

i=1

Mmi

direct sum 
(of vector spaces)

�

Def.!
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!

          it is CP and trace-nonincreasing.def()
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Def. The category     is defined as follows. 
!
Objects:                 for each sequence of natural numbers 
!

Arrows:                                            Selinger’s QO

kM

j=1

Mnj

(n1, . . . , nk)

E :
kM

j=1

Mnj �!
lM

i=1

Mmi

Q

The category Q



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.

tensor product



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.

tensor product

direct sum



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

!Cppo-enriched
!Cppo-enriched

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.

tensor product

direct sum



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

!Cppo-enriched
!Cppo-enriched

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.

the category of pointed ωcpos and ω-continuous maps
tensor product

direct sum



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

!Cppo-enriched
!Cppo-enriched

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.

the category of pointed ωcpos and ω-continuous maps

each                   is a pointed ωcpo and composition is ω-continuousQ(A,B)

tensor product

direct sum



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

!Cppo-enriched
!Cppo-enriched

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.

JqbitK = M2

JbitK = C� C

Thm.  With the interpretation of types

gives a semantics for QPL.Q

the category of pointed ωcpos and ω-continuous maps

each                   is a pointed ωcpo and composition is ω-continuousQ(A,B)

tensor product

direct sum



Cho

QCategorical Property of

14

     is an                               SMC                 with  
                              finite coproducts           such that  
     distributes over           : 

(�, 0)

Q

!Cppo-enriched
!Cppo-enriched

⌦ (�, 0)

A⌦ (B � C) ⇠= (A⌦B)� (A⌦ C), A⌦ 0 ⇠= 0

(Q,⌦,C)

.

JqbitK = M2

JbitK = C� C

Thm.  With the interpretation of types

gives a semantics for QPL.Q

the category of pointed ωcpos and ω-continuous maps

each                   is a pointed ωcpo and composition is ω-continuousQ(A,B)

tensor product

direct sum

for loop and 
recursion



Cho 15
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p � ◆ = id
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a semantics for QPL

• 

• 
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Operator Algebras

17

Concrete!
(*-subalgebra of           )

Abstract!
(Hilbert space-free)

norm-closed C*-algebra

weakly closed, unital 
= von Neumann algebra W*-algebra

B(H)

• First, von Neumann algebras are introduced by von Neumann, 
motivated by quantum theory 

• In the context of quantum theory, operator algebras are seen as 
algebras of observables 

• Algebraic quantum theory 
• Emphasis on operator algebras, rather than Hilbert spaces 
• Successful in quantum field theory, quantum statistical mechanics
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Def. (Sakai’s characterisation) 
A W*-algebra is a C*-algebra      that has a predual       , 
i.e.                     . 

M M⇤
M ⇠= (M⇤)

⇤
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Def. (Sakai’s characterisation) 
A W*-algebra is a C*-algebra      that has a predual       , 
i.e.                     . 

M M⇤
M ⇠= (M⇤)

⇤

Eg.                           is a W*-algebra for a Hilbert space B(H) ⇠= T (H)⇤ H

Def. A map between W*-algebras is normal 
           it is weak*-continuous.def()

Eg.                                      QO in the Heisenberg picture 
is (by def.) a normal CP pre-unital map betw. W*-alg.

E⇤ : B(H2) �! B(H1)
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WstarCP-PU

E⇤ : B(H2) �! B(H1)QO                                      is an arrow in WstarCP-PU

This gives a full embedding Q �! (Wstar
CP-PU

)op

QE :
kM

j=1

Mnj �!
lM

i=1

Mmi

E⇤ :
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kM
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are quantum operations (in the Heisenberg picture)
WstarCP-PU

Kraus’ (simple) QO Selinger’s QO

E :
kM

j=1

Mnj �!
lM

i=1

MmiE⇤ : B(H2) �! B(H1)

E : T (H1) �! T (H2)

normal CP pre-unital map between W*-algebras
f : M �! N WstarCP-PUin

The present work shows:
WstarCP-PU is “nice” enough to give a sem. for QPL
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Yes!  In fact,                       is                -enrichedWstarCP-PU Dcppo?

the category of pointed dcpos and strict Scott-continuous maps
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Thm. Every W*-algebra is monotone closed, i.e. 
every norm-bounded directed set of self-adjoint elements 
has a supremum (which is self-adjoint).

cf. A poset is directed complete         every directed subset has a supremum.def()

Prop.  A C*-algebra     is monotone closed 
                                                        is directed complete.()

A

[0, 1]A = {a 2 A | 0  a  1}
the set of effects

For every W*-algebra     ,             is a (pointed) dcpo. [0, 1]MM

Conversely, a monotone closed C*-algebra that satisfies 
certain condition is a W*-algebra. (Kadison’s characterisation)



Cho 25

Prop.                       positive pre-unital map betw. W*-alg. 
     is normal (i.e. weak*-continuous) 
        the restriction                                  is Scott-continuous()

f : M ! N
f

f : [0, 1]M ! [0, 1]N

W*-algebras and Domain theory



Cho 25

Prop.                       positive pre-unital map betw. W*-alg. 
     is normal (i.e. weak*-continuous) 
        the restriction                                  is Scott-continuous()

f : M ! N
f

f : [0, 1]M ! [0, 1]N

W*-algebras behave well domain-theoretically

W*-algebras and Domain theory



Cho 25

Prop.                       positive pre-unital map betw. W*-alg. 
     is normal (i.e. weak*-continuous) 
        the restriction                                  is Scott-continuous()

f : M ! N
f

f : [0, 1]M ! [0, 1]N

Thm.              : W*-algebras. 
                                  is a pointed dcpo.

M,N

WstarCP-PU(M,N)

W*-algebras behave well domain-theoretically

Dcpo structure of W*-algebras “lifts” to hom-set 
with an ordering:                                is CPf v g

def() g � f

W*-algebras and Domain theory
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WstarCP-PU(N,L)⇥WstarCP-PU(M,N) ! WstarCP-PU(M,L)

(g, f) 7! g � f
is strict Scott-continuous. Therefore:

Thm.                         is a                -enriched category WstarCP-PU Dcppo?

We can also show:
WstarCP-PU(M,N)⇥WstarCP-PU(M

0, N 0) ! WstarCP-PU(M ⌦M 0, N ⌦N 0)

(f, g) 7! f ⌦ g

WstarCP-PU(M,N)⇥WstarCP-PU(M,L) ! WstarCP-PU(M,N � L)

(f, g) 7! hf, gi
are strict Scott-continuous. Therefore:

Thm.                                    is a                -enriched SMC 
with               -enriched finite products.

(WstarCP-PU,⌦,C)
Dcppo?

Dcppo?
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• Recall that there is a full embedding:

28

Q // (Wstar
CP-PU

)op

(FdWstar
CP-PU

)op

✓

//

in the Heisenberg picturein the Schrödinger picture

                            can be seen as  
an infinite dimensional extension of
(Wstar

CP-PU

)op

Q

the category of finite dimensional W*-algebras

'
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• The category                       of C*-algebras and CP 

pre-unital maps does not work.

29

CstarCP-PU

CstarCP-PU Dcppo?
!Cppo

• Because                     is neither                -enriched 
nor              -enriched.

W*-algebras are the appropriate setting

(Note:                                                                   )FdCstar
CP-PU

= FdWstar
CP-PU

' Qop
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⇠= `1(2)

⇠= `1(3)

⇠= `1(N)

`

1(X) :=
n

' : X ! C
�

�

�

sup
x2X

|'(x)| < 1
o
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`1 : Set �! (CWstar
M-I-U

)op ✓ (Wstar
CP-PU

)op
There is an embedding

with `1(X ⇥ Y ) ⇠= `1(X)⌦ `1(Y )

Thm. the category of commutative W*-algebras

Classical (deterministic) computation in        arises 
as a map between commutative W*-algebras  

Set
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• Exploit the duality between commutative W*-algebras 
and measurable space

34

(CCstar
M-I-U

)op ' CompHauscf. Gelfand duality

• Semantics by operator algebras for higher-order 
quantum programming languages, or quantum 
lambda calculi

(Wstar
CP-PU

)opIs                              monoidal closed? Q.
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              -enriched finite products 
• “nice” enough to give a semantics for Selinger’s QPL

35

WstarCP-PU Dcppo?
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• W*-algebras give a flexible model for quantum 
computation 
• accommodate infinite dim. structures and  

classical (= commutative) computation 
• The present work is the first step. A lot of things to do! 

• cf. Mathys Rennela’s work (MFPS XXX, 2014)


