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Overview

e Semantics for a first-order functional guantum
programming language QPL [Selinger 2004]

* Use the category Wstarcp_py of W*-algebras and
normal completely positive pre-unital maps

» Wstarcp.pu is a Dcppo -enriched SMC with
Dcppo | -enriched finite products

* “nice” enough to give a semantics for QPL
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Overview

e Semantics for a first-order functional guantum
programming language QPL [Selinger 2004]

9
* Use the category WStaI'CP py of W*-algebras and

normal completely posmve pre-unital maps
quantum operatlons in the Helsenberg picture
« Wstarcp.ru is a Dcppo -enriched SMC with
Dcppo | -enriched finite products

* “nice” enough to give a semantics for QPL
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Quantum Operation [Kraus]

(aka. superoperator)

Hl ’ HQ
T(H;)

. Hilbert spaces
1

T(Cn) ~ M the set.of

" nxn matrices

ne set of trace class operators on H;

Def. Alinearmap &£: T(H1) — T (H2) is a quantum
operation (QO)

def
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Quantum Operation [Kraus]

(aka. superoperator)
T(Cn) ~ M the set.of

" nxn matrices

H1, Ho : Rilbert spaces
T (H;) : the set of trace class operators on H;

Def. Alinearmap &£: T(H1) — T (H2) is a quantum
operation (QO)
£L it is completely positive and trace-nonincreasing.

p . state (density operator) on H;
j.e. positive operator on Hiwith tr(p) =1
(hence p € T(H1) by def.)

— E&(p) : positive operator on Hawith 0 < tr(E(p)) <1
l.e. subnormalised state on H»
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Complete positivity

Def. Alinearmap £: T(H1) — T(Hz2) is a quantum
operation (QO)

&% itis completely positive and trace-nonincreasing.
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Complete positivity

Def. Alinearmap £: T(H1) — T(Hz2) is a quantum
operation (QO)
=

<~ Itis com positive and trace-nonincreasing.

E:T(H1) — T(Hz)is completely positive (CP)
£ YpeN

d®&: M, @ T(H1) - M, @ T(Hs2) is positive
~T(C"@H) = T(C"®Ha)

Compatibility with composition (i.e. tensor product) of systems
f' T i e ':, id ‘ o~ e O S 1 g e e 8
(Cn m m m m m m ' :
14 j
a
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Dualising Quantum Operations

B(H;) : the set of bounded operators on H;

Fact. There is a 1-1 correspondence:
E:T(H1) — T(Hz2) bounded

E*: B(H2) — B(H1) weak*-continuous (called normal)
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Dualising Quantum Operations

B(H;) : the set of bounded operators on H;

| T (H:)is a Banach space
Fact. Thereis a 1-1 correspondence: wrt. trace norm, and

E:T(H1) — T(Hz2) bounded T(Hi)" = B(H.i)

E*: B(H2) — B(H1) weak*-continuous (called normal)

This correspondence restricts to:
E:T(H1) — T(H2) QO, i.e. CP trace-nonincreasing

E*: B(H2) — B(H1) normal CP pre-unital - £%(7) <z

(sub-unital) -
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Schrodinger vs Heisenberg picture

QOs arise in two equivalent (dual) forms:

E:T(H1) — T (Hs) CP trace-nonincreasing

E": B(Ha) — B(H1) normal CP pre-unital
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Schrodinger vs Heisenberg picture

QQOs arise in two equivalent (dual) forms:

span of density operators

space of states

E:T(H1) — T (Hs) CP trace-nonincreasing

E": B(H2) — B(H1) normal CP pre-unital

span of self-adjoint operators

algebra of observables

£ is a QO in the Schrodinger picture (states evolve)

£* is a QO in the Heisenberg picture (observables evolve)
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QPL (QFC) [Selinger 2004] Example

First-order functionall new gbit g ‘=
quantum programming l q: it
language |

q = H
Loop and recursion l o b

“Quantum data,

Classical control” q: qbi}/ q : gbit

Data types: gbit, bit

Written as a flow chart
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Selinger’'s QPL

QPL (QFC) [Selinger 2004]

First-order functional
guantum programming
language

Loop and recursion

“Quantum data,
Classical control”

Data types: gbit, bit

Written as a flow chart

Example l i for |0)

new gbitq :=0

S ——
O
O
o

A~ N\
S
o O

N~

q: qbiE/ g : gbit

1 1 /1 1
P|o>QG D Plo P|1>§<1 1>P|1>
1/(1 0 _ 170 0
:Q(o o) ~2\0 1
0) with prob. 1/2 1) with prob. 1/2

state (density matrix)
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Semantics for QPL

q gbit

[[ q gbit, p : gbit ]]

MQHMQ@MZ—MZL

QO (in Schrédinger picture)

~J ./\/l the set of
nxn matrices
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Semantics for QPL

l g : gbit

e Moy — Moy Moy = My
QO (in Schrédinger picture)

T((Cn) gMn the set.of

NxN matrices

q qblt o : gbit

l g : gbit
Kraus’ “simple” QO is

H 7
g: qbﬂl . gbit
|:|: hot suitable for

classical control/data
00

bit, b : bit
l -9 11



Selinger’s QO

Selinger’s solution: generalise QOs into maps of type

k [ .
b  direct sum
E: EDM% — EBMT”’L (of vector spaces)
Def.
A linear map &: @Mnj — 69/\/1 isa QO
j=1 =1 (mthe Schrodinger pic.)

def _ : :
& itis CP and trace-nonincreasing.
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Selinger’s QO

Selinger’s solution: generalise QOs into maps of type

k [ .
b  direct sum
E: EBM”J — EBMT”’Z (of vector spaces)
Def.
A linear map &: @M% — 69/\/1 isa QO
j=1 i=1 (m the Schrédinger pic.)
def

<= Itis CP and trace-nonincreasing.

l q : gbit

- e Mo — Mo D Mo

q:qbitl l q : gbit
Cho



The category

Def. The category Q is defined as follows.
k

Objects: @Mnj for each sequence of natural numbers

J= 1 (n17 0o ¢ 7nk)
Arrows: & E} M, — G} M,,, Selinger's QO
71=1

Cho 13
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Q is an SMC (Q,®,C) with
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Categorical Property of (

for loop and
recursion

the category of pointed wcpos and w-continuous Maps
tensor product

Q is an wCppo-enriched SMC (Q,®,C) with
wCppo-enriched finite coproducts (&, 0) such that

® distributes over (,0) : D cireotsum

AR (B2 O)2(A®B)® (ARC), A®0=0

each Q(A, B) IS a pointed wcpo and composition IS w-continuous

Thm. With the interpretation of types
labit] = M,
[bit] =C @ C

Q gives a semantics for QPL.
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Sufficient condition to give
a semantics for QPL

e C isan wCppo-enriched SMC (C,®,I) with
wCppo-enriched finite coproducts (&, 0) such that
® distributes over (,0) :

AR (BOC)2(A®B)®(A®C), AR0=0

e An object [gbit] € C fol=1
. fel=1
(Ibltﬂ:]@[) LI[EBI—>[[qbit]]

p: [gbit] = I &1

e Some additional conditions... o id

Thm. Such C gives a semantics for QPL.
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Operator Algebras

Concrete Abstract

(*-subalgebra of B(H)) (Hilbert space-free)

norm-closed C*-algebra

weakly closed, unital
= von Neumann algebra

W*-algebra

e First, von Neumann algebras are introduced by von Neumann,
motivated by quantum theory

* |n the context of quantum theory, operator algebras are seen as
algebras of observables

e Algebraic quantum theory
 Emphasis on operator algebras, rather than Hilbert spaces

e Successful in guantum field theory, quantum statistical mechanics

Cho 17



W=*-algebra

Def. (Sakai’'s characterisation)
A W*-algebrais a C*-algebra M that has a predual M, ,
.e. M= (M,)".

Cho

18



W=*-algebra

Def. (Sakai’'s characterisation)
A W*-algebrais a C*-algebra M that has a predual M, ,
.e. M= (M,)".

Eg. B(H) =T (H)" is a W*-algebra for a Hilbert space H

Cho

18



)
W=*-algebra
Def. (Sakai’'s characterisation)
A W*-algebrais a C*-algebra M that has a predual M, ,
.e. M= (M,)".

Eg. B(H) =T (H)" is a W*-algebra for a Hilbert space H
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W=*-algebra
Def. (Sakai’'s characterisation)
A W*-algebrais a C*-algebra M that has a predual M, ,
.e. M= (M,)".

Eg. B(H) =T (H)" is a W*-algebra for a Hilbert space H

Def. A map between W*-algebras is normal

It IS weak™-continuous.

Eg. £": B(H2) — B(H1) QO in the Heisenberg picture
s (by def.) a normal CP pre-unital map betw. W*-alg.

Cho
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Ihe category Wstarcp_py

Def. The category Wstarcp.pu IS defined as follows.
Objects: W*-algebras
Arrows: normal CP pre-unital maps

QO &*: B(H2) — B(H1) is an arrow in Wstarcp_py
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Ihe category Wstarcp_py

Def. The category Wstarcp.pu IS defined as follows.
Objects: W*-algebras
Arrows: normal CP pre-unital maps

QO &*: B(H2) — B(H1) is an arrow in Wstarcp_py

I\/Ioreover there Is one to-one correspondence:

E: EBMT,,J — @Mmz Selinger's QO, i.e. arrow in Q

71=1

ET: E} Mo, — 69 Mnj arrow in Wstarcp_pu

1=1 1=1

This gives a full embedding Q — (Wstarcp.py)?®
Cho 19



Various Quantum Operations

Kraus’ (simple) QO Selinger’'s QO
E:TH1) — T(H i l
( 1) ( 2) <. ,/\/lnj Hé}Mmz
E*: B(Ha) — B(H1) =1 =1l
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Various Quantum Operations

Kraus’ (simple) QO Selinger’'s QO

E:T(H1) — T(H i :
( 1) ( 2) <. _/\/lnj _ €>Mmz
1 1=1

E*: B(Hz) — B(Hl) j=
= e =

normal CP pre-unital map between W*-algebras
f: M — N In WStaI'CP_pU

Wstarcp.pu naturally arises as the category whose arrows
are quantum operations (in the Heisenberg picture)

The present work shows:
Wstarcp-py is “nice” enough to give a sem. for QPL
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Sufficient condition to give
a semantics for QPL

e C isan wCppo-enriched SMC (C,®,I) with
wCppo-enriched finite coproducts (¢, 0) such that
® distributes over (®,0) :

AR (B2O)=2(A®B) @ (A®C), A®0=0

e An object [qbit] € C fol=_1
: fel=1
([bit] = I & 1) v: I &1 — [qbit]

p: [qbit] = I & [

e Some additional conditions... b

Thm. Such C gives a semantics for QPL.

Cho 15
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AR (B2O)=2(A®B) @ (A®C), A®0=0

e An object [qbit] € C fol=_1
: fel=1
([bit] = I & 1) v: I &1 — [qbit]

p: [qbit] = I & [

e Some additional conditions... b

Thm. Such C gives a semantics for QPL.
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Goal: (Wstarcp_pyu)°? satisfies these conditions
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Categorical Property of Wstarcp.pu

Wstarcp.py is an SMC (Wstarcp.py, ®, C)
with finite products (&, 0)
such that ® distributes over (,0) :

MRINSL)Z2(MRIN) (ML), M®0=
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Categorical Property of Wstarcp.pu

spatial
W*-tensor product

Wstarcp.py is an SMC (Wstarcp.py, ®, C)
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M@NeL)ZMIN) (ML), M®0=0
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Categorical Property of Wstarcp.pu

spatial
W*-tensor product

Wstarcp.py is an SMC (Wstarcp.py, ®, C)

with finite products (¢

D, 0)

direct sum of W*-algebras

such that ® distributes over (,0) :

M@NeL)ZMIN) (ML), M®0=0

Main problem.

Wstarcp.py IS wCppo-enriched?

* Yes! In fact,

Wstarcp.py IS Dceppo | -enriched

the category of pointed dcpos and strict Scott-continuous maps

Cho
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Monotone closedness of W*-algebras

Thm. Every W*-algebra is monotone closed, /.e.
every norm-pbounded directed set of self-adjoint elements
has a supremum (which is self-adjoint).
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has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies
certain condition is a W*-algebra. (Kadison’s characterisation)

cf. A poset is directed complete & every directed subset has a supremum.

Prop. A C*-algebra A is monotone closed
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Monotone closedness of W*-algebras

Thm. Every W*-algebra is monotone closed, /.e.
every norm-pbounded directed set of self-adjoint elements
has a supremum (which is self-adjoint).

Conversely, a monotone closed C*-algebra that satisfies
certain condition is a W*-algebra. (Kadison’s characterisation)

cf. A poset is directed complete & every directed subset has a supremum.

Prop. A C*-algebra A is monotone closed
< |0,1]a={ac A|0<a <1} isdirected complete.
the set of effects

» For every W*-algebra M, |0, 1]x is a (pointed) dcpo.
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W*-algebras and Domain theory

Prop. f: M — N positive pre-unital map betw. W*-alg.
f is normal (i.e. weak*-continuous)
< the restriction f: [0,1]a — [0,1] x5 is Scott-continuous
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W*-algebras and Domain theory

Prop. f: M — N positive pre-unital map betw. W*-alg.
f is normal (i.e. weak*-continuous)
< the restriction f: [0,1]a — [0,1] x5 is Scott-continuous

» W*-algebras behave well domain-theoretically

Dcpo structure of W*-algebras “lifts” to hom-set

with an ordering: f C g & g—f 1sCP

Thm. M, N : W*-algebras.
Wstarcp.py(M, N) is a pointed dcpo.

Cho 25



Cho

Moreover, the composition of arrows
WStaPCP_pU(N, L) X WStaI‘CP_pU(M, N) — WStaPCP_pU(M, L)

(9, f) = gof

IS strict Scott-continuous. Therefore:

Thm. Wstarcp.pu isa Dcppo | -enriched category
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Moreover, the composition of arrows
WStaPCP_pU(N, L) X WStaI'CP_pU(M, N) — WStaPCP_pU(M, L)

(9, f) = gof

IS strict Scott-continuous. Therefore:

Thm. Wstarcp.pu isa Dcppo | -enriched category

We can also show:
Wstarcp_pU(M, N) X Wstarcp_pU(M’, N/) — WStaI'CP_pU (M@M/, N@N’)

(f,9) = [®g
WStaI'CP_pU(M, N) X Wstarcp_pU(M, L) — WStaI'CP_pU(M, N & L)

(f,9) = {f,9)

are strict Scott-continuous. Therefore:

Thm. (Wstarcp.pu,®,C) isa Dcppo ,-enriched SMC
with Dcppo | -enriched finite products.
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(Wstarcp.pu)°? satisfies all conditions of the following.

Sufficient condition to give
a semantics for QPL

e C isan wCppo-enriched SMC (C,®,1) with
wCppo-enriched finite coproducts (4, 0) such that
® distributes over (,0) :

AR (BeC)=(A®B)o(AxC), A®0=0

e An object [gbit] € C fol=1
. fel=1

([bit] = I ® 1) v T@T — [qbit]

e Some additional conditions... p: ﬂqzizﬂ: ifd@f

Thm. Such C gives a semantics for QPL.

Cho 15
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(Wstarcp.py)® satisfies all conditions of the following.

Note. Dcppo -enrichment implies wCppo-enrichment.

Sufficient condition to give
a semantics for QPL

e C isan wCppo-enriched SMC (C,®,1) with
wCppo-enriched finite coproducts (4, 0) such that
® distributes over (,0) :

AR (BeC)=(A®B)o(AxC), A®0=0

e An object [gbit] € C fol=1
. fel=1

([bit) =T & 1) v T@T — [qbit]

e Some additional conditions... p: ﬂq];izﬂ; ifd@f

Thm. Such C gives a semantics for QPL.

Cho 15

» (Wstarcp.py)”” gives a semantics for QPL
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Comparison with
Selinger’s original semantics

* Recall that there is a full embedding:

in the Schrédinger picture

INn the Heisenberg picture

Q ? (Wstarcp_pU)Op

l\ Ul

(FdWstarcp_pU)Op

the category of finite dimensional \W*-algebras

(Wstarcp.pu)°? can be seen as
an infinite dimensional extension of Q

Cho 28
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C*vs W*

 The category Cstargp.py of C*-algebras and CP
pre-unital maps does not work.

 Because Cstarcp_py is neither Dcppo | -enriched
nor wCppo-enriched.

* W*-algebras are the appropriate setting

(NOteZ FdCStaI'CP_pU — FdWStaGC_pU ~ Qop)

29
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QPL with infinite types

Example 1 (°(X) = {gp: X = C

sup |io(x)| < oo
reX

[bit] =C o C
[trit] =C e CaqC

Inat] = 69 C
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QPL with infinite types

Example 1 (°(X) = {gp: X = C

sup |io(x)| < oo
reX

[bit] = Cp C = ¢°(2)
[trit] =C e Ca C = £7(3)

[nat] = @ C = ¢>=(N)

neN

c Wstarcp.py

but ¢ Q

Cho 31
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commutative W*-algebras

Thm. the category of commutative W*-algebras
There is an embedding
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Classical computation in
commutative W*-algebras

Thm. the category of commutative W*-algebras
There is an embedding

(°>°: Set — (CWstary.1.y)°® C (Wstarcp.py)®

with £°(X x V) 2 £%°(X) ® £ (Y)

Classical (deterministic) computation in Set arises
as a map between commutative \W*-algebras

32
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Outline

Quantum Operation
Selinger’s QPL
Operator Algebras and Quantum Operation

Semantics for QPL by W*-algebras

- Future work and Conclusions
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Future work

e Semantics by operator algebras for higher-order

guantum programming languages, or quantum
lambda calculi

Q. Is (Wstarcp.pu)® monoidal closed?

* Exploit the duality between commutative W*-algebras
and measurable space

cf. Gelfand duality (CCstary.1.y)°? ~ CompHaus

Cho 34



Conclusions

 Normal CP pre-unital maps between W*-algebras
generalise Kraus’ and Selinger’'s QO

« Wstarcp.pu isa Dcppo -enriched SMC with
Dcppo | -enriched finite products

* “nice” enough to give a semantics for Selinger’s QPL

Cho

35



Conclusions

 Normal CP pre-unital maps between W*-algebras
generalise Kraus’ and Selinger’'s QO

« Wstarcp.pu isa Dcppo -enriched SMC with
Dcppo | -enriched finite products

* “nice” enough to give a semantics for Selinger’s QPL

 W*-algebras give a flexible model for guantum
computation

 accommodate infinite dim. structures and
classical (= commutative) computation

* [he present work is the first step. A lot of things to do!

 cf. Mathys Rennela’s work (MFPS XXX, 2014)
Cho 35



