
Probabilistic Verification via Category Theory:

Categorical Generalization of

Fair Simulation and Ranking Function by

Kleisli Coalgebras, and Its Concretization

圏論による確率的検証：

クライスリ圏の余代数による

公平模倣とランキング関数の圏論的一般化と具体化

by

Natsuki Urabe

卜部夏木

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Naoki Kobayashi 小林直樹

Professor of Computer Science

ABSTRACT

Formal verification is a technique for quality assurance that uses mathematical meth-
ods to prove that a system satisfies a given property. In this thesis, we will focus on quan-
titative verification. As computers become ubiquitous in the world, computer systems
tend to involve quantitative behaviors like probabilities or energy consumptions. For such
quantitative systems, we can consider quantitative properties like “the probability where
the program does not terminate is at most 10%,” or “the amount of gas consumed by the
system is at most 1.0L.” In quantitative verifications, we prove quantitative properties
for quantitative systems. Compared to that about qualitative verifications for systems
like nondeterministic systems, the number of studies about quantitative verification is
relatively small. This thesis aims to introduce notions that we can use for quantitative
verification. We will mainly focus on probabilistic systems in this thesis.

We introduce notions for quantitative verifications by modifying existing notions used
for qualitative verifications. In this procedure, the category theory and the notion of coal-
gebra play essential roles. Category theory is a general and abstract mathematical theory
which is understood as a theory of structures. Coalgebra is one of the fundamental no-
tions in category theory that can give general characterizations for dynamics of transition
systems. Using category theory and the theory of coalgebras, we first generalize the no-
tion for qualitative verification by extracting its categorical essence. We then prove the
correctness of the generalized notion in terms of category theory. The categorical general-
ization is concretized for quantitative systems and a notion for quantitative verifications
is obtained. The correctness of the obtained notion is automatically inherited from the
categorical level.

We have applied the above “generalize-concretize” scheme to two existing notions
used for verifications of nondeterministic systems: fair simulation and ranking function.

Simulation is a notion commonly used for proving behavioral inclusion between tran-
sition systems. More concretely, a simulation from one system to another system implies
the behavior of the former system is included in that of the latter system. Therefore,
by constructing a simulation from some system to another system whose safety (i.e. that
the system does not exhibit a bad behavior) is already known, we can conclude safety of
the former system, because all of its behaviors are included in those of the latter, which
never include bad events. Similarly, we can use simulation for proving liveness (i.e. that
the system does exhibit some good behavior) by constructing a simulation from a system
whose liveness is known to the system in question. Fair simulation is a simulation notion
for Büchi automata, transition systems that accept infinite words according to the Büchi
condition. We say that an infinite path on an automaton satisfies the Büchi condition if
it visits accepting states infinitely many times.

Via category theory, we induce a fair simulation notion for probabilistic Büchi au-
tomata, a quantitative variant of Büchi automata. To this end, we first have to categor-
ically characterize behaviors of Büchi automata and probabilistic Büchi automata in a
unified manner. We will introduce two characterizations. One of them is used for cate-
gorically generalizing the notion of fair simulation. We use the other characterization in
the correctness proof of the first characterization. We expect that the latter character-
ization also serves as a basis for categorically generalizing other simulation notions for
Büchi automata than fair simulation in the future.

Ranking function, the second notion our framework is applied to, is commonly used
to prove termination of nondeterministic systems. Ranking functions are known to be
especially effective for verifications of infinite-state systems like while programs. The key
notion in categorically generalizing it was a categorical notion called corecursive algebra.
We then concretize it for probabilistic systems. In fact, a ranking function-like notion was
already known for probabilistic systems under the name of ranking supermartingale. It is
known to be useful for proving almost-sure termination, i.e. that the system terminates
in probability 1. However, it turned out that our categorical generalization of ranking
function does not instantiate to ranking supermartingale. Instead, we found that it in-
duces two new ranking function-like notions for probabilistic systems. We named them
distribution-valued ranking function and γ-scaled submartingale. Unlike ranking super-
martingale, we can use the new ranking function-like notions for quantitative reasoning :
they give lower bounds for termination probabilities.

For γ-scaled submartingales, we also provide algorithms for finding γ-scaled sub-
martingales for probabilistic programs and give implementations. We found that existing
template-based synthesis algorithms for ranking supermartingales can be adapted for γ-
scaled submartingales with little modification. We first implemented a linear template-
based algorithm. It fixes a linear template for a γ-scaled submartingale, reduces the
axioms of γ-scaled submartingales to a linear programming (LP) problem, and solves it
using an LP solver. We will compare our algorithm with an existing algorithm proposed
by Chatterjee et al. in 2017 for the same purpose, i.e. underapproximating termination
probabilities. We have also implemented a polynomial template-based algorithm that
reduces the problem to a semi-definite programming (SDP) problem and solves it with
an SDP solver. Although this implementation did not work well because of numerical
errors caused by the SDP solver, we will give a concrete description of the algorithm and
experimental results for the record.

論文要旨

形式検証は数学的手法を用いてシステムが期待される性質を満たすことを証明する品質

保証の手法である．本論文では，定量的検証に着目する．コンピュータが世界中のあらゆ

る場所で使われるようになるにつれ，コンピュータシステムが確率やエネルギー消費など

の定量的なふるまいを含むようになってきている．このような定量的なシステムに対して

は，「プログラムが停止する確率は 10%以下」，或いは「システムが消費するガソリンは

1.0L以下」といったような定量的な性質を考えることができる．定量的システムが定量的

性質を満たすことを証明するのが定量的検証である．非決定的システムのようなシステム

に対する定性的検証に比べ，定量的検証に関する研究の数は比較的少ない．本論文では主

に確率的システムに焦点を置き，定量的検証に利用できる概念の導入を目指す．

本研究では，定性的検証に用いられる既存の概念をもとに定量的検証のための概念を導

出する．この手法においては，圏論，及び余代数の概念が主要な役割を果たす．圏論は一

般的かつ抽象的な数学の理論であり，直感的には構造の理論と捉えられる．一方余代数は

圏論の主要な概念の一つであり，遷移系のダイナミクスに一般的な特徴づけを与えること

ができる．圏論と余代数の理論を用い，本研究ではまず定性的検証に用いられる概念をそ

の圏論的な本質を抜き出すことで一般化する．次にその一般化された概念の正しさに圏論

的な証明を与える．最後にそれを定量的システムに対して具体化することで定量的検証に

有用な概念を導出する．導出された概念の正しさは圏論的なレベルから受け継がれる．

本研究では上述の「一般化・具体化」スキームを公平模倣とランキング関数とよばれる，

非決定的システムの検証に使われる２種類の既存の概念に対して適用した．

模倣は，通常遷移系のふるまいの間の包含関係を示すために用いられる概念である．具

体的には，あるシステムから別のシステムへ模倣が存在する場合，前者のシステムのふる

まいは後者のシステムのふるまいに含まれることが導かれる．したがって，あるシステム

から別の安全性（即ち何らかの危険なふるまいをしないこと）がすでに保証されているシ

ステムへの模倣を構成することにより，前者のシステムもその安全性を満たすことを示す

ことができる．なぜなら前者のシステムのすべてのふるまいが，後者のシステムの，決し

て危険なものを含まないふるまいに含まれるからである．同様に，ある活性（即ち何らか

の望ましいふるまいをすること）がすでに保証されているシステムから別のシステムへの

模倣を構成することにより後者のシステムもその活性を満たすことを示すこともできる．

公平模倣は，Büchiオートマトンとよばれる，Büchi条件という受理条件に従って無限長

文字列を受理する遷移系に対する模倣の概念である．オートマトン状の路が受理状態を無

限回訪れる時，その路は Büchi条件を満たす，という．

本研究では圏論を用いて，確率的 Büchiオートマトンという Büchiオートマトンの定量

的変種に公平模倣の概念を導出する．このためにはまずBüchiオートマトンと確率的Büchi

オートマトンのふるまいを統一されたやり方で圏論的に特徴付けする必要がある．ここで

は 2種類の特徴付けを行う．そのうち 1つは公平模倣の概念を圏論的に一般化するために

使われる．もう 1つの特徴付けは前者の特徴付けの正しさの証明に用いられる．また，将

来的には，後者の特徴付けも公平模倣以外の Büchiオートマトンに対する模倣の概念を圏

論的に一般化するために用いることができることを期待している．

本研究の枠組みが適用される 2つ目の概念であるランキング関数は，通常非決定的なシ

ステムの停止性を検証するために用いられる．ランキング関数は whileプログラムのよう

な無限個の状態をもつシステムの検証に特に有用であることが知られている．これを圏論

的に一般化する上では余再帰的代数とよばれる圏論の概念が重要な役割を果たす．我々は

得られたランキング関数の圏論的一般化を確率的システムに対して具体化した．実は確率

的システムに対してはランキング優マルチンゲールとよばれるランキング関数のような概

念がすでに知られている．ランキング優マルチンゲールを用いると確率的システムが殆ど

確実に停止すること，即ち確率 1で停止することを検証できる．しかし研究の結果，ラン

キング優マルチンゲールは，ランキング関数の圏論的一般化を具体化することで得られる

ものではないことがわかった．一方で代わりに，ランキング関数の圏論的一般化を具体化

することで確率的システムに対しランキング関数に似た 2つの新しい概念を得ることがで

きた．本研究ではこれらの得られた概念を分布値ランキング優マルチンゲール及び γ縮尺

劣マルチンゲールと名付けた．ランキング優マルチンゲールとは異なり，これらの新しい

ランキング関数的概念は停止確率の下界を与えるため，これらを用いると定量的な議論を

行うことができる．

また γ縮尺劣マルチンゲールについては，確率的プログラムに対してこれを見つけるア

ルゴリズムも提案し，その実装を与える．本研究では，既存の，テンプレートを用いたラ

ンキング優マルチンゲールの合成アルゴリズムが少しの改造で γ縮尺劣マルチンゲールの

合成にも応用できることがわかった．本研究ではまず線形テンプレートを用いたアルゴリ

ズムを実装した．このアルゴリズムは γ縮尺劣マルチンゲールに対し線形のテンプレート

を定め，γ 縮尺劣マルチンゲールの公理を線形計画（LP）の問題に帰着し，それを LPソ

ルバを用いて解く．このアルゴリズムについては，Chatterjeeらにより 2017年に提案され

た同じ目的，即ち停止確率に下界を与えるための既存のアルゴリズムとの比較も行う．ま

た我々は多項式テンプレートを用いた，問題を半正定値計画（SDP）の問題に帰着し，そ

れを SDPソルバを用いて解くアルゴリズムも実装した．この実装は SDPソルバの数値誤

差のために正しく動作しなかったが，それでも記録のため，アルゴリズムの説明と実験結

果を述べる．

Acknowledgements

My supervisors Ichiro Hasuo and Naoki Kobayashi gave me helpful comments
and suggestions. The chief examiner Masami Hagiya and vice examiners Noboru
Kunihiro, Yusuke Miyao, Koki Nishizawa and Akihiko Takano also helped me
to improve this thesis. Papers that this thesis is based on are coauthored with
Masaki Hara, Ichiro Hasuo, Yuichiro Oyabu, Shunsuke Shimizu, and Toru Tak-
isaka. Takamasa Okudono mentioned me papers about using SDP solvers for
verifications.

I was supported by JSPS KAKENHI Grant Number 16J08157, JSPS’s Re-
search Fellowship for Young Scientists, and JST ERATO HASUO Metamathe-
matics for Systems Design Project (No. JPMJER1603) during the course of my
PhD. Google Travel Grants for PhD Students in Japan and South Korea sup-
ported me to attend a conference for presenting the paper that Sections 3.2–3.3
are based on.

Contents

1 Introduction 1
1.1 Qualitative and Quantitative Verification 1
1.2 Categorical Generalization and Concretization 2
1.3 Backgrounds . 4

1.3.1 Coalgebra . 4
1.3.2 Fixed Point Logic . 5

1.4 Contributions . 6
1.5 Organization . 7

2 Preliminaries 9
2.1 Notations . 9
2.2 Transition Systems . 10

2.2.1 Nondeterministic Parity Tree Automaton 10
2.2.2 Probabilistic Parity Tree Automaton 12
2.2.3 Two-player Game . 14
2.2.4 Probabilistic Transition System 16

2.3 Fixed Point Logic . 16
2.3.1 Fixed Point Theorems . 16
2.3.2 Hierarchical Equation System 18

2.4 Categorical Preliminaries . 19
2.4.1 Preliminaries on Basic Category Theories 19
2.4.2 Algebra and Coalgebra . 23

3 Categorical Trace Semantics for Büchi and Parity Automata 26
3.1 Kleisli Approach for Finite and Infinitary Trace Semantics 26

3.1.1 Monad and Kleisli Category 27
3.1.2 Kleisli Approach . 28

3.2 Categorical Representation of Büchi Automata 31
3.3 Characterization via Logical Fixed Point 31
3.4 Characterization via Categorical Fixed Points 32

3.4.1 Alternating Fixed Point of Functor 32
3.4.2 Lifting F+ and F⊕ over Kℓ(T) 34
3.4.3 Decorated Trace Semantics 36

3.5 Logical Fixed Point vs. Categorical Fixed Point 37
3.6 Extension to Parity Automata . 40

3.6.1 Categorical Representation of parity Automata 40
3.6.2 Characterization via Logical Fixed Point: Parity Case . . . 41
3.6.3 Characterization via Categorical Fixed Point: Parity Case . 41
3.6.4 Logical Fixed Point vs. Categorical Fixed Point: Parity Case 43

3.7 Extension to Nondeterministic Parity Tree Automata 57
3.7.1 Trace Semantics of NPTA via Logical Fixed Point 57
3.7.2 Trace Semantics of NPTA via Categorical Fixed Point . . . 57

vii

3.8 Extension to Probabilistic Automata 62
3.8.1 Trace Semantics of PPTA via Logical Fixed Point 62
3.8.2 Trace Semantics of PPTA via Categorical Fixed Point . . . 62

3.9 Conclusion and Related Work . 65

4 Categorical Fair Simulation 67
4.1 Simulation . 67
4.2 Kleisli Simulation . 69
4.3 Kleisli Fair Simulation . 69

4.3.1 Partially Additive Monad 69
4.3.2 Lattice-Theoretic Progress Measures 71
4.3.3 Kleisli Fair Simulation with Dividing 74
4.3.4 Kleisli Fair Simulation without Dividing 79

4.4 Kleisli Fair Simulation for NBTAs 82
4.5 Kleisli Fair Simulation for PBTAs 86

4.5.1 Kleisli Fair Simulation with Dividing for PBTAs 86
4.5.2 Kleisli Fair Simulation without Dividing for PBTAs 87

4.6 Conclusion and Related Work . 91

5 Categorical Ranking Function 93
5.1 Ranking Function . 93
5.2 Modalities and Fixed-Point Properties 94
5.3 Categorical Generalization of Ranking Function 95
5.4 Concretization to Reachability Games 98
5.5 Concretization to PTSs . 102

5.5.1 Distribution-valued Ranking Supermartingale 103
5.5.2 γ-Scaled Submartingale . 108

5.6 Conclusion and Related Work . 113

6 γ-Scaled Submartingale for Probabilistic Programs and its Syn-
thesis 115
6.1 Linear Template-Based Algorithm 116

6.1.1 Syntax of Probabilistic Programs 116
6.1.2 Problem . 117
6.1.3 Algorithm . 119
6.1.4 Implementation . 123
6.1.5 Experiments I: Probabilistic Programs in the Literature . . 124
6.1.6 Experiments II: Comparison with Existing Work 125

6.2 Polynomial Template-Based Algorithm 129
6.2.1 Syntax of Probabilistic Programs 130
6.2.2 Problem . 130
6.2.3 Algorithm . 131
6.2.4 Improvement of Polynomial Template-based Algorithm . . 133
6.2.5 Implementation . 134
6.2.6 Experiments . 134
6.2.7 (Failed) Attempt to Remedy the Situation 135

6.3 Conclusion and Related Work . 135

7 Related Work 137

8 Conclusion and Future Work 139

References 142

viii

Chapter 1

Introduction

Because computer systems are omnipresent, ensuring that they work as expected
is a very important problem. Formal verification is a technique of using math-
ematical methods for quality assurance of systems. In the most basic setting of
formal verification, we focus on qualitative specifications of qualitative systems.
However, in the verification of systems in the real worlds, we are sometimes in-
terested in quantitative systems and quantitative specifications. For example,
some security protocols exhibit probabilistic behaviors (see e.g. [88, 70]). An-
other example is cyber-physical systems like cars, for which we can consider many
quantitative specifications like “fuel consumption is no greater than 20.0km/L.”

The main goal of this thesis is to introduce techniques for formal verification
of probabilistic systems.

1.1 Qualitative and Quantitative Verification

We shall show examples of qualitative and quantitative formal verification.

Qualitative Model Checking Model checking is one of the most popular
approaches for formal verification. A standard framework of model checking is
as follows: we first mathematically model the system whose quality we wish to
assure. There exist several choices for mathematical models. One possible model
is nondeterministic automata, a kind of labeled transition system.

x := 100 ;
wh i l e 0 < x do

y = inpu t () ;
i f y = ’L ’ then

x := x − 1
e l s e // (i f y = ’R ’)

x := x + 1
f i

od

Figure 1.1: nondetermin-
istic walk

For example, suppose that we are given program
code shown on the right. It shows a program with a
variable x. It starts with x = 100, and in each loop, it
decreases or increases x by 1 depending on the input.
The system terminates if x gets 0. We can model the
program as the following transition system.

x0 x1 x2

· · ·
x99 x100 x101

· · ·
R

L

R

L

R

L

R

L
(1.1)

We next mathematically characterize the specification that we wish to check
whether the system satisfies or not. For the code in Figure 1.1, we can consider
the following specification for example: “if we feed inputs to the program appro-
priately, we can make the program terminate.” The specification corresponds to
a property that “there exists a run from x100 to x0 in the system (1.1).”

We then check whether the model of the system satisfies the property induced
from the specification using mathematical methods.

1

x := 100 ;
wh i l e 0 < x do

i f prob (0 . 5) then
x := x − 1

e l s e
x := x + 1

f i
od

Figure 1.2: random walk

Probabilistic Model Checking An example of a
quantitative system is given on the right. It is similar
to the one in Figure 1.1, except that whether x is incre-
mented or decremented is determined in a randomized
manner: each of them is chosen with a probability 0.5.
The code induces the following probabilistic transition
system.

x0 x1 x2

· · ·
x99 x100 x101

· · ·
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5
(1.2)

For probabilistic systems, we can consider both qualitative and quantitative
specifications. An example of a qualitative specification for the code in Figure 1.2
is: “the program terminates with probability 1.” (This property is called almost-
sure termination.) In contrast, an example of a quantitative specification is: “the
program terminates in probability greater than 0.9.” It is not hard to represent
these specifications as properties of the probabilistic transition system (1.2).

1.2 Categorical Generalization and Concretization

In this thesis, we introduce two novel techniques for probabilistic verification.
The techniques are derived with the help of category theory.

Category Theory Briefly speaking, category theory is a general mathematical
theory of structures. A category consists of a collection of objects and a collection
of arrows between objects. An example of a category is the category Sets, whose
objects are all the sets and arrows are functions between them. Another example
is the category Meas of measurable spaces, whose objects are all the measurable
spaces and arrows are measurable functions between them.

A good point of category theory is that it allows us to capture multiple anal-
ogous notions in a unified manner. For example, for two sets X and Y , their
product is a set X × Y := {(x, y) | x ∈ X, y ∈ Y }. An analogous notion exists
for measurable spaces: for measurable spaces (X,FX) and (Y,FY), their prod-
uct is commonly defined as a measurable space (X × Y,FX×Y) where the first
component is a product of sets and FX×Y is the smallest σ-algebra containing
{A × B | A ∈ FX , B ∈ FY }. Category theory can describe these two notions of
“product” in one definition. This means that once we develop some theory at the
categorical level, it freely applies to both sets and measurable spaces.

This good point provides a method to introduce new quantitative verification
techniques. It consists of the following two steps. Firstly, making use of the
generality of category theory, we generalize an existing verification technique
for qualitative systems with the help of category theory. We then concretize
the generalized verification technique for quantitative systems. This results in a
verification technique for the quantitative systems, which is sometimes novel.

An advantage of this “generalize-and-concretize” strategy is that the gen-
erality of category theory sometimes help us to understand why the existing
qualitative verification technique is sound in a way that allows us to transfer it
for probabilistic systems. Another advantage is that a categorically generalized
verification technique can induce more than one new verification techniques. In-
deed, the categorical generalization of an existing verification technique that we
develop in Chapter 6 instantiates to two probabilistic techniques.

Prior to this thesis, this “generalize-and-concretize” strategy has achieved
success and induced a novel verification technique called matrix simulation [43,

2

Figure 1.3: generalization and concretization in [43, 111]

111]. We hereby review it to explain the strategy (see also Figure 1.3).

An Example: Matrix Simulation Simulation is a well-known technique
for proving behavioral inclusion between transition systems. In a simulation-
based verification, we prove behavioral inclusion by proving that one system can
“simulate” the system. We can use simulation for proving a safety property of a
system. To do so, it suffices to pick another system that is known to satisfy the
property, and show that the former system is simulated by the latter. We can
similarly use simulation for proving a liveness property.

Various notions of simulations have been introduced [74, 75, 66, 55, 50, 32].
Among them are forward and backward simulations [74] that we can use for
proving finite language inclusion between nondeterministic automata. Their def-
initions are well-explained in terms of two-player games: for example, a forward
simulation from a nondeterministic automaton A to B exists if every transition
of A can be “simulated” by a transition on B.

Using category theory, Hasuo generalized the notions of forward and back-
ward simulations and named them Kleisli simulations [43]. In [111], it was con-
cretized for two types of quantitative systems—automata weighted with a semir-
ing ([0,∞],+, 0,×, 1), which model probabilistic systems, and those weighted
with a semiring ([−∞,∞],max,−∞,+, 0), which model systems with rewards or
resource consumption. The concretization resulted in new simulation notions for
those weighted automata, which were named matrix simulation. The resulting
simulation notions are defined as a matrix X satisfying linear inequalities over the
corresponding semirings. They allow us to check a quantitative language inclusion
between weighted automata, i.e., that one automaton assigns a smaller weight
for each finite word than the other one. The linear inequalities defining a matrix
simulation are solvable with numerical methods (for example, it reduces to a lin-
ear programming problem for ([0,∞],+, 0,×, 1)-weighted automata). Programs
searching for a matrix simulation were implemented and evaluated in [111].

In this thesis, we apply the same “generalize-and-concretize” strategy to two
existing verification techniques: fair simulation and ranking function. As a result,
we obtain their probabilistic variants that are novel.

3

1.3 Backgrounds

We have explained the overall framework of this thesis in the previous section.
In this section, we shall explain the notions that we use throughout this thesis.

1.3.1 Coalgebra

Coalgebra is a basic notion in category theory. It is a categorical model of dy-
namics of state-based systems. Formally, a coalgebra is an arrow of a form
c : X → FX where F is a functor, an operation that maps objects to objects and
arrows to arrows. Various transition systems are representable as coalgebras. For
example, a labeled transition system is modeled as c : X → A ×X, a coalgebra
of a functor A × (). Indeed, we can regard this c as a transition function of
a labeled transition system. Other examples are a deterministic automaton as
c : X → 2×XA, a Mealy machine as c : X → (O ×X)I , and so on.

FX
=

Fu// FνF

X
c
OO

u // νF
ζ
OO

A final coalgebra is a coalgebra ζ that admits a unique ho-
momorphism (an arrow u that makes the diagram on the right
commute) from an arbitrary coalgebra c. Final coalgebras play
an important role in the theory of coalgebra because the unique homomorphism
towards a final coalgebra often captures behaviors of systems represented as coal-
gebras. For example, for a (A × ())-coalgebra c : X → A × X (recall that it
models a labeled transition system), the carrier of the final coalgebra is given by
the set Aω of infinite words over A. The unique homomorphism X → Aω from
c to the final coalgebra is a function mapping each x ∈ X to the unique infinite
word a0a1 . . . ∈ Aω such that there exists a sequence x0, x1, . . . ∈ X satisfying
x0 = x and c(xi) = (ai, xi+1). It is natural to call this function a “behavior” of c.

Kleisli Approach For systems with side-effects like nondeterminism, the frame-
work above can fail due to the lack of a final coalgebra. For example, a nonde-
terministic automaton is representable as a coalgebra X → P(A×X) where P is
the powerset functor. However, a final coalgebra does not exist for the functor.

One known solution is the so-called Kleisli approach [85, 58, 46, 47], which
was used to categorically generalize forward and backward simulations (see Sec-
tion 1.2). There, we separate the functor into two parts, a functor T represent-
ing the branching type and a functor F representing the transition type. For
c : X → P(A×X), T is P and F is A× (). The key is that the branching type-
part T often constitutes a monad, a functor with special structures. Indeed, P
constitutes the powerset monad. The monad structure allows us to consider the
Kleisli category, a category whose arrows are arrows of a form X → PY . We rep-
resent a system as an F -coalgebra in the Kleisli category. Then a final coalgebra,
or sometimes a weakly final coalgebra (a coalgebra admitting a not necessarily
unique homomorphism) often exist and a homomorphism to it captures some
behavior of the system, although in the latter case we have to introduce some
mechanism like an order to choose a homomorphism. The captured behavior of
transition systems varies depending on the choice of a (weakly) final coalgebra.
For c : X → P(A×X), one possible choice is a weakly final coalgebra having Aω

as its carrier. Then the behavior captured by the weakly final coalgebra is:

x 7→
{
a0a1 . . . ∈ Aω

∣∣ ∃x0, x1, . . . ∈ X.x0 = x and ∀i. (ai, xi+1) ∈ c(xi)
}
.

4

1.3.2 Fixed Point Logic

The notions of least and greatest fixed point are important in the theoretical com-
puter science. It is because reachability and unreachability—basic specifications
in model checking—are characterized as the least and the greatest fixed point of
a certain function.

For example, suppose that we are given a nondeterministic transition system
A =

(
X, τ : X → PX,Acc ⊆ X

)
with accepting states. We define a function

♢ : PX → PX by ♢(A) := {x ∈ X | τ(x) ∩ A ̸= ∅} ∪ Acc . This function is a
monotone function with respect to the inclusion order, and has the least and the
greatest fixed points. The least fixed point µ♢ ∈ PX collects states from which
Acc is reachable. In contrast, the greatest fixed point ν♢ ⊆ X collects states
from which an infinite run can be constructed (i.e. no dead-end is reachable).

Well-known theorems in fixed point-theory provide us with means for cal-
culating a lower or upper bound of the least or the greatest fixed point. For
underapproximating the least fixed point, we can refer to the Kleene fixed point
theorem (see e.g. [101]). It claims that if a monotone function f : (L,≤)→ (L,≤)
is ω-continuous (i.e. it preserves supremums of increasing chains), then the least
fixed point of f is given by the supremum of an increasing chain ⊥ ≤ f(⊥) ≤
f2(⊥) ≤ · · · . The theorem implies that for i ∈ N, f i(⊥) underapproximates µf .
When f is not ω-continuous, we can use the result in [27].

We can overapproximate the least fixed point using the Knaster-Tarski theo-
rem (see e.g. [105]): if a ∈ L is a pre-fixed point (i.e. a ≤ f(a)) then µf ≤ a.

For over-/underapproximating the greatest fixed point, we can use the dual
of the above two statements. Throughout this paper, we shall extensively use
these two principles and their duals.

Alternating Fixed Point In the examples so far, we focused on rather simple
properties like termination. Of course, we can consider more complex specifica-
tions. For example, for the program in Figure 1.1, we can consider the following
specification: “if we feed inputs to the program appropriately, we can make x
become 1 infinitely often without making the program terminate.”

x yb

a
a
b

We can use the Büchi condition [15] to represent such a property.
An infinite run is said to satisfy the Büchi condition if it visits accept-
ing states infinitely many times. A nondeterministic automaton with
the Büchi acceptance condition is called a Büchi automaton. For example, in the
Büchi automaton on the right above, an infinite run satisfies the Büchi condition
if it visits an accepting state y infinitely many times. We define the language of
the Büchi automaton as a function assigning each state the set of words having
an accepting run, i.e. a function {x, y} → {a, b}ω that assigns the set of words
containing infinitely many b’s to both x and y.

In order to fixed point-theoretically deal with the Büchi condition, least or
greatest fixed points are not enough. Instead, we use alternating fixed points.

Suppose that we are given a nondeterministic transition system A = (X, τ)
equipped with a partition X = X1+X2 of the state space. Then we can naturally
divide the function ♢ : PX → PX defined above into two parts: ♢1 : PX → PX1

and ♢2 : PX → PX2. To capture the Büchi condition, we take the least fixed
point for ♢1 and the greatest fixed point for ♢2. More concretely, we first calculate
the least fixed point of a function u1 7→ ♢1(u1+u2) ∈ PX1 regarding u2 ∈ PX2 a
parameter. We then calculate the greatest fixed point of u2 7→ ♢2(u1+u2) ∈ PX2

using the fixed point. This results in an “alternating” fixed point A ∈ PX of ♢
that is not the least or the greatest. It indeed captures the Büchi condition: it is

5

given by the set of states from which X2 can be visited infinitely many times.
Hence the Büchi condition is characterized by alternating fixed points.
The parity condition (see e.g. [33]) is a generalization of the Büchi condition.

It can represent more complex specifications than the Büchi condition. By using
alternating fixed points, we can also deal with the parity condition.

Categorical Fixed Point In this thesis, we use fixed point theory together
with category theory. There mainly exist two ways to introduce a notion of fixed
point into category theory: introduce it as a logical fixed point or introduce as a
categorical fixed point. Their difference is well-illustrated in the contrast between
“the category of pre-ordered sets” and “a pre-ordered set as a category.”

Pre-ordered sets and monotone functions between them constitute a cate-
gory PreOrd. We can naturally make the category an order-enriched one by
introducing an order ≤ to each homset PreOrd

(
(X,≤), (Y,≤)

)
by extending

the preorder over (Y,≤) in a pointwise manner. Hence for an endofunction over
PreOrd

(
(X,≤), (Y,≤)

)
, we can consider its least, greatest and alternating fixed

points. We call such a fixed point a “logical fixed point.”
In contrast, a “categorical fixed point” is defined by regarding a category as

a generalization of a pre-ordered set. A preordered set (X,≤) induces a cate-
gory X whose objects are given by the elements of X and arrows are given by
X(x, y) := {∗} if x ≤ y and ∅ otherwise. Moreover, many categorical notions can
be explained as generalizations of notions in preordered sets: functors generalize
monotone functions, coalgebras generalize post-fixed points, and so on.

The notion of final coalgebra also has its counterpart in pre-ordered sets.
Suppose that a monotone endofunction f : (X,≤) → (X,≤) has the greatest
fixed point νf . By the (dual of the) Knaster-Tarski theorem, f is the supremum
of the set {x ∈ X | f(x) ≥ x} of post-fixed points. When we see a pre-ordered
set as a category, it means that the greatest fixed point of f is a final f -algebra.
Hence a final coalgebra is a categorical generalization of the greatest fixed point.
Similarly, an initial algebra, a dual notion of final coalgebra, is a generalization of
the least fixed point. We call a categorical greatest fixed point for a final coalgebra
and a categorical least fixed point for an initial algebra. In this thesis, we will
also see that we can define a notion of “categorical alternating fixed point.”

1.4 Contributions

Contributions of this thesis are the following two: i) categorical generalization
of fair simulation and concretization to probabilistic systems; and ii) those of
ranking function. More concretely, our contributions are summarized as follows:

Categorical Characterization of Parity Languages We extend the Kleisli
approach (see Section 1.3.1) for Büchi and parity automata. We will introduce
two categorical characterizations for their languages. Both of them make use of
the relationship between parity automata and alternating fixed points, but they
differ in how to categorically reflect the notion of fixed point (see Section 1.3.2).

One characterization considers logical fixed points. Here we calculate an al-
ternating fixed point of a certain function in a homset of the Kleisli category
which is assumed to carry an order. The characterization is a direct translation
of the fixed point-theoretic characterization of parity languages. The other char-
acterization considers categorical fixed points. For capturing behaviors of parity
automata, we will define datatypes as an alternating fixed point of a functor.

6

The latter characterization is more complicated than the former one and char-
acterizes nonstandard “languages” of parity automata. We will categorically re-
late these two characterizations and show that we can regard the latter as a
characterization of ordinary languages of parity automata as well.

Generalization and Concretization I: Fair Simulation Using the categor-
ical characterization of Büchi languages by logical fixed points, we will categori-
cally generalize fair simulation [50, 32].

Fair simulation is a simulation notion for Büchi automata. Our categorical
generalization is inspired by those of forward and backward simulations reviewed
in Section 1.2, but is much more complicated. We concretize it for probabilistic
Büchi automata and obtain a new simulation notion for them [110].

Generalization and Concretization II: Ranking Function We also gen-
eralize ranking function. Unlike the case of fair simulation, we have used an
existing standard framework for categorically capturing behaviors of systems.

Ranking functions are commonly used for checking termination of nondeter-
ministic systems [35]. We categorically generalized ranking function and con-
cretize it for probabilistic transition systems. In the generalization, a categorical
notion called corecursive algebra played an important role. As a result of the
concretization, we have obtained two probabilistic ranking function-like notions.
A ranking function-like notion called ranking supermartingale [19] were known
for probabilistic systems, but the induced notions were new and different from it.

We call the induced notions distribution-valued ranking function and γ-scaled
submartingale. They have different characteristics from ranking supermartingale.
That is, we can use them for quantitative reasoning in the sense that they give
lower bounds for termination probabilities of probabilistic systems.

Implementation of Probabilistic Ranking Function We have implemented
a program that underapproximates a termination probability of a probabilistic
program by synthesizing a γ-scaled submartingale. We implemented two algo-
rithms: a linear template-based one and a polynomial template-based one. The
former uses a linear programming (LP) solver while the latter uses a semidefinite
programming (SDP) solver. The algorithms are adapted from existing template-
based algorithms for synthesizing ranking supermartingales [19, 23, 21].

We conducted some experiments with the implementations. We first tested
the linear template-based implementation for several probabilistic programs, some
of which are taken from literature. We have also compared it with existing al-
gorithm in [23]. We found that there exist probabilistic programs where our
algorithm can give better lower bound for the termination probability.

We also conducted experiments on the polynomial-template based implemen-
tation. However, we found that it does not work well because of numerical errors.
We nevertheless show the algorithm and the experimental results for records.

1.5 Organization

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

||

��

""

��

The rest of this thesis is organized as follows. In Chap-
ter 2, we give preliminaries. Chapter 3 is devoted to
developing categorical characterizations of behaviors of
Büchi and parity automata. The developed characteri-
zations are used in Chapter 4 to categorically generalize the notion of fair simula-

7

tion and induce its probabilistic variant. In Chapter 5 we categorically generalize
ranking functions, concretize it for probabilistic systems, and induce probabilistic
verification methods. In Chapter 6 we give an algorithm and an implementation
based on one of the notions induced in the previous chapter, and present experi-
mental results. We discuss related work in Chapter 7, and conclude in Chapter 8.

First Appearance Most results of this thesis were previously published. Chap-
ter 3 is based on [114, 112], Chapter 4 is based on [110], and most part of Chapter 5
is based on [109]. Some results in Chapter 6 constitute a part of [102].

8

Chapter 2

Preliminaries

This chapter is devoted to preliminaries. In Section 2.1 we introduce notations.
In Section 2.2 we define various transition systems. In this thesis, the fixed point
logic plays an important role. Preliminaries on it are in Section 2.3. Categorical
preliminaries are in Section 2.4.

We assume that readers are familiar with the basic measure theory, and omit
preliminaries on it. See e.g. [30, 8, 103] for the detail.

2.1 Notations

We first introduce notations that are used throughout this thesis.
For a, b ∈ R, [a, b] denotes {r ∈ R | a ≤ r ≤ b}, (a, b) denotes {r ∈ R | a <

r < b}, [a, b) denotes {r ∈ R | a ≤ r < b} and (a, b] denotes {r ∈ R | a < r ≤ b}.
Let f : X → Y . For A ⊆ X, we define f |A : A → Y by f |A(x) := f(x). For

B ⊆ Y , we write f−1(B) for {x ∈ X | f(x) ∈ B}. For a ∈ X and b ∈ Y , we
define f [a 7→ b] : X → Y by f [a 7→ b](x) := b if x = a and f(x) otherwise.

For a partial function g : X ⇀ Y , we write g(x) = ⊥ if g(x) is undefined.
We write X∗, X+, Xω and X∞ for the sets of finite, non-empty finite, infinite

and possibly infinite words over X respectively. For w ∈ X∗ and w′ ∈ X∞,
we write ww′ for their concatenation. We write ⟨⟩ for the empty word. For
w,w′ ∈ X∞, we write w ⪯ w′ when w is a prefix of w′.

For a set I, we write
∏

i∈I Xi for a product {(xi)i∈I | ∀i. xi ∈ Xi} and
⨿

i∈I Xi

for a disjoint sum {(i, x) | i ∈ I, x ∈ Xi}. If Xi∩Xj = ∅ for i, j ∈ I, we write x for
(i, x) ∈

⨿
i∈I Xi. For i ∈ I, πi :

∏
i∈I Xi → Xi denotes the canonical projection

and κi : Xi →
⨿

i∈I Xi denotes the canonical injection.
For a poset (X,≤) and an endofunction f : (X,≤) → (X,≤), we write µf

(resp. νf) for the least (resp. greatest) fixed point of f , if it exists.
For a set X, PX denotes the set of subsets of X (i.e. PX := {A ⊆ X}),

DX denotes the set of distributions over X (i.e. DX := {d : X → [0, 1] |
|{x ∈ X | ξ(x) > 0}| is countable and

∑
x∈X f(x) = 1}) and DsX denotes the set

of subdistributions over X.
Otherwise specified, we assume that R and a subset A of R are equipped with

the standard σ-algebras. For a measurable space (X,FX), we write G(X,FX)
for a measurable space (GX,FGX), where GX is the set of probability mea-
sures over (X,FX), and FGX is the smallest σ-algebra that makes a function
evA : GX → [0, 1] defined by evA(α) := α(A) measurable for each A ∈ FX (see
also [39] and Definition 2.4.6). Similarly, we write Gs(X,FX) for a measurable
space (GsX,FGsX) where GsX is the set of sub-probability measures over (X,FX)
and FGsX is a σ-algebra defined as above. For x ∈ X, δx denotes the Dirac mea-
sure at x, i.e. a probability measure such that δx(A) = 1 if x ∈ A and 0 otherwise.

9

Note that when X is equipped with the discrete σ-algebra PX, GX ∼= DX and
GsX ∼= DsX. We sometimes implicitly use these isomorphisms. For example, we
might write [0 7→ 1

2 , 1 7→
1
2] for a probability measure over (N,PN). If FX is clear

from the context, we sometimes write X for a measurable space (X,FX). Hence
we may write GX for both a measurable space G(X,FX) and its underlying set.

For measurable spaces (X1,FX1), . . . , (Xn,FXn), we write (X1,FX1) × · · · ×
(Xn,FXn) for a measurable space (X1 × · · · ×Xn,FX1×···×Xn) where FX1×···×Xn

is the smallest σ-algebra containing A1 × · · · × An for each A1 ∈ FX1 , . . . , An ∈
FXn . For a family

(
(Xi,FXi)

)
i∈I of measurable spaces,

⨿
i∈I(Xi,FXi) denotes(⨿

i∈I Xi,F⨿
i∈I Xi

)
where F⨿

i∈I Xi
:=
{∪

i∈I
{
(i, x) | x ∈ Ai

}
| ∀i ∈ I. A ∈ FXi

}
.

2.2 Transition Systems

In this section, we define four types of transition systems and related notions.
The first two notions (in Sections 2.2.1–2.2.2) are used in Chapters 3–4 while the
other two (in Sections 2.2.3–2.2.4) are mainly used in Chapters 5–6.

2.2.1 Nondeterministic Parity Tree Automaton

Nondeterministic tree automata (NTA) and nondeterministic parity tree automata
(NPTA) are systems that accept possibly infinite-depth trees. The former accept
trees with respect to the trivial (acceptance) condition while the latter accept
trees with respect to the parity condition. We also define nondeterministic Büchi
tree automata (NBTA), which is a special case of NPTA.

We first review several notions regarding trees.

Definition 2.2.1 (ranked alphabet). A ranked alphabet is a pair Σ = (Σ, | |) of
a set Σ and a function | | : Σ → N. For a ∈ Σ, |a| is called the arity of a. For
n ∈ N, we write Σn for {a ∈ Σ | |a| = n}.

Let Σ be a ranked alphabet and X be a set. Otherwise specified, we regard
Σ ×X as a ranked alphabet by letting |(σ, x)| = |σ| for σ ∈ Σ and x ∈ X, and
regard Σ +X and X +Σ as a ranked alphabet by letting |x| = |0| for x ∈ X.

There are several definitions for tree. We follow a standard definition which
is used in [17] for example.

Definition 2.2.2 (tree and branch). Let Σ be a ranked alphabet. A (possibly
infinite) Σ-labeled tree is a pair t = (Dt, lt) of a non-empty set Dt ⊆ N∗ and a
function lt : D → Σ that satisfies the following conditions.

1. Dt is prefix-closed, that is, for each w,w
′ ∈ N∗, ww′ ∈ Dt implies w ∈ Dt .

2. lt respects the arities, that is, for each w ∈ Dt and i ∈ N, wi ∈ Dt if and
only if i ≤ |lt(w)| − 1.

A tree t = (Dt, lt) is said to be finite (resp. infinite) if Dt is a finite (resp. infinite)
set. We write Tree∞Σ for the set of possibly infinite Σ-labeled trees, and Tree∗Σ for
the set of finite Σ-labeled trees. A branch over a tree t = (Dt, lt) is an element
w ∈ Dt. A branch is said to be finite (resp. infinite) if it is a finite (resp. infinite)
sequence. For a finite branch w = w0 . . . wn ∈ Dt over t = (Dt, lt), we define
the w-th subtree tw = (Dt,w, lt,w) of t by Dt,w := {w′ ∈ N∗ | ww′ ∈ Dt} and
lt,w(w

′) := lt(ww
′).

10

Remark 2.2.3. For the sake of notational simplicity, we identify a Σ-labeled tree
with a Σ-term in a natural manner. For example, an {a, b}-term (a, (b, b)) denotes
an {a, b}-labeled finite tree t = ({⟨⟩, 0, 1}, [⟨⟩ 7→ a, 0 7→ b, 1 7→ b]). Moreover, for
{a, b, c}-labeled trees t0 = (D0, l0) and t1 = (D1, l1), we write (c, t0, t1) for a tree
t = ({⟨⟩ ∪ {0w | w ∈ D0} ∪ {1w | w ∈ D1}, [⟨⟩ 7→ c, 0w 7→ l0(w), 1w 7→ l1(w)]).

We are now ready to define the notions of NTA, NPTA and NBTA.

Definition 2.2.4 (NTA, NPTA and NBTA). Let Σ be a ranked alphabet. A (Σ-
labeled) nondeterministic tree automaton (NTA) is a pair A = (X, τ) consisting
of a state space X and a transition function τ : X → P

(⨿
i∈ω Σi × Xi

)
. A (Σ-

labeled) nondeterministic parity tree automaton (NPTA) is a triple A = (X, τ, p)
such that the first two components constitute an NTA and p : X → {1, . . . , 2n} is
a priority function where n is a positive integer. A (Σ-labeled) nondeterministic
Büchi tree automaton (NBTA) is a triple A = (X, τ,Acc) where the first two
components are the same, and Acc ⊆ X is the set of accepting states.

We next define languages of NTAs, NPTAs and NBTAs. We define them as
functions that map each state to the set of trees accepted from the state. To this
end, we first define functions that map each state to the set of accepted run trees.

Definition 2.2.5 (run tree). Let A = (X, τ) be a Σ-labeled NTA. We regard
X × Σ as a ranked alphabet as in Definition 2.2.1. For x ∈ X, a (possibly
infinite) run tree over A from x is a (X ×Σ)-labeled tree ρ = (Dρ, lρ) such that:
i) π1

(
lρ(⟨⟩)

)
= x; and ii) for each w ∈ Dr, if lρ(w) = (x, a) and lρ(wi) = (xi, ai) for

each i ∈ {0, . . . , |a| − 1} then (a, x0, . . . , x|a|−1) ∈ τ(x). A run tree is called finite
if it is a finite tree. We write Run∞A (x) (resp. Run∗A(x)) for the set of possibly
infinite (resp. finite) run trees from x, and let Run∞A (A) := ∪x∈ARun∞A (x) and
Run∗A(A) := ∪x∈ARun∗A(x) for A ⊆ X. A run tree over NPTA or NBTA is
similarly defined.

A run tree and a tree is connected by the following function.

Definition 2.2.6 (DelSt(r)). Let A = (X, τ) be a Σ-labeled NTA. We define
a function DelSt : Run∞A (X) → Tree∞Σ by DelSt

(
(Dρ, lρ)

)
:= (Dρ, l

′
ρ) where

l′r(w) := π2
(
lρ(w)

)
. A function DelSt for an NPTA or an NBTA is similarly

defined.

All the run trees are accepted by NTA. In contrast, run trees on NPTAs (resp.
NBTAs) are accepted if they satisfy the parity (resp. Büchi) condition.

Definition 2.2.7 (accepting run). Let A = (X, τ, p) be a Σ-labeled NPTA. A run
tree ρ = (Dρ, lρ) overA satisfies the parity (acceptance) condition (or simply is ac-
cepting) if for each infinite branch w0w1w2 . . . over ρ, lim supi→∞ p

(
lρ(w0 . . . wi)

)
is even. We write RunAcc

A (x) for the set of accepting runs in RunA(x).
A run tree ρ = (Dρ, lρ) over a Σ-labeled NBTA A = (X, τ,Acc) satisfies

the Büchi (acceptance) condition (or is accepting) if for each infinite branch
w0w1w2 . . ., lρ(w0 . . . wi) ∈ Acc for infinitely many i’s. We define RunAcc

A sim-
ilarly.

Remark 2.2.8. An NBTAA = (X, τ,Acc) induces an NPTA (X, τ, p) with n = 1
where p(x) = 1 if x /∈ Acc and 2 otherwise. It is easy to see that a run tree on
an NBTA is accepting if and only if it is accepting on the induced NPTA. Hence
NBTA is a special case of NPTA.

We can now define languages of NTAs, NPTAs and NBTAs.

11

Definition 2.2.9 (L∗
A, L

∞
A , Lp

A, L
B
A).

• Let A = (X, τ) be a Σ-labeled NTA. The finite language of A is a function
L∗
A : X → P

(
Tree∗Σ

)
defined by L∗

A(x) :=
{
DelSt(ρ) | ρ ∈ Run∗A(x)

}
. The

finite language of an NPTA or NBTA is defined in the same way.

• Let A = (X, τ) be a Σ-labeled NTA. The infinitary1 language of A is
a function L∞

A : X → P
(
Tree∞Σ

)
defined by L∞

A (x) :=
{
DelSt(ρ) | ρ ∈

Run∞τ (x)
}
. The infinitary language of an NPTA or NBTA is defined in the

same way.

• Let A = (X, τ, p) be a Σ-labeled NPTA. The (parity) language of A is
a function Lp

A : X → P
(
Tree∞Σ

)
defined by Lp

A(x) :=
{
DelSt(ρ) | ρ ∈

RunAcc
A (x)

}
. The (Büchi) language LB

A of an NBTA A is similarly defined.

Remark 2.2.10. For an NPTAA = (X, τ, p), we have the following inclusions for
each x ∈ X: Run∗A(x) ⊆ RunAcc

A (x) ⊆ Run∞A (x) and L∗
A(x) ⊆ Lp

A(x) ⊆ L∞
A (x).

From a fixed point-logical perspective, Run∗A(x) and L∗
A(x) are the least fixed-

points of certain functions, Run∞A (x) and L∞
A (x) are the greatest fixed-points of

the same functions, and RunAcc
A (x) and Lp

A(x) are alternating fixed-points be-
tween them. In Chapter 3, we will characterize Lp

A by categorically translating
these fixed point-logical characterizations of RunAcc

A and Lp
A.

Remark 2.2.11. If we regard sets A and {✓}+A as ranked alphabets by letting
|✓| = 0 and |a| = 1 for each a ∈ A, then there exist canonical isomorphisms
Tree∞A

∼= Aω, Tree∞{✓}+A
∼= A∞, Tree∗A

∼= ∅ and Tree∗{✓}+A
∼= A∗.

When Σ = A, we can identify a Σ-labeled NTA with an A-labeled nondeter-
ministic word automaton (NWA). For an NWA A = (X, τ) we have Run∞A ⊆
(X ×A)ω and Run∗A

∼= ∅, and therefore L∞
A and L∗

A are considered to take values
in Aω and ∅ respectively. Similarly, we can identify an A-labeled NPTA (resp.
NBTA) with an A-labeled nondeterministic parity (resp. Büchi) word automaton
(NPWA, resp. NBWA).

When Σ = {✓} + A, we identify a Σ-labeled NTA with an A-labeled nonde-
terministic word automaton with accepting states by regarding a state x ∈ X as
accepting if ✓ ∈ τ(x). We have Run∞A ⊆ (X × A)∞ and Run∗A ⊆ (X × A)∗X,
and therefore L∞

A and L∗
A take values in A∞ and A∗ respectively. Note that the

notion of “accepting state” in this remark is different from the one on NBTAs
(Definition 2.2.5).

2.2.2 Probabilistic Parity Tree Automaton

We next define probabilistic tree automaton and probabilistic parity tree automa-
ton. They are quantitative variants of NTA and NPTA respectively.

Definition 2.2.12 (PTA, PPTA, PBTA). Let Σ be a ranked alphabet. A (gen-
erative) probabilistic tree automaton (PTA) is a pair A =

(
(X,FX), ξ

)
consisting

of a standard Borel space (X,FX) called a state space and a measurable function

ξ : (X,FX)→ Gs
⨿
n∈ω

(
(Σn,PΣn)× (X,FX)× · · · × (X,FX)︸ ︷︷ ︸

n

)
called a transition function. A (generative) probabilistic parity tree automa-
ton (PPTA) is a triple A =

(
(X,FX), ξ, p

)
such that

(
(X,FX), ξ

)
is a PTA

1We use a term “infinitary” to mean “possibly infinite.”

12

and p : X → {1, . . . , 2n} is a measurable function called a priority function,
where n is a positive integer. A probabilistic Büchi tree automaton (PBTA)
A =

(
(X,FX), ξ,Acc

)
is defined in a similar manner (cf. Definition 2.2.4).

A Σ-labeled generative PTA generates a possibly infinite Σ-labeled tree in a
probabilistic manner. To define a language of a PTA, we have to introduce a
σ-algebra into the set of Σ-labeled trees. As usual, it is defined using cylinders.

Definition 2.2.13 (cyl(t) and FTree∞Σ
). Let Σ be a ranked alphabet. We define

a ranked alphabet {⊥} + Σ by adding a letter ⊥ such that |⊥| = 0. For t =
(Dt, lt) ∈ Tree∗{⊥}+Σ and t′ = (Dt′ , lt′) ∈ Tree∞Σ , t is a prefix of t′ if Dt ⊆ Dt′ and

lt(w) ̸= ⊥ implies lt(w) = lt′(w) for each w ∈ Dt. We write t ⪯ t′ in this case.
For t ∈ Tree∗{⊥}+Σ, a set {t′ ∈ Tree∞Σ | t ⪯ t′} of possibly infinite trees is

called the cylinder set generated by t, and denoted by cyl(t). We write FTree∞Σ

for the smallest σ-algebra containing
{
cyl(t) ⊆ Tree∞Σ | t ∈ Tree∗{⊥}+Σ

}
, and call

it the σ-algebra generated by the cylinder sets. We define a σ-algebras FTree∗Σ
over

Tree∗Σ by FTree∗Σ
:= {A ∩ Tree∗Σ | A ∈ FTree∗Σ

}.

As we have done in Section 2.2.1, we first define the notion of run trees to
define languages of PTAs, PPTAs and PBTAs.

Definition 2.2.14 (Run∞A , Run∗A). Let A =
(
(X,FX), ξ

)
be a Σ-labeled PTA.

We regard X × Σ and {⊥} +X × Σ as ranked alphabets as in Definition 2.2.1.
A run tree over A is a (X × Σ)-labeled tree. For x ∈ X, we write Run∞A (x)
for the set of possibly infinite run trees over A such that the first component
of its root node is labeled by x. We define a σ-algebra FRun∞A (x) over Run∞A (x)
by {A ∩ Run∞A (x) | A ∈ FTree∗X×Σ

}. We write Run∞A (A) for
∪

x∈ARun∞A (x), and

FRun∞A
(A) for

{∪
x∈ABi | Bi ∈ FTree∗X×Σ

(x)
}
. We similarly define sets Run∗A (x)

and Run∗A of finite run trees and σ-algebras FRun∞A (x) and FRun∗A
on them. The

notions are defined for PPTAs and PBTAs similarly.

A PTA A induces a probability measure LRun
A over the set of run trees. To

define it, we first have to calculate the probability where A does not diverge.
This probability is obtained by: i) calculating a probability NoDivk(x) where A
does not diverge for k steps starting from x; and ii) take the limit of k →∞.

Definition 2.2.15 (LRun
A). Let A =

(
(X,FX), ξ

)
be a Σ-labeled PTA. We induc-

tively define a probability measure LRun
A (x) over

(
Run∞A (x),FRun∞A (x)

)
as follows:

• For each k ∈ ω, we inductively define a function NoDivk : X → [0, 1] as:

– NoDiv0(x) := 1; and

– NoDivk+1(x) :=
∫
(a,x1,...,xn)∈

⨿
n∈ω Σn×Xn

∏n
i=1NoDivk(xi)dξ(x) .

It is easy to see that k ≤ k′ implies NoDivk(x) ≥ NoDivk′(x). For a run
tree ρ′ = (D′, l′) ∈ Tree∗{⊥}+X×Σ(x) such that D′ = {⟨⟩} and l′(⟨⟩) := ⊥,
we let LRun

A (x)
(
cyl(ρ′)

)
:= limk→∞NoDivk(x) .

• For ρ′ = (D′, l′) ∈ Tree∗{⊥}+X×Σ(x) such that l′(⟨⟩) = a ∈ Σn, we let

LRun
A (x)

(
cyl(ρ′)

)
:=

∫
(a,x0,...,xn−1)∈{a}×Xn

n∏
i=1

LRun
A (xi)

(
cyl(ρ′i)

)
dξ(x) .

The probability measure LRun
A is well-defined: by the Kolmogorov extension the-

orem (see e.g. [103]), a probability measure satisfying the above conditions is
unique. We define LRun

A for PPTAs and PBTAs in the same way.

13

We can now define languages of PTAs, PPTAs and PBTAs.

Definition 2.2.16 (L∗
A , L∞

A , Lp
A).

• Let A =
(
(X,FX), ξ

)
be a Σ-labeled PTA. The finite language of A is a

function L∗
A : X → G

(
Tree∗Σ,FTree∗Σ

)
defined by L∗

A (x)(A) :=LRun
A (x)

({
ρ ∈

Tree∞X×Σ(x) | DelSt(ρ) ∈ A
})

. Define L∗
A for PPTAs and PBTAs similarly.

• Let A =
(
(X,FX), ξ

)
be a Σ-labeled PTA. The infinitary language of

A is L∞
A : X → G

(
Tree∞Σ ,FTree∞Σ

)
defined by L∞

A (x)(A) := LRun
A (x)

({
ρ ∈

Tree∞X×Σ(x) | DelSt(ρ) ∈ A
})

. Define L∞
A for PPTAs and PBTAs similarly.

• Let A =
(
(X,FX), ξ, p

)
be a Σ-labeled PPTA. The (parity) language of

A is a function Lp
A : X → G

(
Tree∞Σ ,FTree∞Σ

)
defined by Lp

A (x)(A) :=

LRun
A (x)

({
ρ ∈ Tree∞X×Σ(x) | DelSt(ρ) ∈ A

}
∩ RunAcc

ξ (x)
)
. The (Büchi)

language LB
A of a Σ-labeled PBTA is similarly defined.

2.2.3 Two-player Game

We define two types of two-player games: a reachability game and a parity game.
The notion of ranking function [35] that we will categorically generalize was
defined for the former. The latter was used in the formalization of fair simula-
tion [50, 32, 117].

We first define notions that are common to reachability games and parity
games. We start with the notion of game structure, on which a game is played.

Definition 2.2.17 (game structure). An (alternating) game structure is a quadru-
ple G = (XMax, XMin, EMax, EMin) consisting of a set XMax of Player Max’s
states, a set XMin of Player Min’s states and transition relations EMax ⊆ XMax×
XMin and EMin ⊆ XMin ×XMax.

A run is a sequence of states respecting the transition relations.

Definition 2.2.18 (Run∞G). LetG = (XMax, XMin, EMax, EMin) be a game struc-
ture. An infinite run over G is an infinite sequence x0x

′
0x1x

′
1 . . . ∈ (XMax ×

XMin)ω such that (xi, x
′
i) ∈ EMax and (x′i, xi+1) ∈ EMin for each i ∈ ω. A partial

run over G is a possibly infinite sequence

x0x
′
0x1x

′
1 . . . ∈ (XMax ×XMin)∗ ×XMax × {⊥Max}

∪ (XMax ×XMin)+ × {⊥Min} ∪ (XMax ×XMin)ω

that is a prefix of an infinite run over G if we ignore ⊥Max or ⊥Min. For x ∈ XMax,
we write Run∞G (x) for the set of runs whose first component is x and Run∞G (A)
for
∪

x∈X Run∞G (A).

We can now define the notion of two-player game.

Definition 2.2.19 (two-player game). A two-player game is a quadruple G =
(XMax, XMin, EMax, EMin,W) where the first four components constitute a game
structure and W ⊆ Run∞(XMax,XMin,EMax,EMin)(X) is the set of winning runs.

We next define the “winner” of a game. Briefly speaking, the winner is a
player who has a strategy such that the player can win the game regardless of
the opponent’s strategy as long as the player follows the strategy.

14

Definition 2.2.20 (strategies). Let G = (XMax, XMin, EMax, EMin,W) be a two-
player game. Player Max’s strategy for G is a partial function sMax : (XMax ×
XMin)∗ × XMax ⇀ XMin such that if sMax(x0y0 . . . xi−1yi−1xi) = y ̸= ⊥ then
(xi, y) ∈ EMax. Player Min’s strategy sMin : (XMax ×XMin)∗ ×XMax ×XMin ⇀
XMax for G is similarly defined. We write SMax

G and SMin
G for the sets of

Player Max’s strategies and Player Min’s strategies respectively. A strategy
sMax ∈ SMax

G is called positional if there exists a function s : XMax → XMin such
that sMax(x0y0 . . . xi−1yi−1xi) = s(xi) for each x0y0 . . . xi−1yi−1xi ∈ (XMax ×
XMin)∗ ×XMax. The notion of Player Min’s positional strategy is similar.

An initial state and strategies of Max and Min uniquely determine a run.

Definition 2.2.21 (ρx,sMax,sMin). Let G = (XMax, XMin, EMax, EMin,W) be a

two-player game. For x ∈ XMax, sMax ∈ SMax
G and sMin ∈ SMin

G , we inductively
define a run ρx,sMax,sMin = x0y0x1y1 . . . ∈ Run∞G (x) as follows.

• x0 := x;

• If sMax(xi) = y ̸= ⊥ then yi := y. Otherwise, we let yi := ⊥Max and the
run ends here.

• If sMin(yi) = x′ ̸= ⊥ then xi+1 := x′. Otherwise, we let xi+1 := ⊥Min and
the run ends here.

We are now ready to define the “winner” of a game. Player Max wins if a
winning run ρ ∈ W is constructed or Player Min gets stuck. Player Min wins
otherwise.

Definition 2.2.22 (winning strategy/player/region). Let G = (XMax, XMin,
EMax, EMin,W) be a two-player game. A run ρ = x0y0x1y1 . . . ∈ Run∞G is win-
ning if ρ ∈ W or it is a finite sequence whose last component is ⊥Min. For
x ∈ XMax, Player Max’s strategy sMax ∈ SMax

G is winning from x if for each
sMin ∈ SMin

G the run ρx,sMax,sMin is winning. Similarly, Player Min’s strategy

sMin ∈ SMin
G is winning from x if for each sMax ∈ SMax

G the run ρx,sMax,sMin is
not winning. Player Max (resp. Player Min) is winning from x if there exists a
winning strategy for Player Max (resp. Player Min) from x. The winning region
(for Player Max) is the set WinG ⊆ XMax of states where Player Max is winning.

Note that it is not that if Player Max is not winning from x then Player Max is
winning from x. A two-player game that satisfies this condition and its opposite
is especially said to be determinate. In fact, all the two-player games that we
consider in this thesis satisfy the following stronger determinacy.

Definition 2.2.23 (positional determinacy). A two-player game G = (XMax,
XMin, EMax, EMin,W) is positionally determinate if the following conditions are
satisfied for each x ∈ XMax.

• If Player Max is winning from x, then there exists a positional strategy
sMax ∈ SMax

G that is winning from x.

• If Player Min is winning from x, then there exists a positional strategy
sMin ∈ SMin

G that is winning from x.

A reachability game and a parity game are both defined as game structures
equipped with additional data. Both of them induce a two-player game. They
are known to be positionally determinate [41].

15

Definition 2.2.24 (reachability game). A reachability game is a tuple T =
(XMax, XMin, EMax, EMin,Acc) where the first four components constitute a game
structure and Acc ⊆ XMax is the set of accepting states. A reachability game
induces a two-player game GT = (XMax, XMin, EMax, EMin,W) where W is the
set of runs x0y0x1y1 . . . such that xi ∈ Acc for some i.

Definition 2.2.25 (parity game [31]). Let n be a positive integer. A parity
game is a tuple S = (XMax, XMin, EMax, EMin, p) where the first four components
constitute a game structure and p : XMax → {1, . . . , 2n} is a priority function. A
parity game G = (XMax, XMin, EMax, EMin, p) induces a two-player game GS =
(XMax, XMin, EMax, EMin,W) where W is the set of infinite runs x0y0x1y1 . . .
such that lim supi→∞ p(xi) is even.

We shall identify T and GT , and S and GS respectively.

2.2.4 Probabilistic Transition System

We define probabilistic transition systems, for which we will later introduce prob-
abilistic ranking function notions. They are unlabeled systems.

Definition 2.2.26 (probabilistic transition system). A probabilistic transition
system (PTS) is a triple T =

(
(X,FX), ξ,Acc

)
of a standard Borel space (X,FX)

called a state space, a measurable function ξ : (X,FX) → G(X,FX) called a
transition function, and a measurable set Acc ⊆ X of accepting states.

We next define the notion of reachability probability. It is defined in a dual
manner to a function limk→∞NoDivk(x) in Definition 2.2.15.

Definition 2.2.27 (ReachT). Let T =
(
(X,FX), ξ,Acc

)
be a PTS and A ⊆ X.

For each k ∈ ω, we inductively define a function ReachkT ,A : X → [0, 1] as follows:

• Reach0T ,A(x) := 0; and

• Reachk+1
T ,A(x) := 1 if x ∈ A and

∫
x′∈X ReachkT ,A(x

′) dξ(x) otherwise .

It is easy to see that k ≤ k′ implies ReachkT ,A(x) ≤ Reachk
′

T ,A(x). We define a
reachability probability function ReachT ,A : X → [0, 1] as follows:

ReachT ,A(x) := lim
k→∞

ReachkT ,A(x) .

We write ReachT (x) for ReachT ,Acc(x).

By an easy induction on k, we can prove that ReachT is a measurable function.

2.3 Fixed Point Logic

In this thesis, the notion of fixed point plays a very important role.

2.3.1 Fixed Point Theorems

We shall review some theorems regarding fixed points. Some of them use the
following transfinite-inductive construction of fixed points.

Definition 2.3.1. Let (L,⊑) be a poset and f : L → L be monotone function.
For a post-fixed point l ∈ L of f (i.e. l ≤ f(l)) and an ordinal a, we define
fa(l) ∈ L by the transfinite induction as follows:

16

• f0(x) := l.

• If a is a successor ordinal then fa(l) := f
(
fa−1(l)

)
.

• If a is a limit ordinal then fa(l) :=
⊔

a′<a f
a′(l), where

⊔
denotes the supre-

mum. If such a supremum does not exist, then it is undefined.

Note that by the monotonicity of f , a < a′ implies fa(l) ⊑ fa′(l). We define fa(l)
similarly when l ∈ L is a pre-fixed point, i.e. f(l) ≤ l.

The following three constructions of least fixed points are well-known.

Theorem 2.3.2. 1. (Knaster-Tarski, see e.g. [105]) Assume that (L,⊑) is a
complete lattice. Then the set {l ∈ L | f(l) ⊑ l} of pre-fixed points forms a
complete lattice. Moreover, its least element is the least fixed point of f .

2. (Kleene, see e.g. [101]) Assume that (L,⊑) is ω-complete (i.e. each in-
creasing chain has the supremum) and f is ω-continuous (i.e. it preserves
ω-supremums). If x is a post-fixed point of f then fω(l) is a fixed point of
f . Especially, if l is the least element then it is the least fixed point.

3. (Cousot-Cousot, [27]) Assume (L,⊑) be (upward) directed complete (i.e.
each directed subset has the supremum). Let x be a post-fixed point of f .
Then for each ordinal a, fa(l) is defined. Moreover, if |L| < |a| then fa(l) is
a fixed point of f . If l is the least element then it is the least fixed point.

The above theorems and their dual statements provide us with the following
well-known statements for over/under-approximating the least fixed point.

Corollary 2.3.3. Let l ∈ L. Assume that f has the least fixed point µf .

1. If (L,⊑) is a complete lattice; f is ωop-continuous; or (L,⊑) is downward
directed complete, then f(l) ⊑ l implies µf ⊑ l.

2. Assume L has the least element ⊥. Then for each ordinal a such that fa(⊥)
is defined, we have fa(⊥) ⊑ µf .

Corollary 2.3.3.1 is also called the Knaster-Tarski theorem. The dual theorems
provide methods for over/under-approximating the greatest fixed point.

We end this section with the following theorem about the preservation of least
fixed points. The result is new to us (hence we give a proof), but hardly original.

Theorem 2.3.4. Let (M,⊑M) and (N,⊑N) be posets, g :M →M and h : N →
N be monotone endofunctions, and k :M → N be a monotone function. Assume
that g and h have the least fixed points µg and µh respectively. If the following
conditions are satisfied, then we have k(µg) ⊑N µh.

1. (M,⊑M) has the least element ⊥M . Moreover, k is strict, i.e. k(⊥M) is the
least element in (N,⊑N).

2. k(g(l)) ⊑N h(k(l)) for each l ∈ L.

3. Either of the following conditions are satisfied:

• (M,⊑M) has the least element and is ω-complete, and g is ω-continuous.
Moreover, k is ω-continuous, i.e. for each sequence l0 ⊑M l1 ⊑M l2 ⊑l

. . . in M , we have g
(⊔

i∈ω li
)
=
⊔

i∈ω g(li).

17

• (M,⊑M) has the least element and is upward directed complete. More-
over, k is (upward) directed-continuous, i.e. for each directed subset
A ⊆M , we have g

(⊔
l∈A l

)
=
⊔

l∈A g(l).

Especially, if k(g(l)) = h(k(l)) for each l ∈M then k(µg) = µh.

Proof. We prove the statement when (M,⊑M) has the least element and is
upward directed complete. The proof for the other case is similar.

Let m be an ordinal such that |M | < |m|. By Theorem 2.3.2.3, ga(⊥M) ∈ M
is defined for each an ordinal a, and gm(⊥M) = µg. We prove k

(
ga(⊥M)

)
⊑N µh

by the transfinite induction on a.
If a = 0, by the assumptions, we have:

k
(
ga(⊥M)

)
= k(⊥M) = ⊥N ⊑N µh .

Let a be a successor ordinal and assume k
(
ga−1(⊥M)

)
⊑N µh. Then we have,

k
(
ga(⊥M)

)
= k

(
g
(
ga(⊥M)

))
⊑N h

(
k
(
ga(⊥M)

))
⊑N h(µh) = µh .

Let a be a limit ordinal and assume k
(
ga

′
(⊥M)

)
⊑N µh for each a′ < a. Then,

k
(
ga(⊥M)

)
= k

(⊔
a′<a

ga
′
(⊥M)

)
⊑N k

(⊔
a′<a

µh
)
= h(µh) = µh .

Hence we have k(µg) = k
(
gm(⊥M)

)
⊑N µh.

Assume that k(g(l)) = h(k(l)) for each l ∈M . Then

h
(
k(µg)

)
= k

(
g(µg)

)
= k(µg) .

Hence k(µg) is a fixed point of h, and together with k(µg) ⊑N µh, we have that
k(µg) = µh.

By reversing the order, we can prove its dual statement about the preservation
of greatest fixed points.

2.3.2 Hierarchical Equation System

A hierarchical equation systems (HES for short) is a representation of an alter-
nating fixed point used in [26, 6].

Definition 2.3.5 (HES). Let m ∈ N. A hierarchical equation system (HES) is a
finite family of equations of the following form.

E =


u1 =η1 f1(u1, . . . , um) ∈ (L1,⊑1)
u2 =η2 f2(u1, . . . , um) ∈ (L2,⊑2)

...
um =ηm fm(u1, . . . , um) ∈ (Lm,⊑m)

Here for each i ∈ {1, . . . ,m}, (Li,⊑i) is a poset, ui is a variable that ranges over
Li, ηi ∈ {µ, ν} and fi : L1 × · · · × Lm → Li is a monotone function.

We write ⊑ for ⊑i if no confusion is likely.
An HES is commonly defined over complete lattices (see e.g. [26, 6, 49]).

However, in this thesis, we do not assume Li to be a complete lattice. See
Remark 3.8.2 for an example of HES over posets that are not complete lattices.

An HES determines a fixed point of a function f1×· · ·×fm : L1×· · ·×Lm →
L1 × · · · × Lm.

18

Definition 2.3.6 (solution of HES). Let E be an HES as in Def. 2.3.5. For each

i ∈ {1, . . . ,m} and j ∈ {1, . . . , i} we inductively define functions f ‡i : Li × · · · ×
Lm → Li and l

(i)
j : Li+1×· · ·×Lm → Lj as follows (we do not have to distinguish

the base case from the step case):

• f ‡i (ui, . . . , um) := fi
(
l
(i−1)
1 (ui, . . . , um), . . . , l

(i−1)
i−1 (ui, . . . , um), ui, . . . , um

)
.

• l(i)i (ui+1, . . . , um) is the least (resp. greatest) fixed point of

f ‡i
(
, ui+1, . . . , um

)
: Li → Li if ηi = µ (resp. ν). If such a least or

greatest fixed point does not exist, then l
(i)
i (ui+1, . . . , um) is undefined. For

j < i, we let l
(i)
j (ui+1, . . . , um) := l

(i−1)
j (l

(i)
i (ui+1, . . . , um), ui+1, . . . , um).

We call (l
(i)
1 , . . . , l

(i)
i) the i-th intermediate solution (if it exists). Note that l

(m)
i

has a type 1 → Li where 1 denotes a singleton. The solution of the HES E is a

tuple (usol1 , . . . , usolm) ∈ L1 × · · · × Lm defined by usoli := l
(m)
i (∗) for each i, where

∗ denotes the unique element in 1.

2.4 Categorical Preliminaries

Category theory plays the central role in this thesis. In this chapter we review
categorical notions.

2.4.1 Preliminaries on Basic Category Theories

We first review the notions of category, functor, natural transformation, limit,
colimit, product, coproduct, final object and initial object. They are all basic. See
also [76, 10, 60].

Definition 2.4.1 (category). A (locally small) category is a triple C = (|C|,
arr(C), ◦) consisting of the following components.

• A class2 |C| of objects. We shall write X ∈ C to mean X ∈ |C|.

• A family arr(C) =
(
C(X,Y)

)
X,Y ∈|C| of (small) sets. An element in C(X,Y)

is called an arrow. When f ∈ C(X,Y), we write f : X → Y and call X and
Y the domain and the codomain of f respectively.

• A family ◦ =
(
◦X,Y,Z : arr(C)(Y, Z)×arr(C)(X,Y)→ arr(C)(X,Z)

)
X,Y,Z∈|C|

of composite functions. We often omit subscripts and just write ◦ for ◦X,Y,Z .

We require that the following conditions are satisfied.

• For each X ∈ |C|, there exists an identity arrow idX : X → X such that:
idX ◦ f = f holds for each Y ∈ |C| and f : Y → X, and g ◦ idX = g holds
for each Z ∈ |C| and g : Z → Y . We sometimes write id for idX .

• For each X,Y, Z,W ∈ |C|, f : X → Y , g : Y → Z and h : Z → W ,
(h ◦ g) ◦ f = h ◦ (g ◦ f).

It is easy to see that an identity arrow idX is unique for each X.

Example 2.4.2. Here are some examples of categories.

2Briefly speaking, a class is a collection of mathematical objects specified by some property.
See e.g. [65] for more details.

19

• The category Sets of sets. Its objects are given by all the sets, its arrows
are functions between them, and its compositions are given by the usual
compositions of functions.

• The category Meas of measurable spaces. Its objects are given by all the
measurable sets its arrows are measurable functions between them, and its
compositions are given by the usual compositions of functions.

• The category SB of standard Borel spaces. Its objects are all the standard
Borel spaces, and its arrows and their compositions are defined as in Meas.

The objects of SB constitute a subclass of Meas, and for each X,Y ∈ SB,
SB(X,Y) = Meas(X,Y). We say that SB is a full subcategory of Meas for
this situation. Throughout this thesis, we shall use SB instead of Meas to
characterize probabilistic systems.

Two sets X and Y are isomorphic if there exists a bijection b : X
∼=−→ Y . The

notion of isomorphism can be also defined for measurable spaces. The following
definition generalizes them.

Definition 2.4.3 (isomorphism). Let C be a category and X,Y ∈ C. We say X
is isomorphic to Y and write X ∼= Y if there exists f : X → Y and g : Y → X
such that g ◦ f = idX and f ◦ g = idY .

A functor is an operation that maps objects to objects and arrows to arrows.

Definition 2.4.4 (functor). Let C and D be categories. A functor from C to D
is a pair F = (Fobj, Farr) of functions Fobj : |C| → |D| and Farr : arr(C)→ arr(D)
that satisfy the following conditions:

• if f : X → Y then Farrf : FobjX → FobjY ;

• for X ∈ C, FarridX = idFobjX ; and

• for X,Y, Z ∈ C, f : X → Y and g : Y → Z, (Farrg) ◦ (Farrf) = Farr(g ◦ f).

We write F : C→ D when F is a functor from C→ D. We often omit subscripts
and just write F for both Fobj and Farr. A functor from a category to the same
category is called an endofunctor.

Here are some spacial functors.

Definition 2.4.5 (idC, ∆X , FG, Fn). For a category C, we write idC for the
identity functor that maps objects and arrows to themselves, and omit the sub-
script if no confusion is likely. For categories C,D and X ∈ C, ∆X : D → C
denotes the constant functor that maps each object to X and each arrow to
idX . For functors F : C → D and G : D → E, we define the composite functor
GF : C→ D by GFX := G(FX) for each an object X ∈ C and GFf := G(Ff)
for each an arrow f in C. For an endofunctor F : C → C, we write Fn for
FF . . . F︸ ︷︷ ︸

n

: C→ C

Here are examples of functors.

Definition 2.4.6. Let Σ be a ranked alphabet.

• The powerset functor P : Sets → Sets is defined by PX := {A ⊆ X} for
X ∈ Sets and Pf(A) := {f(x) ∈ Y | x ∈ A} for f : X → Y .

20

• The lift functor L : Sets→ Sets is defined by LX := {⊥}+X forX ∈ Sets
and Lf(x) := f(x) if x ∈ X and ⊥ if x = ⊥ for f : X → Y .

• The distribution functor D : Sets → Sets is defined as follows. For
X ∈ Sets, DX is defined as in Section 2.1. Moreover, Df(ξ)(y) :=∑

x∈f−1(y) ξ(x) for f : X → Y , ξ ∈ DX and y ∈ Y .

• The subdistribution functor Ds : Sets→ Sets is similarly defined.

• The Giry functor G : SB → SB [39, 28] is defined as follows. For an
object (X,FX) ∈ SB, G(X,FX) is defined as in Section 2.1. For an arrow
f : (X,FX)→ (Y,FY), Gf(α)(B) := α(f−1(B)) for α ∈ GX and B ∈ FY .

• The sub-Giry functor Gs : SB→ SB is similarly defined.

• We define FΣ : Sets → Sets by FΣX :=
⨿

i∈ω Σi × Xi for a set X and
FΣf(a, x0, . . . , xn−1) :=

(
a, f(x0), . . . , f(xn−1)

)
for a function f : X → Y .

• We define FΣ : SB→ SB as follows: for objects, FΣ(X,FX) :=(FΣX,FFΣX)
where FFΣX is the smallest σ-algebra including {{a} ×A1 × · · · ×An | n ∈
ω, a ∈ Σn, A1, . . . , An ∈ FX}. For arrows, it is defined as above. It is easy
to prove measurability of the resulting functions.

• We define Fg : Sets → Sets by FgX := P2X × {0, 1} for a set X and
Fgf(Γ, t) :=

(
{{f(x) | x ∈ A} | A ∈ Γ}, t

)
for a function f : X → Y . We

use this functor to model a reachability game later.

• We define Fp : SB → SB by FpX := G(X,FX) × ({0, 1},P{0, 1}) for
a measurable space (X,FX) and Fpf(δ, t) :=

(
Gf(δ), t

)
for a measurable

function f : (X,FX) → (Y,FY), where G is defined as above. We use this
functor to model a PTS later.

A natural transformation is a morphism from a functor to a functor.

Definition 2.4.7 (natural transformation). Let C and D be categories and F,G :
C→ D be functors. A natural transformation from F to G is a family α =

(
αX :

FX → GX
)
X∈|C| of arrows in D that satisfies αY ◦ Ff = Gf ◦ αX for each

X,Y ∈ C and f : X → Y . The last equality is called naturality, and pictorially,

FY
αY // GY

FX
Ff
OO

αX // GX
Gf
OO

in D .

We write α : F ⇒ G when α is a natural transformation from F to G.

We review the notions of (co)cone and (co)limit. A cone over a diagram is a
pair of an object L and arrows from L to the diagram that is “compatible” with
the diagram in a certain sense. A limit is a special cone that is most “universal.”

Definition 2.4.8 ((co)cone and (co)limit). Let G : D→ C be a functor. Recall
that ∆X denotes the constant functor.

• A cone over G is a pair
(
X ∈ C, α : ∆X ⇒ G

)
. A limit over G is a cone

(L, γ) over G such that for an arbitrary cone (X,α) over G there exists a
unique arrow m : X → L such that γD ◦m = αD for each D ∈ D.

21

• A cocone over G is a pair
(
X ∈ C, β : G :⇒ ∆X

)
. A colimit over G is a

cocone (L, ξ) over G such that for an arbitrary cocone (X,β) over G there
exists a unique arrow m : L→ X such that m ◦ ξD = βD for each D ∈ D.

In both cases, the unique arrow m is called the mediating arrow.

It is known that a (co)limit is unique up to isomorphism if it exists.
Suppose that we are given a diagram on a category C, i.e. a subset of objects

and some arrows between them. We can define the smallest category that contains
the objects and the arrows, and there exists the canonical inclusion functor I from
the category to C. We can thus regard a cone over I as a cone over the diagram,
and when the functor has a limit, we can call it a limit of the diagram. A colimit
of a diagram is similarly defined.

A functor F : C → E maps a cone over a functor G : D → C to a cone over
a functor FG : D → E. We are sometimes interested in a situation where if the
former is a limit then also the latter is.

Definition 2.4.9. Let (L, γ) be a limit of a functor G : D → C. We say that
an endofunctor F : C → E preserves the limit if a cone

(
FL, (GγD)D∈D

)
over

FG : D→ C is a limit. Preservation of a colimit is similarly defined.

We conclude this section by reviewing (co)products and final and initial ob-
jects. They are special (co)limits.

Definition 2.4.10 ((co)product). Let C be a category and (Xi)i∈I be a family
of objects.

• A product of (Xi)i∈I is a limit over the discrete diagram consisting of
(Xi)i∈I , and it is denoted by

(∏
i∈I Xi, (πi)i∈I

)
. When I is a finite set

{1, . . . , n},
∏

i∈I Xi is also denoted by X1× · · · ×Xn. Moreover, for a fam-
ily (fi : Y → Xi)i∈I of arrows, we write ⟨fi⟩i∈I for the mediating arrow from
a cone (Y, (fi)i∈ω) to

(∏
i∈I Xi, (πi)i∈I

)
.

• A coproduct of (Xi)i∈I is a colimit over the discrete diagram consisting
of (Xi)i∈I , and it is denoted by

(⨿
i∈I Xi, (κi)i∈I

)
. When I is a finite set

{1, . . . , n},
⨿

i∈I Xi is also denoted by X1+ · · ·+Xn. Moreover, for a family
(fi : Xi → Y)i∈I of arrows, we write [fi]i∈I for the mediating arrow from(⨿

i∈I Xi, (πi)i∈I
)
to a cocone (Y, (fi)i∈ω).

Definition 2.4.11 (final/initial object). Let C be a category. A final object is
an object 1 ∈ C such that for each Y ∈ C there exists a unique arrow !Y : Y → X.
An initial object is an object 0 ∈ C such that for each Y ∈ C there exists a unique
arrow

!

Y : X → Y . We sometimes omit subscripts and just write ! and

!

.

Example 2.4.12. In the category Sets, a productX×Y is give by a set-theoretic
product, a coproduct X+Y is given by a disjoint sum, a final object is a singleton
and an initial object is the empty set.

In SB, a product of (X,FX) and (Y,FY) is (X×Y,FX×Y) where FX×Y is the
smallest σ-algebra containing {A×B | A ∈ FX , B ∈ FY }. A coproduct of (X,FX)
and (Y,FY) is (X + Y,FX+Y) where FX+Y is the smallest σ-algebra containing
FX and FY . A final object is a singleton equipped with the trivial σ-algebra, and
an initial object is the empty set with the trivial σ-algebra.

22

2.4.2 Algebra and Coalgebra

The following notions, especially that of coalgebra, are central in this thesis.

Definition 2.4.13 ((co)algebra and homomorphism). Let F : C→ C.

• An F -algebra is an arrow of a form a : FX → X. We call X the carrier of
a. For F -algebras a : FX → X and b : FY → Y , a homomorphism from a
to b is an arrow f : X → Y such that f ◦ a = b ◦ Ff .

• An F -coalgebra is an arrow of a form c : X → FX. We call X the carrier
of c. For F -coalgebras c : X → FX and d : D → FD, a homomorphism
from c to d is an arrow g : X → Y such that Ff ◦ c = d ◦ f .

X
a��

f // Y
b��

FX
Ff // FY

FX
Fg // FY

X
c
OO

g // Y
d
OO

Various transition systems are representable as coalgebras. For example, using
the functors in Definition 2.4.6, we can model the following transition systems.

Example 2.4.14. Let Σ be a ranked alphabet.

• A Σ-labeled NTA A = (X, τ) (Definition 2.2.4) can be modeled as a PFΣ-
coalgebra c : X → P

⨿∞
i=0Σi ×Xi defined by c := τ .

• A Σ-labeled PTA A = ((X,FX), ξ) (Definition 2.2.12) can be modeled as
a GFΣ-coalgebra c : (X,FX)→ G

⨿∞
i=0Σi × (X,FX)i defined by c := ξ.

• A reachability game T = (XMax, XMin, EMax, EMin,Acc) (Definition 2.2.24)
is modeled as an Fg-coalgebra cT : XMax → P2XMax × {0, 1} defined by
cT (x) :=(Γ, t) where

Γ =
{{
x′ | (y, x′) ∈ EMin

}
| (x, y) ∈ EMax

}
and t =

{
1 (x ∈ Acc)

0 (x /∈ Acc) .

• A PTS T =
(
(X,FX), ξ

)
(Definition 2.2.26) is modeled as an Fp-coalgebra

cT : (X,FX) → G(X,FX) × {0, 1} defined by cT (x) := (ξ(x), t) where t is
defined as above.

Algebras and homomorphisms constitute a category. Its initial object is called
an initial algebra. We are also interested in its dual notion, final coalgebra.

Definition 2.4.15 (initial algebra & final coalgebra). Let F : C→ C.

• An algebra a : FA → A is initial if for an arbitrary algebra b : FB → B
there exists a unique homomorphism from a to b.

• A coalgebra c : X → FX is final if for an arbitrary coalgebra d : Y → FY
there exists a unique homomorphism from d to c.

When we regard categories as generalizations of preordered sets (see Sec-
tion 1.3.2), an F -algebra is understood as a pre-fixed point of F , and an algebra’s
being initial means that it is the least pre-fixed point. Similarly, an F -coalgebra
is a post-fixed point of F , and a final coalgebra is the greatest post-fixed point.

It is not hard to prove that if x and y are both least pre-fixed (or greatest
post-fixed) points, then x ≤ y and y ≤ x. Moreover, by the Knaster-Tarski
theorem (Theorem 2.3.2.1), the least pre-fixed (resp. greatest post-fixed) point
is the least (resp. greatest) fixed point. The following proposition categorically
generalizes them.

23

Proposition 2.4.16 (see e.g. [60]). Let F : C→ C.

1. Initial algebras are unique up-to isomorphism. That is, if ι : FX → X
and ι′ : FX ′ → X ′ are initial F -algebras then there exists an isomorphism

f : X
∼=−→ X ′ such that f ◦ ι = ι′ ◦ Ff .

2. An initial algebra is an isomorphism.

3. Final coalgebras are unique up-to isomorphism. That is, if ζ : X → FX
and ζ ′ : X ′ → FX ′ are final F -coalgebras then there exists an isomorphism

f : X
∼=−→ X ′ such that Ff ◦ ζ = ζ ′ ◦ f .

4. A final coalgebra is an isomorphism.

The following theorem generalizes the Kleene fixed-point theorem (Theo-
rem 2.3.2.2), and shows a way to construct initial algebras and final coalgebras.

Theorem 2.4.17 ([3]). Let F : C→ C.

• Assume that C has an initial object 0; an initial sequence 0

!

F0−−→ F0
F

!

F0−−−→
F 21

F 2

!

F0−−−−→ · · · has a colimit
(
A, (ξi : A → F i1)i∈ω

)
; and F preserves the

colimit. Then the unique mediating arrow ιF : FA → A from the colimit(
FA, (Fξi : F i+10 → A)

)
to a cocone

(
Z, (ξi+1 : F i+10 → A)i∈ω

)
is an

initial F -algebra.

• Assume that C has a final object 1; a final sequence 1
!F1←−− F1

F !F1←−−−
F 21

F 2!F1←−−−− · · · has a limit
(
Z, (γi : Z → F i1)i∈ω

)
; and F preserves

the limit. Then the unique mediating arrow ζF : Z → FZ from a cone(
Z, (γi+1 : Z → F i+11)i∈ω

)
to the limit

(
FZ, (Fγi : FZ → F i+11)

)
is a

final F -coalgebra.

Z,,ξ0
..

ξ1 π2

vv
OO

ι∼=0 F0//

!

F 20 · · ·//F

!

FZ00Fξ0 ((Fξ1

Zγ0

ww
γ1
xx

π2

vv
ζ∼=
��

1 F1
!oo F 21 · · ·F !oo

FZFγ0

gg
Fγ1

hh

Example 2.4.18 (see e.g. [113]). Define FΣ : Sets→ Sets as in Definition 2.4.6.
The carriers of an initial FΣ-algebra and a final FΣ-coalgebra are isomorphic to
Tree∗Σ and Tree∞Σ respectively (recall that an initial algebra and a final coalgebra
are unique up to isomorphisms). When FΣ : SB→ SB, the carriers are isomor-
phic to measurable sets

(
Tree∗Σ,FTree∗Σ

)
and

(
Tree∞Σ ,FTree∞Σ

)
where the σ-algebras

are given as in Section 2.2.4.

Final coalgebras are very important in the theory of coalgebra, because the
unique homomorphism to it often captures “behaviors” of a coalgebra.

Example 2.4.19. We continue Examples 2.4.14. An FΣ-coalgebra has a type
c : X →

⨿∞
i=0Σi × Xi, and can be understood as a Σ-labeled deterministic tree

automaton. Especially, if F = A× (), then an F -coalgebra is understood as an
A-labeled deterministic word automaton (cf. Remark 2.2.11).

For an FΣ-coalgebra c : X → FΣX, the unique homomorphism X → Tree∞Σ
from c to ζ assigns each x the unique tree t = (D, l) that satisfies the following
condition: there exists a X ×Σ-labeled tree ρ = (D′, l′) such that i) π1

(
lρ(⟨⟩)

)
=

x; and ii) for each w ∈ Dr, if lρ(w) = (x, a) and lρ(wi) = (xi, ai) for each
i ∈ {0, . . . , |a| − 1} then (a, x0, . . . , x|a|−1) = c(x) (cf. Definition 2.2.5). This
function can be regarded as a “language” of c.

24

However, this framework to characterize behaviors via final coalgebras does
work for some systems. One of the reasons is that a final coalgebra does not exist
for some functors. A counterexample is as follows.

Example 2.4.20. Assume that there exists a final P-coalgebra ζP : X → PX.
By Proposition 2.4.16.4, we have X ∼= PX, but it is a well-known fact that such
a set X does not exist.

Similarly if Σi ̸= ∅ for some i > 0 then functors PFΣ, GsFΣ, Fg and Fp (see
Example 2.4.14) do not have final coalgebras. We will later review two types
of extension of the “final coalgebra framework” that work for those functors
(Section 3.1 and Section 5.2).

We conclude this section with a notion of coalgebra-algebra homomorphism.
As its name suggests, it is a homomorphism from a coalgebra to algebra.

Definition 2.4.21. Let F : C → C. A coalgebra-algebra homo-
morphism from an F -coalgebra c : X → FX and an F -algebra
σ : FΩ→ Ω, is an arrow f : X → Ω such that f = σ ◦ Ff ◦ c.

FX
=

Ff// FΩ
σ��

X
c
OO

f // Ω

The above notion is useful when we are combining category theory with fixed
point logic. The main reason is that a coalgebra-algebra homomorphism is a fixed
point of the following function.

Definition 2.4.22. Let F : C → C. For an F -coalgebra c : X → FX and an
F -algebra σ : FΩ → Ω, we define a function Φc,σ : C(X,Ω) → C(X,Ω) by
Φc,σ(f) := σ ◦ Ff ◦ c, i.e.

Φc,σ :
(
X

f−→ Ω
)
7→

 FX
Ff // FΩ

σ��
X
c
OO

Ω

 .

Lemma 2.4.23. An arrow f : X → Ω is a coalgebra-algebra homomorphism from
c to σ if and only if it is a fixed point of Φc,σ.

25

Chapter 3

Categorical Trace Semantics for Büchi and

Parity Automata

One of the main goals of this thesis is to categorically generalize fair simulation,
a simulation notion for NBTAs. To state correctness of our categorical gen-
eralization, we first have to categorically characterize languages LB

A of NBTAs
(Definition 2.2.9). In this chapter, we achieve this goal by extending an exist-
ing framework called Kleisli approach. We will also categorically characterize
languages of NPTAs.

We will introduce two categorical characterizations for languages of Büchi and
parity automata. We shall call the characterizations a logical fixed point-based
characterization and a categorical fixed point-based characterization. Both of
them make use of the well-known relationship between Büchi and parity automata
and alternating fixed points, but they differ in how the notion of alternating fixed
point is categorically reflected.

The Büchi acceptance condition is a special case of the parity acceptance
condition, and all the categorical results in this chapter are fully applicable for the
parity acceptance condition. However, as the discussions for the parity condition
is very complicated and difficult, we will first present our results for the Büchi
condition for explaining the intuition. We then discuss the parity condition. As
the latter encompasses the former, all the proofs are omitted in the former part.

This chapter is organized as follows. We first review the so-called Kleisli ap-
proach (Section 3.1). In Section 3.2 we give our categorical characterization of
Büchi automata. We give a logical fixed point-based characterization for lan-
guages of Büchi automata in Section 3.3, and give categorical fixed point-based
one in Section 3.4. In Section 3.5, we investigate the relationship between the two
characterizations. In Section 3.6, we extend the framework in Sections 3.2–3.5 to
parity automata. In Sections 3.7–3.8, we instantiate the categorical frameworks
to NPTAs (Definition 2.2.4) and PPTAs (Definition 2.2.12).

The result on the logical fixed point-based characterization and that on the
categorical fixed point-based one first that has appeared in [114] and [112], re-
spectively.

3.1 Kleisli Approach for Finite and Infinitary Trace Semantics

In this section, we review the Kleisli approach following [85, 58, 46, 47]. In the
next section we will extend it for Büchi and parity automata.

At the last of Section 2.4.2, we have seen that the “final coalgebra framework”
does not work for PFΣ- and GsFΣ-coalgebras. The key of Kleisli approach is to
focus on that P and Gs constitute monads and consider coalgebras in the Kleisli
categories (Definition 3.1.3).

26

3.1.1 Monad and Kleisli Category

We review notions of monad and Kleisli category. See also [60].
A monad is a special functor equipped with structures called a unit and a

multiplication. Monads are often used to characterize side-effects like nondeter-
minism or probabilistic branchings.

Definition 3.1.1 (monad). Let C be a category. A monad over C is a triple T =
(T, ηT , µT) consisting of an endofunctor T : C→ C and natural transformations
ηT : id⇒ T and µT : T 2 ⇒ T called the unit and the multiplication respectively.1

We require that the following equalities are satisfied for each X ∈ C.

µX ◦ ηTX = idX , µX ◦ TηX = idX and µX ◦ µTX = µX ◦ TµX .

Pictorially, they mean that the following diagrams commute.

TX
ηTTX //

idX ((

T 2X
µT
X ��

TX
TηTXoo

idXvv
TX

T 2X
µT
X // TX

T 3X
µT
TX

OO

TµT
X // T 2X

µT
X

OO

In this thesis, we mainly use the following monads.

Definition 3.1.2. The functors P, L, Ds and Gs in Definition 2.4.6 are extended
to monads as follows.

• The powerset monad P = (P, ηP , µP) is defined as follows: for X ∈ Sets,
ηPX : X → PX is given by ηPX(x) := {x} and µPX : P2X → PX is given by
µPX(Γ) :=

∪
A∈γ A.

• The lift monad L = (L, ηL, µL) is defined as follows: for X ∈ Sets,
ηLX : X → LX is given by ηLX(x) := x and µLX : L2X → LX is given
by µPX(x) := x if x ∈ X and ⊥ if x = ⊥.

• The subdistribution monad Ds = (Ds, η
Ds , µDs) is defined as follows: for

X ∈ Sets, ηDs
X : X → DsX is given by ηDs

X (x)(x′) := 1 if x = x′ and 0

otherwise, and µDs
X : Ds

2X → DsX is given by µDs
X (∆)(x) :=

∑
ξ∈∆ ξ(x).

• The sub-Giry monad Gs = (Gs, ηGs , µGs) [39] is defined by: for (X,FX) ∈
SB, ηGs

(X,FX) : X → GsX is given by ηGs

(X,FX)(x) := δx (i.e. the Dirac measure

at x), and µGs

(X,FX) : G
2
sX → GsX is given by µGs

(X,FX)(Ψ)(A) :=
∫
GsX

evAdΨ.

A monad induces a category called Kleisli category. It is possible that an
endofunctor can be lifted to the Kleisli category.

Definition 3.1.3 (Kℓ(T), J , U and F). Let T = (T, η, µ) be a monad on C. The
Kleisli category Kℓ(T) is defined by: |Kℓ(T)| = |C| and Kℓ(T)(X,Y) = C(X,TY)
for X,Y ∈ |Kℓ(T)|. An arrow f ∈ Kℓ(T)(X,Y) is called a Kleisli arrow, and
we write f : X →p Y for distinction. A composition of arrows f : X →p Y and
g : Y →p Z is defined by µZ ◦ Tg ◦ f , and denoted by g ⊙ f . The lifting functor
J : C → Kℓ(T) is defined by: JX := X for X ∈ C and J(f) := ηY ◦ f for
f : X → Y . The forgetful functor U : Kℓ(T) → C is defined by: UX := TX for
X ∈ Kℓ(T) and U(g) := µY ◦ Tg for g : X →p Y . A functor F : Kℓ(T)→ Kℓ(T) is
called a lifting of F : C→ C if FJ = JF .

1We use the same symbol for a monad and its first component. A confusion is unlikely.

27

It is well-known that there is a bijective correspondence between a lifting of
a functor and a natural transformation called distributive law.

Definition 3.1.4. A distributive law from T to F is a natural transformation
λ : FT ⇒ TF that makes the following diagrams commute for each X.

FTX
λX // TFX

FX

FηX

OO

ηFX

77 (3.1) FTX
λX // TFX

FT 2X

FµX

OO

λTX // TFTX
TλX // T 2FX

µFX

OO (3.2)

Proposition 3.1.5 (see e.g. [60]). Let T be a monad and F be an endofunctor

on a category C. If F : Kℓ(T) → Kℓ(T) is a lifting of F , then
(
FTX

F idTX−−−−→
TFX

)
X∈C : FT ⇒ TF is a distributive law from T to F . Conversely if λ : FT ⇒

TF is a distributive law from T to F then a functor F : Kℓ(T)→ Kℓ(T) defined

by FX := X for X ∈ C and Ff :=
(
FX

Ff−−→ FTY
λY−−→ TFY

)
for f : X → Y is

a lifting of F . Moreover, these constructions constitute a bijection.

It is known for (T, F) ∈ {(P, FΣ), (L, FΣ), (Ds, FΣ), (Gs, FΣ)} (see Defini-
tion 2.4.6 and 3.1.1), a distributive law exists (see e.g. [47, 113]), and hence
we can lift the functors to the Kleisli categories.

Example 3.1.6 (see e.g. [47, 113]). When T = P and F = FΣ, a lifting FΣ :
Kℓ(P)→ Kℓ(P) is given by FΣX = FΣX for X ∈ Kℓ(P) and FΣf(a, x1, . . . , xn) =
{(a, y1, . . . , yn) | yi ∈ f(xi)} for f : X →p Y .

When T = Gs and F = FΣ, FΣ : Kℓ(Gs) → Kℓ(Gs) is given by FΣX := FΣX
for X ∈ Kℓ(Gs) and

FΣf(a, x1, . . . , xn)({a′} ×A1 × · · · ×An) :=

{
f(x1)(A1) · . . . · · · f(xn)(An) (a = a′)

0 (a ̸= a′)

for f : X →p Y (by the Kolmogorov extension theorem, this FΣf is well-defined).

3.1.2 Kleisli Approach

Throughout this section, let C be a category, T be a monad and F be an endo-
functor over C. In the Kleisli approach, we model a system as follows.

Definition 3.1.7 ((T, F)-system). A (T, F)-system is a pair (X, c) of an object
X ∈ C and a TF -coalgebra c : X → TFX.

Intuitively, T represents the branching type and F represents the transition
type of the system. As we have seen in Example 2.4.14, various transition systems
can be represented as (T, F)-systems by choosing suitable T and F .

Assume that the functor F is equipped with a lifting F : Kℓ(T) → Kℓ(T).
Then c : X → TFX can be regarded as an F -coalgebra in Kℓ(T). It is possible
that a final F -coalgebra exists even if a final TF -coalgebra does not exist.

Definition 3.1.8 (tr(c), [47]). We say that T and F constitute a finite trace
situation if the following conditions are satisfied.

• F has a lifting F : Kℓ(T)→ Kℓ(T). FX

=

�F (tr(c))// FµF

X

_c
OO

�
tr(c)

// µF

_Jι−1
final∼=

OO

• An initial F -algebra ι : F (µF)→ µF exists.

• An F -coalgebra Jι−1 : µF →p F (µF) is final (cf. Proposition 2.4.16.2).

28

For c : X →p FX, the unique homomorphism from c to J(ιF)−1 is called the
(coalgebraic) finite trace semantics of c and denoted by tr(c) : X →p µF .

Example 3.1.9. We continue Example 2.4.14. It is known that P and FΣ consti-
tute a finite trace situation [47]. Recall that a carrier of an initial FΣ-algebra ι

FΣ

is given by Tree∗Σ (Example 2.4.18). Hence tr(cA) is a Kleisli arrow X →p Tree∗Σ,
i.e. a function of a type X → PTree∗Σ. It is given by L∗

A (Definition 2.2.9).
Similarly, Gs and FΣ also constitute a finite trace situation (see a discussion

later in this section). The unique homomorphism tr(cA) has a typeX → GsTree∗Σ,
and is given by L∗

A (Definition 2.2.16).

Hence tr(c) categorically characterizes of finite languages. We next give a cat-
egorical characterization of infinitary languages such as L∞

A . In the finite case,
we have lifted an initial F -algebra to Kℓ(T) to obtain a final F -coalgebra. In the
infinitary case, we lift a final F -coalgebra to Kℓ(T). For example, when F = FΣ,
the carrier of a final F -coalgebra ζF is isomorphic to Tree∞Σ (Example 2.4.18),
and therefore an F -coalgebra provides a good datatype for characterizing an
infinitary language L∞

A : X → PTree∞Σ . A problem is that JζF is not a final
coalgebra in general, but a weakly final coalgebra that can admit multiple ho-
momorphisms. In [58], the problem is solved by introducing partial orders to
homsets and choosing the greatest homomorphism.

Definition 3.1.10 (tr∞(c), [58]). Assume that each homset of Kℓ(T) carries a
partial order ⊑. We say that F and T constitute an infinitary trace situation if
the following conditions are satisfied:

• F has a lifting F : Kℓ(T)→ Kℓ(T). FX

=ν

�F (tr∞(c))// FνF

X

_c
OO

�
tr∞(c)

// νF

_Jζ
weakly
final∼=

OO

• A final F -coalgebra ζF : νF → F (νF) exists.

• JζF : νF →p FνF is a weakly final F -coalgebra that admits the greatest
homomorphism. That is, for an arbitrary F -coalgebra c : X →p FX, there
exists the greatest homomorphism from c to JζF with respect to ⊑.

The greatest homomorphism from c to JζF is called the (coalgebraic) infinitary
trace semantics of c and denoted by tr∞(c) : X →p νF .

Example 3.1.11. We continue Example 3.1.9. It is known that P and FΣ

constitute an infinitary trace situation [58, 113]. The order ⊑ on each homset
Kℓ(P)(X,Y) of the Kleisli category is given as follows: for X,Y ∈ Sets, f ⊑
g

def.⇔ ∀x ∈ X. f(x) ⊆ g(x). The greatest homomorphism tr∞(cA) has a type
X →p PTree∞Σ , and is given by L∞

A (Definition 2.2.9).
Similarly, Gs and FΣ constitute a infinitary trace situation [113]. For (X,FX),

(Y,FY) ∈ SB, an order⊑ onKℓ(Gs)((X,FX), (Y,FY)) is defined by f ⊑ g def.⇔ ∀x ∈
X. ∀A ∈ FY . f(x)(A) ≤ g(x)(A). The greatest homomorphism tr∞(cS) : X →
GsTree∞Σ is given by L∞

S (Definition 2.2.16).

A sufficient condition for a monad T and functor F to constitute a finite trace
situation is known. The condition uses the notion of Cppo-enriched category and
Cppo-enriched functor, which are instances of categorical notions V-enriched
category and V-enriched functor (see e.g. [14]).

Definition 3.1.12 (Cppo-enriched category). A category C is Cppo-enriched
if it satisfies the following conditions:

29

1. Each homset C(X,Y) carries a partial order ⊑X,Y . Moreover each homset
C(X,Y) is a pointed ω-cpo with respect to the order, i.e. it has the least
element ⊥X,Y and each increasing sequence f0 ⊑X,Y f1 ⊑X,Y · · · ∈ C(X,Y)
has the supremum

⊔
i∈ω fi : X → Y .

2. For each X,Y, Z ∈ C, the composition (◦) : C(Y, Z) × C(X,Y) →
C(X,Z) is monotone with respect to the product order.

3. The composition ◦ is ω-continuous, i.e. for g : Z → X, h : Y → W and an
increasing sequence f0 ⊑X,Y f1 ⊑X,Y · · · : X → Y of arrows,(⊔

i<ω

fi
)
◦ g =

⊔
i<ω

(
fi ◦ g

)
and h ◦

(⊔
i<ω

fi
)
=
⊔
i<ω

(
h ◦ fi

)
. (3.3)

Let C be a Cppo-enriched category. A functor F : C → C is called a Cppo-
enriched functor if it satisfies the following conditions.

(a) It is locally monotone, i.e. for each X,Y ∈ C and f, g : X → Y , f ⊑X,Y g
implies Ff ⊑FX,FY Fg.

(b) It is locally ω-continuous, i.e. for each X,Y ∈ C and an increasing sequence
f0 ⊑X,Y f1 ⊑X,Y · · · ∈ C(X,Y), we have F

(⊔
i<ω fi

)
=
⊔

i<ω(Ffi).

If no confusion is likely, we write ⊑ for ⊑X,Y .

Theorem 3.1.13 ([47]). If the following conditions are satisfied, F and T con-
stitute a finite trace situation.

• The functor F preserves ω-colimits in C.

• Kℓ(T) is a Cppo-enriched category.

• F is a Cppo-enriched functor.

It is known that (T, F) ∈ {(P, FΣ), (Ds, FΣ), (L, FΣ)} (see Definition 2.4.6 and
3.1.2) satisfies the conditions of Theorem 3.1.13 [47]. By the result for (T, F) =
(Ds, FΣ), we can easily see that (T, F) = (Gs, FΣ) also satisfies the conditions.
Hence each of them constitutes a finite trace situation.

It is also known that (T, F) ∈ {(P, FΣ), (Ds, FΣ), (L, FΣ), (Gs, FΣ)} constitutes
an infinitary trace situation. However, sufficient conditions for constituting an
infinitary trace situation are not unified. In [113], two sufficient conditions are
given. One is applicable for (T, F) = (P, FΣ), and the other is applicable for
(T, F) ∈ {(Ds, FΣ), (L, FΣ)}. No condition is known for (T, F) = (Ds, FΣ).

It is known that under the assumptions of Theorem 3.1.13, if we take the least
homomorphism instead of the greatest one in Definition 3.1.10 then we obtain a
Kleisli arrow that characterizes the same data as tr(c), in the following sense.

Proposition 3.1.14 ([47]). Assume that T and F satisfy the conditions in The-
orem 3.1.13, and hence constitute a finite trace situation. Assume also that they
constitute an infinitary trace situation. Let p : µF → νF be the unique homo-
morphism from (ιF)−1 to ζF . For c : X →p FX, we define tr∗(c) : X →p νF by
tr∗(c) := Jp⊙ tr(c). Then tr∗(c) is the least homomorphism from c to JζF .

FX �
F tr(c)

//
� F tr∗(c)

,,
FµF �

FJp

// FνF

X

_c

OO

�tr(c) //
�

tr∗(c)

33µF � Jp //

J(ιF)−1

OO

νF

_JζF
OO

30

For example, when T = P and F = FΣ, we have µF ∼= Tree∗Σ and νF ∼=
Tree∞Σ , and p : µF → νF is given by the natural injection.

3.2 Categorical Representation of Büchi Automata

We have reviewed that systems are modeled as (T, F)-systems (Definition 3.1.7)
in the Kleisli approach. We extend the modeling so that we can deal with the
Büchi condition.

Definition 3.2.1 (Büchi (T, F)-system). A Büchi (T, F)-system is a triple X =
(X, c, (X1, X2)) of an object X ∈ C, a TF -coalgebra c : X → TFX and a pair
of objects X1, X2 ∈ C such that X = X1 + X2. For i ∈ {1, 2}, we write ci for
c ◦ κi : Xi → FX.

Intuitively, X1 collects nonaccepting states and X2 collects accepting states.

Example 3.2.2. Let FA := A× (). An A-labeled nondeterministic Büchi word
automaton (see Remark 2.2.11) A = (X, τ,Acc) induces a Büchi (P, FA)-system
XA = (X, cA, (X1, X2)) defined by cA = τ , X1 = X \ Acc and X2 = Acc.

3.3 Characterization via Logical Fixed Point

We give one of the extensions of the Kleisli approach, which uses logical fixed
point. It considers an alternating fixed point in a homset of a Kleisli category
whose homsets carry partial orders. The extension is inspired by the well-known
relationship between Büchi automata and fixed point logic (see e.g. [115]). We
characterize languages as solutions of HESs over homsets of Kleisli categories.

Definition 3.3.1 (trBi (c)). Let F be an endofunctor and T be a monad on a
category C. Assume that each homset of Kℓ(T) carries a partial order ⊑. We say
that F and T constitute a Büchi trace situation with respect to ⊑ if:

• F has a lifting F : Kℓ(T)→ Kℓ(T);

• A final F -coalgebra ζF : νF → F (νF) exists; and

• For each Büchi (T, F)-system (X, c, (X1, X2)), the following HES has a
solution.{

u1 =µ J(ζF)−1 ⊙ F [u1, u2]⊙ c1 ∈ (Kℓ(T)(X1, νF),⊑)
u2 =ν J(ζF)−1 ⊙ F [u1, u2]⊙ c2 ∈ (Kℓ(T)(X2, νF),⊑)

(3.4)

Recall from Definition 3.2.1 that ci denotes c ◦ κi : Xi → FX. The solution(
usol1 : X1 →p νF, usol2 : X2 →p νF

)
of the HES above is called the (coalgebraic)

Büchi trace semantics of c. We write trBi (c) for usoli (i ∈ {1, 2}), and trB(c) for
[trB1 (c), tr

B
2 (c)] : X →p νF . Pictorially,

F (X1 +X2)
�

F [trB1 (c), tr
B
2 (c)]
//

=µ

F (νF)

X1

_c1
OO

�trB1 (c) // νF

_JζF ∼=
OO

F (X1 +X2)
�

F [trB1 (c), tr
B
2 (c)]
//

=ν

F (νF)

X2

_c2
OO

�trB2 (c) // νF .

_JζF ∼=
OO

(3.5)

Example 3.3.2. We continue Example 3.6.2. We define an order on each homset
of Kℓ(P) as in Example 3.1.11, and a lifting FA : Kℓ(P) → Kℓ(P) of FA as in
Example 3.1.6. Then P and FA constitute a Büchi trace situation with respect to
them. The carrier set of a final FA-coalgebra is isomorphic to Aω. Hence trB(cA)
has a type X →p Aω (i.e. X → P(Aω)), and is given by trB(cA) = LB

A.

31

3.4 Characterization via Categorical Fixed Points

We describe the other categorical characterization of behaviors of Büchi au-
tomata. In this characterization, we introduce a notion of (categorical) deco-
rated trace semantics, which is a variant of categorical Büchi trace semantics
(Definition 3.3.1). For nondeterministic Büchi word automata (Example 3.2.2),
decorated trace semantics is given as follows.

Definition 3.4.1 (DecLB
A). Let A = (X, τ,Acc) be a Büchi automaton. We

define a set AccRun(A) ⊆ (A× { , })ω as follows:

AccRun(A) :=
{
(a0, u0)(a1, u1) . . . ∈ (A× { , })ω

∣∣ u
i = for infinitely many i

}
.

We define a function p : X → { , } by p(x) := if x /∈ Acc and if
x ∈ Acc. For each x ∈ X, we define p : Run∞A (x) → (A × { , })ω by
p
(
(a0, x0)(a1, x1) . . .

)
:= (a0, p(x0))(a1, p(x1)) The decorated trace semantics

of A is a function DecLB
A : X → P(AccRun(A)) that is defined as follows:

DecLB
A : x 7→

{
p(ρ)

∣∣ ρ ∈ Run∞A (x), ρ satisfies the Büchi acceptance condition
}
.

In this section, we define a decorated trace semantics dtr1(c) and dtr2(c) as a
categorical generalization of DecLB

A. It makes use of categorical fixed points, that
is, fixed points of functors in the sense of Section 1.3.2.

Recall that an initial algebra is understood as the least fixed point of a functor
while a final coalgebra is the greatest fixed point a functor. From this perspective,
trB1 (c) and trB2 (c) in the previous section are described as follows: i) trB1 (c) : X1 →p
νF and trB2 (c) : X2 →p νF constitute an alternating fixed point; and ii) their
codomain νF is the greatest fixed point of F . In contrast, dtr1(c) and dtr2(c)
are described as follows: i) dtr1(c) : X1 →p U sol

1 and dtr2(c) : X2 →p U sol
2 constitute

the greatest fixed point; and ii) their codomains U sol
1 and U sol

2 are an alternating
fixed point.

3.4.1 Alternating Fixed Point of Functor

We first define datatypes U sol
1 and U sol

2 categorically. Intuitively speaking, they
are the solution of the following “HES.”{

U1 =µ F (U1 + U2) ∈ C
U2 =ν F (U1 + U2) ∈ C (3.6)

When we try to solve the above “HES” in the same manner as ordinary HESs
(Definition 2.3.6), we first calculate the intermediate solution for the first equa-
tion. It is the “least fixed point” of U1 7→ F (U1 + U2) regarding an object U2 a
parameter. Such a parameterized least (or greatest) fixed point of a functor is
formally defined as follows.

Definition 3.4.2 (F+, F⊕). Let F : C→ C. Note that for each X ∈ C, we can
define a functor F (+X) : C→ C.

• Assume that an initial F (+ X)-algebra exists for each X. We define a
functor F+ : C→ C as follows:

– for X ∈ C, F+X is given by the carrier of (a choice of) an initial
F (+X)-algebra ιFX ; and

– for f : X → Y , F+f : F+X → F+Y is given by the unique homomor-
phism from ιFX to ιFY ◦ F (idF+Y + f) (see the left diagram below).

32

• Assume that a final F (+ X)-coalgebra exists for each X. We define a
functor F⊕ : C→ C as follows:

– for X ∈ C, F⊕X is given by the carrier of (a choice of) a final F (+
X)-algebra ζFX ; and

– for f : X → Y , F⊕f : F⊕X → F⊕Y is the unique homomorphism
from F (idF⊕X + f) ◦ ζFX to ζFY (see the right diagram below).

F (F+X +X)
F (F+f+id)

//

∼=ιFX

��

F (F+Y +X)
F (id+f)��

F (F+Y + Y)
∼=ιFY ��

F+X
F+f //

=

F+Y

F (F⊕X + Y)
F (F⊕f+id)

// F (F⊕Y + Y)

F (F⊕X +X)

F (id+f)
OO

F⊕X

∼=ζFX
OO

F⊕f //

=

F⊕Y

∼=ζFY

OO

We can think of ()+ and ()⊕ as operations that transform a functor to
a functor. This means that it is possible to apply ()+ or ()⊕ to a functor
multiple times and consider functors like (F+)⊕. In the rest of this thesis, we
shall omit parentheses and just write F+⊕ for (F+)⊕ for simplicity.

Using the defined data, we can solve the “HES” (3.6) as follows. By Defi-
nition 3.4.2, the intermediate solution for the first equation of (3.6) is given by
F+U2. We next substitute U1 in the second equation with F+U2, and get an
equation U2 =ν F (F

+U2 + U2). Note that the right-hand side is isomorphic to
F+U2. Hence the greatest fixed point of this equation is given by the carrier of
the final F+-coalgebra, i.e. F+⊕0. We finally substitute U2 in the intermediate
solution F+U2 with F+⊕0, and obtain F+(F+⊕0).

The datatype F+⊕0 and AccRun(A) in Definition 3.4.1 are related as follows.

Example 3.4.3. For FA = A × (), we have F+
A X

∼= A+X, F⊕
A X

∼= A+X +
Aω, F+⊕

A 0 ∼= (A+)ω and F+
A (F+⊕

A 0) ∼= A+(A+)ω . An element (a00a01 . . . a0n0)
(a10a11 . . . a1n1) . . . ∈ F+⊕0 ∼= (A+)ω is identified with the following sequence.

(a00,)(a01,) . . . (a0n0 ,)(a10,)(a11,) . . . (a1n1 ,) . . .

∈ (A× { })× (A× { , })ω . (3.7)

That is, appears each beginning of a subsequence. Note that by its construc-
tion, the first letter is decorated with , and appears infinitely many times.

In contrast, for a0 . . . an
(
(a00a01 . . . a0n0)(a10a11 . . . a1n1) . . .

)
∈ F+(F+⊕0) ∼=

A+(A+)ω, we regard that no accepting state is visited in the first part a0 . . . an,
and identify it with the following decorated sequence:

(a0,) . . . (an,)(a00,)(a01,) . . . (a0n0 ,)(a10,)(a11,) . . . (a1n1 ,) . . .

∈ (A× { })× (A× { , })ω . (3.8)

The first letter is labeled with , and appears infinitely many times again. By
(3.7) and (3.8), there exists a canonical bijection AccRun(A) ∼= A+(A+)ω+(A+)ω .

Remark 3.4.4. As a final coalgebra ζF
+

0 is an isomorphism, we can easily see
that F+(F+⊕0) ∼= F+⊕0 . Indeed, in Example 3.4.3, we have (A+)ω ∼= A+(A+)ω.
However, in this paper, mainly for the sake of simplicity of notations, we explicitly
distinguish them and later define categorical decorated trace semantics as a pair
dtr1(c) : X1 →p F+(F+⊕0) and dtr2(c) : X2 →p F+⊕0 of Kleisli arrows.

Remark 3.4.5. The definition of F+ is similar to that of the free monad F ∗

over F , which is defined as follows: for X ∈ C, the object F ∗X is the carrier
of an initial (F () + X)-algebra. For FA = A × (), while F+

A X
∼= A+X,

F ∗
AX
∼= A∗X. Similarly, the definition of F⊕ resembles that of free completely

iterative monad [80].

33

3.4.2 Lifting F+ and F⊕ over Kℓ(T)

In order to take the “Kleisli approach” with the functors F+ and F⊕, we have
to lift them to the Kleisli category.

We show that under certain conditions, a lifting F : Kℓ(T) → Kℓ(T) of F
induces liftings F+ : Kℓ(T)→ Kℓ(T) of F+ and F⊕ : Kℓ(T)→ Kℓ(T) of F⊕.

Definition 3.4.6.

1. Assume T and F (+A) constitute a finite trace situation for each A ∈ C.
For X ∈ C, we let F+X := F+X. For f : X →p Y , we define F+f :
F+X →p F+Y as the unique homomorphism from F (idF+X + f)⊙J(ιFX)−1

to J(ιFY)
−1.

2. Assume T and F (+ A) constitute an infinitary trace situation for each

A ∈ C. For X ∈ C, we let F⊕X := F⊕X. For f : X →p Y , we define F⊕f :
F⊕X →p F⊕Y as the greatest homomorphism from F (idF⊕X + f)⊙JζFX to
JζFY .

F (F+X + Y)
�

F (F+f+idF+X)

// F (F+Y + Y)

F (F+X +X)

_F (id+f)
OO

F+X

_∼=J(ιFX)−1 OO
�F+f //

=

F+Y

_∼=J(ιFY)−1

OO
F (F⊕X + Y)

�
F (F⊕f+idF⊕X)

// F (F⊕Y + Y)

F (F⊕X +X)

_F (id+f)
OO

F⊕X

_∼=JζF
X

OO
�F⊕f //

=ν

F⊕Y

_∼=JζF
Y

OO

Remark 3.4.7. It is known that J : C → Kℓ(T) preserves coproducts (see
e.g. [60]). This implies that if a lifting F of F is given then a lifting F (+A) :
Kℓ(T) → Kℓ(T) of F (+ A) is given by F (+ A), a composition of of F :
Kℓ(T)→ Kℓ(T) and (+ A) : Kℓ(T)→ Kℓ(T) (note that the last + denotes the
coproduct in Kℓ(T)).

We have to check functoriality of F+ and F⊕, and that they are indeed liftings
of F+ and F⊕. Functoriality of F+ is easily proved by the finality. In contrast,
functoriality of F⊕ does not necessarily hold.

Example 3.4.8. We define F : Sets → Sets by F = {o} × () × (). Let
X = {x} and Y = {y1, y2}, and define f : X →p Y and g : Y →p X in Kℓ(Ds) by
f(x) = [y1 7→ 1

2 , y2 7→
1
2] and f(y1) = f(y2) = [x 7→ 1]. In a similar manner

to Example 3.4.3, we can show that F⊕X is isomorphic to the set of possibly
infinite binary trees whose depth is greater than 1, nodes are labeled with o and
leaves are labeled with x. A set F⊕Y is similar. Let tX ∈ F⊕X be an element
identified with a tree o(x, o(x, o(x, . . .))). For each tY ∈ F⊕Y ,

F⊕f(tX)(tY) = J(ζFY)−1⊙F (F⊕f+idY)⊙F (id+f)⊙ζFX(tX)(tY) =
1

2
F⊕f(tX)(tY) .

This implies F⊕f(tX)(tY) = 0, and therefore F⊕g ⊙ F⊕f(tX)(tX) = 0. In
contrast, idX : X →p X is a homomorphism from F (id+g)⊙F (id+f)⊙JζFX = JζFX
to itself, and idX(tX)(tX) = 1 ̸= 0. Hence F⊕(g⊙f)(tX)(tX) ≥ 1, and this means
that the operation F⊕ does not satisfy the functoriality.

Hence we need an extra assumption to make F⊕ a functor. We hereby assume
a stronger condition than is needed for the sake of discussions in Section 3.4.

34

FX �Fl // F (νF) �Fm / / FY
_σ
��

X �l //

_c
OO

=ν

νF �m //

_JζF ∼=
OO

=ν

Y

Definition 3.4.9. Assume that T and F consti-
tute an infinitary trace situation. Let ζF : νF →
F (νF) be a final F -coalgebra. We say that T and
F satisfy the gfp-preserving condition with respect
to an F -algebra σ : FY →p Y if for each X ∈ C and c : X →p FX, if l : X →p Z
is the greatest homomorphism from c to JζF and the function ΦJζF ,σ (Defini-
tion 2.4.22) has the greatest fixed point m : Z →p Y , then m ⊙ l : X →p Y is the
greatest fixed point of Φc,σ.

We next check if F+ and F⊕ are liftings of F+ and F⊕. We can easily prove
F+JX = JF+X and F⊕JX = JF⊕X for each X ∈ C by definition. It remains
to prove F+Jf = JF+f and F+Jf = JF⊕f for each f : X → Y . The former is
immediate by the finality of J(ιFY)

−1. The latter again requires an assumption.

FX �Fu // F (νF)

X �Ju //

_Jc

OO
=ν

νF

_JζF ∼=
OO

Definition 3.4.10. Assume that T and F constitute an in-
finitary trace situation. Let ζF : νF → F (νF) be a final
F -coalgebra. We say that T and F satisfy the deterministic-
greatest condition if for c : X → FX in C, if u : X → νF is
the unique homomorphism from c to ζF then Ju is the greatest homomorphism
from Jc to JζF .

We now give conditions for the functors in Definition 3.4.6 to be liftings.

Proposition 3.4.11.

1. If T and F (+ A) constitute a finite trace situation for each A ∈ C, the
operation F+ in Definition 3.4.6 is a functor and moreover a lifting of F+.

2. If T and F (+ A) constitute an infinitary trace situation, satisfy the gfp-
preserving condition with respect to an arbitrary algebra and satisfy the
deterministic-greatest condition for each A ∈ C, then the operation F⊕ in
Definition 3.4.6 is a functor and moreover a lifting of F⊕.

Proposition 3.4.11.2 is proved using the following lemma.

Lemma 3.4.12. Assume that T and F constitute an infinitary trace situation
and satisfy the gfp-preserving condition (Definition 3.4.9). For each X,A,B ∈ C,
c : X →p F (X+A) and f : A→p B, if l : X →p F⊕A is the greatest homomorphism
from c to JζFA , then F⊕f ⊙ l : X →p F⊕B is the greatest homomorphism from
F (idX + f)⊙ c to JζFB .

F (X +B) �F (l+id) // F (F⊕A+B) �F (F⊕f+id) // F (F⊕B +B)

F (X +A) �F (l+id) //

_F (id+f)

OO

F (F⊕A+A)

_F (id+f)

OO

X � l //

_c
OO

=ν

F⊕A �F⊕f //

_JζFA
∼=
OO

=ν

F⊕B

_JζFB
∼=

OO

Proof. By Lemma 2.4.23, F⊕f is the greatest fixed point of ΦJζFA ,J(ζFB)−1⊙F (id+f).

Moreover, the greatest homomorphism from F (idX+f)⊙c to JζFB is the greatest

35

fixed point of Φc,J(ζFB)−1⊙F (id+f).

F (X +A) �F (l+id) // F (F⊕A+A) �F (m+id) // F (F⊕B +A)

_F (id+f)
��

F (F⊕B +B)

_J(ζFB)−1∼= ��
X � l //

_c

OO

=ν

F⊕A �F⊕f //

_JζFA
∼=

OO

=ν

F⊕B

Hence it is immediate by the gfp-preserving condition.

Proof (Proposition 3.4.11). Item 1 is immediate by the finality. Item 2 is easily
proved by the gfp-preserving condition, the deterministic-greatest condition and
Lemma 3.4.12.

Hence under appropriate conditions, a lifting F : Kℓ(T) → Kℓ(T) of F gives
rise to those of F+ and F⊕. By repeating this, we can also define F+⊕.

We conclude this section by presenting the distributive laws (see Defini-
tion 3.1.4) corresponding to the liftings. The proofs are easy.

Proposition 3.4.13. Let λ : FT ⇒ TF be a distributive law from T to F . For
A,X ∈ C, we write λ̇A,X for λA+X ◦F [Tκ1◦ηA, Tκ2] : F (A+TX)→ TF (A+X).

1. Assume T and F (+A) constitute a finite trace situation for each A ∈ C.
For X ∈ C we define λ+,X : F+TX → TF+X as the unique homomorphism
from λ̇F+TX,X ⊙ J(ιFTX)−1 to J(ιFX)−1 (see the left diagram below). Then
λ+ := (λ+,X)X∈C is a natural transformation F+T ⇒ TF+ and moreover
a distributive law from T to F+.

2. Assume T and F (+ A) constitute an infinitary trace situation and sat-
isfy the gfp-preserving condition and the deterministic-greatest condition
for each A ∈ C. For X ∈ C, let λ⊕,X : F⊕TX → TF⊕X be the greatest
homomorphism from λ̇F⊕TX,X ⊙ JζFTX to JζFX (see the right diagram be-
low). Then λ⊕ := (λ⊕,X)X∈C is a natural transformation F⊕T ⇒ TF⊕and
moreover a distributive law from T to F⊕.

F (F+TX +X) �F (λ+,X+id)
// F (F+X +X)

F (F+TX + TX)

_λ̇F+TX,X

OO

F+TX

_∼=J(ιFTX)−1
OO

�λ+,X //

=

F+X

_∼=J(ιFX)−1

OO
F (F⊕TX +X) �F (λ⊕,X+id)

// F (F⊕X +X)

F (F⊕TX + TX)

_λ̇F⊕TX,X

OO

F⊕TX

_∼=JζFTX

OO

�λ⊕,X //

=ν

F⊕X

_∼=JζFX

OO

3.4.3 Decorated Trace Semantics

In this section, we categorically generalize Definition 3.4.1 and define decorated
trace semantics for Büchi (T, F)-systems.

Assumption 3.4.14. Throughout this section, let T be a monad and F be an
endofunctor on C, and assume that each homset of Kℓ(T) carries a partial order
⊑. We further assume the following conditions for each A ∈ C.

1. F+, F+⊕ : C→ C are well-defined and a lifting F is given.

2. T and F (+A) satisfy the conditions in Theorem 3.1.13.

3. T and F+(+A) constitute an infinitary trace situation (Definition 3.1.10).

36

4. T and F+(+ A) satisfy the gfp-preserving condition with respect to an
arbitrary algebra σ (Definition 3.4.9).

5. T and F+(+A) satisfy the deterministic-greatest condition (Definition 3.4.10).

6. The liftings F+(+A) and F+⊕(+A) are obtained from F (+A) and
F+(+A) using the procedure in Definition 3.4.6 (see also Remark 3.4.7).

7. Liftings F+(+A) and F+⊕(+A) are locally monotone.

Under the above assumptions, using the datatypes defined in the previous
section, we can categorically define decorated Büchi trace semantics as follows.

Definition 3.4.15 (dtri(c)). Let X =
(
X, c, (X1, X2)

)
be a Büchi (T, F)-system.

The (coalgebraic) decorated trace semantics of X is a pair(
dtr1(c) : X1 →p F+(F+⊕0) , dtr2(c) : X2 →p F+⊕0

)
of arrows that is the greatest fixed point of the following endofunction with respect
to the product order induced by ⊑.

(v1, v2) 7→
(
JιFF+⊕0⊙F (v1 + v2)⊙ c1, J

(
(ζF

+

0)−1 ◦ ιFF+⊕0

)
⊙F (v1 + v2)⊙ c2

)
∈ Kℓ(T)

(
X1, F

+(F+⊕0)
)
×Kℓ(T)(X2, F

+⊕0) (3.9)

Pictorially,

F (X1 +X2)
�

F (v1 + v2)
//

=ν

F
(
F+(F+⊕0) + F+⊕0

)

X1

_c1

OO

� v1 // F+(F+⊕0)

_J(ιF
F+⊕0

)−1∼=

OO
F (X1 +X2)

�
F (v1 + v2)

//

=ν

F (F+(F+⊕0) + F+⊕0)

F+(F+⊕0)

_J(ιF
F+⊕0

)−1∼=
OO

X2

_c2

OO

�v2 // F+⊕0 .

_JζF+

0
∼=
OO

We write dtr(c) for dtr1(c) + dtr2(c) : X1 +X2 →p F+(F+⊕0) + F+⊕0 .

Example 3.4.16. We continue Example 3.2.2. With respect to the bijection
AccRun(A) ∼= A+(A+)ω +(A+)ω in Example 3.4.3, we have: DecLB

A = dtr1(cA)+
dtr2(cA). See Section 3.6 for a proof that also covers parity automata.

3.5 Logical Fixed Point vs. Categorical Fixed Point

In Sections 3.3–3.4, we have introduced two categorical characterizations for lan-
guages of Büchi automata. In this section we investigate their relationship. We
first explain the intuition using the running example.

Example 3.5.1. Let A = (X, τ,Acc) be a nondeterministic Büchi word automa-
ton. Recall that LB

A has a type X → P(Aω) (Definition 2.2.9) while DecLB
A has a

type X → P(AccRun(A)) where AccRun(A) ⊆ (A×{ , })ω (Definition 3.4.1).
We define a function p : AccRun(A)→ Aω by

p
(
(a0, •0)(a1, •1) . . .

)
:= a0a1

Then by the definitions of LB
A and DecLB

A, we have LB
A(x) = Pp(DecLB

A(x)) for
each x ∈ X. With respect to the isomorphism AccRun(A) ∼= (A+)ω + A+(A+)ω

in Example 3.4.3, p has a type (A+)ω + A+(A+)ω → Aω, and it is given by the
canonical “flattening” function.

37

Categorically, the function p above is given as follows.

Definition 3.5.2. We define p1 : F+(F+⊕0) → F⊕0 and p2 : F+⊕0 → F⊕0 so
that [p1, p2] is the unique homomorphism from (ιFF+⊕0)

−1 ◦ [id, ζF+

0] to ζF0 .

F
(
F+(F+⊕0) + F+⊕0

)
F [p1,p2]

// F (F⊕0)

F+(F+⊕0)

(ιF
F+⊕0

)−1
OO

F+(F+⊕0) + F+⊕0

[id,ζF
+

0]

OO

[p1,p2] // F⊕0

ζF0
final∼=

OO
(3.10)

Example 3.5.3. Let FA = A × (). According to the characterizations in Ex-
ample 3.4.3, p1 and p2 have types A+(A+)ω → Aω and (A+)ω → Aω respectively,
and are given by the canonical flattening functions. See also Proposition 3.7.5.

The arrows p1 and p2 relate trB(c) and dtr(c) as follows.

Theorem 3.5.4. Assume that T and F constitute a Büchi trace situation (Defi-
nition 3.3.1) and satisfy Assumption 3.4.14. Then for each a Büchi (T, F)-system
(X, c, (X1, X2)), we have Jp1 ⊙ dtr1(c) = trB1 (c) and Jp2 ⊙ dtr2(c) = trB2 (c).

F (X1 +X2)

=ν

�
F (dtr1(c)+dtr2(c))

//

�
,,

F (F+(F+⊕0) + F+⊕0)

=

�
JF [p1,p2]

// F (F⊕0)

X1

_c1

OO

�dtr1(c) //
�

trB1 (c)

22F+(F+⊕0)

_J(ιF
F+⊕0

)−1∼=

OO

�Jp1 // F⊕0

_JζF0∼=

OO
(3.11)

F (X1 +X2)

=ν

�
F (dtr1(c)+dtr2(c))

//

�
,,

F (F+(F+⊕0) + F+⊕0)

=

�
JF [p1,p2]

// F (F⊕0)

F+(F+⊕0)

_J(ιF
F+⊕0

)−1∼=
OO

X2

_c2

OO

�dtr2(c) //
�

trB2 (c)

22F+⊕0

_JζF
+

0
∼=
OO

�Jp2 // F⊕0

_JζF0∼=

OO
(3.12)

A full proof covering parity automata is found in Section 3.6. In the rest of
this section, we sketch the proof for Büchi (T, F)-systems to explain the intuition.

We defined trB1 (c) and trB2 (c) as a solution of an HES (3.4). Recall from Defini-
tion 2.3.6 that when we are solving (3.4), we calculate the following intermediate

data: l
(1)
1 , f ‡2 , l

(2)
2 and l

(2)
1 .

In contrast, dtr1(c) and dtr2(c) are simultaneously calculated as the greatest
fixed point (Definition 3.4.15). However, their codomains F+(F+⊕0) and F+⊕0
were defined in a hierarchized manner (see Section 3.4.1). Because of this, we
can give the following “hierarchized” definition of dtr1(c) and dtr2(c) that is in
parallel with the procedure to solve the HES (3.4).

Definition 3.5.5 (l̃
(1)
1 , c‡2, l̃

(2)
2 , l̃

(2)
1). We define Kleisli arrows l̃

(1)
1 : X1 →p F+X2,

c‡2 : X2 →p F+X2, l̃
(2)
2 : X2 →p F+⊕0 and l̃

(2)
1 : X1 →p F+⊕0 as follows:

• We define l̃
(1)
1 : X1 →p F+X2 as the greatest homomorphism from an F (+

X2)-coalgebra c1 to J(ιFX2
)−1.

38

F (X1 +X2)
�F (l̃
(1)
1 +id)

// F (F+X2 +X2)

X1

_c1
OO

�l̃
(1)
1 //

=ν

F+X2

_J(ιFX2
)−1∼=

OO (3.13)

• We define c‡2 : X2 →p F+X2 by:

c‡2 :=
(
X2 pc2−→F (X1 +X2) pF (l̃

(1)
1 +id)

−−−−−−→F (F
+X2 +X2) p

JιFX2−−−→F
+X2

)
.

• Define l̃
(2)
2 : X2 →p F+⊕0 as the greatest homomorphism from c‡2 to JζF

+

0 .

F+X2
�F+(l̃

(2)
2)
// F+(F+⊕0)

X2

_c‡2

OO

�l̃
(2)
2 //

=ν

F+⊕0

_JζF
+

0
∼=
OO

• We define l̃
(2)
1 : X1 →p F+(F+⊕0) as follows:

l̃
(2)
1 :=

(
X1 pl̃

(1)
1−−→F

+X2 pF+ l̃
(2)
2−−−−→F

+(F+⊕0)
)
.

Each of these four data is related to dtr1(c) and dtr2(c) as follows.

Lemma 3.5.6. We have the following:

1. For v2 : X2 →p F+(F+⊕0), F+v2 ⊙ l̃
(1)
1 is the greatest fixed point of the

following function.(
X1

�v1// F+(F+⊕0)
)
7→

 F (X1 +X2)
�F (v1+v2)// F (F+(F+⊕0) + F+⊕0)

_JιF
F+⊕0

∼= ��
X1

_c1
OO

F+(F+⊕0)


(3.14)

2. For v2 : X2 →p F+(F+⊕0), J(ζF
+

0)−1 ⊙ F+v2 ⊙ c‡2 = J
(
(ζF

+

0)−1 ◦ ιFF+⊕0

)
⊙

F (v1 + v2)⊙ c2. Pictorially,
F+X2

�F+v2// F+(F+⊕0)
_J(ζF

+

0)−1∼= ��
X2

_c‡2

OO

F+⊕0

=



F (X1 +X2)
�F (v1+v2)// F (F+(F+⊕0) + F+⊕0)

_JιF
F+⊕0

∼= ��
F+(F+⊕0)

_J(ζF
+

0)−1∼= ��
X2

_c2

OO

F+⊕0


.

3. l̃
(2)
2 = dtr2(c).

4. l̃
(2)
1 = dtr1(c).

We next show the relationship between l
(1)
1 , f ‡2 , l

(2)
2 and l

(2)
1 (intermediate

data for the HES (3.4)), and l̃
(1)
1 , c‡2, l̃

(2)
2 and l̃

(2)
1 defined above.

The main difference between them is that while l
(1)
1 (u2) is defined as the least

fixed point, l̃
(1)
1 is the greatest homomorphism. The key to filling in this gap is

that by Assumption 3.4.14.2 and Theorem 3.1.13, the coalgebra J(ιFF+⊕0)
−1 in

39

(3.11) is a final coalgebra. This implies that F+v2 ⊙ l̃(1)1 , which is the greatest
fixed point of (3.14), is also the least fixed point.

F (X1 + F+⊕0)

=

�

F (l̃
(1)
1 +id)

// F (F+X2 + F+⊕0)

=

�

F
(
F+v2+id

)// F (F+(F+⊕0) + F+⊕0)

F (X1 +X2)

_F (id+v2)

OO

=

�

F (l̃
(1)
1 +id)

// F (F+X2 +X2)

_F (id+v2)

OO

X1

_c1

OO

�l̃
(1)
1 // F+X2

_J(ιFX2
)−1∼=

OO

�F+v2 // F+(F+⊕0)

_J(ιF
F+⊕0

)−1∼=

OO

Following this observation, we can prove the following lemma, which relate

l
(1)
1 , f ‡2 , l

(2)
2 and l

(2)
1 , and and l̃

(1)
1 , c‡2, l̃

(2)
2 and l̃

(2)
1 one by one.

Lemma 3.5.7. Define ξF
+⊕

: F+(F⊕0) → F⊕0 by ξF
+⊕

:= a ◦ κ1, where a is
the unique homomorphism from

[
(ιFF⊕0)

−1, Fκ2 ◦ ζF0
]
to a final coalgebra ζF0 .

F (F+(F⊕0) + F⊕0)
Fa

// F (F⊕0)

F (F+(F⊕0) + F⊕0) + F (F⊕0)

[id,Fκ2]
OO

F+(F⊕0)
κ1 // F+(F⊕0) + F⊕0

(ιF
F⊕0

)−1+ζF0
∼=
OO

a // F⊕0

final
∼= ζF0

OO

1. For u2 : X2 →p F⊕0,(
X1 pl

(1)
1 (u2)−−−−→ F⊕0

)
=
(
X1 pl̃

(1)
1−−→ F+X2 pF+u2−−−→ F+(F⊕0) pξF

+⊕

−−−→ F⊕0
)
.

2. For u2 : X2 →p F⊕0, f ‡2(u2) = JξF
+⊕ ⊙ F+u2 ⊙ c‡2. Pictorially,

(
X2 pf‡

2 (u2)−−−−→ F⊕0
)

=

 F+X2
�F+u2// F+(F⊕0)

_
JξF

+⊕
��

X2

_c‡2

OO

F+⊕0

 .

3. l
(2)
2 (∗) = Jp2 ⊙ l̃(2)2 .

4. l
(2)
1 (∗) = Jp2 ⊙ l̃(2)1 .

Lemma 3.5.6.3–4 and Lemma 3.5.7.3–4 together imply Theorem 3.5.4.

3.6 Extension to Parity Automata

In this section, we extend the framework in Sections 3.2–3.5 to systems with the
parity acceptance condition.

3.6.1 Categorical Representation of parity Automata

This section generalizes Section 3.2. The following definition corresponds to
Definition 3.2.1.

Definition 3.6.1 (parity (T, F)-system). Let n ∈ N. A parity (T, F)-system is
a triple X =

(
X, c, (X1, . . . , X2n)

)
of an object X ∈ C, a TF -coalgebra c : X →

TFX and a tuple of objects X1, . . . , X2n ∈ C such that X = X1+ · · ·+X2n. For
i ∈ {1, . . . , 2n}, we write ci for c ◦ κi : Xi → FX.

40

Intuitively, Xi is the set of states whose priorities are i.

Example 3.6.2. Let FA := A × (). An A-labeled nondeterministic parity
word automaton (see Remark 2.2.11) A = (X, τ, p) where p : X → {1, . . . , 2n}
induces a (P, FA)-system XA = (X, cA, (X1, . . . , X2n)) defined by cA := τ and
Xi := {x ∈ X | p(x) = i} for each i ∈ {1, . . . , 2n}.

3.6.2 Characterization via Logical Fixed Point: Parity Case

In this section, we extend the discussions in Section 3.3.
The following generalizes Definition 3.3.1.

Definition 3.6.3 (trpi (c)). Let F be an endofunctor and T be a monad on a
category C. Assume that a F is equipped with a lifting F : Kℓ(T)→ Kℓ(T), and
each homset of Kℓ(T) carries a partial order ⊑. We say that F and T constitute
a parity trace situation with respect to ⊑ if they satisfy the following conditions:

• A final F -coalgebra ζF : νF → F (νF) exists.

• For each parity (T, F)-system (X, c, (X1, . . . , X2n)), the following HES has
a solution (here µ and ν appear in the alternating manner).

Ec =


u1 =µ Jζ−1 ⊙ F [u1, . . . , u2n]⊙ c1 ∈ (Kℓ(T)(X1, νF),⊑X1,νF)

u2 =ν Jζ−1 ⊙ F [u1, . . . , u2n]⊙ c2 ∈ (Kℓ(T)(X2, νF),⊑X2,νF)...
u2n =ν Jζ−1 ⊙ F [u1, . . . , u2n]⊙ c2n ∈ (Kℓ(T)(X2n, νF),⊑X2n,νF)

The solution of Ec is denoted by
(
trpi (c) : Xi →p νF

)
1≤i≤2n

and is called the

(coalgebraic) parity trace semantics of X . Using diagrams, the HES is as follows:

FX �
F [u1, . . . , u2n]

//

=µ

F (νF)

X1

_c1

OO

�u1 // νF ,

_JζF ∼=
OO

FX �
F [u1, . . . , u2n]

//

=ν

F (νF)

X2

_c2

OO

�u2 // νF , . . . ,

_JζF ∼=
OO

FX �
F [u1, . . . , u2n]

//

=ν

F (νF)

X2n

_c2n

OO

�u2n // νF .

_JζF ∼=
OO

(3.15)

Note that the notions of Büchi (T, F)-system (Definition 3.2.1) and Büchi
trace semantics (Definition 3.3.1) are special cases of parity (T, F)-system and
parity trace semantics.

Example 3.6.4. We continue Example 3.6.2. For each i ∈ {1, . . . , 2n}, trpi (cA)
has a type Xi →p Aω (i.e. Xi → P(Aω)), and is given by trpi (cA)(x) = Lp

A(x) for
x ∈ Xi (see Section 3.7 for a proof covering parity tree automata).

3.6.3 Characterization via Categorical Fixed Point: Parity Case

This section generalizes Section 3.4. Recall that we have used objects F+(F+⊕0)
and F+⊕0, and coalgebras (ιFF+⊕0)

−1 and (ιFF+⊕0)
−1 ◦ζF+

0 in the definition of cat-
egorical decorated trace semantics of Büchi (T, F)-systems X = (X, c, (X1, X2))
(Definition 3.4.15). They were components of the following chain of (co)algebras:

F+⊕0
ζF

+

0 ,∼=−−−−→ F+(F+⊕0)
ιF
F+⊕0

,∼=
←−−−−− F (F+(F+⊕0) + F+⊕0) .

Similarly, for defining coalgebraic decorated trace semantics of a parity (T, F)-
system X = (X, c, (X1, . . . , X2n)) we use a chain whose first component is F (+⊕)n0
(here (+⊕)n denotes n-repetition of +⊕).

41

Definition 3.6.5 (F ‡
i , F

(i)
j , α

(i)
j , β

(i)
j). For i ∈ N, we define F ‡

i : C → C by

F ‡
i := F (+⊕)l if i = 2l and F ‡

i := F (+⊕)l+ if i = 2l + 1. For i ∈ N and j ∈ [0, i],

we inductively define F
(i)
j : C→ C as follows:

• F (i)
i := F ‡

i ; and

• F (i)
j := F ‡

j

(⨿i
k=j+1 F

(i)
k () +

)
for j < i.

We define an (isomorphic) natural transformation α
(i)
j : F

(i)
j ⇒ F

(i)
j−1 as follows:

α
(i)
j,X :=


(
ι
F ‡
j−1⨿i
k=j+1 F

(i)
k X+X

)−1
(j is odd)

ζ
F ‡
j−1⨿i
k=j+1 F

(i)
k X+X

(j is even) .

Moreover, we define a natural transformation β
(i)
j : F

(i)
j ⇒ F

(i)
0 by:

β
(i)
j,X :=

(
F

(i)
j X

α
(i)
j,X−−−→ F

(i)
j−1X

α
(i)
j−1,X−−−−→ · · ·

α
(i)
1,X−−−→ F

(i)
0 X

)
.

The naturality of α
(i)
j is proved by Definition 3.4.2, and it follows the natu-

rality of β
(i)
j .

Example 3.6.6. We continue Example 3.6.4. Analogously to Example 3.4.3, we

can identify F
(i)
j with a set of “decorated runs” as follows:

F
(i)
j X ∼=

{
(a0, p0) . . . (ak, pk)x ∈ (A× {1, . . . , i})+ ×X | p0 = j

}
∪
{
(a0, p0)(a1, p1) . . . ∈ (A× {1, . . . , i})ω | p0 = j, lim supi→∞pi is even

}
.

We next consider generalizing Definition 3.6.8. For parity (T, F)-systems, we
modify Assumption 3.4.14 as follows.

Assumption 3.6.7. Let T be a monad and F be an endofunctor on C. Assume
that each homset of Kℓ(T) carries a partial order ⊑. We further assume the
following conditions for each n ∈ N and A ∈ C.

1. F ‡
n : C→ C is well-defined and a lifting F ‡

n : Kℓ(T)→ Kℓ(T) of F ‡
n is given.

2. If n is even, T and F ‡
n(+A) satisfy the conditions in Theorem 3.1.13.

3. If n is odd, T and F ‡
n(+A) constitute an infinitary trace situation.

4. If n is odd, T and F ‡
n(+ A) satisfy the gfp-preserving condition for an

arbitrary σ.

5. If n is odd, T and F ‡
n(+A) satisfy the deterministic-greatest condition.

6. The lifting F ‡
n+1 is obtained from F ‡

n using the procedure in Definition 3.4.6.

7. For n ∈ N and A ∈ C, F ‡
n(+A) is locally monotone.

The following definition is a straight-forward generalization of Definition 3.4.15.

42

Definition 3.6.8 (dtri(c)). For a parity (T, F)-system (X, c, (X1, . . . , X2n)), we

define its decorated parity trace semantics (dtri(c) : Xi →p F
(2n)
i 0)1≤i≤2n as the

greatest fixed point of the following function with respect to the product order:
v1,
v2,
...
v2n

 7→

J(β

(2n)
1,0)−1 ⊙ F (v1 + · · ·+ v2n)⊙ c1,

J(β
(2n)
2,0)−1 ⊙ F (v1 + · · ·+ v2n)⊙ c2,

...

J(β
(2n)
2n,0)

−1 ⊙ F (v1 + · · ·+ v2n)⊙ c2n

 ∈
(Kℓ(T)(X1, F

(2n)
1 0),⊑)

×(Kℓ(T)(X2, F
(2n)
2 0),⊑)

× · · ·
×(Kℓ(T)(X2n, F

(2n)
2n 0),⊑)

(3.16)

Pictorially,

FX
�

F (v1 + · · ·+ v2n)
//

=ν

F
(⨿

F
(2n)
j 0

)
X1

_c1

OO

�v1 // F (2n)
1 0

_Jβ(2n)
1,0

∼=
OO

FX
�

F (v1 + · · ·+ v2n)
//

=ν

F
(⨿

F
(2n)
j 0

)
X2

_c2

OO

�v2 // F (2n)
2 0

_Jβ(2n)
2,0

∼=
OO . . .

FX
�

F (v1 + · · ·+ v2n)
//

=ν

F
(⨿

F
(2n)
j 0

)
X2n

_c2n

OO

�v2n // F (2n)
2n 0 .

_Jβ(2n)
2n,0

∼=
OO

3.6.4 Logical Fixed Point vs. Categorical Fixed Point: Parity Case

This section generalizes Section 3.5. We first generalize p1 and p2 in Defini-
tion 3.5.2. We shall define their generalizations as natural transformations.

Definition 3.6.9 (p
(i)
j). For i ∈ N and

j ∈ {1, . . . , i}, we define p
(i)
j : F

(i)
j ⇒ F⊕

so that [p
(i)
1,X , . . . , p

(i)
i,X] :

⨿i
j=1 F

(i)
j (X) →

F⊕X is the unique homomorphism from

[β
(i)
1,X , . . . , β

(i)
i,X] to ζFX .

F (
⨿i

j=1F
(i)
j X +X)

F ([p
(i)
1,X ,...,p

(i)
i,X]+idX)

// F (F⊕X +X)

⨿i
j=1F

(i)
j X

[β
(i)
1,X ,...,β

(i)
i,X]

OO

[p
(i)
1,X ,...,p

(i)
i,X]

// F⊕X

ζF
X

final∼=

OO

The following theorem generalizes Theorem 3.5.4.

Theorem 3.6.10. For each i ∈ {1, . . . , 2n}, trpi (c) = p
(2n)
i,0 ◦ dtri(c).

The rest of this section (upto page 57) is devoted to proving the above the-
orem following the intuition explained in Section 3.5. We have to prove many
sublemmas and lemmas. Their dependencies are as follows.

Sublemma 3.6.19 Sublemma 3.6.20

Sublemma 3.6.21 Sublemma 3.6.22

Sublemma 3.6.23 Sublemma 3.6.24

Sublemma 3.6.18

Lemma 3.6.15

Sublemma 3.6.25Lemma 3.6.12

Sublemma 3.6.13

Lemma 3.6.14

Theorem 3.6.10

//

�� $$zz

�� zz

,,
--

uu))

++ uu

,, rr��

(3.17)

Firstly, we generalize Definition 3.5.5.

Definition 3.6.11 (c‡i , l̃
(i)
j). For i ∈ {1, . . . , 2n} and j ∈ {1, . . . , i}, using α(i)

j and

β
(i)
j defined in Definition 3.6.5, we inductively define c‡i : Xi →p F ‡

i−1(Xi+· · ·+X2n)

and l̃
(i)
j : Xj →p F (i)

j (Xi+1 + · · ·+X2n) as follows (no need to distinguish the base
case from the step case):

43

• c‡i : Xi →p F ‡
i−1(Xi + · · ·+X2n) is defined by:

c‡i :=


Xi pci−→ F (X1 + · · ·+X2n) p

F (l̃
(i−1)
1 +···+l̃

(i−1)
i−1 +idXi

+···+idX2n
)

−−−−−−−−−−−−−−−−−−−−−−−−→
F (
⨿i−1

j=1F
(i−1)
j (Xi + · · ·+X2n) +Xi + · · ·+X2n)

= F
(i−1)
0 (Xi + · · ·+X2n) p

(β
(i−1)
i−1,Xi+···+X2n

)−1

−−−−−−−−−−−−−→F
‡
i−1(Xi + · · ·+X2n)

 .

• l̃(i)i : Xi →p F (i)
i (Xi+1 + · · ·+X2n) is defined as follows:

– If i = 2k−1, we define l̃(i)i : Xi →p F (i)
i (Xi+1+· · ·+X2n) = F (+⊕)k−1+(Xi+1+

· · ·+X2n) as the unique homomorphism from c‡i to Jα
(i)
i,Xi+1+···+X2n

(
=

J(ιF
(+⊕)k−1

Xi+1+···+X2n
)−1
)
(see Assumption 3.6.7.2).

F (+⊕)k−1
(
Xi

+Xi+1 + · · ·+X2n

)
�

F (+⊕)k (l̃
(i)
i + idXi+1

+ · · ·+ idX2n
)

// F (+⊕)k−1

(
F (+⊕)k−1+(Xi+1 + · · ·+X2n)

+Xi+1 + · · ·+X2n

)

Xi

_c‡i
OO

� l̃
(i)
i //

=

F (+⊕)k−1+(Xi+1 + · · ·+X2n) .

_
J(ιF

(+⊕)k−1

Xi+1+···+X2n
)−1∼=

OO

– If i = 2k, we define l̃
(i)
i : Xi →p F (i)

i (Xi+1+ · · ·+X2n) = F (+⊕)k(Xi+1+

· · ·+X2n) as the greatest homomorphism from c‡i to Jα
(i)
i,Xi+1+···+X2n

(
=

JζF
(+⊕)k−1

Xi+···+X2n

)
(see Assumption 3.6.7.3).

F (+⊕)k−1+
(
Xi

+Xi+1 + · · ·+X2n

)
�

F (+⊕)k−1+(l̃
(i)
i + idXi+1

+ · · ·+ idX2n
)

// F (+⊕)k−1+

(
F (+⊕)k (Xi+1 + · · ·+X2n)

+Xi+1 + · · ·+X2n

)

Xi

_c‡i
OO

� l̃
(i)
i //

=ν

F (+⊕)k(Xi+1 + · · ·+X2n) .

_
JζF

(+⊕)k−1+

Xi+1+···+X2n

∼=
OO

• For j < i, l̃
(i)
j : Xj →p F (i)

j (Xi+1 + · · ·+X2n) is defined by:

l̃
(i)
j :=


Xj p

l̃
(i−1)
j−−−→F

(i−1)
j (Xi +Xi+1 + · · ·+X2n) p

F
(i−1)
j (l̃

(i)
i +JidXi+1+···+X2n

)
−−−−−−−−−−−−−−−−−−−→

F
(i−1)
j (F

(i)
i (Xi+1 + · · ·+X2n) +Xi+1 + · · ·+X2n)

= F
(i)
j (Xi+1 + · · ·+X2n)

 .

Here the last equality is by the following lemma.

Lemma 3.6.12. For i ∈ N and j ∈ {0, . . . , i}, F (i)
j (F

(i+1)
i+1 () +) = F

(i+1)
j .

Proof. We prove the statement by the induction on j.
If j = i then the statement is immediate by definition.

44

If j = 2l − 1 < i, we have:

F
(i)
j (F

(i+1)
i+1 () +)

= F (+⊕)l−1+
(i⨿
k=2l

F
(i)
k (F

(i+1)
i+1 () +) + F

(i+1)
i+1 () +

)
(by definition)

= F (+⊕)l−1+
(i⨿
k=2l

F
(i+1)
k () + F

(i+1)
i+1 () +

)
(by IH)

= F (+⊕)l−1+
(i+1⨿
k=2l

F
(i+1)
k () +

)
= F

(i+1)
j (by definition).

We can similarly prove the statement when j is even.

The sublemma below generalizes Lemma 3.5.6.1–2. That is, it shows that if

j is odd (resp. even), not only l̃
(j)
j but also l̃

(i)
j with i > j is characterized as the

unique (resp. greatest) homomorphism.

Sublemma 3.6.13. Let i ∈ {1, . . . , 2n} and j ∈ {1, . . . , i}. For simplicity, we

write X
(i)
j for

⨿i
k=j+1 F

(i)
k (Xi+1 + · · · +X2n) +Xi+1 + · · · +X2n. Note that by

Definition 3.6.5, α
(i)
j,Xi+1+···+X2n

has a type F
(i)
j (Xi+1+ · · ·+X2n)→ F

(i)
j−1(Xi+1+

· · ·+X2n) = F ‡
j−1(F

(i)
j (Xi+1+ · · ·+X2n)+X

(i)
j) and hence is an F ‡

j−1(+X
(i)
j)-

coalgebra.

1. If j is odd, l̃
(i)
j : Xj →p F (i)

j (Xi+1 + · · ·+X2n) is the unique homomorphism

from an F ‡
j−1(+X

(i)
j)-coalgebra F ‡

j−1(idXj+
⨿i

k=j+1 l̃
(i)
k +idXi+1+···+X2n)⊙

c‡j to α
(i)
j,Xi+1+···+X2n

(
= J(ι

F ‡
j−1

X
(i)
j

)−1
)
.

2. If j is even, l̃
(i)
j : Xj →p F (i)

j (Xi+1+· · ·+X2n) is the greatest homomorphism

from an F ‡
j−1(+X

(i)
j)-coalgebra F ‡

j−1(idXj+
⨿i

k=j+1 l̃
(i)
k +idXi+1+···+X2n)⊙

c‡j to α
(i)
j,Xi+1+···+X2n

(
= Jζ

F ‡
j−1

X
(i)
j

)
.

Proof. Item 1 is easily proved by the finality of J(ι
F ‡
j−1

Xi+1+···+X2n
)−1. We prove

Item 2 by the induction on i.

If i = j, then the statement is immediate by the definition of l̃
(j)
j : Xj →p

F
(j)
j (Xj+1 + · · ·+X2n) (Definition 3.6.11).

Let i > j and assume that l̃
(i−1)
j : Xj →p F (i−1)

j (Xi+ · · ·+X2n) is the greatest

homomorphism from F ‡
j−1(idXj +

⨿i−1
k=j+1 l̃

(i−1)
k + idXi+···+X2n) ⊙ c

‡
j to Jζ

F ‡
j−1

X
(i−1)
j

.

By the definition of F
(i−1)
j , we have the following equation.

F
(i−1)
j (l̃

(i)
i + idXi+1+···+X2n)

= F ‡
j

(i−1⨿
k=j+1

F
(i−1)
k (l̃

(i)
i + idXi+1+···+X2n) + l̃

(i)
i + idXi+1+···+X2n

)

45

By the definition of a lifting F ‡
j (Definition 3.4.6.2), this means that F

(i−1)
j (l̃

(i)
i +

idXi+1+···+X2n) is the greatest homomorphism from F ‡
j−1

(
idXj+

⨿i−1
k=j+1 F

(i)
k (l̃

(i)
i +

idXi+1+···+X2n) + l̃
(i)
i + idXi+1+···+X2n

)
⊙ Jζ

F ‡
j−1

X
(i−1)
j

to Jζ
F ‡
j−1

X
(i)
j

. Hence by the gfp-

preserving condition, l̃
(i)
j = F

(i−1)
j (l̃

(i)
i + id) ⊙ l̃

(i−1)
j is the greatest homomor-

phism from F ‡
j−1

(
idXj +

⨿i−1
k=j+1 F

(i)
k (l̃

(i)
i +idXi+1+···+X2n)+ l̃

(i)
i +idXi+1+···+X2n

)
⊙

F ‡
j−1(id +

⨿i−1
k=j+1 l̃

(i−1)
k + idXi+1+···+X2n) ⊙ c

‡
j to Jζ

F ‡
j−1

X
(i)
j

. Here by the definition

of l̃
(i)
k , the former coalgebra can be transformed as follows:

F ‡
j−1

(
idXj +

i−1⨿
k=j+1

F
(i)
k (l̃

(i)
i + idXi+1+···+X2n) + l̃

(i)
i + idXi+1+···+X2n

)
⊙F ‡

j−1(id +
i−1⨿

k=j+1

l̃
(i−1)
k + id)⊙ c‡j

= F ‡
j−1

(
idXj +

(i−1⨿
k=j+1

F
(i)
k (l̃

(i)
i + idXi+1+···+X2n)⊙ l̃

(i−1)
k

)
+ l̃

(i)
i + idXi+1+···+X2n

)
⊙c‡j

= F ‡
j−1(idXj +

i⨿
k=j+1

l̃
(i)
k + idXi+1+···+X2n)⊙ c

‡
j .

Hence the statement is proved. See also Figure 3.1.

The above lemma implies the following. It generalizes Lemma 3.5.6.3–4.

Lemma 3.6.14. For each i ∈ {1, . . . , 2n}, l̃(2n)i = dtri(c).

Proof. Assume that j is odd. By Sublemma 3.6.13.1, l̃
(2n)
j is the unique homo-

morphism from F ‡
j−1(l̃

(i)
j + id⨿2n

k=j+1 Xk
)⊙ c‡j to α

(2n)
j,0 = J(ι

F ‡
j−1⨿2n
k=j+1 F

(2n)
k 0

)−1. This

means that it is also the greatest homomorphism.

F
‡
j−1

(Xj+

⨿2n
k=j+1F

(i)
k 0) �F ‡

j−1(l̃
(2n)
j +id)
// F‡

j−1
(F

(2n)
j

0+

⨿2n
k=j+1F

(2n)
k 0)

F ‡
j−1(Xj + · · ·+X2n)

_F ‡
j−1(id+

⨿2n
k=j+1 l̃

(2n)
k)

OO

Xj

_c‡j
OO

�l̃
(2n)
j //

=ν

F
(2n)
j 0

_
J(ι

F
‡
j−1⨿2n
k=j+1

F
(2n)
k

0
)−1∼=

OO

Hence by the definition of c‡j (Definition 3.6.11), l̃
(2n)
j is the greatest fixed

point of the following function.

f 7→

JιF
‡
j−1⨿2n
k=j+1 F

(2n)
k 0

⊙ F ‡
j−1(f + l̃

(2n)
j+1 + · · ·+ l̃

(2n)
2n)

⊙ J(β(j−1)
j−1,Xi+···+X2n

)−1 ⊙ F (l̃(i−1)
1 + · · ·+ l̃

(i−1)
i−1 + id⨿2n

k=i Xk
)⊙ cj


Note here that the right-hand side can be transformed as follows:

Jι
F ‡
j−1⨿2n
k=j+1 F

(2n)
k 0

⊙ F ‡
j−1(f + l̃

(2n)
j+1 + · · ·+ l̃

(2n)
2n)⊙ J(β(j−1)

j−1 ⨿2n
k=j Xk

)−1

46

F
‡ j
−
1

        X
j
+ ⨿ i k
=
j+

1
F

(i
)

k
(X

i+
1
+
··
·+

X
2
n
)

+
X

i+
1
+
··
·+

X
2
n

        
�

F
‡ j
−
1
(l̃
(i
−
1
)

j
+
id
)

// F
‡ j
−
1

         F
(i
−
1
)

j
(X

i+
1
+
··
·+

X
2
n
)+

⨿ i k
=
j+

1
F

(i
)

k
(X

i+
1
+
··
·+

X
2
n
)

+
X

i+
1
+
··
·+

X
2
n

         
�

// F
‡ j
−
1

         F
(i
)

j
(X

i+
1
+
··
·+

X
2
n
)+

⨿ i k
=
j+

1
F

(i
)

k
(X

i+
1
+
··
·+

X
2
n
)

+
X

i+
1
+
··
·+

X
2
n

         

F
‡ j
−
1

        X
j
+ ⨿ i−1 k
=
j+

1
F

(i
−
1
)

k
(X

i
+
··
·+

X
2
n
)

+
X

i
+
··
·+

X
2
n

        
�

F
‡ j
−
1
(l̃
(i
−
1
)

j
+
id
)

//

_
F

‡ j
−
1

(id
+
⨿ i−

1
k
=
j
+
1
F

(i
)

k
(l̃
(i
)

i
+
id
)+

l̃(
i) i
+
id
)OO

F
‡ j
−
1

          F
(i
−
1
)

j
(X

i
+
··
·+

X
2
n
)+

⨿ i−1 k
=
j+

1
F

(i
)

k
(X

i
+
··
·+

X
2
n
)

+
X

i
+
··
·+

X
2
n

          

_
F

‡ j
−
1

(id
+
⨿ i−

1
k
=
j
+
1
F

(i
)

k
(l̃
(i
)

i
+
id
)+

l̃(
i) i
+
id
)OO

F
‡ j−

1
(X

j
+
··
·+

X
2
n
)

_
F

‡ j
−
1
(i
d
+
⨿ i−

1
k
=
j
+
1
l̃(
i−

1
)

k
+
id
)

OO

X
j_

c‡ j

OO

�
l̃(
i−

1
)

j
//

=
ν

F
(i
−
1
)

j
(X

i
+
··
·+

X
2
n
)

_
J
ζ
F
‡ j
−
1

X
(i
−
1
)

j

∼ =

OO

�
F

(i
−
1
)

j
(l̃
(i
)

i
+
id
)

// F
(i
)

j
(X

i+
1
+
··
·+

X
2
n
)

_

J
ζ
F
‡ j
−
1

X
(i
)

j

∼ =

OO

F
ig
u
re

3.
1:
l̃(
i) j
:=

F
(i
−
1
)

j
(l̃
(i
)

i
+
id
)
⊙
l̃(
i−

1
)

j
is

th
e
gr
ea
te
st

h
om

om
or
p
h
is
m

47

⊙ F (l̃(j−1)
1 + · · ·+ l̃

(j−1)
j−1 + id⨿2n

k=i Xk
)⊙ cj

= Jι
F ‡
j−1⨿2n
k=j+1 F

(2n)
k 0

⊙ J(β(j−1)

j−1,
⨿2n

k=j F
(2n)
k 0

)−1 ⊙ F (j−1)
0 (f + l̃

(2n)
j+1 + · · ·+ l̃

(2n)
2n)

⊙ F (l̃(j−1)
1 + · · ·+ l̃

(j−1)
j−1 + id⨿2n

k=i Xk
)⊙ cj (by naturality of β

(j−1)
j−1)

= Jι
F ‡
j−1⨿2n
k=j+1 F

(2n)
k 0

⊙ J(β(j−1)

j−1,
⨿2n

k=j F
(2n)
k 0

)−1

⊙ F (l̃(2n)1 + · · ·+ l̃
(2n)
j−1 + f + l̃

(2n)
j+1 + · · ·+ l̃

(2n)
2n)⊙ cj (by Definition 3.6.11)

= Jι
F ‡
j−1⨿2n
k=j+1 F

(2n)
k 0

⊙ J(β(2n)j−1,0)
−1

⊙ F (l̃(2n)1 + · · ·+ l̃
(2n)
j−1 + f + l̃

(2n)
j+1 + · · ·+ l̃

(2n)
2n)⊙ cj (by Definition 3.6.5)

= J(β
(2n)
j,0)−1 ⊙ F (l̃(2n)1 + · · ·+ l̃

(2n)
j−1 + f + l̃

(2n)
j+1 + · · ·+ l̃

(2n)
2n)⊙ cj
(by Definition 3.6.5) .

Hence l̃
(2n)
j is the greatest fixed point of the following function:

f 7→ J(β
(2n)
j,0)−1 ⊙ F (l̃(2n)1 + · · ·+ l̃

(2n)
j−1 + f + l̃

(2n)
j+1 + · · ·+ l̃

(2n)
2n)⊙ cj .

We can similarly prove the same statement when j is even. Hence (l̃
(2n)
1 , . . . , l̃

(2n)
2n)

is the greatest fixed point of the function (3.16) in Definition 3.6.8, and this
concludes the proof.

We have generalized Lemma 3.5.6. We next generalize Lemma 3.5.7.

Lemma 3.6.15. For each i ∈ {1, . . . , 2n}, trpi (c) = p
(2n)
i,0 ◦ l̃

(2n)
i .

To prove this lemma, we first introduce a natural transformation. As men-
tioned in Remark 3.4.5, F⊕ resembles a monad called the free completely iterative
monad. The natural transformation is analogous to its multiplication.

Definition 3.6.16 (µF
⊕
). We define a natural transformation µF

⊕
: F⊕F⊕ ⇒

F⊕ by µF
⊕

:= (uX ◦ κ1)X∈C, where uX is the unique homomorphism from
[F [κ1, κ2] ◦ ζFF⊕X , F [κ2, κ3] ◦ ζ

F
X] to ζFX .

F (F⊕F⊕X + F⊕X +X)
F (uX+idX)

// F (F⊕X +X)

F (F⊕F⊕X + F⊕X) + F (F⊕X +X)

[F [κ1,κ2],F [κ2,κ3]]
OO

F⊕F⊕X + F⊕X

ζF
F⊕X

+ζFX
∼=
OO

uX // F⊕X

final∼= ζFX

OO

Example 3.6.17. For FA = A×(), according to the characterizations in Exam-
ple 3.4.3, µF

⊕
X has a type (A+)+

(
(A+)+X+(A+)ω

)
+(A+)ω → (A+)+X+(A+)ω,

and is given by the concatenating function that preserves each finite word.

We next prove two sublemmas (Sublemma 3.6.18 and 3.6.25). The following

one connects the intermediate solution of the HES in Definition 3.6.3 and l̃
(i)
j in

Definition 3.6.11.

Sublemma 3.6.18. For each i ∈ {1, . . . , 2n} and j ∈ {1, . . . , i}, let

l
(i)
j : Kℓ(T)(Xi+1, F

⊕0)× · · · × Kℓ(T)(X2n, F
⊕0)→ Kℓ(T)(Xi, F

⊕0)

48

be the intermediate solution of the HES in Definition 3.6.3 (note that νF in
Definition 3.6.3 is F⊕0). Then for (uk : Xk →p F⊕0)k∈{i+1,...,2n},

l
(i)
j (ui+1, . . . , u2n) = JµF

⊕
0 ⊙ Jp(i)

j,F⊕0
⊙ F (i)

j [ui+1, . . . , u2n]⊙ l̃(i)j . (3.18)

The proof of the above sublemma is very long. We have to prove six sublem-
mas (see (3.17)).

Sublemma 3.6.19. For A ∈ C, the unique homomorphism from [F [κ1, κ2] ◦
ζFF⊕A, F [κ2, κ3] ◦ ζ

F
A] to ζFA is given by [µF

⊕
A , idA].

Proof. Let u : F⊕F⊕A + F⊕A → F⊕A be the unique homomorphism from
[F [κ1, κ2] ◦ ζFF⊕A, F [κ2, κ3] ◦ ζ

F
A] to ζFA .

Note that u = [u ◦ κ1, u ◦ κ2]. By Definition 3.6.16, u ◦ κ1 = µF
⊕

A . It remains
to prove u ◦ κ2 = idA.

It is easy to see that κ2 : F⊕A → F⊕F⊕A + F⊕A is a homomorphism from
ζFA to [F [κ1, κ2] ◦ ζFF⊕A, F [κ2, κ3] ◦ ζ

F
A]. Therefore u ◦κ2 is a homomorphism from

ζFA to itself, on the one hand. On the other hand, idA is also a homomorphism
from ζFA . Hence by the finality of ζFA , we have u ◦ κ2 = idF⊕A.

F (F⊕A+A)
F (κ2+idA)

// F (F⊕F⊕A+ F⊕A+A)
F (u+idA)

// F (F⊕A+A)

F (F⊕F⊕A+ F⊕A) + F (F⊕A+A)

[F [κ1,κ2],F [κ2,κ3]]
OO

F⊕A

∼= ζFA

OO

κ2 // F⊕F⊕A+ F⊕A

ζF
F⊕A

+ζFA∼=
OO

u // F⊕A

final∼= ζFA

OO

Sublemma 3.6.20. We define an F -coalgebra γi :
⨿i−1

j=1 F
(i)
j F⊕0 + F⊕0 →

F (
⨿i−1

j=1 F
(i)
j F⊕0 + F⊕0) as follows:

γi :=


⨿i−1

j=1F
(i)
j F⊕0 + F⊕0

[β
(i)

1,F⊕0
,...,β

(i)

i−1,F⊕0
,Fκi+1◦ζF

0]

−−−−−−−−−−−−−−−−−−−−→ F (
⨿i

j=1F
(i)
j F⊕0 + F⊕0)

F (id⨿i
j=1

F
(i)
j

F⊕0
+[µF⊕

0 ◦p(i)
i ,idF⊕0])

−−−−−−−−−−−−−−−−−−−−−−−−→ F (
⨿i−1

j=1F
(i)
j F⊕0 + F⊕0)

 .

Then the unique homomorphism from γi to a final coalgebra ζF0 : F⊕0 → FF⊕0
is given by the following arrow:

[µF
⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i−1,F⊕0

, idF⊕0] :
⨿i−1

j=1F
(i)
j 0 + F⊕0→ F⊕0 .

Proof. It suffices to show that it is a homomorphism. We have:

ζF0 ◦ [µF
⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i−1,F⊕0

, idF⊕0]

= ζF0 ◦ [µF
⊕

0 , idF⊕0] ◦ ([p
(i)
1,F⊕0

, . . . , p
(i)
i−1,F⊕0

] + idF⊕0)

= F [µF
⊕

0 , idF⊕0] ◦ [ζFF⊕0, Fκ2 ◦ ζ
F
0] ◦ ([p(i)

1,F⊕0
, . . . , p

(i)
i−1,F⊕0

] + idF⊕0)

(by Sublemma 3.6.19)

= F [µF
⊕

0 , idF⊕0] ◦ [F ([p
(i)
1,F⊕0

, . . . , p
(i)
i,F⊕0

] + idF⊕0) ◦ [β
(i)
1,F⊕0

, . . . , β
(i)
i−1,F⊕0

],

Fκ2 ◦ ζF0] (by Definition 3.6.9)

= F [µF
⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i,F⊕0

, idF⊕0] ◦ [β
(i)
1,F⊕0

, . . . , β
(i)
i−1,F⊕0

, Fκi ◦ ζF0]

= F [µF
⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i−1,F⊕0

, idF⊕0]

49

◦
(
F (id⨿i

j=1 F
(i)
j F⊕0

+ [µF
⊕

0 ◦ p(i)i , idF⊕0])

◦ [β(i)
1,F⊕0

, . . . , β
(i)
i−1,F⊕0

, Fκi+1 ◦ ζF0]
)
.

This concludes the proof.

Sublemma 3.6.21. For each j ∈ {1, . . . , i− 1}, we have the following equality.

µF
⊕

0 ◦ p(i)
j,F⊕0

= µF
⊕

0 ◦ p(i−1)
j,F⊕0

◦ F (i−1)
j [µF

⊕
0 ◦ p(i)

i,F⊕0
, idF⊕0] .

Proof. By Sublemma 3.6.20, it suffices to show that the following arrow is a
homomorphism from γi to ζ

F
0 .[

µF
⊕

0 ◦ p(i−1)
1,F⊕0

◦ F (i−1)
1 [µF

⊕
0 ◦ p(i)

i,F⊕0
, idF⊕0], . . . ,

µF
⊕

0 ◦ p(i−1)
i−1,F⊕0

◦ F (i−1)
i−1 [µF

⊕
0 ◦ p(i)

i,F⊕0
, idF⊕0], idF⊕0

]
We have:

ζF0 ◦
[
µF

⊕
0 ◦ p(i−1)

1,F⊕0
◦ F (i−1)

1 [µF
⊕

0 ◦ p(i)
i,F⊕0

, idF⊕0], . . . ,

µF
⊕

0 ◦ p(i−1)
i−1,F⊕0

◦ F (i−1)
i−1 [µF

⊕
0 ◦ p(i)

i,F⊕0
, idF⊕0], idF⊕0

]
= ζF0 ◦ [µF

⊕
0 , idF⊕0] ◦

([
p
(i−1)
1,F⊕0

◦ F (i−1)
1 [µF

⊕
0 ◦ p(i)

i,F⊕0
, idF⊕0], . . . ,

p
(i−1)
i−1,F⊕0

◦ F (i−1)
i−1 [µF

⊕
0 ◦ p(i)i , idF⊕0]

]
+ idF⊕0

)
= F [µF

⊕
0 , idF⊕0] ◦ [ζFF⊕0, Fκ2 ◦ ζ

F
0]

◦
([
p
(i−1)
1,F⊕0

◦ F (i−1)
1 [µF

⊕
0 ◦ p(i)

i,F⊕0
, idF⊕0], . . . ,

p
(i−1)
i−1,F⊕0

◦ F (i−1)
i−1 [µF

⊕
0 ◦ p(i)

i,F⊕0
, idF⊕0]

]
+ idF⊕0

)
(by Sublemma 3.6.19)

= F [µF
⊕

0 , idF⊕0]

◦
[
ζFF⊕0 ◦ [p

(i−1)
1,A , . . . , p

(i−1)
i−1,A]

◦
(
F

(i−1)
1 [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0] + · · ·+ F
(i−1)
i−1 [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0]
)
,

Fκ2 ◦ ζF0
]

= F [µF
⊕

0 , idF⊕0]

◦
[
F
(
[p

(i−1)
1,F⊕0

, . . . , p
(i−1)
i−1,F⊕0

] + idF⊕0

)
◦ [β(i−1)

1,F⊕0
, . . . , β

(i−1)
i−1,F⊕0

]

◦
(
F

(i−1)
1 [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0] + · · ·+ F
(i−1)
i−1 [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0]
)
,

Fκ2 ◦ ζF0
]

(by Definition 3.6.9)

= F [µF
⊕

0 , idF⊕0]

◦
[
F
(
[p

(i−1)
1,F⊕0

, . . . , p
(i−1)
i−1,F⊕0

] + idF⊕0

)
◦ F
(⨿i−1

j=1F
(i−1)
j [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0] + [µF
⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0]
)

◦ [β(i−1)

1,F
(i)
i F⊕0+F⊕0

, . . . , β
(i−1)

i−1,F
(i)
i F⊕0+F⊕0

],

Fκ2 ◦ ζF0
]

(by naturality)

= F [µF
⊕

0 , idF⊕0]

◦
[
F
(
[p

(i−1)
1,F⊕0

, . . . , p
(i−1)
i−1,F⊕0

] + idF⊕0

)
50

◦ F
(⨿i−1

j=1F
(i−1)
j [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0] + [µF
⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0]
)

◦ [β(i)
1,F⊕0

, . . . , β
(i)
i−1,F⊕0

],

Fκ2 ◦ ζF0
]

(by Definition 3.6.5)

= F [µF
⊕

0 , idF⊕0] ◦ F
(
[p

(i−1)
1,F⊕0

, . . . , p
(i−1)
i−1,F⊕0

] + idF⊕0

)
◦ F
(⨿i−1

j=1F
(i−1)
j [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0] + [µF
⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0]
)

◦ [β(i)
1,F⊕0

, . . . , β
(i)
i−1,F⊕0

, Fκi+1 ◦ ζF0]

= F
[
µF

⊕

F⊕0 ◦ p
(i−1)
1,F⊕0

◦ F (i−1)
1 [µF

⊕
A ◦ p(i)

i,F⊕0
, idF⊕0], . . . ,

µF
⊕

F⊕0 ◦ p
(i−1)
i−1,F⊕0

◦ F (i−1)
i−1 [µF

⊕

F⊕0 ◦ p
(i)
i,F⊕0

, idF⊕0]
]

◦
(
F (id

F
(i)
1 F⊕0

+ · · ·+ id
F

(i)
i−1F

⊕0
+ [µF

⊕
0 ◦ p(i)i , idF⊕0])

◦ [β(i)
1,F⊕0

, . . . , β
(i)
i−1,F⊕0

, Fκi+1 ◦ ζF0]
)
.

This concludes the proof.

Sublemma 3.6.22. The unique homomorphism from an F -coalgebra

[β
(i)
1,F⊕0

, . . . , β
(i)
i,F⊕0

, Fκi+1 ◦ ζF0] :

i⨿
j=1

F
(i)
j F⊕0 + F⊕0→ F (

i⨿
j=1

F
(i)
j F⊕0 + F⊕0)

to a final coalgebra ζF0 : F⊕0→ FF⊕0 is given by the following arrow:

[µF
⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i,F⊕0

, idF⊕0] :

i⨿
j=1

F
(i)
j 0 + F⊕0→ F⊕0 .

Proof. It suffices to show that the arrow is a homomorphism. We have:

ζF0 ◦ [µF
⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i,F⊕0

, idF⊕0]

= ζF0 ◦ [µF
⊕

0 , idF⊕0] ◦ ([p
(i)
1,F⊕0

, . . . , p
(i)
i,F⊕0

] + idF⊕0)

= F [µF
⊕

0 , idF⊕0] ◦ [ζFF⊕0, Fκ2 ◦ ζ
F
0] ◦ ([p(i)

1,F⊕0
, . . . , p

(i)
i,F⊕0

] + idF⊕0)

(by Sublemma 3.6.19)

= F [µF
⊕

0 , idF⊕0] ◦ [F ([p
(i)
1,F⊕0

, . . . , p
(i)
i,F⊕0

] + idF⊕0) ◦ [β
(i)
1,F⊕0

, . . . , β
(i)
i,F⊕0

],

Fκ2 ◦ ζF0] (by Definition 3.6.9)

= F [µF
⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i,F⊕0

, idF⊕0] ◦ [β
(i)
1,F⊕0

, . . . , β
(i)
i,F⊕0

, Fκi+1 ◦ ζF0] .

This concludes the proof.

Sublemma 3.6.23. Let i > 0 and A ∈ C. We define an F ‡
i−1(+ F⊕0)-algebra

σi : F
‡
i−1(F

⊕0 + F⊕0)→ F⊕0 as follows:

σi :=


F ‡
i−1(F

⊕0 + F⊕0)
F ‡
i−1[idF⊕0,idF⊕0]−−−−−−−−−−−−→ F ‡

i−1F
⊕0

β
(i−1)

i−1,F⊕0−−−−−−→

F (
⨿i−1

j=1F
(i−1)
j F⊕0 + F⊕0)

F [µF⊕
0 ◦p(i−1)

1,F⊕0
,...,µF⊕

0 ◦p(i−1)

i−1,F⊕0
,idF⊕0]

−−−−−−−−−−−−−−−−−−−−−−−−−→

FF⊕0
(ζF0)−1

−−−−→ F⊕0

 .

Then if i is even (resp. odd), JµF
⊕

0 ⊙ Jp(i)
i,F⊕0

: F ‡
i F

⊕0 →p F⊕0 is the greatest

fixed point of Φ
Jζ

F
‡
i−1

F⊕0
,Jσi

(resp. Φ
J(ι

F
‡
i−1

F⊕0
)−1,Jσi

, see Definition 2.4.22).

51

Proof. Assume that i is even. We write Φ for Φ
Jζ

F
‡
i−1

F⊕0
,Jσi

for simplicity. For

f : F ‡
i F

⊕0→p F⊕0, we have:

Φ(f)

= Jσi ⊙ F ‡
i−1(f + idF⊕0)⊙ Jζ

F ‡
i−1

F⊕0
(by definition)

= J(ζF0)−1 ⊙ JF [µF⊕
0 ◦ p(i−1)

1,F⊕0
, . . . , µF

⊕
0 ◦ p(i−1)

i−1,F⊕0
, idF⊕0]⊙ Jβ

(i−1)
i−1,F⊕0

⊙ F ‡
i−1[idF⊕0, idF⊕0]⊙ F

‡
i−1(f + idF⊕0)⊙ Jζ

F ‡
i−1

F⊕0
(by definition)

= J(ζF0)−1 ⊙ JF [µF⊕
0 ◦ p(i−1)

1,F⊕0
, . . . , µF

⊕
0 ◦ p(i−1)

i−1,F⊕0
, idF⊕0]⊙ F

(i−1)
0 [f, idF⊕0]

⊙ Jβ(i−1)

i−1,F ‡
i F

⊕0+F⊕0
⊙ JζF

‡
i−1

F⊕0
(by the naturality of β

(i−1)
i−1)

= J(ζF0)−1 ⊙ JF [µF⊕
0 ◦ p(i−1)

1,F⊕0
, . . . , µF

⊕
0 ◦ p(i−1)

i−1,F⊕0
, idF⊕0]⊙ F

(i−1)
0 [f, idF⊕0]

⊙ Jβ(i)
i,F⊕0

(by Definition 3.6.5)

= J(ζF0)−1 ⊙ F
[
JµF

⊕
0 ⊙ Jp(i−1)

1,F⊕0
⊙ F (i−1)

1 [f, idF⊕0], . . . ,

JµF
⊕

0 ⊙ Jp(i−1)
i−1,F⊕0

⊙ F (i−1)
i−1 [f, idF⊕0], f, idF⊕0

]
⊙ Jβ(i)

i,F⊕0

(by Definition 3.6.5) . (3.19)

We now show that JµF
⊕

0 ⊙ p(i)
i,F⊕0

is a fixed point of Φ. By the equation (3.19)
above, we have:

Φ(JµF
⊕

0 ⊙ p(i)
i,F⊕0

)

= J(ζF0)−1 ⊙ F
[
JµF

⊕
0 ⊙ Jp(i−1)

1,F⊕0
⊙ F (i−1)

1 [JµF
⊕

0 ⊙ p(i)
i,F⊕0

, idF⊕0], . . . ,

JµF
⊕

0 ⊙ Jp(i−1)
i−1,F⊕0

⊙ F (i−1)
i−1 [JµF

⊕
0 ⊙ p(i)

i,F⊕0
, idF⊕0], p

(i)
i,F⊕0

, idF⊕0

]
⊙ Jβ(i)

i,F⊕0

= J(ζF0)−1 ⊙ F
[
JµF

⊕
0 ⊙ Jp(i)

1,F⊕0
, . . . , JµF

⊕
0 ⊙ Jp(i)

1,F⊕0
, JµF

⊕
0 ⊙ p(i)

i,F⊕0
, idF⊕0

]
⊙ Jβ(i)

i,F⊕0
(by Sublemma 3.6.21)

= JµF
⊕

0 ⊙ Jp(i)
j,F⊕0

(by Sublemma 3.6.22) .

Hence JµF
⊕

0 ⊙ Jp(i)
i,F⊕0

is a fixed point of Φ.
It remains to show that it is the greatest fixed point. Let f be a fixed point

of Φ. For each j ∈ {1, . . . , i− 1}, we have:

JζF0 ⊙ (JµF
⊕

0 ⊙ Jp(i−1)
j ⊙ F (i−1)

j [f, idF⊕0])

= JF [µF
⊕

0 ◦ p(i−1)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i−1)
i−1,F⊕0

, idF⊕0]⊙ Jβ
(i−1)
j,F⊕0

⊙ F (i−1)
j [f, idF⊕0]

(by Sublemma 3.6.22)

= JF [µF
⊕

0 ◦ p(i−1)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i−1)
i−1,F⊕0

, idF⊕0]⊙ F
(i−1)
0 [f, idF⊕0]

⊙ Jβ(i−1)

j,F
(i)
i F⊕0+F⊕0

(by the naturality of β
(i−1)
j)

= JF [µF
⊕

0 ◦ p(i−1)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i−1)
i−1,F⊕0

, idF⊕0]⊙ F
(i−1)
0 [f, idF⊕0]⊙ Jβ

(i)
j,F⊕0

(by Definition 3.6.5)

52

= F
[
JµF

⊕
0 ⊙ Jp(i−1)

1,F⊕0
⊙ F (i−1)

1 [f, idF⊕0], . . . ,

JµF
⊕

0 ⊙ Jp(i−1)
i−1,F⊕0

⊙ F (i−1)
i−1 [f, idF⊕0], f, idF⊕0

]
⊙ Jβ(i)

j,F⊕0

(by Definition 3.6.5) .

Therefore, together with the equation (3.19) proved above, we can see that the

following arrow is a homomorphism from [β
(i)
1,F⊕0

, . . . , β
(i)
i,F⊕0

, Fκi+1 ◦ ζF0] to ζF0 .

[
JµF

⊕
0 ⊙ Jp(i−1)

1 ⊙ F (i−1)
1 [f, idF⊕0], . . . ,

JµF
⊕

0 ⊙ Jp(i−1)
i−1 ⊙ F

(i−1)
i−1 [f, idF⊕0], f, idF⊕0

]
Hence by Sublemma 3.6.22 and the deterministic-greatest condition (Assump-
tion 3.6.7.5), we have:

[
JµF

⊕
0 ⊙ Jp(i−1)

1,F⊕0
⊙ F (i−1)

1 [f, idF⊕0], . . . ,

JµF
⊕

0 ⊙ Jp(i−1)
i−1,F⊕0

⊙ F (i−1)
i−1 [f, idF⊕0], f, idF⊕0

]
⊑ J [µF⊕

0 ◦ p(i)
1,F⊕0

, . . . , µF
⊕

0 ◦ p(i)
i,F⊕0

, idF⊕0] .

This immediately implies f ⊑ JµF
⊕

0 ⊙ Jp
(i)
i,F⊕0

. Hence JµF
⊕

0 ⊙ Jp
(i)
i,F⊕0

is the
greatest fixed point of Φ.

The proof when i is odd is similar.

FX �Fu // FA �Fm // FY
_σ
��

X �u //

_c
OO

A �m //

_J(ιF)−1 ∼=
OO

=

Y

Sublemma 3.6.24. Let T be a monad and F be an
endofunctor on C. Assume that a lifting F : Kℓ(T) →
Kℓ(T) of F is given and each homset of Kℓ(T) carries a
partial order ⊑. Assume further that they satisfy the
conditions in Theorem 3.1.13. Let ιF : FA → A be an initial F -algebra. For
each X,Y ∈ C, c : X →p FX and σ : FY →p Y , if u : X →p A is the unique
homomorphism from c to J(ιF)−1 and a function ΦJ(ιF),σ (see Definition 2.4.22)
has a fixed point m : A→p Y , then m⊙u : X →p Y is the least fixed point of Φc,σ.

Proof. It is easy to see that m⊙ u is a fixed point of Φc,σ. We shall show that
it is the least fixed point. Let f : X →p Y be a fixed point of Φc,σ.

By the conditions in Theorem 3.1.13, a homset Kℓ(T)(X,A) is ω-complete
and has the least element ⊥, and a function Φc,JιF : Kℓ(T)(X,A)→ Kℓ(T)(X,A)
is monotone and ω-continuous. Hence by the Kleene fixed point theorem (Theo-
rem 2.2.3.2), the unique fixed point u : X →p A of Φc,JιF is given by

⊔
i∈ω Φi

c,JιF
(⊥).

We now prove m⊙ Φi
c,JιF

(⊥) ⊑ f by the induction on i.

• If i = 0, by the conditions in Theorem 3.1.13, we have:

m⊙ Φi
c,JιF (⊥) = m⊙⊥ = ⊥ ⊑ f .

• Assume that m⊙ Φi
c,JιF

(⊥) ⊑ f . Then we have:

m⊙ Φi+1
c,JιF

(⊥)

= m⊙ JιF ⊙ F (Φi
c,JιF (⊥))⊙ c (by definition)

53

= σ ⊙ Fm⊙ J(ιF)−1 ⊙ JιF ⊙ F (Φi
c,JιF (⊥))⊙ c (m is a fixed point)

= σ ⊙ F (m⊙ Φi
c,JιF (⊥))⊙ c

⊑ σ ⊙ Ff ⊙ c (by IH)

= f (f is a fixed point) .

Hence we have m⊙ Φi
c,JιF

(⊥) ⊑ f for each i ∈ ω. Therefore we have:

m⊙ u = m⊙
⊔
i∈ω

Φi
c,JιF (⊥) =

⊔
i∈ω

(m⊙ Φi
c,JιF (⊥)) ⊑ f .

Hence m⊙ u is the least fixed point.

Proof (Sublemma 3.6.18). We prove Equation (3.18) by the induction on i. We
do not have to distinguish the base case from the step case.

We first prove Equation (3.18) for j = i. Assume that i is even. By the
definition of intermediate solutions (Definition 2.3.6), it suffices to show that

JµF
⊕

0 ⊙Jp
(i)
i,F⊕0

⊙F (i)
i [ui+1, . . . , u2n]⊙l̃(i)i is the greatest fixed point of the following

function:

f 7→ J(ζF0)−1 ⊙ F
[
l
(i−1)
1 (f, ui+1, . . . , u2n), . . . , l

(i−1)
i−1 (f, ui+1, . . . , u2n),

f, ui+1, . . . , u2n
]
⊙ ci .

Here the right-hand side can be deformed as follows:

J(ζF0)−1 ⊙ F
[
l
(i−1)
1 (f, ui+1, . . . , u2n), . . . , l

(i−1)
i−1 (f, ui+1, . . . , u2n),

f, ui+1, . . . , u2n
]
⊙ ci

= J(ζF0)−1 ⊙ F
[
JµF

⊕
0 ⊙ Jp(i−1)

1 ⊙ F (i−1)
1 [f, ui+1, . . . , u2n]⊙ l̃(i−1)

1 , . . . ,

JµF
⊕

0 ⊙ Jp(i−1)
i−1 ⊙ F

(i−1)
i−1 [f, ui+1, . . . , u2n]⊙ l̃(i−1)

i−1 ,

f, ui+1, . . . , u2n
]
⊙ ci (by IH)

= J(ζF0)−1 ⊙ F
[
JµF

⊕
0 ⊙ Jp(i−1)

1 ⊙ F (i−1)
1 [f, ui+1, . . . , u2n], . . . ,

JµF
⊕

0 ⊙ Jp(i−1)
i−1 ⊙ F

(i−1)
i−1 [f, ui+1, . . . , u2n],

f, ui+1, . . . , u2n
]
⊙ Jβ(i−1)

i−1,Xi+···+X2n
⊙ c‡i

(by the definition of c‡i)

= J(ζF0)−1 ⊙ F
[
Jp

(i−1)
1 , . . . , Jp

(i−1)
i−1 , idF⊕0

]
⊙ F

(⨿i−1
j=1F

(i−1)
j [f, ui+1, . . . , u2n] + [f, ui+1, . . . , u2n]

)
⊙ Jβ(i−1)

i−1,Xi+···+X2n
⊙ c‡i

= J(ζF0)−1 ⊙ F
[
Jp

(i−1)
1 , . . . , Jp

(i−1)
i−1 , idF⊕0

]
⊙ F (i−1)

0 [f, ui+1, . . . , u2n]

⊙ Jβ(i−1)
i−1,Xi+···+X2n

⊙ c‡i (by the definition of F
(i−1)
0)

= J(ζF0)−1 ⊙ JF
[
µF

⊕
0 ◦ p(i−1)

1 , . . . , µF
⊕

0 ◦ p(i−1)
i−1 , idF⊕0

]
⊙ Jβ(i−1)

i−1,F⊕0

⊙ F ‡
i−1[f, ui+1, . . . , u2n]⊙ c‡i (by naturality of β

(i−1)
i−1)

= J(ζF0)−1 ⊙ JF
[
µF

⊕
0 ◦ p(i−1)

1 , . . . , µF
⊕

0 ◦ p(i−1)
i−1 , idF⊕0

]
⊙ Jβ(i−1)

i−1,F⊕0

⊙ JF ‡
i−1[idF⊕0, idF⊕0]⊙ F

‡
i−1(f + idF⊕0)⊙ F

‡
i−1(idXi + [ui+1, . . . , u2n])⊙ c‡i

54

= Jσi ⊙ F ‡
i−1(f + idF⊕0)⊙

(
F ‡
i−1(idXi + [ui+1, . . . , u2n])⊙ c‡i

)
(by the definition of σi) .

Therefore we have to show that JµF
⊕

0 ⊙ Jp(i)
i,F⊕0

⊙ F (i)
i [ui+1, . . . , u2n]⊙ l̃(i)i is the

greatest fixed point of Φ
F ‡
i−1(idXi

+[ui+1,...,u2n])⊙c‡i ,Jσi
(see also Figure 3.2).

By definition, l̃
(i)
i is the greatest homomorphism from c‡i to JζFXi+1+···+X2n

,

and F
(i)
i [ui+1, . . . , u2n] is the greatest homomorphism from F ‡

i−1(idXi+1+···+X2n +

[ui+1, . . . , u2n]) ⊙ Jζ
F ‡
i−1

Xi+1+···+X2n
to Jζ

F ‡
i−1

F⊕0
. Therefore by Lemma 3.4.12,

F
(i)
i [ui+1, . . . , u2n] ⊙ l̃

(i)
i is the greatest homomorphism from F ‡

i−1(idXi +

[ui+1, . . . , u2n])⊙ c‡i to Jζ
F ‡
i−1

F⊕0
.

By Sublemma 3.6.23, JµF
⊕

0 ⊙Jp
(i)
i,F⊕0

is the greatest fixed point of Φ
Jζ

F
‡
i−1

F⊕0
,Jσi

.

Therefore by the gfp-preserving condition (Assumption 3.6.7.4), JµF
⊕

0 ⊙Jp
(i)
i,F⊕0

⊙

F
(i)
i [ui+1, . . . , u2n]⊙ l̃(i)i is the greatest fixed point of Φ

F ‡
i−1(idXi

+[ui+1,...,u2n])⊙c‡i ,Jσi
.

Equation (3.18) is similarly proved when i is odd, except that we use the final-
ity instead of Lemma 3.4.12, and Sublemma 3.6.24 instead of the gfp-preserving
condition respectively.

It remains to prove Equation (3.18) for j < i. We have:

l
(i)
j (ui+1, . . . , u2n)

= l
(i−1)
j

(
l
(i)
i (ui+1, . . . , u2n), ui+1, . . . , u2n

)
(by definition)

= l
(i−1)
j

(
JµF

⊕
0 ⊙ Jp(i)

i,F⊕0
⊙ F (i)

i [ui+1, . . . , u2n]⊙ l̃(i)i , ui+1, . . . , u2n
)

(by the discussion above)

= JµF
⊕

0 ⊙ Jp(i−1)
j,F⊕0

⊙ F (i−1)
j

[
JµF

⊕
0 ⊙ Jp(i)

i,F⊕0
⊙ F (i)

i [ui+1, . . . , u2n]⊙ l̃(i)i , ui+1, . . . , u2n
]
⊙ l̃(i−1)

j

(by IH)

= JµF
⊕

0 ⊙ Jp(i−1)
j,F⊕0

⊙ F (i−1)
j

[
JµF

⊕
0 ⊙ Jp(i)

i,F⊕0
⊙ F (i)

i [ui+1, . . . , u2n], ui+1, . . . , u2n
]
⊙ l̃(i)j

(by Definition 3.6.11)

= JµF
⊕

0 ⊙ Jp(i−1)
j,F⊕0

⊙ F (i−1)
j [JµF

⊕
0 ⊙ Jp(i)

i,F⊕0
, idF⊕0]⊙ F

(i)
j [ui+1, . . . , u2n]⊙ l̃(i)j

(by Lemma 3.6.12)

= JµF
⊕

0 ⊙ Jp(i)
j,F⊕0

⊙ F (i)
j [ui+1, . . . , u2n]⊙ l̃(i)j (by Sublemma 3.6.21) .

This concludes the proof.

The following is the second sublemma for proving Lemma 3.6.15. It is about

a property on p
(i)
j : F

(i)
j ⇒ F⊕.

Sublemma 3.6.25. For each j ∈ {1, . . . , i}, µF⊕
0 ◦ p(i)

j,F⊕0
◦ F (i)

j

!

F⊕0 = p
(i)
j,0 .

Proof. By definition, it suffices to prove that the following arrow is a homomor-

phism from [β
(i)
1,0, . . . , β

(i)
i,0] to ζ

F
0 .

[
µF

⊕
0 ◦ p(i)

1,F⊕0
◦ F (i)

1

!

F⊕0, . . . , µ
F⊕
0 ◦ p(i)

i,F⊕0
◦ F (i)

i

!

F⊕0

]
:

i⨿
j=1

F
(i)
j 0→ F⊕0

55

F
‡ i−
1
(X

i
+
F

⊕
0)

�

F
‡ i−

1
(l̃
(i
)

i
+

id
F

⊕
0
) // F
‡ i−
1

(F
‡ i
(X

i+
1
+
··
·+

X
2
n
)

+
F

⊕
0

)
�

F
‡ i−

1

(F
‡ i
[u

i+
1
,.
..
,u

2
n
]
+

id
F

⊕
0

)
// F

‡ i−
1
(F

‡ i
F

⊕
0
+
F

⊕
0)

�

F
‡ i−

1
(J

p
(i
)

i
+

id
F

⊕
0
)

// F
‡ i−
1
(F

⊕
F

⊕
0
+
F

⊕
0)

�

F
‡ i−

1
(J

µ
F

⊕
0

+
id

F
⊕
0
)

// F
‡ i−
1
(F

⊕
0
+
F

⊕
0
)

_
J
σ
i

��

F
‡ i−
1
(X

i
+
··
·+

X
2
n
)

�
F

‡ i−
1
(l̃
(i
)

j
+

id
F

⊕
0
)

//

_
F

‡ i−
1
(i
d
X

i
+
[u

i+
1
,.
..
,u

2
n
])

OO

F
‡ i−
1

(F
‡ i
(X

i+
1
+
··
·+

X
2
n
)

+
X

i+
1
+
··
·+

X
2
n

)
_
F

‡ i−
1
(i
d
F
‡ i
(X

i+
1
+
··
·+

X
2
n
)
+
[u

i+
1
,.
..
,u

2
n
])

OO

X
i

_
c‡ i

OO

�l̃(
i) i

//

=
ν

F
‡ i
(X

i+
1
+
··
·+

X
2
n
)

_
J
ζ
F
‡ i−

1
X

i +
1
+
··
·+

X
2
n

∼ =

OO

�
F

‡ i
[u

i+
1
,.
..
,u

2
n
]

//

=
ν

F
‡ i
F

⊕
0

_
J
ζ
F
‡ i−

1

F
⊕

0

∼ =

OO

�
J
p
(i
)

i,
F
⊕

0
//

=
ν

F
⊕
F

⊕
0

�
J
µ
F
⊕

0
// F

⊕
0

F
ig
u
re

3.
2:
J
µ
F

⊕
0
⊙
J
p
(i
)

j,
F

⊕
0
⊙
F

(i
)

j
[u

i+
1
,.
..
,u

2
n
]⊙

l̃(
i) j
is

th
e
gr
ea
te
st

fi
x
ed

p
oi
n
t.

56

We have:

ζF0 ◦
[
µF

⊕
0 ◦ p(i)

1,F⊕0
◦ F (i)

1

!

F⊕0, . . . , µ
F⊕
0 ◦ p(i)

i,F⊕0
◦ F (i)

i

!

F⊕0

]
= F [µF

⊕
0 , idF⊕0] ◦ ζFF⊕0 ◦

[
p
(i)
1,F⊕0

◦ F (i)
1

!

F⊕0, . . . , p
(i)
i,F⊕0

◦ F (i)
i

!

F⊕0

]
(by Definition 3.6.16)

= F [µF
⊕

0 , idF⊕0] ◦ F
(
[p

(i)
1,F⊕0

, . . . , p
(i)
i,F⊕0

] + idF⊕0

)
◦ [β(i)

1,F⊕0
◦ F (i)

1

!

F⊕0, . . . , β
(i)
i,F⊕0

◦ F (i)
i

!

F⊕0] (by Definition 3.6.9)

= F [µF
⊕

0 , idF⊕0] ◦ F
(
[p

(i)
1,F⊕0

, . . . , p
(i)
i,F⊕0

] + idF⊕0

)
◦ F (i)

0

!

F⊕0 ◦ [β
(i)
1,0, . . . , β

(i)
i,0]

(by naturality)

= F
([
µF

⊕
0 ◦ p(i)

1,F⊕0
◦ F (i)

1

!

F⊕0, . . . , µ
F⊕
0 ◦ p(i)

i,F⊕0
◦ F (i)

i

!

F⊕0

])
◦ [β(i)1,0, . . . , β

(i)
i,0] .

This concludes the proof.

Proof (Lemma 3.6.15). Immediate by Sublemma 3.6.18 and 3.6.25

Proof (Theorem 3.6.10). Immediate by Lemma 3.6.14 and Lemma 3.6.15.

We note that Lemma 3.6.14 implies the existence of a solution of the HES in
Definition 3.6.8.

3.7 Extension to Nondeterministic Parity Tree Automata

We used nondeterministic Büchi and parity word automata as a running example
in the previous sections. In this section, we apply our framework to nondetermin-
istic parity tree automata (NPTA, Definition 2.2.4). Categorically, this means
that we extend F from FA = A× () to FΣ =

⨿
i∈ω Σi × ()i.

3.7.1 Trace Semantics of NPTA via Logical Fixed Point

A coalgebraic parity trace semantics trpi (c) (Section 3.6.2) characterizes Lp
A.

Proposition 3.7.1. We define a partial order ⊑ for each homset of Kℓ(P)
as in Example 3.1.11, and define a lifting FΣ : Kℓ(P) → Kℓ(P) of FΣ as in
Example 3.1.6. Then we have:

1. P and FΣ constitute a parity trace situation (Definition 3.6.3).

2. The carrier set of a final FΣ-coalgebra is isomorphic to Tree∞Σ .

3. For a Σ-labeled NPTA A = (X, τ, p), we define a parity (P, FΣ)-system
(X, c, (X1, . . . , X2n)) by c := τ and Xi := {x | p(x) = i}. Then we have:
[trp1(c), . . . , tr

p
2n(c)] = Lp

A.

Item 1 is immediate as each homset of Kℓ(P) constitutes a complete lattice.
Item 2 is fundamental (see Example 2.4.18). Item 3 will be proved later, using
Theorem 3.6.10 (see page 61).

3.7.2 Trace Semantics of NPTA via Categorical Fixed Point

We next focus on dtri(c). We first describe a datatype (FΣ)
(i)
j A and an arrow

β
(i)
j,A : (FΣ)

(i)
j A→ (FΣ)

(i)
0 A concretely.

57

To explain the intuition, we first focus on Büchi tree automata and de-
scribe (FΣ)

‡
20 = F+⊕

Σ 0 referring to the construction of a final coalgebra in The-
orem 2.4.17. We can easily see that F+

Σ A
∼= Tree+Σ(A) where Tree+Σ(A) :=

Tree∗Σ+A \ {(x) | x ∈ A} (see Definition 2.2.1). Hence for each i ∈ ω,

(F+
Σ (+ 0))i1
∼= Tree+Σ(Tree

+
Σ(. . .Tree

+
Σ︸ ︷︷ ︸

i

({∗}) . . .))

∼=
{

ξ∈Tree∗
Σ×{ , }+{∗}

∣∣∣∣ the root node is labeled by , and for each branch

whose last component is ∗, appears exactly i-times

}
.

By Theorem 2.4.17, F+⊕
Σ 0 is a limit of the following sequence: 1

!←− F+
Σ 1

F+
Σ !
←−−

(F+
Σ)21

(F+
Σ)2!

←−−−− Hence F+⊕
Σ A is characterized as follows:

F+⊕
Σ A ∼=

{
ξ∈Tree∞

Σ×{ , }+A

∣∣∣∣ the root node is labeled by , and for each

infinite branch appears infinitely often

}
.

In general, we have the following characterization (the proof is similar to the
Büchi case).

Proposition 3.7.2. For i ∈ N, j ∈ {1, . . . , i} and a set A, we define a set

AccTree
(i)
j (Σ, A) ⊆ Tree∞Σ×{1,...,i}+A by:

AccTree
(i)
j (Σ, A) :=

ξ ∈Tree∞Σ×{1,...,i}+A

∣∣∣∣∣∣
the root node is labeled by j, and for

each infinite branch, the maximum

priority appearing infinitely is even

 .

Moreover, we let

AccTree
(i)
0 (Σ, A) :=

ξ ∈Tree∞Σ×{0,...,i}+A

∣∣∣∣∣∣
only the root node is labeled by 0, and for

each infinite branch, the maximum

priority appearing infinitely is even

 .

We define a function

decomp
(i)
j : AccTree

(i)
j (Σ, A)→ AccTree

(i)
j−1(Σ, A)

by decomp
(i)
j (D, l) := (D, l′) where

l′(w) :=

{
(a, j − 1) (w = ⟨⟩ and l(⟨⟩) = (a, j))

l(w) (otherwise).

Then AccTree
(i)
j (Σ, A) ∼= (FΣ)

(i)
j A, and(

decomp
(i)
j : AccTree

(i)
j (Σ, A)→ AccTree

(i)
j−1(Σ, A)

)
∼=
(
α
(i)
j,A : (FΣ)

(i)
j A→ (FΣ)

(i)
j−1A

)
.

By using the characterizations above, we can concretely prove that the as-
sumptions required in the previous sections are satisfied by P and FΣ.

Proposition 3.7.3. Assumption 3.6.7 is satisfied by (T, F) = (P, FΣ).

Proof. Condition 2 is proved in a similar manner to [47]. Condition 3 is proved
in a similar manner to [113, Theorem 4.3] using Proposition 3.7.2.

We prove Condition 4. For notational simplicity, let G := (FΣ)
‡
i (+ A),

Z := ((FΣ)
‡
i)

⊕A and ζ := ζ
(FΣ)

‡
i

A for simplicity. By Proposition 3.7.2, GX ∼=
AccTree

(i)
i (Σ, X +A).

58

GX
� // GZ � // GY

_σ
��

X �l //
�

t

44

_c
OO

=ν

Z �m //

_Jζ ∼=
OO

=ν

Y

Let c : X →p GX and σ : GY →p Y . Let l : X →p Z
be the greatest homomorphism from c to Jζ, and m :
Z →p Y be the greatest fixed point of ΦJζ,σ. It is easy
to see that m⊙ l is a fixed point of Φc,σ. We show that
it is the greatest fixed point. Let t : X →p Y be a fixed point of Φc,σ. and let
x ∈ X. Assume y ∈ t(x). We prove y ∈ m⊙ l(x).

For each k ∈ ω, we inductively define κk : Z → Gk1 as follows: κ0 := !Z and
κk+1 := Gκk ◦ ζ. By Theorem 2.4.17, (Z, (κk)k∈ω) is a limit over a final sequence

1
!←− G1 G!←− G21

G2!←−− Concretely, this limit is given as follows:

Z ∼=
{
(bk ∈ Gk1)k∈ω

∣∣∣ ∀k ∈ ω. Gk!(bk+1) = bk

}
.

For each k ∈ ω, we inductively define xk ∈ GkX and yk ∈ GkY so that

yk ∈ G
k
t(xk) as follows.

• When k = 0, xk := x and yk := y.

• Assume that xk, yk and bk are defined so that xk ∈ GkX, yk ∈ GkY and

yk ∈ G
k
t(xk). As t = σ ⊙Gt⊙ c, there exist x′ ∈ Gk+1X and y′ ∈ Gk+1Y

such that x′ ∈ Gk
c(xk), y

′ ∈ Gk+1
t(x′) and yk ∈ G

k
σ(y′). We choose one

of such a pair and let xk+1 := x′ and yk+1 := y′.

Moreover, for each l ∈ ω, we define bl ∈ Gl1 by bl := Gl!X(xl) and let zk :=
(bl+k)l∈ω ∈ GkZ for each k ∈ ω.

We prove z0 ∈ l(x) and y ∈ m(z0). We first prove the former. Let m be
an ordinal such that Kℓ(P)(X,Z) < |m|. By the dual of Theorem 2.3.2.3, l =
Φm
c,(Jζ)−1(⊤). By the transfinite induction on a, we prove the following:

∀a. ∀k ∈ ω. zk ∈ G
k(
Φa
c,Jζ−1(⊤)

)
(xk) . (3.20)

• Let a = 0. By the characterization GX ∼= AccTree
(i)
i (Σ, X + A), zk ∈

G
k
(⊤)(xk) for each k. Hence it is proved.

• Let a be a successor ordinal. Then we have:

zk ∈ G
k(
Φa
c,Jζ−1(⊤)

)
(xk)⇔ zk ∈ G

k
Jζ−1 ⊙Gk+1(

Φa−1(⊤)
)
⊙Gk

c(xk)

⇐ zk+1 ∈ G
k+1(

Φa−1(⊤)
)
(xk+1) .

The last statement holds by the induction hypothesis.

• Let a be a limit ordinal. If zk ∈ G
k(
Φa′

c,Jζ−1(⊤)
)
(xk) for each a′ < a, then

zk ∈
∩

a′<aG
k(
Φa′

c,Jζ−1(⊤)
)
(xk). Hence it is proved.

Hence we have zk ∈ Φa
c,Jζ−1(⊤)(xk) for each a and k. By letting a = m and

k = 0, we have z0 ∈ l(x). We can similarly prove y ∈ m(z0). Hence Condition 4
is satisfied.

(FΣ)
‡
n(X +A)

�Fl// (FΣ)
‡
i (((FΣ)

‡
n)

⊕A+A)

X � Ju //

� f
33

_Jc

OO

((FΣ)
‡
n)

⊕A

_
Jζ

(FΣ)
‡
n

A
∼=
OO

We prove that Condition 5 is satis-
fied. Let c : X → (FΣ)

‡
n(X + A) be

an (FΣ)
‡
n(+ A)-coalgebra and u : X →

((FΣ)
‡
n)⊕A be the unique homomorphism

from c to ζ
(FΣ)

‡
n

A . Let f : X →p ((FΣ)
‡
n)⊕A be a homomorphism from Jc to Jζ

(FΣ)
‡
n

A

59

and x ∈ X, and assume that s ∈ f(x). Then as f and Ju are homomorphisms

from Jc to Jζ
(FΣ)

‡
n

A , we can prove s = u(x) by the induction on the structure of
s. Hence Ju is the greatest homomorphism.

By Conditions 4–5, we can inductively define a lifting (FΣ)
‡
n : Kℓ(T)→ Kℓ(T)

for each n ∈ N. Hence Condition 1 and Condition 6 are satisfied.
Using Proposition 3.7.2, we can prove that Condition 7 is satisfied in a similar

manner to [47, 113].

We now explain dtri(c) for NPTAs. For simplicity, we write AccTree
(i)
j (Σ) for

AccTree
(i)
j (Σ, ∅). By Proposition 3.7.2, dtri(c) has the following type:

dtri(c) : Xi → P
(
AccTree

(2n)
i (Σ)

)
.

Proposition 3.7.4. Let A = (X, τ, p) be a Σ-labeled NPTA where p : X →
{1, . . . , 2n}. We define p : Run∞A (X) → Tree∞Σ×{1,...,2n} by p(D, l) := (D, l′)

where l′(w) := (a, p(x)) if l(w) = (a, x). We define a parity (P, FΣ)-system
(X, c, (X1, . . . , X2n)) as in Proposition 3.7.1.3. Then for each i ∈ {1, . . . , 2n}
and x ∈ Xi,

dtri(c)(x) =
{
p(ρ) ∈ AccTree

(2n)
i (Σ) | ρ ∈ RunAcc

A (x)
}
.

Proof. By Proposition 3.7.2, the type of β
(i)
j,A is isomorphic to the following:

AccTree
(i)
j (Σ, A)→

⨿
n∈ω

Σn ×
(i⨿
k=1

AccTree
(i)
k (Σ, A) +A

)n
.

Moreover, it is given by β
(i)
j,A(ξ) = (a, ξ0, . . . , ξn−1) for ξ =

(
(a, j), ξ1, . . . , xn−1

)
∈

AccTree
(i)
j (Σ, A).

By Proposition 3.7.2 and the definition of RunAcc
A (x), we can see that {p(ρ) |

ρ ∈ RunAcc
A (x)} ⊆ F

(2n)
i 0. For each i ∈ {1, . . . , 2n}, we define fi : Xi →

P
(
AccTree

(2n)
i (Σ)

)
by fi(x) := {p(ρ) | ρ ∈ RunAcc

A (x)}. We show that a tuple
(fi)i∈{1,...,2n} is the greatest fixed point of the function (3.16) in Definition 3.6.8.

We first prove that is is a fixed point. For each x ∈ Xi, we have:

J(β
(2n)
i,0)−1 ⊙ FΣ(f1 + · · ·+ f2n)⊙ ci(x)

= J(β
(2n)
i,0)−1 ⊙ FΣ(f1 + · · ·+ f2n)

(
{(a, x0, . . . , xm−1) ∈ τ(x)}

)
= J(β

(2n)
i,0)−1

({
(a, p(ρ0), . . . , p(ρm−1)) ∈ Σm ×

(⨿2n
k=1AccTree

(2n)
k (Σ)

)m
| (a, x0, . . . , xm−1) ∈ τ(x),∀t ∈ {0, . . . ,m− 1}. ρt ∈ RunAcc

A (xt)
})

=
{
((a, i), p(ρ0), . . . , p(ρm−1)) ∈ AccTree

(2n)
i (Σ)

| (a, x0, . . . , xm−1) ∈ τ(x),∀t ∈ {0, . . . ,m− 1}. ρt ∈ RunAcc
A (xt)

}
=
{
p(ρ) ∈ AccTree

(2n)
i (Σ) | ρ ∈ RunAcc

A (x)
}

= fi(x) .

Hence (fi)1≤i≤2n is a fixed point of the function (3.16) in Definition 3.6.8.
We next show that (fi)1≤i≤2n is the greatest fixed point. Let (gi : Xi →

PAccTree(2n)i (Σ))1≤i≤2n be a tuple of functions such that gi = J(β
(2n)
i,0)−1 ⊙

FΣ(g1 + · · ·+ g2n)⊙ ci for each i. It suffices to show that gi(x) ⊆ fi(x) for each
i ∈ {1, . . . , 2n} and x ∈ Xi.

60

Let i ∈ {1, . . . , 2n} and x ∈ Xi, and assume that ξ = (D, l) ∈ gi(x). We write
l1(w) and l2(w) for π1(l(w)) ∈ Σ and π2(l(w)) ∈ {1, . . . , 2n} respectively. We
define a function l′ : D → Σ ×X by l′(w) := (l1(w), l

′
2(w)), where l

′
2(w) ∈ X is

inductively defined as follows so that the following condition is satisfied: for each
w ∈ D, ξw ∈ [g1, . . . , g2n](l

′
2(w)) (recall that ξw denotes the w-th subtree of ξ).

• For w = ⟨⟩, we let l′2(⟨⟩) := x.

• Let w ∈ D and assume |l1(w)| = m. Assume that we have fixed l′2(w) so
that the condition above is satisfied. Assume further that l′2(w) ∈ Xi and
that the root node of the w-th subtree ξw of ξ is labeled by a ∈ Σm. Then
ξw has a shape ((a, i), ξw0, . . . , ξw(m−1)). We have:

ξw = ((a, i), ξw0, . . . , ξw(m−1))

∈ gi(l′2(w))

= J(β
(2n)
i,0)−1 ⊙ FΣ(g1 + · · ·+ g2n)⊙ ci(x′)

= J(β
(2n)
i,0)−1 ⊙ FΣ(g1 + · · ·+ g2n)

({
(a′, x0, . . . , xm′−1) ∈ τ(l′2(w))

})
= J(β

(2n)
i,0)−1

({
(a′, ξ′0, . . . , ξ

′
m′−1) ∈ Σm′ ×

(2n⨿
k=1

AccTree
(2n)
k (Σ)

)m′

| (a′, x0, . . . , xm′−1) ∈ τ(l′2(w)),

ξ′t ∈ [g1, . . . , g2n](xt) for each t ∈ {0, . . . ,m′ − 1}
})

=
{
((a′, i), ξ′0, . . . , ξ

′
m′−1) ∈ AccTree

(2n)
i (Σ)

| (a′, x0, . . . , xm′−1) ∈ τ(l′2(w)),
ξ′t ∈ [g1, . . . , g2n](xt) for each t ∈ {0, . . . ,m′ − 1}

}
.

This means that there exists (a, x0, . . . , xm−1) ∈ τ(l′2(w)) such that ξwt ∈
[g1, . . . , g2n](xt) for each t ∈ {0, . . . ,m− 1}. We let l′2(wt) := xt for each t.

Let ρ = (D, l′). By its construction, we can easily see that p(ρ) = ξ.

By the construction, ρ is a run tree overA, and moreover, as ξ ∈ AccTree
(2n)
i (Σ),

ρ is accepting. Therefore by the definition of fi, we have p(ρ) ∈ fi(x). This con-
cludes the proof.

Finally, we check what pi in Definition 3.6.9 characterizes.

Proposition 3.7.5. We define DelSt
(i)
j : AccTree

(i)
j (Σ, A) → Tree∞Σ+A by

DelSt
(i)
j (D, l) := (D, l′) where l′(w) := π1(l(w)). Then with respect to the iso-

morphism in Proposition 3.7.2, DelSt
(i)
j (ξ) = p

(i)
j,A(ξ).

Proof. It is easy to see that DelSt
(i)
j : AccTree

(i)
j (Σ, A)→ Tree∞Σ+A satisfies the

following equality for each ξ =
(
(a, i), (ξ0, . . . , ξm−1)

)
∈ AccTree

(i)
j (Σ, A).

DelSt
(i)
j (ξ) =

(
a,
(
[DelSt

(i)
1 , . . . ,DelSt

(i)
i](ξ0), . . . , [DelSt

(i)
1 , . . . ,DelSt

(i)
i](ξm−1)

))
.

By Proposition 3.7.2, this means that [DelSt
(i)
1 , . . . ,DelSt

(i)
i] is a homomorphism

from [β
(i)
1,A, . . . , β

(i)
i,A] to ζ

F
A . Therefore immediate by the definition of p

(i)
j .

We can now prove Proposition 3.7.1.3 as follows: for x ∈ Xi,

Lp
A(x) =

{
DelSt

(2n)
i (p(ρ)) | ρ ∈ RunAcc

A (x)
}

(by definition)

= Jp1 ⊙ dtri(c)(x) (by Proposition 3.7.4 and Proposition 3.7.5)

= trpi (c)(x) (by Theorem 3.6.10).

61

3.8 Extension to Probabilistic Automata

In this section, we fix T to the sub-Giry monad Gs. A parity (Gs, FΣ)-system
represents a probabilistic parity tree automaton (PPTA).

3.8.1 Trace Semantics of PPTA via Logical Fixed Point

We apply the framework in Section 3.3 to PPTAs. The proposition below is
proved in a similar manner to Proposition 3.7.1.

Proposition 3.8.1. Define an order on each homset of Kℓ(Gs) as Example 3.1.11,
and define a lifting FΣ : Kℓ(Gs)→ Kℓ(Gs) of FΣ as Example 3.1.6. Then:

1. Gs and FΣ constitute a parity trace situation (Definition 3.6.3).

2. The carrier set of a final FΣ-coalgebra is isomorphic to (Tree∞Σ ,FTree∞Σ
).

3. For a Σ-labeled PPTA A =
(
(X,FX), ξ, p

)
where p : X → {1, . . . , 2n}, we

define a parity (Gs, FΣ)-system
(
(X,FX), cA ,

(
(X1,FX1), . . . , (X2n,FX2n)

))
as follows: cA = ξ, Xi := {x ∈ X | p(x) = i} and FXi = {A∩Xi | A ∈ FX}.
Then for each x ∈ X, we have: trp(c)(x) = Lp

A (x).

Remark 3.8.2. When T = Gs, the HES in Definition 3.6.3 is over a poset that is
not a complete lattice. Let Σ = {∗} where |∗| = 0 for example. Then FΣX = {∗}
for each X, and the carrier νFΣ of a final FΣ-coalgebra is given by {∗}. It is not
so hard to see that a measurable space Gs(νFΣ) is isomorphic to [0, 1] equipped
with the standard σ-algebra. Suppose that we are given a Büchi (Gs, FΣ)-system
(X, c, (X1, X2)) such that X = X1 = R and X2 = ∅, both of which are equipped
with the standard σ-algebras. Then a poset Kℓ(Gs)(X, νFΣ) with the order in
Example 3.1.11 is not a complete lattice (nor an upward directed set). Indeed, for
an arbitrary unmeasurable subset A ⊆ X = R of R, a directed subset {χa : X →p
[0, 1] | a ∈ A} ⊆ Kℓ(Gs)(X, νFΣ) ∼= SB(X, [0, 1]), where χa(x) = 1 if x = a and 0
otherwise, does not have the supremum.

3.8.2 Trace Semantics of PPTA via Categorical Fixed Point

In fact, it is still open if T = Gs and F = FΣ satisfy Assumption 3.4.14. The
challenging part is the gfp-preserving condition (Assumption 3.4.14.4). However,
by carefully checking the proofs of the lemmas and the propositions where the
gfp-preserving condition is used (concretely, Proposition 3.4.11, Sublemma 3.6.13
and Lemma 3.6.15), we can show that Assumption 3.4.14.4 can be relaxed to the
following weaker but more complicated conditions.

Assumption 3.8.3. When n is odd, the following conditions are satisfied.

4’-1. T and F ‡
n(+ A) satisfy the gfp-preserving condition with respect to an

algebra F ‡
n((F

‡
i)

⊕B +A) pF ‡
n(id+f)−−−−−−→ F ‡

n((F
‡
n)⊕B +B) p

J(ζ
F
‡
n

B)−1

−−−−−−→ (F ‡
n)⊕B for

each f : A→p B;

4’-2. T and F+(+ A) satisfy the gfp-preserving condition with respect to an

algebra F+(F⊕⊕A + A) pJτ−→ F⊕(F⊕⊕A + A) p
J(ζF

⊕
A)−1

−−−−−−→ F⊕⊕A where τ is
the unique homomorphism from (ιFF⊕⊕A+A)

−1 to ζFF⊕⊕A+A; and

62

4’-3. T and F (+ A) satisfy the gfp-preserving condition with respect to an

algebra F (F⊕A+ F⊕A+A) pJF ([id,id]+id)−−−−−−−−−→ F (F⊕A+A) p
J(ζFA)−1

−−−−−→ F⊕A.

Proposition 3.8.4. Theorem 3.6.10 still holds even if we replace Condition 4 of
Assumption 3.6.7 with the conditions in Assumption 3.8.3.

The weakened conditions above are satisfied by T = Gs and F = FΣ on SB.

Proposition 3.8.5. We define a partial order ⊑ for each homset of Kℓ(Gs) as
in Example 3.1.11, and define a lifting FΣ : Kℓ(Gs)→ Kℓ(Gs) of FΣ as in Exam-
ple 3.1.6. Then Conditions 1–3 and 5–7 of Assumption 3.6.7 and Conditions 4’-
1–3 of Assumption 3.8.3 are satisfied by (T, F) = (Gs, FΣ).

Proof. Conditions 1, 2, 3, 6 and 7 are proved in a similar manner to Proposi-
tion 3.7.3.

We prove that Condition 4’-1 is satisfied. Let c : X →p (FΣ)
‡
i (X + A). Let

l : X →p ((FΣ)
‡
i)

⊕A be the greatest homomorphism from c to Jζ
F ‡
i

A . Let m :

((FΣ)
‡
i)

⊕A →p ((FΣ)
‡
i)

⊕B be the greatest fixed point of g 7→ (J(ζ
(FΣ)

‡
i

B)−1 ⊙

(FΣ)
‡
i (id + f)) ⊙ (FΣ)

‡
i (g + id) ⊙ ζ(FΣ)

‡
i

A . Let t : X →p ((FΣ)
‡
i)

⊕B be the greatest

fixed point of h 7→ (J(ζ
(FΣ)

‡
i

B)−1⊙ (FΣ)
‡
i (id + f))⊙ (FΣ)

‡
i (h+ id)⊙ c . Pictorially,

(FΣ)
‡
i (X +A) � //

�
--

(FΣ)
‡
i (((FΣ)

‡
i)

⊕A+A) � // (FΣ)
‡
i (((FΣ)

‡
i)

⊕B +A)
_
(FΣ)

‡
i (id+f)��

(FΣ)
‡
i (((FΣ)

‡
i)

⊕B +B)
_
J(ζ

(FΣ)
‡
i

B)−1��

X � l //
�

t

11

_c

OO

=ν

((FΣ)
‡
i)

⊕A �m //

_
Jζ

(FΣ)
‡
i

A

∼=

OO

=ν

((FΣ)
‡
i)

⊕B .

It is easy to see that m⊙ l is a fixed point of h 7→ (J(ζ
(FΣ)

‡
i

B)−1 ⊙ (FΣ)
‡
i (id +

f)) ⊙ (FΣ)
‡
i (h + id) ⊙ c and hence we have m ⊙ l ⊑ t. We prove the opposite

direction.
For each k ∈ ω, we inductively define πk : ((FΣ)

‡
i)

⊕A→ ((FΣ)
‡
i (+A))k1 as

follows: π0 := !
((FΣ)

‡
i)

⊕A
and πk+1 := ((FΣ)

‡
i (+idA))

k!◦ (FΣ)
‡
i (πk+idA)◦ζ

(FΣ)
‡
i

A .

We define π′k : ((FΣ)
‡
i)

⊕B → ((FΣ)
‡
i (+B))k1 in a similar manner.

By Theorem 2.4.17, (((FΣ)
‡
i)

⊕A, (πk)k∈ω) is a limit over a final sequence 1
!←−

(FΣ)
‡
i (1 + A)

(FΣ)
‡
i (!+idA)

←−−−−−−−− (FΣ)
‡
i ((FΣ)

‡
i (1 + A) + A)

(FΣ)
‡
i ((FΣ)

‡
i (!+idA)+idA)

←−−−−−−−−−−−−−−−−

Similarly, (((FΣ)
‡
i)

⊕B, (π′k)k∈ω) is a limit over 1
!←− (FΣ)

‡
i (1 + B)

(FΣ)
‡
i (!+idB)

←−−−−−−−−

(FΣ)
‡
i ((FΣ)

‡
i (1 +B) +B)

(FΣ)
‡
i ((FΣ)

‡
i (!+idB)+idB)

←−−−−−−−−−−−−−−−−
It is known that Gs : SB → SB preserves a limit of an ωop-sequence con-

sisting of standard Borel sets [96]. This means that (((FΣ)
‡
i)

⊕A, (Jπk)k∈ω) is a

limit over a sequence 1 pJ !←− (FΣ)
‡
i (1 + A) p

J(FΣ)
‡
i (!+idA)

←−−−−−−−−− (FΣ)
‡
i ((FΣ)

‡
i (1 + A) +

A) p
J(FΣ)

‡
i ((FΣ)

‡
i (!+idA)+idA)

←−−−−−−−−−−−−−−−−− It is easy to see that it is also a 2-limit. That is,

for two cones (X, (γ1k)k∈ω) and (X, (γ2k)k∈ω) over 1 pJ !←− (FΣ)
‡
i (1+A) p

J(FΣ)
‡
i (!+idA)

←−−−−−−−−−

(FΣ)
‡
i ((FΣ)

‡
i (1 + A) + A) p

J(FΣ)
‡
i ((FΣ)

‡
i (!+idA)+idA)

←−−−−−−−−−−−−−−−−− . . . such that γ1k ⊑ γ2k for each
k ∈ ω, if we write l1 (resp. l2) for the mediating arrow from (X, (γ1k)k∈ω)

63

(resp. (X, (γ2k)k∈ω)) to (((FΣ)
‡
i)

⊕A, (Jπk)k∈ω), then we have l1 ⊑ l2. Simi-

larly, (((FΣ)
‡
i)

⊕B, (Jπ′k)k∈ω) is a 2-limit over 1 pJ !←− (FΣ)
‡
i (1 + B) p

J(FΣ)
‡
i (!+idB)

←−−−−−−−−−

(FΣ)
‡
i ((FΣ)

‡
i (1 +B) +B) p

J(FΣ)
‡
i ((FΣ)

‡
i (!+idB)+idB)

←−−−−−−−−−−−−−−−−−
We inductively define a cone (X, (γk : X →p ((FΣ)

‡
i (+A))k1)k∈ω) over 1 pJ !←−

(FΣ)
‡
i (1 + A) p

J(FΣ)
‡
i (!+idA)

←−−−−−−−−− (FΣ)
‡
i ((FΣ)

‡
i (1 + A) + A) p

J(FΣ)
‡
i ((FΣ)

‡
i (!+idA)+idA)

←−−−−−−−−−−−−−−−−− . . .
as follows:

• For each s ∈ ω, we define an arrow fs : X →p 1 as follows: i) f0 := J !X and

ii) fs+1 := J ! ⊙ (FΣ)
‡
i (fs + idA) ⊙ c. It is easy to see that f0 ⊒ f1 ⊒

We define fω : X →p 1 by fω :=
d

s∈ω fs. As the composition ⊙ in Kℓ(Gs) is
ωop-continuous, by the Kleene fixed point theorem, fω is the greatest fixed

point of a function h 7→ J !⊙ (FΣ)
‡
i (h+ idA)⊙ c. We let γ0 := fω.

• γk+1 := J(FΣ)
‡
i (γk + idA)⊙ c.

1 G1 G
2
1 G

3
1

X GX G
2
X G

3
X

=ν = =

Z GZ G
2
Z G

3
Z

= = =

· · ·

· · ·

· · ·

�J !oo �JG!oo �JG2!oo � JG3!oo

�c // �Gc // �G
2
c // � G

3
c//

sγ0
��

sGγ0
��

sG
2
γ0

��
sG

3
γ0

��

�

Jζ
(FΣ)

‡
i

A

// �

JGζ
(FΣ)

‡
i

A

// �

JG2ζ
(FΣ)

‡
i

A

// �

JG3ζ
(FΣ)

‡
i

A

//

K
J !

EE
K
JG!

EE
K
JG2!

EE
K
JG3!

EE
_l′

��

(Here G := (FΣ)
‡
i (+A) and Z := ((FΣ)

‡
i)

⊕A.)

Let l′ : X →p ((FΣ)
‡
i)

⊕A be the unique mediating arrow from (X, (γk)k∈ω) to

a 2-limit (((FΣ)
‡
i)

⊕A, (Jπk)k∈ω). By its definition, we can easily see that l′ is

a homomorphism from c to Jζ
(FΣ)

‡
i

A . Moreover, for an arbitrary homomorphism

l′′ : X →p ((FΣ)
‡
i)

⊕A from c to Jζ
(FΣ)

‡
i

A , if we define γ′k : X →p ((FΣ)
‡
i (+A))k1)k∈ω

by γ′k := Jπk ⊙ l′′ for each k ∈ ω, then l′′ is a mediating arrow from (X, (γ′k)k∈ω)

to (((FΣ)
‡
i)

⊕A, (Jπk)k∈ω). By definition, we have γ′k ⊑ γk for each k. Therefore

as (((FΣ)
‡
i)

⊕A, (Jπk)k∈ω) is a 2-limit, we have l′′ ≤ l′. This means that the

mediating arrow from (X, (γk)k∈ω) to (((FΣ)
‡
i)

⊕A, (Jπk)k∈ω) is given by l.

Note that m (resp. t) is the greatest homomorphism from (FΣ)
‡
i (idA + f) ⊙

Jζ
(FΣ)

‡
i

A (resp. (FΣ)
‡
i (idX + f) ⊙ c) to Jζ

(FΣ)
‡
i

B . Hence in a similar manner to

(X, (γk)k∈ω), we can define a cone (((FΣ)
‡
i)

⊕A, (εk : ((FΣ)
‡
i)

⊕A →p ((FΣ)
‡
i (+

B))k1)k∈ω) (resp. (X, (δk : X →p ((FΣ)
‡
i (+ B))k1)k∈ω)) over 1 pJ !←− (FΣ)

‡
i (1 +

B) p
J(FΣ)

‡
i (!+idB)

←−−−−−−−−− (FΣ)
‡
i ((FΣ)

‡
i (1 + B) + B) p

J(FΣ)
‡
i ((FΣ)

‡
i (!+idB)+idB)

←−−−−−−−−−−−−−−−−− . . ., and m

(resp. t) is the mediating arrow from the cone to (((FΣ)
‡
i)

⊕B, (Jπ′k)k∈ω).

X � l//

�
δk

22

�
γk --

((FΣ)
‡
i)

⊕A �m //

�
Jπk ''

�
εk ,,

((FΣ)
‡
i)

⊕B
� Jπ′

k
((

((FΣ)
‡
i (+A))k1 ((FΣ)

‡
i (+B))k1

By definition and that (((FΣ)
‡
i)

⊕B, (Jπ′k)k∈ω) is a 2-limit, to prove t ⊑ m⊙ l,
it suffices to prove δk ⊑ εk ⊙ l for each k ∈ ω. We prove it by an induction on k.

64

• Let k = 0. Note that for each X ∈ SB, Kℓ(Gs)(X, 1) has the greatest
element ⊤X,1. We first prove δ0 ⊑ ⊤((FΣ)

‡
i)

⊕A,1
⊙ l. Note that the right-

hand side is equivalent to γ0. Recall that δ0 is the greatest fixed point

of h′′ 7→ J ! ⊙ (FΣ)
‡
i (h

′′ + f) ⊙ c while γ0 is the greatest fixed point of

h 7→ J ! ⊙ (FΣ)
‡
i (h + idA) ⊙ c. Hence by an easy induction, we can prove

that δ0 ⊑ γ0 and therefore δ0 ⊑ ⊤((FΣ)
‡
i)

⊕A,1
⊙ l is proved.

Note that ε0 is the greatest fixed point of h′ 7→ J !⊙F (h′+idB)⊙(FΣ)
‡
i (idA+

f)⊙ Jζ(FΣ)
‡
i

A . Again by an inductive manner, we can prove δ0 ⊑ ε0 ⊙ l.

• When k > 0, we can prove δk ⊑ εk ⊙ l by the definitions of δk and εk, and
the induction hypothesis.

Hence we have t = m⊙ l.
Condition 4’-2 and Condition 4’-3 are similarly proved.
It is easy to prove Jf ⊑ g implies g = Jf . Hence Condition 5 holds.

Hence we can consider decorated trace semantics dtr1(c), . . . , dtr2n(c) for par-

ity (Gs, FΣ)-systems. The datatype (FΣ)
(i)
j and its accompanying coalgebraic

structure β
(i)
j are given as follows.

Lemma 3.8.6. For i ∈ N and j ∈ {1, . . . , i},

(FΣ)
(i)
j A ∼= (AccTree

(i)
j (Σ, A),F

AccTree
(i)
j (Σ,A)

)

where F
AccTree

(i)
j (Σ,A)

:= FTree∞(Σ+A)×{1,...,i}
∩AccTree(i)j (Σ, A). Moreover, if i is odd

then the function decomp
(i)
j in Proposition 3.7.2 coincides with α

(i)
j,A.

We can now characterize dtri(c).

Proposition 3.8.7. Let A = ((X,FX), ξ, p) be a Σ-labeled PPTA such that
p : X → {1, . . . , 2n}. We define a parity (Gs, FΣ)-system(

(X,FX), cA , ((X1,FX1), . . . , (X2n,FX2n))
)

as in Proposition 3.8.1. We define p : Run∞A → Tree∞Σ×{1,...,2n} as in Proposi-

tion 3.7.4. Then for each i ∈ {1, . . . , 2n}, x ∈ Xi and A ∈ F
AccTree

(2n)
i (Σ,A)

, with

respect to the isomorphism in Lemma 3.8.6,

dtri(cA)(x)(A) = LRun
A (x)

({
ρ ∈ Run∞A

∣∣ p(ρ) ∈ A}) .
Proof. Proved in a similar manner to [113, Theorem A.13].

We can characterize pi in a similar manner to the nondeterministic case
(Proposition 3.7.5).

As in the previous section, the Proposition 3.8.7 implies Proposition 3.8.1.3.

3.9 Conclusion and Related Work

We have introduced two categorical characterizations for languages of NBTAs
(Definition 3.3.1 and 3.4.15) and NPTAs (Definition 3.6.3 and 3.6.8). One of
them considers logical fixed points (i.e. fixed points in homsets) while the other
considers categorical fixed points (i.e. fixed points in categories). We have proved
that the latter characterization induces the former one (Theorem 3.5.4 and 3.6.10)
and hence they can be thought of as essentially the same characterization.

65

Related Work A categorical characterization of the Büchi and parity condition
is also found in some existing work. In [24], using the lasso-characterization of
the Büchi condition, a Büchi automaton is modeled as a coalgebra in the product
category Sets × Sets. Because of the use of the lasso characterization, dealing
with infinite-state automata seems to be difficult for their framework. Extension
to probabilistic systems also seems to be hard in their framework. However,
in contrast, there exist notions that are well-characterized in their framework
but seems to be difficult to be characterized in our framework, like bisimilarity.
In [116], a notion of coalgebra automaton is introduced. It is an automaton that
takes coalgebras as inputs and classifies them with respect to the Büchi, parity
or Muller acceptance condition.

We have used the notion of “alternating fixed point of functors” in Chapter 3.
The same notion is also used in [38, 4]. In [38] the authors characterize the set of
continuous functions from Aω to Bω as an alternating fixed point νX. µY. (B ×
X)+Y A of a functor. Although the data type is not exactly the same as the one
used by us, it also has a Büchi-like flavor: for a continuous function f : Aω → Bω,
if f(a0a1 . . .) = b0b1 . . . then each bi should be determined by some finite prefix of
a0a1 Hence a continuous function f can be regarded as an infinite repetition
of such assignments determined by finite prefix. In [4, Section 7] a sufficient
condition for the existence of such an alternating fixed point is discussed.

66

Chapter 4

Categorical Fair Simulation

Using the categorical framework developed in the previous chapter, we categori-
cally generalize fair simulation.

Simulation is a notion often used to prove behavioral inclusion between tran-
sition systems. Simulation notions are defined for various systems [66, 55]. Fair
simulation is one of them, which was originally introduced for nondeterministic
Büchi word automata [50, 32]. It was generalized for nondeterministic Büchi tree
automata (NBTAs) in [117].

Other well-known simulation notions are forward and backward simulation [74]
for nondeterministic automata. Categorical generalizations of those simulation
notions are known as Kleisli simulation [43]. In this chapter, we categorically
generalize fair simulation by extending the framework of Kleisli simulation. We
then concretize it for probabilistic Büchi tree automata (PBTAs), quantitative
variants of nondeterministic Büchi tree automata, to induce a new simulation
notion.

This chapter is organized as follows. We review notions of forward and fair
simulation in Section 4.1 and that of Kleisli simulation in Section 4.2. A categor-
ical generalization of fair simulation is in Section 4.3. Section 4.4 is devoted to
a “sanity check”: we concretize the obtained categorical framework for NBTAs
and observe that we rediscover the conventional notion of fair simulation. We
concretize the framework for PBTAs and induce a new simulation notion in Sec-
tion 4.5.

This chapter is based on [110].

4.1 Simulation

In this section, we review two notions of simulation. Simulation is often used to
verify behavioral inclusion between transition systems. For nondeterministic word
automata, simulation notions called forward simulation and backward simulation
are well-known. We hereby review the forward one. It is defined in terms of a
parity game (Definition 2.2.25).

Definition 4.1.1 (forward simulation, [74]). Let Σ be a ranked alphabet and
A = (X, τ) and B = (Y, σ) be Σ-labeled NTAs (Definition 2.2.4). Let R ⊆
X×Y . We define a parity game Gfwd

A,B,R = (XMax
A,B,R, X

Min
A,B,R, E

Max
A,B,R, E

Min
A,B,R, pA,B)

as follows:

XMax
A,B,R := R+

(⨿
i∈ω

Σi ×Xi
)
× Y

XMin
A,B,R := R+R∗

67

EMax
A,B,R :=

{
(r, r) ∈ R×R

∣∣ r ∈ R}
+

{(
((a, x1, . . . , xi), y),

((x1, y1), . . . , (xi, yi))
) ∈⨿iΣi ×Xi

×R∗

∣∣∣∣∣ (a, y1, . . . , yn) ∈ σ(y),∀j. (xj , yj) ∈ R

}

EMin
A,B,R :=

{(
(x, y),

((a, x1, . . . , xi), y)
) ∈ R×⨿

iΣi ×Xi

∣∣∣∣∣ (a, x1, . . . , xn) ∈ τ(x)
}

+
{(

((x1, y1), . . . , (xi, yi)), (xj , yj)
)
∈ R∗ ×R

∣∣∣ j ∈ {1, . . . , i}}
pA,B,R(t) := 0 .

We call R a forward simulation from A to B if Player Max is winning in the game
Gfwd

A,B,R from each state (x, x′) in R.

Note that in the parity game Gfwd
A,B,R, all the states are assigned a priority 0.

Hence Player Max wins if the play continues infinitely or Player Min gets stuck.
Using a forward simulation, we can check both finite and infinitary language

inclusions. This property is called soundness of simulation.

Theorem 4.1.2 ([74]). If R is a forward simulation from A to B, (x, y) ∈ R
implies L∗

A(x) ⊆ L∗
B(y) and L

∞
A (x) ⊆ L∞

B (y).

A simulation notion was also defined for nondeterministic Büchi word au-
tomata [50, 32] and named fair simulation. It was extended for nondeterministic
Büchi tree automata in [117].

Definition 4.1.3 (fair simulation, [50, 32, 117]). Let A = (X, τ,AccA) and B =
(Y, σ,AccB) be finite-state Σ-labeled NBTAs. Let R ⊆ X×Y . We define a parity
game Gfair

A,B,R = (XMax
A,B,R, X

Min
A,B,R, E

Max
A,B,R, E

Min
A,B,R, pA,B) so that XMax

A,B,R, X
Min
A,B,R,

EMax
A,B,R, and E

Min
A,B,R are the same as Definition 4.1.1 and pA,B is defined as follows:

pA,B,R(x, y) :=


0 (x /∈ AccA, y /∈ AccB)

1 (x ∈ AccA, y /∈ AccB)

2 (y ∈ AccB)

and pA,B,R
(
(a, x1, . . . , xi), y

)
:= 0

We call R a fair simulation from A to B if Player Max is winning in the game
Gfair

A,B,R from each state (x, x′) in R.

Theorem 4.1.4 (soundness of fair simulation, [50, 32, 117]). If R is a fair sim-
ulation from A to B, (x, y) ∈ R implies LB

A(x) ⊆ LB
B(y).

Example 4.1.5. Let Σ be a ranked alphabet defined by Σ = {a, b} and |a| = |b| =
2. Let A = (X, τ,AccA) and B = (Y, σ,AccB) be Σ-labeled NBTAs illustrated
below, where we write z

σ−→□⇒ z1
z2

when (c, z1, z2) ∈ u(z) for u ∈ {τ, σ}.

A

x1

□

□

x2

□

□ B

y0
□

□

y1

□□
y2 yn−2

□ □
yn−1

□
□

• • •

b

WW

GG GG

a ��

���� a""
hhYY

b

<<
vv��

ass
$$

dd

b
mm

WW WW
a

UU
��

OO

b

OO
DD DD

a
""
OO

��

b
��

����
a

��
::

zz b��
qqqq

If we let R := X × Y , then R is a fair simulation from A to B.

68

4.2 Kleisli Simulation

In this section, we review the notion of Kleisli simulation. It is a categorical gen-
eralization of forward (and backward) simulation (Definition 4.1.1). We hereby
review the forward one.

Definition 4.2.1 (forward Kleisli simulation, [43]). Let X =
(X, c) and Y = (Y, d) be (T, F)-systems. Assume that each homset
of Kℓ(T) carries a partial order ⊑. A forward (Kleisli) simulation
from X to Y is a Kleisli arrow f : Y → X such that c⊙f ⊑ Ff⊙d.

FX

⊑
FY�Ffoo

X

_c
OO

Y

_d
OO

f�oo

Theorem 4.2.2 (soundness of forward Kleisli simulation). Let X = (X, c) and
Y = (Y, d) be (T, F)-systems. Assume that each homset of Kℓ(T) carries a partial
order ⊑, and the assumptions in Theorem 3.1.13 are satisfied. Assume further
that there exists a forward Kleisli simulation from X to Y.

1. ([43]) By Theorem 3.1.13, T and F constitute a finite trace semantics. We
have: tr(c) ⊑ tr(d)⊙ f : X →p µF .

2. With respect to tr∗(c) and tr∗(d) in Proposition 3.1.14, we have: tr∗(c) ⊑
tr∗(d)⊙ f : X →p νF .

3. ([113]) Assume that T and F constitute an infinitary trace situation. We
have: tr∞(c) ⊑ tr∞(d)⊙ f : X →p νF .

Item 2 is immediate by Item 1 and Proposition 3.1.14.

4.3 Kleisli Fair Simulation

In this section, we extend the notion of Kleisli simulation (Definition 4.2.1) so
that it generalizes fair simulation (Definition 4.1.3). To this end, we employ two
existing notions—partially additive monad and lattice-theoretic progress measure.

4.3.1 Partially Additive Monad

Let T be a monad and g1 : V →p X1 and g2 : V →p X2 be Kleisli arrows in
Kℓ(T). In general, we cannot canonically define an arrow g : V →p X1 +X2 from
g1 and g2. A partially additive monad is a monad with such a “codomain join”
operation.

For example, when T = P, we can define g : V →p X1 + X2 by g(v) :=
g1(v) ∪ g2(v). When T = Gs, if g1(v)(X1) + g2(v)(X2) ≤ 1 then we can define
g : V →p X1+X2 by g(v)(A) := g1(v)(A)+g2(v)(A). Note that in the latter case,
the “codomain join” is not always defined, i.e. it is a partial operation.

Definition 4.3.1 (partially additive monad, [59, 25]). Let C be a category with
an initial object 0, binary products and binary coproducts. A monad T on C is
called a partially additive monad if it satisfies the following conditions:

1. The object T0 is a final object in C.1

2. Let X1, X2 ∈ C. We define p1 : X1 + X2 → TX1 and p2 : X1 + X2 →
TX2 by p1 := [ηX1 ,⊥X2,X1] and p2 := [⊥X1,X2 , ηX2], where for X,Y ∈ C,

1This implies that 0 is both an initial and final object in Kℓ(T). Such an object is called a
zero object.

69

⊥X,Y : X → TY is defined by ⊥X,Y := X
!X−−→ T0

T

!

Y−−−→ TY . (See also
Remark 4.3.4.) Then the following arrow is a monomorphism2.

T (X1 +X2)
⟨µX1

◦Tp1,µX2
◦Tp2⟩−−−−−−−−−−−−−→ TX1 × TX2

The above assumptions allow us to define a “codomain join” and its inverse
operation as follows.

Definition 4.3.2 (codomain restriction and codomain join, [25, 59]). Let T be a
partially additive monad. For each V,X1, X2 ∈ C and i ∈ {1, 2}, we define a func-
tion called a codomain restriction ↾Xi : Kℓ(T)(V,X1×X2)→ Kℓ(T)(V,Xi) and
a partial function called a codomain join ⟨⟨ , ⟩⟩ : Kℓ(T)(V,X1)×Kℓ(T)(V,X2)⇀
Kℓ(T)(V,X1 ×X2) as follows.

g↾Xi :=
(
V

g−→ T (X1 +X2)
⟨µX1

◦Tp1,µX2
◦Tp2⟩−−−−−−−−−−−−−→ TX1 × TX2

πi−→ TXi

)
and

⟨⟨g1, g2⟩⟩ :=

{
g (∃g : V → X1 ×X2. ∀i ∈ {1, 2}. gi = g↾Xi)

undefined (otherwise) .

Note that by Condition 2 of Definition 4.3.1, ⟨⟨g1, g2⟩⟩ is unique if it exists. See
also the following diagram.

T (X1 +X2) //
⟨µX1

◦Tp1,µX2
◦Tp2⟩// TX1 × TX2

V

⟨g1,g2⟩
OO

⟨⟨g1,g2⟩⟩

kk

Example 4.3.3. As we have already mentioned, the powerset monad P is par-
tially additive. The operations in Definition 4.3.2 is given as follows:

g↾Xi(v) = {x ∈ Xi | x ∈ g(v)} and ⟨⟨g1, g2⟩⟩(v) = g1(v) ∪ g2(v) .

The sub-Giry monad Gs is also partially additive, and we have:

g↾Xi(v)(A) = g(v)(A), and

⟨⟨g1, g2⟩⟩(v)(A) =


g1(v)(A ∩X1) + g2(v)(A ∩X2)

(g1(v)(A ∩X1) + g2(v)(A ∩X2) ≤ 1)

undefined (otherwise) .

Remark 4.3.4. Let T be a partially additive monad such that Kℓ(T) is a Cppo-
enriched category. We have used the same symbol ⊥X,Y for (i) the least element
in a homset of a Cppo-enriched category (Definition 3.1.12) and (ii) an arrow
T

!

Y ◦ !X in the Kleisli category of a partially additive monad. A confusion is
unlikely because of the following reason: in the next section (see Theorem 4.3.14)
we assume that composition in Kℓ(T) is left-strict, i.e. ⊥X,Y ⊙ g = ⊥Z,Y for each
g : Z →p Y , where ⊥X,Y and ⊥Z,Y are defined in the sense of (i). It is easy to see
that under this assumption, (i) and (ii) coincide.

We conclude this section by presenting some properties of codomain restric-
tions and joins. Their proofs are easy.

Lemma 4.3.5. Let T be a partially additive monad.

2An arrow m : X → Y is a monomorphism if m ◦ f = m ◦ g implies f = g

70

1. For g : V → X1+X2, the codomain join ⟨⟨g↾X1 , g↾X2⟩⟩ is always defined and
given by g. Conversely, if ⟨⟨g1, g2⟩⟩ is defined then (⟨⟨g1, g2⟩⟩)↾Xi = gi for
i ∈ {1, 2}.

2. For f :W → V , g1 : V → X1, g2 : V → X2, h1 : X1 → Y1 and h2 : X2 → Y2
such that ⟨⟨g1, g2⟩⟩ is defined, we have:

⟨⟨g1, g2⟩⟩⊙f = ⟨⟨g1 ◦f, g2 ◦f⟩⟩ and (h1+h2)◦⟨⟨g1, g2⟩⟩ = ⟨⟨h1 ◦g1, h2 ◦g2⟩⟩ .

3. For g : V → X, ⟨⟨g,⊥V,X⟩⟩ and ⟨⟨⊥V,X , g⟩⟩ are always defined and we have

[idX , idX]⊙ ⟨⟨g,⊥V,X⟩⟩ = [idX , idX]⊙ ⟨⟨⊥V,X , g⟩⟩ = g .

4.3.2 Lattice-Theoretic Progress Measures

As its name suggests, the notion of lattice-theoretic progress measure stems from
that of progress measure. We first review the latter. As parity games (Defini-
tion 2.2.25) have many applications, methods for calculating the winning region
of a parity game are extensively studied. Progress measure is one of them.

A progress measure is defined as a function that assigns each state of a parity
game a tuple (a1, . . . , an) of ordinals. Intuitively, an ordinal ak “counts” the
number of states with an odd priority 2k − 1 so that such states are not visited
infinitely many times without visiting states with greater priorities. Ranking
function discussed in the next chapter (Definition 5.1.1) can be thought of as its
special case.

Definition 4.3.6 (≤i). Let S = (XMax, XMin, EMax, EMin, p) be a parity game
such that p : XMax → {1, . . . , 2n}. A prioritized ordinal for S is an n-tuple
(a1, . . . , an) of ordinals. Moreover, for each i ∈ {1, . . . , 2n} the i-th truncated
(pointwise) order is a preorder ≤i between prioritized ordinals defined as fol-
lows: (a1, . . . , an) ≤i (a′1, . . . , a

′
n) holds if (i) i = 2n; or (ii) i ≤ 2n − 1 and

aj ≤ a′j for each j ∈ {a, . . . , n} where a = i+1
2 if i is odd and i

2 + 1 if i is
even. We write (a1, . . . , an) <i (a′1, . . . , a

′
n) if (a1, . . . , an) ≤i (a′1, . . . , a

′
n) and

(a1, . . . , an)��≥i(a
′
1, . . . , a

′
n).

Definition 4.3.7 (progress measure for two-player games, [67]). Let S = (XMax,
XMin, EMax, EMin, p) be a parity game such that p : XMax → {1, . . . , 2n}. We
write [a] for a+ 1(= {a′ ≤ a}). A progress measure for E is a pair

p =
(
(a1, . . . , an), p : XMax → [a1]× · · · × [an] + {⊤}

)
of a prioritized ordinal and a function that satisfy the following conditions for
each x ∈ XMax such that p(x) = i.

1. If i is odd, then

∃y ∈ XMin s.t. (x, y) ∈ EMax. ∀x′ ∈ XMax s.t. (y, x′) ∈ EMin. p(x′) <i p(x) .

2. If i is even, then

∃y ∈ XMin s.t. (x, y) ∈ EMax. ∀x′ ∈ XMax s.t. (y, x′) ∈ EMin. p(x′) ≤i p(x) .

Here we regard ⊤ as the greatest element with respect to ≤i for each i.

Progress measure provides us with a sound and complete method for deciding
the winner of a parity game.

71

Theorem 4.3.8 ([67]). Let S = (XMax, XMin, EMax, EMin, p) be a parity game.

1. (Soundness) If p =
(
(a1, . . . , an), p

)
is a progress measure for S, then for

each x ∈ XMax, p(x) ̸= ⊤ implies x ∈WinS .

2. (Completeness) There exists a progress measure p =
(
(a1, . . . , an), p

)
such

that p(x) ̸= ⊤ for each x ∈WinS .

Theorem 4.3.8 says that we can underapproximate the winning region WinS
of a parity game using a progress measure. Lattice-theoretic progress measure [49]
is a generalization of progress measure, which we can use for underapproximating
solutions of an HES. Because µ and ν do not necessarily appear in the alternating
manner in our definition of HES, we have to first modify Definition 4.3.6.

Definition 4.3.9 (≤i for HESs). Let E be an HES as in Definition 2.3.5. Let
k := |

{
i | ηi = µ

}
| and define i1, . . . , ik ∈ {1, . . . ,m} so that i1 < i2 < · · · < ik

and ηia = µ for each a ∈ {1, . . . , k}. A prioritized ordinal for E is a k-tuple
(a1, . . . , ak) of ordinals. Moreover, for each i ∈ {1, . . . ,m} the i-th truncated
(pointwise) order is a preorder ≤i between prioritized ordinals defined as follows:
(a1, . . . , ak) ≤i (a

′
1, . . . , a

′
k) holds if (i) ik < i, or (ii) i ≤ ik and aj ≤ a′j for each

j ∈ {a, . . . , k} where we define a ∈ {1, . . . , k} so that i1 < · · · < ia−1 < i ≤ ia <
· · · < ik.

Definition 4.3.10 (lattice-theoretic progress measure, [49]). Let E be an HES
as in Definition 2.3.5, and define {i1, . . . , ik} as in Definition 4.3.9. We assume
that for each i ∈ {1, . . . ,m}, Li has the smallest element ⊥. A (lattice-theoretic)
progress measure for E is a pair

p =
(
(a1, . . . , ak),

(
pi(a1, . . . , ak)

)
i∈{1,...,m},0≤a1≤a1,...,0≤ak≤ak

)
of a prioritized ordinal and a family of elements pi(a1, . . . , ak) ∈ Li that satisfy
the following conditions for each prioritized ordinal (a1, . . . , ak).

1. (Monotonicity) For each i ∈ {1, . . . ,m}, (a1, . . . , ak) ≤i (a
′
1, . . . , a

′
k) im-

plies pi(a1, . . . , ak) ⊑ pi(a′1, . . . , a′k).

2. (µ-variables, base case) Let a ∈ {1, . . . k}. If aa = 0 then
pia(a1, . . . , aa, . . . , ak) = ⊥.

3. (µ-variables, step case) Let a ∈ {1, . . . , k}. If a is a successor ordinal,
there exist ordinals b1, . . . , ba−1 such that b1 ≤ a1, . . . , ba−1 ≤ aa−1 and

pia(a1, . . . , aa−1, aa, aa+1, . . . , ak)

⊑ fia

 p1(b1, . . . , ba−1, aa − 1, aa+1, . . . , ak),
. . . ,

pm(b1, . . . , ba−1, aa − 1, aa+1, . . . , ak)

 . (4.1)

4. (µ-variables, limit case) Let a ∈ {1, . . . , k}. If aa is a limit ordinal, then
the supremum

⊔
b<aa

pia(a1, . . . , aa−1, b, aa+1, . . . , ak) ∈ Lia exists and

pia(a1, . . . , aa−1, aa, aa+1, . . . , ak) ⊑
⊔
b<aa

pia(a1, . . . , aa−1, b, aa+1, . . . , ak) .

(4.2)

72

5. (ν-variables) Let i ∈ {1, . . . ,m} \ {i1, . . . , ik}. Define a ∈ {1, . . . , k + 1}
be so that i1 < · · · < ia−1 < i < ia < · · · < ik (if ik < i then a := k + 1).
There exist ordinals b1, . . . , ba−1 such that b1 ≤ a1, . . . , ba−1 ≤ aa−1 and

pi(a1, . . . , aa−1, aa, . . . , ak) ⊑ fi

 p1(b1, . . . , ba−1, aa, . . . , ak),
. . . ,

pm(b1, . . . , ba−1, aa, . . . , ak)

 . (4.3)

We call each pi(a1, . . . , ak) an approximant.

The following result corresponds to Theorem 4.3.8, which is proved using
Theorem 2.3.2 and Corollary 2.3.3.

Theorem 4.3.11 (cf. [49]). Let E be an HES as in Definition 2.3.5, and assume
that E has a solution. We further assume that for each i ∈ {1, . . . ,m}, the poset
(Li,⊑i) has the least element and either of the following conditions is satisfied:

(i) (Li,⊑i) is ω-complete, and for each li+1 ∈ Li+1, . . . , lm ∈ Lm, the function

f ‡i (, li+1, . . . , lm) : Li → Li (Definition 2.3.6) is ω-continuous; or

(ii) (Li,⊑i) is directed complete.

Then we have the following.

1. (Soundness) If p =
(
(a1, . . . , ak),

(
pi(a1, . . . , ak)

)
i,a1,...,ak

)
is a progress

measure for E then we have pi(a1, . . . , ak) ⊑ lsoli for each i ∈ {1, . . . ,m}.

2. (Completeness) There exists a progress measure p =(
(a1, . . . , ak),

(
pi(a1, . . . , ak)

)
i,a1,...,ak

)
such that pi(a1, . . . , ak) = usoli

for each i ∈ {1, . . . ,m}. Especially if Assumption (i) is satisfied above,
there exists a progress measure such that ai ≤ ω for each i ∈ {1, . . . ,m}.

Definition 4.3.7 and Definition 4.3.10 might seem rather different, but in fact
the latter generalizes the former in the following sense.

Proposition 4.3.12 ([49]). Let S = (XMax, XMin, EMax, EMin, p) be a parity
game such that p : XMax → {1, . . . , 2n}. For each i ∈ {1, . . . , 2n}, we let XMax

i :=
{x ∈ XMax | p(x) = i}. We define functions □S : PXMax → PXMin and
♢S : PXMin → PXMax as follows:

□S(S) := {y ∈ XMin | ∀x′ ∈ XMax s.t. (y, x′) ∈ EMin. x′ ∈ S} and

♢S(T) := {x ∈ XMax | ∃y ∈ XMin s.t. (x, y) ∈ EMax. y ∈ T} .

For i ∈ {1, . . . , 2n}, we define ♢S,i : PXMin → PXMax
i by ♢S,i(T) := ♢S(T)∩Xi.

We define an HES as follows (here µ and ν appear in an alternating manner):
u1 =µ ♢S,1

(
□S(u1 + u2 + · · ·+ u2n)

)
∈ (PXMax

1 ,⊆)
u2 =ν ♢S,2

(
□S(u1 + u2 + · · ·+ u2n)

)
∈ (PXMax

2 ,⊆)
...

u2n =ν ♢S,2n
(
□S(u1 + u2 + · · ·+ u2n)

)
∈ (PXMax

2n ,⊆)

(4.4)

1. Let p =
(
(a1, . . . , an), p

)
be a progress measure for S. For i ∈ {1, . . . , 2n}

and ordinals a1 ∈ [a1], . . . , an ∈ [an], we define a subset pi(a1, . . . , an) ∈
PXMax

i as follows:

pi(a1, . . . , an) :=
{
x ∈ XMax

∣∣∣ p(x) ≤i (a1, . . . , an)
}
.

Then a pair
(
(a1, . . . , an), (pi(a1, . . . , an)

)
i,a1,...,an

)
is a lattice-theoretic

progress measure for the HES (4.4).

73

2. Let p =
(
(a1, . . . , an), (pi(a1, . . . , an)

)
i,a1,...,an

)
be a lattice-theoretic progress

measure for the HES (4.4). We define a function p : XMax → [a1] × · · · ×
[an]+{⊤} so that p(x) is one of the minimum elements of the following set
with respect to the preorder ≤i:{

(a1, . . . , an)
∣∣ x ∈ pi(a1, . . . , an)} .

Then a pair
(
(a1, . . . , an), p

)
is a progress measure for S.

The proposition above also shows that the winning region of a parity game
can be calculated as the solution of an HES (4.4).

4.3.3 Kleisli Fair Simulation with Dividing

We are now ready to present our categorical definition of fair simulation and its
soundness theorem.

Definition 4.3.13 (fair simulation with dividing). Assume that T and F con-
stitute a Büchi trace situation (Definition 3.3.1) with respect to ⊑. We fur-
ther assume that the monad T is partially additive. Let X =

(
X, c, (X1, X2)

)
and Y =

(
Y, d, (Y1, Y2)

)
be Büchi (T, F)-systems, and a be an ordinal. A

(Kleisli, a-bounded) fair simulation with dividing from X to Y is an arrow
f : Y →p X that satisfies the following conditions (for simplicity, we write fji
for (f ⊙ κj)↾Xi : Yj →p Xi (see Definition 4.3.2)).

A. The arrow f : Y →p X is a forward Kleisli simulation from X to Y.

B. There exist a pair d11, d12 : Y1 →p FY of arrows such that [idFY , idFY] ⊙
⟨⟨d11, d12⟩⟩ = d1 and a pair of increasing transfinite sequences

f
⟨0⟩
11 ⊑ f

⟨1⟩
11 ⊑ · · · ⊑ f

⟨a⟩
11 : Y1 →p X1 and f

⟨0⟩
12 ⊑ f

⟨1⟩
12 ⊑ · · · ⊑ f

⟨a⟩
12 : Y1 →p X2,

such that a codomain join ⟨⟨f ⟨a⟩11 , f
⟨a⟩
12 ⟩⟩ exists for each a ≤ a, and the follow-

ing conditions are satisfied:

(a) (Approximate f11 and f12) We have f
⟨a⟩
11 = f11 and f

⟨a⟩
12 = f12.

(b) (f
⟨a⟩
11) For each a, c1 ⊙ f ⟨a⟩11 ⊑ F

[
⟨⟨f ⟨a⟩11 , f

⟨a⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d11 .

(c) (f
⟨a⟩
12 , the base case) If a = 0, then f

⟨a⟩
12 = ⊥.

(d) (f
⟨a⟩
12 , the step case) If a is a successor ordinal, then c2 ⊙ f

⟨a⟩
12 ⊑

F
[
⟨⟨f ⟨a−1⟩

11 , f
⟨a−1⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d12 .

(e) (f
⟨a⟩
12 , the limit case) If a is a limit ordinal, then the supremum⊔
a′<a f

⟨a′⟩
12 exists and f

⟨a⟩
12 ⊑

⊔
a′<a f

⟨a′⟩
12 .

We call the pair d11, d12 of arrows a dividing of d1, and the sequences

f
⟨0⟩
11 ⊑ · · · ⊑ f

⟨a⟩
11 and f

⟨0⟩
12 ⊑ · · · ⊑ f

⟨a⟩
12 approximating sequences.

FY �F
[
⟨⟨f⟨a⟩

11 ,f
⟨a⟩
12 ⟩⟩, ⟨⟨f21,f22⟩⟩

]
//

⊒
FX

Y1

_d11
OO

� f
⟨a⟩
11 // X1

_c1
OO FY �F

[
⟨⟨f⟨a⟩

11 ,f
⟨a⟩
12 ⟩⟩, ⟨⟨f21,f22⟩⟩

]
//

⊒
FX

Y1

_d12
OO

� f
⟨a+1⟩
12 // X2

_c2
OO

Theorem 4.3.14 (soundness). Let a be an ordinal. Assume the following.

74

1. The Kleisli category Kℓ(T) and the lifting F : Kℓ(T) → Kℓ(T) of F are
Cppo-enriched with respect to ⊑ (see Definition 3.1.12).

2. The codomain restriction ()↾Xi, the codomain join ⟨⟨ , ⟩⟩ and the co-
tupling [,] of Kleisli arrows are all monotone and ω-continuous with
respect to ⊑.

3. The codomain join is downward closed, i.e. for f1, g1 : V →p X1 and f2, g2 :
V →p X2 such that f1 ⊑ g1 and f2 ⊑ g2, if ⟨⟨g1, g2⟩⟩ is defined then ⟨⟨f1, f2⟩⟩
is also defined.

4. The Kleisli composition ⊙ is left and right-strict, i.e. ⊥ ⊙ f = ⊥ and
f ⊙⊥ = ⊥.

5. For each limit ordinal a ≤ a, post-composition in Kℓ(T) is a-continuous,
i.e. if the supremum

⊔
i<a fi exists then

⊔
i<ω(g ⊙ fi) also exists and g ⊙

(
⊔

i<a fi) =
⊔

i<ω(g ⊙ fi).

If there exists a fair simulation with dividing f : Y →p X from X = (X, c,
(X1, X2)) to Y = (Y, c, (Y1, Y2)), then we have trB(c)⊙ f ⊑ trB(d) : Y →p νF .

By Assumption 1, we can apply the correctness results of progress measures
in Theorem 4.3.11 for the HES (3.4) in Definition 3.3.1. Note also that by As-

sumption 3, the codomain join ⟨⟨f ⟨a⟩11 , f
⟨a⟩
12 ⟩⟩ in Definition 4.3.13 always exists.

We prove the theorem using two lemmas.

Lemma 4.3.15. Recall that trB1 (c) : X1 →p νF and trB2 (c) : X2 →p νF are given
as the solutions usol1 and usol2 of the HES (3.4) in Definition 3.3.1. By Assump-
tion 1 of Theorem 4.3.14 and the completeness theorem of progress measure (The-
orem 4.3.11.2), there exists a progress measure

pX =
(
(b1),

(
u1(b1) : X1 →p νF, u2(b1) : X2 →p νF

)
b1≤b1

)
for the HES (3.4) such that b1 ≤ ω, u1(b1) = trB1 (c) and u2(b1) = trB2 (c). We
define a pair

p =
(
(c1, c2),

(
h1(c1, c2), h2(c1, c2), h3(c1, c2)

)
c1≤c1,c2≤c2

)
of a pair of ordinals and a family of ordinal-indexed Kleisli arrows
h1(c1, c2) : Y1 →p νF , h2(c1, c2) : Y1 →p νF and h3(c1, c2) : Y2 →p νF as follows:

c1 := b1, c2 := a, h1(c1, c2) := u1(c1) ⊙ f
(c2)
11 , h2(c1, c2) := u2(c1) ⊙ f

(c2)
12 , and

h3(c1, c2) :=
[
u1(c1), u2(c1)

]
⊙⟨⟨f21, f22⟩⟩ (see also Figure 4.1). Then p is a progress

measure for the following HES.

h1 =µ (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨h1, h2⟩⟩, h3

]
⊙ d11 ∈ Kℓ(T)(Y1, νF)

h2 =µ (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨h1, h2⟩⟩, h3

]
⊙ d12 ∈ Kℓ(T)(Y1, νF)

h3 =ν (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨h1, h2⟩⟩, h3

]
⊙ d2 ∈ Kℓ(T)(Y2, νF)

(4.5)

Proof. We show that p satisfies the axioms of progress measure (Defini-
tion 4.3.10).

75

FY �F
[
⟨⟨f⟨c2⟩

11 ,f
⟨c2⟩
12 ⟩⟩,⟨⟨f21,f22⟩⟩

]
//

⊒
FX �F
[
u1(c1),u2(c1)

]
//

⊒
FνF

Y1

_d11
OO

�

f
⟨c2⟩
11

// X1

_c1
OO

�
u1(c1+1)

// νF

_Jζ ∼=
OO

︸ ︷︷ ︸
h1(c1,c2)

FY �F
[
⟨⟨f⟨c2⟩

11 ,f
⟨c2⟩
12 ⟩⟩,⟨⟨f21,f22⟩⟩

]
//

⊒
FX �F
[
u1(c1),u2(c1)

]
//

⊒
FνF

Y1

_d12
OO

�

f
⟨c2+1⟩
12

// X2

_c2
OO

�
u2(c1)

// νF

_Jζ ∼=
OO

︸ ︷︷ ︸
h2(c1,c2)

FY �F
[
⟨⟨f⟨c2⟩

11 ,f
⟨c2⟩
12 ⟩⟩,⟨⟨f21,f22⟩⟩

]
//

⊒
FX �F
[
u1(c1),u2(c1)

]
//

⊒
FνF

Y2

_d2
OO

�
⟨⟨f21,f22⟩⟩

// X

_c
OO

�
[u1(c1),u2(c1)]

// νF

_Jζ ∼=
OO

︸ ︷︷ ︸
h3(c1,c2)

Figure 4.1: The progress measure p in Lemma 4.3.15, pictorially.

1. (Monotonicity) Assume c1 ≤ c′1 and c2 ≤ c′2. Then by Assumption 1 in

Theorem 4.3.14, Condition 1 in Definition 4.3.10 and that (f
⟨a⟩
11)a≤a and

(f
⟨a⟩
12)a≤a are increasing sequences, we have:

h1(c1, c2) = u1(c1)⊙ f (c2)11 ⊑ u1(c
′
1)⊙ f

(c′2)
11 = h1(c

′
1, c

′
2) .

Hence h1 is monotone. Monotonicity of h2 and h3 are similarly proved.

2. (µ-variables, base case) By Condition B(c) in Definition 4.3.13 and Con-
dition 4 in Theorem 4.3.14, we have:

h1(0, c2) = u1(0)⊙ f (c2)11 = ⊥⊙ f (c2)11 = ⊥ and

h2(c1, 0) = u2(c1)⊙ f (0)12 = u2(c1)⊙⊥ = ⊥ .

3. (µ-variables, step case) We have the following (see also Figure 4.1).

h1(c1 + 1, c2)

= u1(c1 + 1)⊙ f (c2)11 (by the definition of h1(c1, c2))

⊑ (Jζ)−1 ⊙ F [u1(c1), u2(c1)]⊙ c1 ⊙ f (c2)11 (pX is a progress measure)

⊑ (Jζ)−1 ⊙ F [u1(c1), u2(c1)]⊙ c1 ⊙ f (c2)11 (by the monotonicity of pX)

⊑ (Jζ)−1 ⊙ F [u1(c1), u2(c1)]⊙ F
[
⟨⟨f ⟨c2⟩11 , f

⟨c2⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d11

(by Condition B(b) in Definition 4.3.13)

= (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨u1(c1)⊙ f ⟨c2⟩11 , u2(c1)⊙ f ⟨c2⟩12 ⟩⟩,

[u1(c1), u2(c1)]⊙ ⟨⟨f21, f22⟩⟩
]
⊙ d11

⊑ (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨u1(c1)⊙ f ⟨c2⟩11 , u2(c1)⊙ f ⟨c2⟩12 ⟩⟩,

[u1(c1), u2(c1)]⊙ ⟨⟨f21, f22⟩⟩
]
⊙ d11

(by the monotonicity of pX)

= (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨h1(c1, c2), h2(c1, c2)⟩⟩, h3(c1, c2)

]
⊙ d11

(by the definitions of h1(c1, c2), h2(c1, c2) and h3(c1, c2)) .

We can similarly prove that there exists an ordinal c′1 such that

h2(c1, c2 + 1) ⊑ F
[
⟨⟨h1(c′1, c2), h2(c1, c2)⟩⟩, h3(c1, c2)

]
⊙ d12 .

76

4. (µ-variables, limit case) Let c1 be a limit ordinal. By c1 = b1 ≤ ω
and Condition 5 in Theorem 4.3.14, Kleisli composition in Kℓ(T) is c1-
continuous. Hence for each ordinal c2, we have:

h1(c1, c2) = u1(c1)⊙ f ⟨c2⟩11 ⊑
(⊔
c′1<c1

u1(c
′
1)
)
⊙ f ⟨c2⟩11

=
⊔

c′1<c1

(
u1(c

′
1)⊙ f

⟨c2⟩
11

)
=

⊔
c′1<c1

h1(c
′
1, c2) .

We can similarly prove that for an ordinal c1 and a limit ordinal c2,

h2(c1, c2) =
⊔

c′2<c2

h2(c1, c
′
2) .

5. (ν-variables) In a similar manner to the step case of µ-variables, we have:

h3(c1, c2) ⊑ (Jζ)−1 ⊙ F
[
⟨⟨h1(c1, c2), h2(c1, c2)⟩⟩, h3(c1, c2)

]
⊙ d2 .

Hence p is a progress measure for the HES (4.5).

Lemma 4.3.16. We assume the assumptions 1–5 in Theorem 4.3.14. Let
f : Y →p X be an a-bounded fair simulation with dividing from X =(
X, c, (X1, X2)

)
to Y =

(
Y, c, (Y1, Y2)

)
. Let (hsol1 , hsol2 , hsol3) be the solution of

the HES (4.5) in Lemma 4.3.15. Then we have:

[idνF , idνF]⊙ ⟨⟨hsol1 , hsol2 ⟩⟩ ⊑ trB1 (d) and hsol3 ⊑ trB2 (d) . (4.6)

Proof. In general, the least fixed point of a monotone function f : L1 × L2 →
L1 × L2 with respect to the product order can be calculated in a “pointwise”
manner. That is, the least fixed point of f is given by the solution of the following

HES:
{
u1 =µ f1(u1, u2) ∈ (L1,⊑1)
u2 =µ f2(u1, u2) ∈ (L2,⊑2)

. The proof is easy.

Because of this, the solution vsol1 , vsol2 , vsol3 of the HES (4.5) in Lemma 4.3.15
is equivalent to the solution wsol

1 , wsol
2 of the following HES, in the sense that

wsol
1 = (vsol1 , vsol2) and wsol

2 = vsol3 .

w1 =µ

(
(Jζ)−1 ⊙ F

[
[idνF , idνF]⊙ ⟨⟨w11, w12⟩⟩, w2

]
⊙ d11,

(Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨w11, w12⟩⟩, w2

]
⊙ d12

)
∈ Kℓ(T)(Y1, νF)×Kℓ(T)(Y1, νF)

w2 =ν (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨w11, w12⟩⟩, w2

]
⊙ d2 ∈ Kℓ(T)(Y2, νF)

(4.7)

Here w11 and w12 denote the first and the second component of w1 ∈
Kℓ(T)(Y1, νF)×Kℓ(T)(Y1, νF) respectively.

By the completeness of progress measure (Theorem 4.3.11.2), there exists a
progress measure q =

(
(a), (w1(a), w2(a))a≤a

)
for (4.7) such that w1(a) = wsol

1 =
(vsol1 , vsol2) and w2(a) = wsol

2 = vsol3 .
For each a ≤ a, let (w11(a), w12(a)) := w1(a) and define v′1(a) : Y1 →p νF and

v′2(a) : Y2 →p νF by v′1(a) = [idνF , idνF]⊙ ⟨⟨w11(a), w12(a)⟩⟩ and v′2(a) = w2(a).
We now show that p′ :=

(
(a), (v′1(a), v

′
2(a))a≤a

)
is a progress measure for

the following HES, which defines trB1 (d) : Y1 →p νF and trB2 (d) : Y2 →p νF (see
Definition 3.3.1).{

u′1 =µ J(ζF)−1 ⊙ F [u′1, u′2]⊙ d1 ∈ (Kℓ(T)(Y1, νF),⊑)
u′2 =ν J(ζF)−1 ⊙ F [u′1, u′2]⊙ d2 ∈ (Kℓ(T)(Y2, νF),⊑)

(4.8)

77

1. (Monotonicity) By the monotonicity of w1(a) and w2(a), v
′
1(a) and v

′
2(a)

are also monotone.

2. (µ-variables, base case) We have (w11(0), w12(0)) = w1(0) = (⊥,⊥) by
the definition. Hence by Lemma 4.3.5.3 and Condition 4 of Theorem 4.3.14,
we have:

v′1(0) = [idνF , idνF]⊙ ⟨⟨w11(0), w12(0)⟩⟩ = [idνF , idνF]⊙ ⟨⟨⊥,⊥⟩⟩ = ⊥ .

3. (µ-variables, step case) For an ordinal a < a, we have:

v′1(a+ 1)

= [idνF , idνF]⊙ ⟨⟨w11(a+ 1), w12(a+ 1)⟩⟩ (by the definition of v′1(a+ 1))

⊑ [idνF , idνF]⊙ ⟨⟨(Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨w11(a), w12(a)⟩⟩, w2

]
⊙ d11,

(Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨w11(a), w12(a)⟩⟩, w2

]
⊙ d12⟩⟩

(q is a progress measure)

= (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨w11(a), w12(a)⟩⟩, w2

]
⊙ [idFY , idFY]⊙ ⟨⟨d11, d12⟩⟩

⊑ (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨w11(a), w12(a)⟩⟩, w2

]
⊙ d1

(d11, d12 are a dividing of d1)

= (Jζ)−1 ⊙ F
[
v′1(a), v

′
2

]
⊙ d1 (by definition) .

4. (µ-variables, limit case) For a limit ordinal a ≤ a, we have:

v′1(a)

= [idνF , idνF]⊙ ⟨⟨w11(a), w12(a)⟩⟩ (by the definition of v′1(a))

⊑ [idνF , idνF]⊙ ⟨⟨
⊔

b<aw11(b),
⊔

b<a v
′
12(b)⟩⟩ (q is a progress measure)

=
⊔

b<a[idνF , idνF]⊙ ⟨⟨w11(b), w12(b)⟩⟩
(by Conditions 1 and 2 of Theorem 4.3.14)

=
⊔

b<a v
′
1(b) (by definition) .

5. (ν-variables) For an ordinal a ≤ a, there exists an ordinal b ≤ a such that:

v′2(a) = w2(a) (by the definition of v′2(a))

⊑ (Jζ)−1 ⊙ F
[
[idνF , idνF]⊙ ⟨⟨w11(b), w12(b)⟩⟩, w2(b)

]
⊙ d2

(q is a progress measure)

= (Jζ)−1 ⊙ F
[
v′1(b), v

′
2(b)

]
⊙ d2 (by definition) .

Hence p′ =
(
(a), (v′1(a), v

′
2(a))a

)
is a progress measure for the HES (4.8). By

soundness of progress measures (Theorem 4.3.11.1), we have (4.6).

Proof (Theorem 4.3.14). By Lemma 4.3.15 and the soundness of
progress measures (Theorem 4.3.11.1), for the progress measure pX =
((b1), (u1(b1), u2(b1))b1≤b1

) in Lemma 4.3.15, we have:

u1(b1)⊙ f ⟨a1⟩11 ⊑ vsol1 , u2(b1)⊙ f ⟨a1⟩12 ⊑ vsol2 ,

and [u1(b1), u2(b1)]⊙ ⟨⟨f21, f22⟩⟩ ⊑ vsol3 . (4.9)

By Lemma 4.3.16, we have:

[idνF , idνF]⊙ [vsol1 , vsol2] ⊑ trB1 (d) and vsol3 ⊑ trB1 (d) . (4.10)

78

Therefore we have:

[trB1 (c), tr
B
2 (c)]⊙ ⟨⟨f11, f12⟩⟩

= [trB1 (c), tr
B
2 (c)]⊙ ⟨⟨f

⟨a1⟩
11 , f

⟨a1⟩
12 ⟩⟩ (by Definition 4.3.13)

= [u1(b1), u2(b1)]⊙ ⟨⟨f ⟨a1⟩11 , f
⟨a1⟩
12 ⟩⟩ (by definition)

= [idνF , idνF]⊙ ⟨⟨u1(b1)⊙ f ⟨a1⟩11 , u2 ⊙ f ⟨a1⟩12 ⟩⟩
⊑ [idνF , idνF]⊙ ⟨⟨vsol1 , vsol2 ⟩⟩ (by (4.9))

⊑ trB1 (d) (by (4.10)).

In a similar manner, we can prove [trB1 (c), tr
B
2 (c)] ⊙ ⟨⟨f21, f22⟩⟩ ⊑ trB2 (d) . Hence

we have:

trB(c)⊙ f = [trB1 (c), tr
B
2 (c)]⊙ [⟨⟨f11, f12⟩⟩, ⟨⟨f21, f22⟩⟩] (by definition)

=
[
[trB1 (c), tr

B
2 (c)]⊙ ⟨⟨f11, f12⟩⟩, [trB1 (c), trB2 (c)]⊙ ⟨⟨f21, f22⟩⟩

]
⊑ [trB1 (d), tr

B
2 (d)] (by the discussions above)

= trB(d) (by definition) .

4.3.4 Kleisli Fair Simulation without Dividing

The coalgebraic simulation notion introduced in the previous section was the one
with dividing. It required that a coalgebra d1 : Y1 →p FY is equipped with a di-
viding d11, d12 : Y1 →p FY . However, this “dividing requirement” is problematic:
it is often the case that the dividing requirement prevents us from giving a mean-
ingful Kleisli fair simulation between Büchi (T, F)-systems (see Example 4.5.4).
Hence the following coalgebraic simulation notion is more desirable for us.

Definition 4.3.17 (fair simulation without dividing). We assume the same situ-
ation as Definition 4.3.13. A (Kleisli a-bounded) fair simulation without dividing
from X =

(
X, c, (X1, X2)

)
to Y =

(
Y, d, (Y1, Y2)

)
is defined almost the same way

as one with dividing in Definition 4.3.13, except that Condition B is replaced by
the following condition.

B’ There exists a pair of increasing transfinite sequences The components
f11 : Y1 →p X1 and f12 : Y1 →p X2 come

f
⟨0⟩
11 ⊑ f

⟨1⟩
11 ⊑ · · · ⊑ f

⟨a⟩
11 : Y1 →p X1 and f

⟨0⟩
12 ⊑ f

⟨1⟩
12 ⊑ · · · ⊑ f

⟨a⟩
12 : Y1 →p X2,

that satisfies Conditions B(a), B(c) and B(e) in Definition 4.3.13 and the
following two conditions.

(b’) (f
⟨a⟩
11) For each a, c1 ⊙ f ⟨a⟩11 ⊑ F

[
⟨⟨f ⟨a⟩11 , f

⟨a⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d1 .

(d’) (f
⟨a⟩
12 , the step case) If a is a successor ordinal, then c2 ⊙ f

⟨a⟩
12 ⊑

F
[
⟨⟨f ⟨a−1⟩

11 , f
⟨a−1⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d12 .

FY �F
[
⟨⟨f⟨a⟩

11 ,f
⟨a⟩
12 ⟩⟩, ⟨⟨f21,f22⟩⟩

]
//

⊒
FX

Y1

_d1
OO

� f
⟨a⟩
11 // X1

_c1
OO FY �F

[
⟨⟨f⟨a⟩

11 ,f
⟨a⟩
12 ⟩⟩, ⟨⟨f21,f22⟩⟩

]
//

⊒
FX

Y1

_d1
OO

� f
⟨a+1⟩
12 // X2

_c2
OO

However, the assumptions of Theorem 4.3.14 are not sufficient to make the
above simulation notion sound. In the rest of this section, we present two addi-
tional assumptions that respectively make it sound.

79

Soundness when Kleisli Arrows are Idempotent

Proposition 4.3.18. Assume the assumptions 1–5 in Theorem 4.3.14. We
further assume that each arrow f : X →p Y in Kℓ(T) is idempotent, i.e. the
codomain join ⟨⟨f, f⟩⟩ : X →p Y + Y always exists and [idY , idY] ⊙ ⟨⟨f, f⟩⟩ = f .
Then if f : Y →p X is a simulation without dividing from X = (X, c, (X1, X2)) to
Y = (Y, c, (Y1, Y2)) then trB(c)⊙ f ⊑ trB(d).

The proposition above is immediate by the soundness of forward fair simu-
lation with dividing (Theorem 4.3.14) and the following lemma, which is easily
proved by the definitions of simulation with dividing and one without dividing
(Definition 4.3.13 and Definition 4.3.17).

Lemma 4.3.19. If all the arrows in Kℓ(T) are idempotent then a simulation
without dividing from X to Y is a simulation with dividing X to Y. Here the
dividing for the latter is given by d11 = d12 = d1.

Soundness when Y1 is Trapping

Proposition 4.3.20. Assume the assumptions 1–5 in Theorem 4.3.14. We fur-
ther assume that d1 = F (idY1 + ⊥Y2,Y2) ⊙ d1 . Then existence of a simulation
f : Y →p X without dividing from X = (X, c, (X1, X2)) to Y = (Y, c, (Y1, Y2))
implies trB(c)⊙ f ⊑ trB(d).

Intuitively, the condition d1 = F (idY1 +⊥Y2,Y2)⊙ d1 means that there exists
no transition from Y1 to Y2.

Proof. We define progress measures

pX =
(
(b1),

(
u1(b1) : X1 →p νF, u2(b1) : X2 →p νF

)
b1≤b1

)
and

p =
(
(c1, c2),

(
h1(c1, c2), h2(c1, c2), h3(c1, c2)

)
c1≤c1,c2≤c2

)
as in Lemma 4.3.15.

We shall prove that the following statement holds under the assumption that
d1 = F (idY1 +⊥Y2,Y2)⊙ d1 .

∀c2 ≤ c2. h1(c1, c2) = h2(c1, c2) = ⊥ . (4.11)

To this end, we first prove the following by the transfinite induction on c1:

∀c2 ≤ c2.
(
h2(c1, c2) = ⊥ ⇒ ∀c1 ≤ c1. h1(c1, c2) = ⊥

)
. (4.12)

Let c2 ≤ c2 and assume h2(c1, c2) = ⊥.
(base case) If c1 = 0, we have:

h1(c1, c2) = u1(0)⊙ f ⟨c2⟩11 (by definition)

= ⊥⊙ f ⟨c2⟩11 (pX is a progress measure)

= ⊥ (by Condition 4 in Theorem 4.3.14) .

(step case) Assume h1(c1, c2) = ⊥. Then we have:

h1(c1 + 1, c2)

= u1(c1 + 1)⊙ f ⟨c2⟩11 (by definition)

⊑ Jζ−1 ⊙ F
[
u1(c1), u2(c1)

]
⊙ c1 ⊙ f ⟨c2⟩11 (pX is a progress measure)

80

⊑ Jζ−1 ⊙ F
[
u1(c1), u2(c1)

]
⊙ F

[
⟨⟨f ⟨c2⟩11 , f

⟨c2⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d1

(f is a fair simulation without dividing)

= Jζ−1 ⊙ F
[
u1(c1), u2(c1)

]
⊙ F

[
⟨⟨f ⟨c2⟩11 , f

⟨c2⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ F (id +⊥)⊙ d1
(by the assumption)

= Jζ−1 ⊙ F
[[
u1(c1), u2(c1)

]
⊙ ⟨⟨f ⟨c2⟩11 , f

⟨c2⟩
12 ⟩⟩ ⊙ id,[

u1(c1), u2(c1)
]
⊙ ⟨⟨f21, f22⟩⟩ ⊙ ⊥

]
⊙ d1

= Jζ−1 ⊙ F
[[
id, id

]
⊙ ⟨⟨u1(c1)⊙ f ⟨c2⟩11 , u2(c1)⊙ f ⟨c2⟩12 ⟩⟩,⊥

]
⊙ d1

(by Assumption 4 of Theorem 4.3.14)

= Jζ−1 ⊙ F
[[
id, id

]
⊙ ⟨⟨h1(c1, c2), h2(c1, c2)⟩⟩,⊥

]
⊙ d1 (by definition)

= Jζ−1 ⊙ F
[[
id, id

]
⊙ ⟨⟨⊥,⊥⟩⟩,⊥

]
⊙ d1

(by the induction hypothesis and the assumption)

= ⊥ (by the assumptions 1 and 4 of Theorem 4.3.14) .

(limit case) Assume that c1 is a limit ordinal and we have h1(c
′
1, c2) = ⊥ for

each c′1 < c1. Then we have:

h1(c1, c2) = u1(c1)⊙ f ⟨c2⟩11 (by definition)

⊑
(⊔
c′1<c1

u1(c
′
1)
)
⊙ f ⟨c2⟩11 (pX is a progress measure)

=
⊔

c′1<c1

(
u1(c

′
1)⊙ f

⟨c2⟩
11

)
(by Assumption 1 of Theorem 4.3.14)

=
⊔

c′1<c1

h1(c
′
1, c2) (by definition)

= ⊥ (by the induction hypothesis) .

Hence (4.12) holds. We next prove (4.11) by the transfinite induction on c2.
(base case) If c2 = 0, we have:

h2(c1, c2) = u2(c1)⊙ f ⟨c2⟩12 (by definition)

= u2(c1)⊙⊥ (pX is a progress measure)

= ⊥ (by Condition 4 in Theorem 4.3.14) .

By (4.12), we also have h1(c1, c2) = ⊥.
(step case) Assume h1(c1, c2) = h2(c1, c2) = ⊥. Then we have:

h2(c1, c2 + 1)

= u2(c1)⊙ f ⟨c2+1⟩
12 (by definition)

⊑ Jζ−1 ⊙ F
[
u1(c1), u2(c1)

]
⊙ c1 ⊙ f ⟨c2+1⟩

11 (pX is a progress measure)

⊑ Jζ−1 ⊙ F
[
u1(c1), u2(c1)

]
⊙ F

[
⟨⟨f ⟨c2⟩11 , f

⟨c2⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d1

(f is a forward fair simulation without dividing)

= Jζ−1 ⊙ F
[
u1(c1), u2(c1)

]
⊙ F

[
⟨⟨f ⟨c2⟩11 , f

⟨c2⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ F (id +⊥)⊙ d1
(by the assumption)

= Jζ−1 ⊙ F
[[
u1(c1), u2(c1)

]
⊙ ⟨⟨f ⟨c2⟩11 , f

⟨c2⟩
12 ⟩⟩ ⊙ id,[

u1(c1), u2(c1)
]
⊙ ⟨⟨f21, f22⟩⟩ ⊙ ⊥

]
⊙ d1

81

= Jζ−1 ⊙ F
[[
id, id

]
⊙ ⟨⟨u1(c1)⊙ f ⟨c2⟩11 , u2(c1)⊙ f ⟨c2⟩12 ⟩⟩,⊥

]
⊙ d1

(by Assumption 4 of Theorem 4.3.14)

= Jζ−1 ⊙ F
[[
id, id

]
⊙ ⟨⟨h1(c1, c2), h2(c1, c2)⟩⟩,⊥

]
⊙ d1 (by definition)

= Jζ−1 ⊙ F
[[
id, id

]
⊙ ⟨⟨⊥,⊥⟩⟩,⊥

]
⊙ d1 (by the induction hypothesis)

= ⊥ (by the assumptions 1 and 4 of Theorem 4.3.14) .

By (4.12), we also have h1(c1, c2) ⊑ h1(c1, c2 + 1) = ⊥.
(limit case) Assume that c2 is a limit ordinal. Then we have:

h2(c1, c2) = u2(c1)⊙ f ⟨c2⟩12 (by definition)

⊑ u2(c1)⊙
(⊔
c′2<c2

f
⟨c′2⟩
12

)
(by definition)

=
⊔

c′2<c2

(
u2(c1)⊙ f ⟨c2⟩12

)
(by Assumption 1 of Theorem 4.3.14)

=
⊔

c′2<c2

h2(c1, c2) (by definition)

= ⊥ (by the induction hypothesis) .

Hence we have h1(c1, c2) = h2(c1, c2) = ⊥ for each c2 ≤ c2. Therefore we have:

[trB1 (c), tr
B
2 (c)]⊙ ⟨⟨f11, f12⟩⟩ = [u1(b1), u2(b1)]⊙ ⟨⟨f11, f12⟩⟩

= [idνF , idνF]⊙ ⟨⟨h1(c1, c2), h2(c1, c2)⟩⟩ = ⊥ ⊑ trB1 (d) . (4.13)

Moreover, for h3(c1, c2), we have:

h3(c1, c2)

=
[
trB1 (c), tr

B
1 (c)

]
⊙ ⟨⟨f21, f22⟩⟩ (by definition)

⊑ Jζ−1 ⊙ F
[[
trB1 (c), tr

B
1 (c)

]
⊙
[
f11, f12

]
,
[
trB1 (c), tr

B
1 (c)

]
⊙
[
f21, f22

]]
⊙ d2

(similarly to the above)

= Jζ−1 ⊙ F
[
⊥, h3(c1, c2)

]
⊙ d2 (by definition and the discussions above)

⊑ Jζ−1 ⊙ F
[
l
(1)
1

(
h3(c1, c2)

)
, h3(c1, c2)

]
⊙ d2 .

Here l
(1)
1 : Y1 → νF denotes the interim solution (see Definition 2.3.6). By defi-

nition, trB2 (d) : Y2 → νF is the greatest fixed point of the following function.

g 7→ Jζ−1 ⊙ F
[
l
(1)
1 (g), g

]
⊙ d2

Hence by the Knaster-Tarski theorem (Corollary 2.3.3), we have

[trB1 (c), tr
B
2 (c)]⊙ ⟨⟨f21, f22⟩⟩ = h3(c1, c2) ⊑ trB2 (d) . (4.14)

By (4.13) and (4.14), in a similar manner to the proof of Theorem 4.3.14, we
have trB(c)⊙ f ⊑ trB(d).

4.4 Kleisli Fair Simulation for NBTAs

We instantiate the framework developed in the previous section for nondeter-
ministic Büchi tree automata (NBTAs). As expected, we obtain an almost the

82

same notion as the conventional fair simulation notion (Definition 4.1.3), except
that while it is assumed that state spaces of NBTAs are finite in the original
definitions in [50, 32, 117], we do not assume it.

Recall from Section 3.7 that we model an NBTA as a Büchi (P, FΣ)-system.
The assumptions in Theorem 4.3.14 are satisfied.

Proposition 4.4.1. If we let (T, F) = (P, FΣ), the assumptions 1–5 in Theo-
rem 4.3.14 are satisfied.

Proof. The assumption 1 is already proved in [47].
For g : V →p X1 + X2 and i ∈ {1, 2}, g↾Xi : V →p Xi is given by g↾Xi(v) =

g(v) ∩ Xi. For g1 : V →p X1 and g2 : V →p X2, ⟨⟨g1, g2⟩⟩ : V →p X1 + X2

is given by ⟨⟨g1, g2⟩⟩(v) = g1(v) ∪ g2(v). For h1 : X1 →p W and h2 : X2 →p W ,
[h1, h2] : X1 + X2 →p W is given by [h1, h2](x) = hi(x) if x ∈ Xi. Using these
characterizations, we can easily see that Assumption 2 is satisfied.

The above characterization also shows that codomain join is always defined.
Hence Assumption 3 is satisfied.

The assumption 4 is immediate from that ⊥ : X →p Y is given by ⊥(x) := ∅
for each x ∈ X.

The assumption 5 is proved as follows: if fi : X →p Y and g : Y →p Z, for
x ∈ X, we have:

g ⊙ (
⊔
i<a

fi)(x) =
∪

y∈
∪

i<a fi(x)

g(y) =
∪
i<a

∪
y∈fi(x)

g(y) =
⊔
i<a

(g ⊙ fi(x)) .

Hence Kleisli fair simulation with dividing (Definition 4.3.13) is sound for
Büchi (P, FΣ)-systems. The following lemma, together with Proposition 4.3.18,
shows that Kleisli fair simulation without dividing (Definition 4.3.17) is also
sound. The proof is easy.

Lemma 4.4.2. Arrows in Kℓ(P) are idempotent.

For Büchi (P, FΣ)-systems, we can further simplify the definition of simula-
tion.

The definition of a Kleisli fair simulation f : X →p Y is very similar to that of a
lattice-theoretic progress measure (Definition 4.3.10). However, in the definition
of the former (Definition 4.3.17), the inequalities for “µ-variables, step case” and

“ν-variables” were as follows. c1 ⊙ f
⟨a⟩
11 ⊑ F

[
⟨⟨f ⟨a⟩11 , f

⟨a⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d1 and

c2 ⊙ f
⟨a⟩
12 ⊑ F

[
⟨⟨f ⟨a−1⟩

11 , f
⟨a−1⟩
12 ⟩⟩, ⟨⟨f21, f22⟩⟩

]
⊙ d12. They are different from the

corresponding conditions in Definition 4.3.10 where approximants appear on the
left-hand side of inequalities alone. The former situation is somewhat problematic

because it prevents us from calculating f
⟨a⟩
11 and f

⟨a⟩
12 in an inductive manner.

However, when T = P, we can modify the inequalities and translate the

definition of a Kleisli fair simulation in terms of progress measures so that f
⟨a⟩
11

and f
⟨a⟩
12 appear on the left-hand side alone. In the translation, the following

property, which is specific to the powerset monad P, is important. Intuitively, it
claims that we can uniquely determine the weakest precondition of f : X →p Y in
Kℓ(P) with respect to the demonic nondeterminism. The proof is easy.

Y
f��

X g
//

□f (g) ::

νF

Sublemma 4.4.3 (reversibility of Kleisli arrows). Let f : Y →p νF
be an arrow in Kℓ(P). Define □f : Kℓ(P)(X, νF)→ Kℓ(P)(X,Y) by

□f (g)(x) :=
{
y ∈ Y | f(y) ⊆ g(x)

}
.

Then we have the following:

83

1. f ⊙□f (g) ⊑ g

2. ∀h : A→p B. f ⊙ h ⊑ g ⇒ h ⊑ □f (g) .

Using □f defined above, we can rewrite Definition 4.3.17 as follows.

Lemma 4.4.4. Let gsol1 : Y1 →p X1, g
sol
2 : Y1 →p X2, g

sol
3 : Y2 →p X1 and gsol4 : Y2 →p

X2 be the solution of the following HES.
g1 =ν □c1(F [⟨⟨g1, g2⟩⟩, ⟨⟨g3, g4⟩⟩]⊙ d1) ∈ Kℓ(P)(Y1, X1)

g2 =µ □c2(F [⟨⟨g1, g2⟩⟩, ⟨⟨g3, g4⟩⟩]⊙ d1) ∈ Kℓ(P)(Y1, X2)

g3 =ν □c1(F [⟨⟨g1, g2⟩⟩, ⟨⟨g3, g4⟩⟩]⊙ d2) ∈ Kℓ(P)(Y2, X1)

g4 =ν □c2(F [⟨⟨g1, g2⟩⟩, ⟨⟨g3, g4⟩⟩]⊙ d2) ∈ Kℓ(P)(Y2, X2)

(4.15)

Let gsol = [⟨⟨gsol1 , gsol2 ⟩⟩, ⟨⟨gsol3 , gsol4 ⟩⟩] : Y →p X. Then trB(c) ⊙ gsol ⊑ trB(d) if and
only if there is a fair a-bounded simulation without dividing (Definition 4.3.17)
from X to Y for some ordinal a.

Proof. We define fji : Yj →p Xi as Definition 4.3.13.
(⇒) Assume trB(c)⊙ gsol ⊑ trB(d). By completeness of progress measures (The-
orem 4.3.11.2), there exists a progress measure g =

(
(a), (gi(a))1≤i≤4,a≤a

)
for

the HES (4.15) such that gsoli = gi(a) for each i. We define two sequences

(f
⟨a⟩
11 : Y1 →p X1)a≤a and (f

⟨a⟩
12 : Y1 →p X2)a≤a of Kleisli arrows by f

⟨a⟩
11 := g1(a)

and f
⟨a⟩
12 := g2(a). We further define f : Y →p X by f = gsol. We show that f is

a fair simulation without dividing from X to Y whose approximation sequences

are given by (f
⟨a⟩
11)a≤a and (f

⟨a⟩
12)a≤a.

We first show that f satisfies Condition A in Definition 4.3.13. We have:

c⊙ f
= c⊙

[
⟨⟨f11, f12⟩⟩, ⟨⟨f21, f22⟩⟩

]
(by definition)

= c⊙
[
⟨⟨□c1

(
Ff ⊙ d1

)
,□c2

(
Ff ⊙ d1

)
⟩⟩, ⟨⟨□c1

(
Ff ⊙ d2

)
,□c2

(
Ff ⊙ d2

)
⟩⟩
]

(gsol1 , gsol2 , gsol3 and gsol4 are the solution)

=
[
⟨⟨c1 ⊙□c1

(
Ff ⊙ d1

)
, c2 ⊙□c2

(
Ff ⊙ d1

)
⟩⟩,

⟨⟨c1 ⊙□c1

(
Ff ⊙ d2

)
, c2 ⊙□c2

(
Ff ⊙ d2

)
⟩⟩
]

⊑
[
⟨⟨Ff ⊙ d1, Ff ⊙ d1⟩⟩, ⟨⟨Ff ⊙ d2, Ff ⊙ d2⟩⟩

]
(by Sublemma 4.4.3.1)

= [Ff ⊙ d1, Ff ⊙ d2] (by Lemma 4.4.2)

= Ff ⊙ d . (4.16)

Next we show that f satisfies the Condition B’ in Definition 4.3.17. Note
that g =

(
(a), (gi(a))1≤i≤4,a≤a

)
satisfies the axioms of progress measure (Defini-

tion 4.3.10). It is immediate that this implies that conditions B(a), B(c) and B(e)
in Definition 4.3.13 are satisfied. Moreover in a similar manner to (4.16) above, we
can prove B’(b’) and B’(d’) in Definition 4.3.17. Therefore f is a fair a-bounded
simulation without dividing.
(⇐) Conversely, let f : Y →p X be a fair simulation without dividing from X to

Y whose approximation sequences are given by (f
⟨a⟩
11)a≤a and (f

⟨a⟩
12)a≤a. For each

a ≤ a, we define arrows g1(a) : Y1 →p X1, g2(a) : Y1 →p X2, g3(a) : Y2 →p X1 and

g4(a) : Y2 →p X2, by g1(a) = f
⟨a⟩
11 , g2(a) = f

⟨a⟩
12 , g3(a) = f21 and g4(a) = f22. Then

by using Sublemma 4.4.3.2, we can show that Condition (A) in Definition 4.3.13,

Condition (B’) in Definition 4.3.17 and the monotonicity of f
⟨a⟩
11 and f

⟨a⟩
12 imply

that g satisfies the axioms of a progress measure (Definition 4.3.10) with respect
to the HES (4.15).

84

By translating Lemma 4.4.4 with automata-theoretic terms, we can finally
reach a fair simulation notion for NBTAs.

Definition 4.4.5 (fair simulation for NBTAs). Let A = (X, τ,AccA) and B =
(Y, σ,AccB) be finite-state Σ-labeled NBTAs. Let X1 := X \ AccA, X2 := AccA,
Y1 := Y \ AccB and Y2 := AccB. We define functions

□X ,i : P
(
(
⨿

i∈ωΣi ×Xi)× Y
)
→ P(Xi × Y) ,

♢Y,j : P
(
(
⨿

i∈ω Σi ×Xi)× (
⨿

i∈ω Σi × Y i)
)
→ P(

⨿
i∈ω Σi ×Xi × Yj) and∧

Σ : P(X × Y)→ P
(
(
⨿

i∈ω Σi ×Xi)× (
⨿

i∈ω Σi × Y i)
)

as follows.

□X ,i(S) := {(x, y) ∈ Xi × Y | ∀(a,x′) ∈ δX (x). ((a,x′), y) ∈ S}

♢Y,j(T) :=

{
((a,x′), y)

∈ (
⨿

i∈ωΣi ×Xi)× Yj

∣∣∣∣∣ ∃(a′,y′) ∈ δY(y).
((a,x′), (a′,y′)) ∈ T

}
∧

Σ(U) :=

{(
(a, x1, . . . , xn), (a, y1, . . . , yn)

)
∈ (
⨿

i∈ω Σi ×Xi)× (
⨿

i∈ω Σi × Y i)

∣∣∣∣∣n ∈ N,
∀i. (xi, yi) ∈ U

}
A fair simulation from X to Y is a relation R ⊆ X × Y such that R ⊆ usol1 ∪
usol2 ∪ usol3 ∪ usol4 where usol1 , . . . , usol4 are the solution of the following HES.

u1 =ν □X ,1(♢Y,1 (
∧

Σ(u1 ∪ u2 ∪ u3 ∪ u4))) ⊆ (X1 × Y1,⊆)
u2 =µ □X ,2(♢Y,1 (

∧
Σ(u1 ∪ u2 ∪ u3 ∪ u4))) ⊆ (X2 × Y1,⊆)

u3 =ν □X ,1(♢Y,2 (
∧

Σ(u1 ∪ u2 ∪ u3 ∪ u4))) ⊆ (X1 × Y2,⊆)
u4 =ν □X ,2(♢Y,2 (

∧
Σ(u1 ∪ u2 ∪ u3 ∪ u4))) ⊆ (X2 × Y2,⊆)

(4.17)

Theorem 4.4.6 (soundness). If R is a fair simulation from A to B in the sense
of Definition 4.4.5, (x, y) ∈ R implies LB

A(x) ⊆ LB
B(y).

Proof. Let X = (X, c, (X1, X2)) and Y = (Y, d, (Y1, Y2)) be Büchi (P, FΣ)-
systems corresponding to A and B respectively (see Proposition 3.8.1).

Note that for each A,B ∈ Sets, if we define a function ∆A,B : P(A × B) →
Kℓ(P)(B,A) by ∆A,B(S)(b) := {a ∈ A | (a, b) ∈ S} then it is a bijection. Note
also that FΣX =

⨿
i∈ω Σi×Xi and FΣY =

⨿
i∈ω Σi×Y i. It is easy to see that for

the functions □f in Sublemma 4.4.3 and □X ,i, ♢Y,j and
∧

Σ in Definition 4.4.5,
the following properties hold.

∀i ∈ 1, 2. ∀S ⊆ FΣX × Y. ∆Xi,Y (□X ,i(S)) = □ci(∆FΣX,Y (S))
∀j ∈ 1, 2. ∀T ⊆ FΣX × FΣY. ∆FX,Yj (♢Y,j(T)) = (∆FΣX,FΣY (T))⊙ dj

∀U ⊆ X × Y. ∆FX,FY (
∧

Σ(U)) = FΣ(∆X,Y (U))

Hence by Proposition 3.7.1, Proposition 4.3.18 and Lemma 4.4.4, we have:

R ⊆ X × Y is a fair simulation from X to Y in the sense of Definition 4.4.5

⇔ R ⊆ usol1 ∪ usol2 ∪ usol3 ∪ usol4 where usol1 , . . . , usol4 are the solution of (4.17)

⇔ ∆X,Y (R) ⊑ [⟨⟨gsol1 , gsol2 ⟩⟩, ⟨⟨gsol3 , gsol4 ⟩⟩]
⇔ ∆X,Y (R) is an a-bounded fair simulation without dividing from X to Y

for some a

⇒ trB(c)⊙∆X,Y (R) ⊑ trB(d)

⇔ ∀(x, y) ∈ R. LB
A(x) ⊆ LB

B(y) .

By using the translation in Proposition 4.3.12, we can see that the simula-
tion notion in Definition 4.4.5 is in fact essentially the same as the existing one
(Definition 4.1.3), except that we do not assume that the state space is finite.

85

4.5 Kleisli Fair Simulation for PBTAs

We instantiate the simulation notion for PBTAs, which are modeled as Büchi
(Gs, FΣ)-systems (see Proposition 3.8.1).

4.5.1 Kleisli Fair Simulation with Dividing for PBTAs

We first consider Kleisli fair simulation with dividing.

Proposition 4.5.1. If we let (T, F) = (Gs, FΣ), the assumptions 1–5 in Theo-
rem 4.3.14 are satisfied.

Proof. The assumption 1 is proved in a similar manner to the case when T = Ds,
which is proved in [47].

For g : V →p X1 +X2 and i ∈ {1, 2}, g↾Xi : V →p Xi is given by g↾Xi(v)(A) =
g(v)(A). For g1 : V →p X1 and g2 : V →p X2, ⟨⟨g1, g2⟩⟩ : V →p X1 + X2 is given
by ⟨⟨g1, g2⟩⟩(v)(A) = g1(v)(A ∩X1) + g2(v)(A ∩X2) if g1(v)(A ∩X1) + g2(v)(A ∩
X2) ≤ 1, and it is undefined otherwise. For h1 : X1 →p W and h2 : X2 →p W ,
[h1, h2] : X1 + X2 →p W is given by [h1, h2](x) = hi(x) if x ∈ Xi. Using these
characterizations, we can easily see that the assumptions 2–3 are satisfied.

The assumption 4 is immediate from that ⊥ : X →p Y is given by ⊥(x)(A) := 0
for each x ∈ X and A ∈ FY . The assumption 5 is proved using the dominated
convergence theorem (see e.g. [8, Theorem 1.6.9]).

By translating Definition 4.3.13 and Theorem 4.3.14 using automata-theoretic
terms, we obtain the following simulation notion and soundness theorem.

Definition 4.5.2 (fair simulation for PBTAs). Let Σ be a ranked alphabet,
A =

(
(X,FX), ξ,AccA

)
and B =

(
(Y,FY), θ,AccB

)
be Σ-labeled PBTAs, and

a be an ordinal. Let X1 := X \ AccA, X2 := AccA, Y1 := Y \ AccB and Y2 :=
AccB, and FX1 , FX2 , FY1 and FY2 be the canonical σ-algebras on them. An (a-
bounded) fair simulation with dividing from A to B is a measurable function
f : (Y,FY) → Gs(X,FX) that satisfies the following conditions (for i, j ∈ {1, 2},
we define fji : (Yj ,FYj) → Gs(Xi,FXi) by fji(y)(A) := f(y)(A ∩ Xi) for y ∈ Yj
and A ∈ FXi).

A. For each y ∈ Y , n ∈ N, a ∈ Σn and A1, . . . , An ∈ FX , we have:∫
x∈X

τ(x)
(
{a} ×A1 × · · · ×An

)
f(y)(dx) ≤∫

y1,...,yn∈Y
f(y1)(A1) · · · · · f(yn)(An) · θ(y)

(
{a} × dy1 × · · · × dyn

)
.

B. There exists a pair θ11, θ12 : Y1 → Gs
(⨿

i∈NΣn × Y n
)
of measurable func-

tions such that θ11(y)(A) + θ12(y)(A) = θ(y)(A) for each y ∈ Y1 and
A ∈ F⨿

i∈N Σn×Y n . There also exist increasing transfinite sequences

f
⟨0⟩
11 ≤ f

⟨1⟩
11 ≤ · · · ≤ f

⟨a⟩
11 : Y1 → GsX1 and f

⟨0⟩
12 ≤ f

⟨1⟩
12 ≤ · · · ≤ f

⟨a⟩
12 : Y1 → GsX2,

of measurable functions with respect to the pointwise order such that the
following conditions are satisfied:

(a) (Approximate f11 and f12) We have f
⟨a⟩
11 = f11 and f

⟨a⟩
12 = f12.

86

(b) (f
⟨a⟩
11) For each a, y ∈ Y1 and A1, . . . , An ∈ FX ,∫
x∈X1

τ(x)
(
{a} ×A1 × · · · ×An

)
f
⟨a⟩
11 (y)(dx) ≤∫

y1,...,yn∈Y
f ⟨a⟩(y1)(A1)·· · ··f ⟨a⟩(yn)(An)·θ11(y)

(
{a}×dy1×· · ·× dyn

)
.

Here f ⟨a⟩ : Y → GsX is defined by

f ⟨a⟩(y)(A) :=

{
f
⟨a⟩
11 (y)(A) + f

⟨a⟩
12 (y)(A) (y ∈ Y1)

f21(y)(A) + f22(y)(A) (y ∈ Y2) .

(c) (f
⟨a⟩
12 , the base case) If a = 0, then f

⟨a⟩
12 (y)(X2) = 0 for each y ∈ Y1.

(d) (f
⟨a⟩
12 , the step case) If a is a successor ordinal, then for each y ∈ Y1

and A1, . . . , An ∈ FX ,∫
x∈X2

τ(x)
(
{a} ×A1 × · · · ×An

)
f
⟨a⟩
12 (y)(dx) ≤∫

y1,...,yn∈Y
f ⟨a−1⟩(y1)(A1)·· · ··f ⟨a−1⟩(yn)(An)·θ12(y)

(
{a}×dy1×· · ·× dyn

)
.

Here f ⟨a⟩ is defined as above.

(e) (f
⟨a⟩
12 , the limit case) If a is a limit ordinal, then for each y ∈ Y1 and

A ∈ FX2 , f
⟨a⟩
12 (y)(A) ≤

∨
a′<a f

⟨a′⟩
12 (y)(A) .

Theorem 4.5.3. If f : Y → GsX is a fair simulation with dividing from A =(
(X,FX), ξ,AccA

)
to B =

(
(Y,FY), θ,AccB

)
, then for each y ∈ Y and A ∈

FTree∞Σ
, we have: ∫

x∈X
LB

A (x)(A) df(y) ≤ LB
B(y)(A) .

We can check a sort of “quantitative language inclusion” between PBTAs
using the above simulation notion. For example, suppose that A and B are
equipped with the initial states xI ∈ X and yI ∈ Y . If f(yI)({xI}) = 1, then by
the above theorem, we have LB

A(xI)(A) ≤ LB
B(yI)(A) for each A ∈ FTree∞Σ

.

4.5.2 Kleisli Fair Simulation without Dividing for PBTAs

The simulation notion defined above is equipped with the “dividing requirement.”
By instantiating Definition 4.3.17 for Büchi (Gs, FΣ)-systems, we can also define
a notion of fair simulation without dividing for PBTAs. The following example
shows that the simulation notion with dividing is problematic compared to the
one without dividing in the following sense: there exists a pair of PBTAs such
that: (i) they exhibit quantitative language inclusion; (ii) a fair simulation without
dividing exists between them; and (iii) a fair simulation with dividing does not
exist between them.

Example 4.5.4. We define a ranked alphabet A by A := {a} and |a| := 1. Let
A =

(
(X,FX), ξ,AccA

)
and B =

(
(Y,FY), θ,AccB

)
be A-labeled PBTAs (i.e.

87

PBWAs) illustrated below (denotes an accepting state).

yI

y1

y2

xI

x1

x21

x22

x23
BA

a,1

OO

a,1

OO

a,1

��

a, 1
2

ZZ

a,1

OO

a, 1
2

DD

a,1

OO

a,1

��

a,1

��

Note that Tree∞A = {aω}. It is easy to see that LB
A (xI)({aω}) = LB

B(yI)({aω}) =
1 and hence they exhibit quantitative language inclusion. Suppose that we define
f : Y → GsX by f(yI)({xI}) = 1,

f(y1)({x}) :=

{
1
2 (x ∈ {x1, x22})
0 (otherwise)

and f(y2)({x}) :=

{
1
2 (x ∈ {x21, x23})
0 (otherwise) ,

and f(y)({x}) = 0 for the other combinations. Then f is a fair simulation
without dividing from A to B (see Proposition 3.8.1). In contrast, f is not a fair
simulation with dividing. In fact, there exists no fair simulation with dividing
from A to B.

Hence a simulation notion without dividing is desirable. We found that a
fair simulation without dividing is sound when we focus on probabilistic word
automata with a finite state space.

Theorem 4.5.5. Let A =
(
(X,FX), ξ,AccA

)
and B =

(
(Y,FY), θ,AccB

)
be

Σ-labeled PBTAs. We assume the following conditions.

1. A and B are PBWAs, i.e. |a| = 1 for each a ∈ Σ.

2. (Y,FY) is a finite set equipped with the discrete σ-algebras.

We write A for the underlying set of Σ. Then if f : Y → GsX is a fair simulation
without dividing from A to B, for each y ∈ Y and A ∈ FTree∞Σ

= FAω , we have:∫
x∈X

LB
A (x)(A) df(y) ≤ LB

B(y)(A) . (4.18)

The key lemma to prove the above theorem is given below. It tells us that
under the assumptions in the theorem, we can modify the PBWA B to a PBWA
B′ with the same state space such that: (i) the languages LB

B and LB
B′ coincide;

(ii) a function f : Y → GsX is a fair simulation without dividing from A to B if
and only if it is one from A to B′; and (iii) the assumption of Proposition 4.3.20
is satisfied by B′.

Lemma 4.5.6. We assume the assumptions in Theorem 4.5.5. Let y>0 ∈ Y1
and assume θ(y>0)(A×Y2) > 0. We define an A-labeled PBWA B′ =

(
(Y ′,FY ′),

θ′,AccB′
)
by Y ′ = Y , θ′ = θ and AccB′ = AccB′ ∪ {y>0}. Then we have:

I. for each y ∈ Y and A ∈ FAω , LB
B(y)(A) = LB

B′(y)(A); and

II. if f : Y → GsX is a fair simulation without dividing from A to B, then it
is so from A to B′.

88

Proof. By “forgetting” the labels, we can induce a Markov chain from the PBWA
B. More concretely, we define a Markov chain MB whose state space is given
by Y⊥ = Y + {⊥} and transition function θ : Y⊥ × Y⊥ → [0, 1] is given by

θ(y, y′) =



∑
a∈A θ(y)({(a, y′)}) (y, y′ ∈ Y)

1−
∑

y′∈Y
∑

a∈A θ(y)({(a, y′)}) (y ∈ Y, y′ = ⊥)
1 (y = y′ = ⊥)
0 (y = ⊥, y ∈ Y) .

We defineMB′ similarly.
A subset B ⊆ Y is called a strongly connected component (SCC for short) if for

all y, y′ ∈ S, there exist y0, y1, . . . , yn such that y0 = y, yn = y′ and θ(yi, yi+1) > 0
for each i. An SCC B is called a bottom strongly connected component (BSCC
for short) if θ(y, y′) = 0 for each y ∈ B and y′ /∈ B. See e.g. [12] for more details.

For y ∈ Y and Y ′ ⊆ Y , we write Pr(y |= GFY ′) for the probability where a
state in Y ′ is visited infinitely often onMB from y. By definition, we have

LB
B(y)(Aω) = Pr

(
y |= GFAccB

)
and

LB
B′(y)(Aω) = Pr

(
y |= GF(AccB + {y>0})

)
.

We define U,U ′ ⊆ Y by

U :=
∪
{B ⊆ Y | B is a BSCC and B ∩ AccB ̸= ∅} and

U ′ :=
∪{

B ⊆ Y | B is a BSCC and B ∩
(
AccB + {y>0}

)
̸= ∅
}
.

We write Pr(y |= FU) for the probability where a state in U is reached from y.
It is known that Pr(y |= GFAccB) = Pr(y |= FU) (see e.g. [12, Corollary 10.34]).
Similarly, we have Pr

(
y |= GF(AccB + {y>0})

)
= Pr(y |= FU ′).

Assume that y>0 ∈ B for some BSCC B in MB. As B is a BSCC, it has
no outgoing transition. Moreover, by θ(y>0)(A × Y2) > 0, y>0 has an accepting
successor state. Hence we have B ∩ AccB ̸= ∅, and by the definition of U this
implies U = U ′.

If y>0 /∈ B for any BSCC B, then by the definitions of U and U ′ we have
U = U ′.

Therefore in both cases, for each y ∈ Y , we have:

LB
B(y)(Aω) = Pr(y |= GFAccB) = Pr(y |= FU)

= Pr(y |= FU ′) = Pr (y |= GF(AccB + {y>0})) = LB
B′(y)(Aω) .

It remains to prove LB
B(y)(A) = LB

B′(y)(A) for each measurable set A ⊆ Aω.
To this end, by the Kolmogorov extension theorem (see [103] for example), it
suffices to prove LB

B(y)(wAω) = LB
B(y)(wAω) for each w ∈ A∗.

We inductively define a function χB : Y × A∗ → GsY by

χB(y, ⟨⟩)
(
{y′}

)
=

{
1 (y = y′)

0 (otherwise) ,
and

χB(y, aw)
(
{y′}

)
=
∑
y′′∈Y

d(y)
({

(a, y′′)
})
· χB(y′′, w)

(
{y′}

)
where a ∈ A and w ∈ A∗.

89

Then for each y ∈ Y and w ∈ A∗, we have:

LB
B(y)(wAω) =

∑
y′∈Y

χB(y, w)(y′) · LB
B(y)(y′)(Aω)

=
∑
y′∈Y

χB′(y, w)(y′) · LB
B′(y)(y′)(Aω)

= LB
B′(y)(wAω) .

By the Kolmogorov extension theorem, this implies LB
B(y)(A) = LB

B′(y)(A)
for each measurable set A. Hence we have LB

B = LB
B′ .

It is immediate by definition that f is also a fair simulation without dividing
from A to B′.

Proof (Theorem 4.5.5). We define Y12 ⊆ Y \ AccB by

Y12 :=

{
y /∈ AccB

∣∣∣∣ ∃y0, . . . yn ∈ Y. (y = y0, yn ∈ AccB, and

∀i ∈ {0, . . . , n− 1}. θ(yi)(A× {yi+1}) > 0

)}
.

As Y1 is finite, Y12 is also finite. We define an A-labeled PBWA B′ =
(
(Y ′,FY ′),

θ′,AccB′
)
by Y ′ = Y , FY ′ = FY , θ

′ = θ and AccB′ = AccB′ ∪ Y12. As Y12 is
finite, by repeatedly applying Lemma 4.5.6, we can prove LB

B = LB
B′ and that f

is a fair simulation without dividing from A to B′.
Let X =

(
X, c, (X1, X2)

)
and Y ′ =

(
Y ′, d′, (Y ′

1 , Y
′
2)
)
be the corresponding

Büchi (Gs, FA)-systems to A ′ and B′. Then f : Y →p X is a fair simulation
without dividing from A to B′. By definition, we have trB(y)(Y2) = 0 for each
y ∈ Y ′

1 , and therefore by Proposition 4.3.20, soundness of fair simulations without
dividing holds. Hence we have trB(c) ⊙ f ⊑ trB(d′) = trB(d). This implies the
inequality (4.18).

In [111], Kleisli simulation was instantiated for quantitative systems called
weighted automata, and the resulting simulation notion was stated in terms of
matrices. We conclude this section by doing the same thing for fair simulation.

Definition 4.5.7 (fair simulation for PBWAs). Let A =
(
X, ξ,AccA

)
and

B =
(
Y, θ,AccB

)
be A-labeled PBWAs whose state spaces are equipped with

discrete σ-algebras. Let X1 := X \ AccA , X2 := AccA , Y1 := Y \ AccB and
Y2 := AccB. For each a ∈ A, let MA (a) ∈ [0, 1]X×X and MB(a) ∈ [0, 1]Y×Y

be the transition matrices of A and B, i.e.
(
MA (a)

)
x,x′ = ξ(x)({(a, x′)}) and(

MB(a)
)
y,y′

= θ(y)
(
{(a, y′)}

)
. A fair matrix simulation from A to B is a matrix

A ∈ [0, 1]Y×X satisfying the following conditions. (Here MA ,i(a) ∈ [0, 1]Xi×X ,
MB,j(a) ∈ [0, 1]Yj×Y and Aji ∈ [0, 1]Yj×Xi are the obvious partial matrices of
MA (a) ∈ [0, 1]X×X , MB(a) ∈ [0, 1]Y×Y and A ∈ [0, 1]Y×X , respectively. More-
over, ≤ denotes the elementwise order between matrices.)

O. The matrix A is a substochastic matrix, i.e. ∀y ∈ Y.
∑

x∈X Ay,x ≤ 1.

A. The matrix A is a forward matrix simulation from A to B [111], i.e. ∀a ∈
A. A ·MX (a) ≤MY(a) ·A .

B. There exists a pair of increasing sequences of matrices of length a ≤ ω

A
⟨0⟩
11 ≤ A

⟨1⟩
11 ≤ · · · ≤ A

⟨a⟩
11 ∈ [0, 1]Y1×X1 and

A
⟨0⟩
12 ≤ A

⟨1⟩
12 ≤ · · · ≤ A

⟨a⟩
12 ∈ [0, 1]Y1×X2

such that:

90

(a) (Approximate A11 and A12) We have A
⟨a⟩
11 = A11 and A

⟨a⟩
12 = A12.

(b) (Aa
11) For each a ≤ a and a ∈ A we have:

A
⟨a⟩
11 ·MX ,1(a) ≤ MY,1(a) ·

A
⟨a⟩
11 A

⟨a⟩
12

A21 A22

 .

(c) (Aa
12, the base case) The 0-th approximant A

⟨0⟩
12 is the zero matrix.

(d) (Aa
12, the step case) For each a < a and a ∈ A:

A
⟨a+1⟩
12 ·MX ,2(a) ≤ MY,1(a) ·

A
⟨a⟩
11 A

⟨a⟩
11

A21 A22

 .

(e) (Aa
12, the limit case) When a = ω, (A

⟨ω⟩
12)y,x = supa′<ω(A

⟨a′⟩
12)y,x for

each y ∈ Y1 and x ∈ X2.

Theorem 4.5.8 (soundness). Let A =
(
X, ξ,AccA

)
and B =

(
Y, θ,AccB

)
be

A-labeled PBWAs whose state spaces are equipped with discrete σ-algebras. We
further assume that B has a finite state space. If A ∈ [0, 1]Y×X is a fair matrix
simulation from A to B, then for each y ∈ Y and P ∈ FAω , we have:∑

x∈X
Ay,x · LB

A (x)(P) ≤ LB
B(y)(P) .

Example 4.5.9. Let A := {a}. Let A and B be A-labeled PBWAs illustrated
below (ignore the dashed lines for the moment).

yI

y1

y2

xI

x1
x2

A B

a,1

OO

a, 1
2

OO

a, 1
2ee

a,1ee

a, 1
2

II

a, 1
2

UU a,1
oo

a,1//

1
jj

1
2

hh

1
2

dd
1
2vv

1
2

xx

We define A ∈ [0, 1]{yI ,y1,y2}×{xI ,x1,x2} by Ayi,xj =
1
2 for each i, j ∈ {1, 2}, AyI ,xI =

1 and Ay,x = 0 for the other combinations (see also the dashed lines above). Then
A is a fair matrix simulation from X to Y. Here the approximation sequences

A
⟨0⟩
11 ⊑ A

⟨1⟩
11 ⊑ · · · ⊑ A

⟨ω⟩
11 ∈ [0, 1]{yI ,y1}×{xI ,x1} and A

⟨0⟩
12 ⊑ A

⟨1⟩
12 ⊑ · · · ⊑ A

⟨ω⟩
12 ∈

[0, 1]{yI ,y1}×{x2} are given by: (A
⟨i⟩
11)yI ,xI = 1− (12)

i, (A
⟨i⟩
11)y1,x1 = 1

2

(
1− (12)

i
)
and

(A
⟨i⟩
11)y,x = 0 for the other combinations; and (A

⟨i⟩
12)y1,x2 = 1

2

(
1 − (12)

i
)
, for each

i ≤ ω (here we let
(
1
2

)ω
= 0).

4.6 Conclusion and Related Work

Using the logical fixed point-based characterization of languages of Büchi au-
tomata, we have categorically generalized the notion of fair simulation. We then
concretized it for a probabilistic variant of Büchi automata, and obtained a fair
simulation notion for them. We have two types of categorical generalizations
of fair simulation—one with dividing (Definition 4.3.13) and one without divid-
ing (Definition 4.3.17). The former requires fewer axioms to prove its soundness
than the latter does. However, its complicated definition limits its applicability.
For nondeterministic Büchi tree automata, both simulation notions are always
sound. For probabilistic Büchi tree automata, a simulation notion induced by
the categorical simulation notion with dividing is always sound. In contrast, the
one induced by the notion without dividing is proved to be sound when we focus
on finite-state word automata.

91

Related Work We have introduced the first simulation notion for probabilistic
Büchi word and tree automata to the best of our knowledge. However, there exist
several simulation notions for other probabilistic systems. In [66], a simulation
notion was introduced for PTSs whose states are labeled by a set of atomic
propositions. In [55] a simulation notion between probabilistic systems is studied
from a coalgebraic perspective. In [48, 111], a simulation notion for weighted
automata, which encompass probabilistic automata, is introduced by concretizing
Kleisli simulation (Definition 4.2.1). Comparison between these three simulation
notions is found in [44].

Using our simulation notion, we can prove (quantitative) language inclusion
between generative probabilistic Büchi automata (see also Chapter 7 for a dis-
cussion about generative and reactive systems). Its applicability is yet to be
studied, but one candidate is security verification. For example, quantitative
language inclusion-checking between (ordinary) probabilistic automata is known
to be useful for proving probable innocence, a kind of anonymity [48].

Compared with generative ones, reactive probabilistic Büchi automata are
more extensively studied because it is useful as a qualitative language accep-
tor [11]. More concretely, we can define a language of a reactive probabilistic
Büchi automaton as the set of infinite words that are accepted by the automaton
with positive probabilities. Interestingly, it is known that probabilistic Büchi au-
tomata are more expressible than nondeterministic Büchi automata as qualitative
language acceptors [11]. Moreover, inclusion between such qualitative languages
of probabilistic Büchi automata is known to be undecidable [12]. Hence a study
of simulation notion for reactive probabilistic Büchi automata would be also in-
teresting as future work.

92

Chapter 5

Categorical Ranking Function

In this chapter, we categorically generalize ranking functions [35].
Ranking functions are commonly used to prove termination of transition sys-

tems. They are especially useful for proving termination of infinite-state sys-
tems like while programs. Termination of such systems are often undecidable
(e.g. [108]) and therefore a sound and complete method for proving termination
does not exist. A ranking function provides us with one of such methods.

Sections 5.1–5.2 are devoted to preliminaries. We first review the definition of
ranking function for reachability games, and then review categorical characteri-
zation of reachability to accepting states. A categorical generalization of ranking
function is discussed in Section 5.3. Similarly to the previous chapter, we first
concretize it for reachability games (Section 5.4). In Section 5.5 we concretize the
categorical generalization for PTSs to obtain new ranking function-like notions
for them.

The contents of this chapter are based on [109].

5.1 Ranking Function

We first review the notion of ranking function. Its categorical generalization is
the main goal of this chapter.

Definition 5.1.1 (ranking function [35]). Let T = (XMax, XMin, EMax,
EMin,Acc) be a reachability game. Fix an ordinal z and let [z] := {n | n ≤ z}. A
ranking function for T is a function b : Xmax → [z] such that

∀x ∈ XMax \ Acc. min
y:(x,y)∈EMax

sup
x′:(y,x′)∈EMin

b(x′)+̂1 ≤ b(x) . (5.1)

Here b(x′)+̂1 := min{b(x′) + 1, z}.

The existence of a ranking function that assigns a state x an ordinal strictly
less than z implies that the game is winning for Player Max from the state.

Theorem 5.1.2 (soundness [35]). Let z be an ordinal and b : X → [z] be a ranking
function for a reachability game T = (XMax, XMin, EMax, EMin,Acc). For each
x ∈ XMax, b(x) < z implies x ∈WinT .

Remark 5.1.3. A ranking function such that b(x) < z induces a positional
winning strategy from x. More concretely, if b(x) < z then a strategy sMax ∈ SMax

G

for Player Max defined as follows is winning from x.

sMax
(
x0y0 . . . xi−1yi−1xi

)
:= argmin

y : (xi,y)∈EMax

sup
x′ : (y,x′)∈EMin

b(x′)

93

x0 x1

x2u
x3 x4

y0 y1
y2

y3

UU II ii
OO

EEII

))

UU

WW GG

Example 5.1.4. We define a reachability game T = (XMax,
XMin, EMax, EMin,Acc) byXMax = {x0, x1, x2, x3, x4},XMin =
{y0, y1, y2, y3}, EMax = {(x0, y0), (x0, y1), (x1, y1), (x1, y2),
(x3, y3)}, EMin = {(y0, x2), (y1, x1), (y1, x2), (y2, x3), (y2, x4)},
and Acc = {x2}. The game is pictured on the right. If we
define a function b : X → [ω] by b(x0) = 1, b(x2) = 0, and b(x1) = b(x3) =
b(x4) = ω, then b is a ranking function. Hence by Theorem 5.1.2 we have
{x0, x2, x3} ⊆WinT .

We note that completeness does not necessarily hold in the following sense:
for every ordinal z, there exist a reachability game T and a state x of T such that
x ∈WinT but there exists no ranking function b : XMax → [z] such that b(x) < z.
A counterexample is as follows.

x0u y1 x1 y2 x2 y3 x3

xωyω

. . .oo oo oo oo oo oo oodd SS ?? 77

oo

Example 5.1.5. Let z = ω. We define a reachability
game T = (XMax, XMin, EMax, EMin,Acc) by XMax :=
{xa | a ≤ ω}, XMin := {ya | 1 ≤ a ≤ ω}, EMax :=
{(xa, ya) | a ≤ ω} and EMin = {(ya, ya′) | a′ < a} and
Acc := {x0}. Note that all the choices are made by Player Max. By the well-
foundedness of ω, we have xω ∈WinT . However, we can prove by contradiction
that if b : XMax → [ω] is a ranking function for T then b(xω) = ω. Hence there
exists no ranking function b : XMax → [ω] that proves xω ∈WinT .

Remark 5.1.6. Completeness in the following sense does hold: for every reach-
ability game T and state x of T such that x ∈ WinT , there exists an ordinal z
and a ranking function b : X → [z] such that b(x) < z.

5.2 Modalities and Fixed-Point Properties

We have seen that ranking function is used to prove reachability to accepting
states. This means that categorically generalizing ranking function requires us to
categorically characterizing reachability first. In this thesis, we follow an existing
framework that is standard (see e.g. [45, 53]). Differently from the categorical
framework reviewed in Section 2.4.2, the framework we review here uses algebras
instead of final coalgebras, and characterize behaviors of systems as coalgebra-
algebra homomorphisms (Definition 2.4.21).

In general, there can exist multiple homomorphisms from a coalgebra to an
algebra. We choose the least one by assuming that each homset to the carrier of
the algebra carries a partial order.

Definition 5.2.1. A truth-value domain is a pair (Ω,⊑Ω) of an object Ω ∈ C and
a family ⊑Ω= (⊑X,Ω)X∈C of partial orders, where ⊑X,Ω is defined over a homset
C(X,Ω). If no confusion is likely, we write ⊑ for ⊑Ω and ⊑X,Ω. For F : C→ C,
an F -modality over (Ω,⊑) is an F -algebra σ : FΩ→ Ω.

FX

=µ

F JµσKc// FΩ

σ ��
X

c

OO

JµσKc // Ω
Definition 5.2.2 (JµσKc). Let (Ω,⊑Ω) be a truth-value domain
and σ : FΩ→ Ω be an F -modality over (Ω,⊑). We say that σ has
least fixed points if for each c : X → FX, Φc,σ : C(X,Ω)→ C(X,Ω)
is a monotone function and has the least fixed point with respect to ⊑X,Ω. The
least fixed point is called the (coalgebraic) least fixed-point property in c specified
by σ, and denoted by JµσKc : X → Ω.

Note that tr(c) and tr∗(c) in Section 3.1 are describable in the above frame-
work: the former is Jµ(J(ιF)−1)Kc, and the latter is Jµ(JζF)Kc.

94

Example 5.2.3. Let F = {0, 1} × PX : Sets → Sets. Then an F -coalgebra
c : X → {0, 1} × X is understood as a nondeterministic transition system with
accepting states, by regarding x as accepting if π1

(
c(x)

)
= 1. Note that F does

not have a final coalgebra (cf. Section 1.3.1).
However, the framework above allows us to categorically capture behaviors of

F -coalgebras. We regard {0, 1} as a truth-value domain by defining an order ⊑
over Sets(X, {0, 1}) by f ⊑ g

def.⇔ ∀x. f(x) ≤ g(x) for each X ∈ Sets. We define
an F -modality σ : {0, 1} × P{0, 1} → {0, 1} over ({0, 1},⊑) by

σ(a,A) :=

{
1 (a = 1)

maxA (a = 0)

Then the function Φc,σ : Sets(X, {0, 1})→ Sets(X, {0, 1}) (Definition 2.4.22) is
given as follows:

Φc,σ(f)(x) =

{
1

(
π1(c(x)) = 1

)
max

{
f(a) | a ∈ π2(c(x))

} (
π1(c(x)) = 0

)
.

In terms of predicate transformer semantics (see e.g. [77]), this indicates that Φc,σ

calculates the weakest precondition of a predicate f with respect to the angelic
nondeterminism. The least fixed point property JµσKc : X → {0, 1} assigns 1 to
x if and only if an accepting state is reachable from x when we choose successor
states appropriately.

In contrast, if we define an F -modality σ′ : {0, 1} × {0, 1} → {0, 1} over the
same truth-value domain by

σ′(a,A) :=

{
1 (a = 1)

minA (a = 0)

then

Φc,σ′(f)(x) =

{
1

(
π1(c(x)) = 1

)
min

{
f(a) | a ∈ π2(c(x))

} (
π1(c(x)) = 0

)
.

This is understood as calculating the weakest precondition with respect to the
demonic nondeterminism, and Jµσ′Kc : X → {0, 1} assigns 1 to x if and only if an
accepting state is reached from x regardless of the nondeterministic choice.

We later see that a winning region WinG of a reachability game and a reacha-
bility probability function ReachT of a PTS are characterized by this framework.

5.3 Categorical Generalization of Ranking Function

In this section, we categorically generalize ranking functions.
We first explain the intuition using a reachability game. Let T = (XMax,

XMin, EMax, EMin,Acc) be a reachability game and z be an ordinal. Define qg,z :
[z] → {0, 1} by qg,z(z) := 0 and qg,z(a) := 1 for a < z. Then we can rewrite the
soundness theorem of ranking functions (Theorem 5.1.2) as follows: if b : XMax →
[z] is a ranking function, then qg,z ◦ b : XMax → {0, 1} underapproximates the
characteristic function XMax → {0, 1} of WinT ⊆ XMax.

Our categorical generalization of ranking functions is based on this obser-
vation. As we will see in the next section, we can characterize the character-
istic function of WinT as a coalgebraic least fixed-point property JµσKc (Defi-
nition 5.2.2). Hence our goal is to underapproximate JµσKc using a categorical
ranking function.

95

Towards this goal, we use the notion of corecursive algebra. In the proof of
the soundness theorem of ranking functions, well-foundedness of a poset ([z],≤)
plays a very important role. The notion of corecursive algebra is a categorical
counterpart of well-foundedness.

Definition 5.3.1 (corecursive algebra, [16]). An F -algebra r :
FR→ R is corecursive if for an arbitrary coalgebra c : X → FX
there exists a unique arrow f : X → R such that f = r ◦ Ff ◦ c.
We write (|c|)r for the unique arrow.

FX
=

Ff // FR
r ��

X

c
OO

f // R

In other words, r is corecursive if Φc,r has the unique fixed point for each
c. Using the notion of corecursive algebra, we introduce a notion of ranking
domain. It is an F -algebra r : FR → R equipped with several data. Intuitively,
the carrier R corresponds to [z] in Definition 5.1.1 and Φc,r : C(X,R)→ C(X,R)
corresponds to the left-hand side of (5.1) in the definition.

Definition 5.3.2 (ranking domain). Let F : C → C. Let σ : FΩ → Ω be an
F -modality over a truth-value domain (Ω,⊑Ω) that has least fixed points. Let
r : FR→ R be an F -algebra, q : R→ Ω be an arrow, and ⊑R= (⊑X,R)X∈C be a
family of partial orders where ⊑X,R is define over C(X,R). A triple (r, q,⊑R) is
called a ranking domain for σ if the following conditions are satisfied.

1. We have q ◦ r ⊑FR,Ω σ ◦Fq (see the diagram on the right). FR

r
��

⊑
Fq

// FΩ

σ
��

R
q // Ω

2. For each c : X → FX, Φc,r is monotone and
(C(X,R),⊑X,R) has the least element ⊥X,R. Moreover,
either of the following conditions is satisfied:

(a) (C(X,R),⊑X,R) is ω-complete and Φc,r is ω-continuous; or

(b) (C(X,R),⊑X,R) is directed complete.

3. For each X ∈ C, a function q ◦ () : C(X,R) → C(X,Ω) is monotone
(i.e. f ⊑X,R g implies q ◦ f ⊑X,Ω q ◦ f) and strict (i.e. q ◦ ⊥X,R = ⊥X,Ω).
Moreover,

• if 2(a) is satisfied, it is ω-continuous (i.e. q ◦
⊔

i∈ω fi =
⊔

i∈ω q ◦fi); and
• if 2(b) is satisfied, it is directed continuous (i.e. q◦

⊔
f∈A f =

⊔
f∈A q◦f

for each directed subset A).

4. The algebra r : FR→ R is corecursive.

The intuition is as follows: Condition 2 ensures that we can obtain the least
fixed point of Φc,r using Theorem 2.3.2.2–3. By Theorem 2.3.4, Conditions 1 and
3 imply that the least fixed point is preserved by q. Finally, Condition 4 implies
that the least fixed point of Φc,r is in fact the unique fixed point.

A ranking arrow, a categorical generalization of ranking functions, is defined
with respect to a ranking domain.

Definition 5.3.3 (ranking arrow). Let (r, q,⊑R) be a
ranking domain for an F -modality σ : FΩ → Ω, and
c : X → FX be an F -coalgebra. An arrow b : X → R is
called a ranking arrow for c with respect to (r, q,⊑R) if
it satisfies b ⊑R Φc,r(b).

FX

⊑

Fb // FR

r
��

⊑

Fq // FΩ

σ
��

X

c

OO

b
// R q

// Ω

Recall that the soundness theorem of ranking functions claims that qg,z ◦ b
underapproximates the characteristic function XMax → {0, 1} of WinT ⊆ XMax.

96

The following theorem is its categorical counterpart: it claims that q ◦ b under-
approximates the coalgebraic least fixed-point property (Definition 5.2.2).

Theorem 5.3.4 (soundness). Let F : C → C and σ :
FΩ → Ω be an F -modality over a truth-value domain
(Ω,⊑Ω) that has least fixed points. Let (r, q,⊑R) be a
ranking domain for σ. Let c : X → FX be an F -coalgebra
and b : X → R be a ranking arrow for c. Then we have:
q ◦ b ⊑Ω JµσKc .

FX

⊑

Fb
//

F JµσKc
**

FR

r
��

⊑
Fq

// FΩ

σ
��

X

c

OO

b //

JµσKc
44R

q // Ω

Proof. We are assuming that r is a corecursive algebra (Condition 4 in Def-
inition 5.3.2). This means that Φc,r has a unique fixed point (|c|)r : X → R.
Obviously, it is also the least fixed point and the greatest fixed point of Φc,r,
i.e. (|c|)r = µΦc,r = νΦc,r. Moreover, by Condition 2 in Definition 5.3.2 and the
Knaster-Tarski theorem (the dual of Corollary 2.3.3.1), we have b ⊑R νΦc,r. By
Condition 3, q ◦ () is a monotone function. Hence we have:

q ◦ b ⊑X,Ω q ◦ νΦc,r = q ◦ µΦc,r . (5.2)

We next prove q ◦ µΦc,r ⊑X,Ω JµσKc. Note that the right-hand side is a fixed
point of Φc,σ by definition. We shall prove the inequality using Theorem 2.3.4.

We first prove that Condition 2 of Theorem 2.3.4 is satisfied. For l ∈ C(X,R),
we have:

q ◦ Φc,r(l) = q ◦ r ◦ Fl ◦ c (by definition)

⊑X,Ω σ ◦ Fq ◦ Fl ◦ c (by Condition 1 in Definition 5.3.2)

= Φc,σ(q ◦ l) (by definition) .

Conditions 1 and 3 of Theorem 2.3.4 are immediate by Condition 3 in Defi-
nition 5.3.2.

Hence by Theorem 2.3.4, we have q ◦ µΦc,r ⊑X,Ω JµσKc. Together with (5.2),
we have q ◦ b ⊑Ω JµσKc.
Remark 5.3.5. The unique fixed point (|c|)r : X → R of Φc,r is the “optimal”
ranking arrow. That is, by the Knaster-Tarski theorem (Corollary 2.3.3.1), if
b : X → R is a ranking arrow, then we have b ⊑R (|c|)r. This implies q◦b ⊑ q◦(|c|)r,
which means that q ◦ (|c|)r gives better bound for JµσKc than q ◦ b.

The converse of Theorem 5.3.4, i.e. completeness, does not necessarily hold.
This means that it is possible that there exists no b : X → R such that q ◦ b =JµσKc. By the above remark, it is equivalent to that q ◦ (|c|)r ̸= JµσKc. The
following proposition shows a sufficient condition for the completeness.

Proposition 5.3.6. Assume that the following
equality holds in Theorem 5.3.4:

q ◦ r = σ ◦ Fq . (5.3)

Then we have q ◦ (|c|)r = JµσKc.
FX

=
F (|c|)r

//
F JµσKc

,,FR

r
��

=
Fq

// FΩ

σ
��

X

c

OO

(|c|)r //

JµσKc 33R
q // Ω

Proof. By (|c|)r = r ◦ F (|c|)r ◦ c and q ◦ r = σ ◦ Fq, we have:

q ◦ (|c|)r = Φc,σ(q ◦ (|c|)r) .

97

This means that q ◦ (|c|)r is a fixed point of Φc,σ. As JµσKc is the least fixed point
of Φc,σ, we have

q ◦ (|c|)r ⊒Ω JµσKc .
Together with Theorem 5.3.4, we have q ◦ (|c|)r = JµσKc.
5.4 Concretization to Reachability Games

This section is devoted to a “sanity-check”: we will see that there exists a ranking
domain for Fg-coalgebras (see Example 2.4.14) such that the resulting definition
of ranking arrow coincides with the conventional definition of ranking function
(Definition 5.1.1).

Recall that we can represent a reachability game T = (XMax, XMin, EMax,
EMin,Acc) as an Fg-coalgebra cT : XMax → P2XMax × {0, 1} (Example 2.4.14).
Then the winning region WinT ⊆ XMax (Definition 2.2.22) is characterized as a
coalgebraic least fixed-point property as follows.

Proposition 5.4.1. For each X ∈ Sets, we define a partial order ≤X over

Sets(X, {0, 1}) by f ≤X g
def.⇔ ∀x ∈ X. f(x) ≤ g(x), and let ≤ := (≤X)X∈Sets.

We define an Fg-modality σg : Fg{0, 1} → {0, 1} over a truth-value domain
({0, 1},≤) by

σg(Γ, t) =

{
1 (t = 1)

maxA∈Γmina∈A a (t = 0) .

Then σg has least fixed points. Moreover, for a reachability game T =
(XMax, XMin, EMax, EMin,Acc), if we construct an Fg-coalgebra cT as in Ex-
ample 2.4.14, then the least fixed-point property JµσgKcT : XMax → {0, 1} in cT
specified by σg is given by the characteristic function of WinT , i.e.

JµσgKc(x) = {1 (x ∈WinT)

0 (x /∈WinT) .

Proof. It is not hard to see that Φc,σ is monotone.
It is also easy to see that for each c : X → FgX there exists a reachability

game T such that c = cT . Hence it suffices to show that for each reachability
game T = (XMax, XMin, EMax, EMin,Acc) if we define f : XMax → {0, 1} by

f(x) :=

{
1 (x ∈WinT)

0 (x /∈WinT) ,

then f is the least fixed point of ΦcT ,σg : Sets(XMax, {0, 1}) →
Sets(XMax, {0, 1}).

We first show that f is a fixed point of Φc,σg . For each x ∈ XMax, we have:

ΦcT ,σg(f)(x) = 1

⇔ (σg ◦ Fgf ◦ cT)(x) = 1 (by the definition of ΦcT ,σg)

⇔ π2
(
cT (x)

)
= 1, or ∃A ∈ π1

(
c1(x)

)
.∀x′ ∈ A. f(x′) = 1 (by definition)

⇔ x ∈ Acc or ∃y ∈ XMin s.t. (x, y) ∈ EMax. ∀x′ ∈ XMax s.t. (y, x′) ∈ EMin.

f(x′) = 1 (by the definition of cT)

⇔ x ∈ Acc or ∃y ∈ XMin s.t. (x, y) ∈ EMax. ∀x′ ∈ XMax s.t. (y, x′) ∈ EMin.

∃sMax ∈ SMax
T . ∀sMin ∈ SMin

T . ρx′,sMax,sMin is winning

(by the definition of f)

98

⇔ x ∈ Acc or

∃y ∈ XMin s.t. (x, y) ∈ EMax. ∃(sMax
x′ ∈ SMax

T)x′∈{x′∈XMax|(y,x′)∈EMin}.

∀x′ ∈ XMax s.t. (y, x′) ∈ EMin. ∀sMin ∈ SMin
T . ρx′,sMax

x′ ,sMin is winning

⇔ x ∈ Acc or ∃sMax ∈ SMax
T . ∀sMin ∈ SMin

T . ρx,sMax,sMin is winning

⇔ f(x) = 1 (by the definition of f) .

Hence f is a fixed point of ΦcT ,σg .
It remains to show that f : XMax → {0, 1} is the least fixed point. Let

f ′ : XMax → {0, 1} be a fixed point of ΦcT ,σg . To prove f ≤XMax f ′, it suffices to
prove f ′(x) = 0 implies f(x) = 0 for each x ∈ X.

For each x′ ∈ XMax, we have:

f ′(x′) = 0

⇔ ΦcT ,σg(f
′)(x′) = 0 (f ′ is a fixed point of ΦcT ,σg)

⇔ (σg ◦ Fgf
′ ◦ cT)(x′) = 0 (by the definition Φc,σg)

⇔ π2
(
cT (x

′)
)
= 0 and ∀A ∈ π1

(
cT (x

′)
)
. ∃x′′ ∈ A. f ′(x′′) = 0 (by definition)

⇔ x′ /∈ Acc and ∀y ∈ XMin s.t. (x′, y) ∈ EMax. ∃x′′ ∈ XMax s.t. (y, x′′) ∈ EMin.

f ′(x′′) = 0 (by definition) .

This means that if f ′(x′) = 0, then x′ /∈ Acc and for each y ∈ XMin there
exists x′′ ∈ XMax such that f ′(x′′) = 0. Hence for each x ∈ XMax such that
f ′(x) = 0, we can inductively define a strategy sMin ∈ SMin

T so that for each
strategy sMax ∈ SMax

T the resulting run ρx,sMax,sMin from x is not winning.
Therefore by definition, we have f(x) = 0. This concludes the proof.

A ranking domain for σg inducing the conventional definition of ranking func-
tion is given as follows.

Proposition 5.4.2. Fix an ordinal z. We define an Fg-algebra rg,z : Fg[z]→ [z],
a function qg,z : Fg[z]→ {0, 1} and a family ⊑[z]= (⊑X,[z])X∈Sets of partial orders
as follows.

• rg,z : P2[z]× {0, 1} → [z] is defined as follows:

rg,z(Γ, t) :=

{
0 (t = 1)

minA∈Γ supa∈A(a+̂1) (otherwise) .

Recall that a+̂1 denotes min{a+ 1, z}.

• qg,z : [z]→ {0, 1} is defined by

qg,z(a) :=

{
0 (a = z)

1 (otherwise) .

• For f, g ∈ Sets(X, [z]), f ⊑X,[z] g
def.⇔ ∀x ∈ X. f(x) ≥ g(x) (be aware of the

direction).

Then the triple (rg,z, qg,z,⊑[z]) is a ranking domain.

Proof. We prove that Conditions 1–4 of Definition 5.3.2 are satisfied.

99

Condition 1 It suffices to prove that for each (Γ, t) ∈ Fg[z] = P2rg,z × {0, 1},
if σg ◦ Fgqg,z(Γ, t) = 0 then qg,z ◦ rg,z(Γ, t) = 0.

σg ◦ Fgqg,z(Γ, t) = 0

⇔ t = 0 and ∀A ∈ Γ. z ∈ A (by the definitions of σg, qg,z and Fg)

⇒ t = 0 and minA∈Γ supa∈A(a+̂1) = z (5.4)

⇔ rg,z(Γ, t) = z (by the definition of rg,z)

⇔ qg,z ◦ rg,z(Γ, t) = 0 (by the definition of qg,z) .

Condition 2 Assume that f ⊑X,[z] g. Then for each x ∈ X, we have:

Φc,r(f)(x) = σ ◦ Fgf ◦ c(x)

=

{
0 (π2(c(x)) = 1)

minA∈π1(c(x)) supx∈A(f(x)+̂1) (π2(c(x)) = 0)

≥

{
0 (π2(c(x)) = 1)

minA∈π1(c(x)) supx∈A(g(x)+̂1) (π2(c(x)) = 0)

= σ ◦ Fgg ◦ c(x) = Φc,r(g)(x) .

Hence we have Φc,r(f) ⊑X,[z] Φc,r(g), and therefore Φc,r is monotone.
It is easy to see that a function that maps each x ∈ X to z is the least element

in (Sets(X, [z]),⊑X,R).
Finally, it is also easy to see that for A ⊆ Sets(X, [z]), its supremum⊔

f∈A f : X → R with respect to ⊑X,R is given by
(⊔

f∈A f
)
(x) =

∧
f∈A

(
f(x)

)
.

Hence Condition 2(b) is satisfied.

Condition 3 By the definition of qg,z : [z]→ {0, 1}, for f1, f2 ∈ Sets(X, [z]) and
x ∈ X, f1(x) ≤ f2(x) (with respect to the ordinary order) implies qg,z ◦ f1(x) ≥
qg,z ◦ f2(x). Therefore qg,z ◦ () is monotone.

By definition, if f(x) = z then qg,z ◦ f(x) = 0. Hence qg,z ◦ () is strict.
Let K ⊆ Sets(X, [z]). We have:

qg,z
(⊔
f∈K

f(x)
)
= 1⇔ ∃n < z.

(∧
f∈K

f(x)
)
= n⇔ ∃f ∈ K. ∃n < z. f(x) = n

⇔ ∃f ∈ K. qg,z ◦ f(x) = 1⇔
∨
f∈K

qg,z ◦ f(x) = 1 .

Hence we have
⊔

f∈K
(
qg,z ◦ f

)
= qg,z ◦

(⊔
f∈K f

)
, and qg,z ◦ () is continuous.

Condition 4 Let c : X → FgX be an Fg-coalgebra. We prove that Φc,rg,z has
a unique fixed point.

By Condition 2 and Theorem 2.3.2.3, Φc,rg,z has the least fixed point.
We will show that Φc,rg,z has a unique fixed point. Let f1, f2 : X → [z] be

fixed points of Φc,rg,z . We prove f1(x) = a⇔ f2(x) = a for each x ∈ X and a < z
by the transfinite induction on a.

When a = 0 we have:

f1(x) = 0⇔ rg,z ◦ Fgf1 ◦ c(x) = 0 (f1 is a fixed point of Φc,rg,z)

⇔ π2(c2(x)) = 1 (by definition)

⇔ rg,z ◦ Fgf2 ◦ c(x) = 0 (by definition)

⇔ f2(x) = 0 (f2 is a fixed point of Φc,rg,z) .

100

Let a be a successor ordinal such that a < z, and assume f(x) = a′ ⇔ g(x) =
a′ for each x ∈ X and a′ < a. Note that by a < z, we have a+̂1 = a+ 1.

f1(x) = a⇔ rg,z ◦ Fgf1 ◦ c(x) = a (f1 is a fixed point of Φc,rg,z)

⇔ π2(c2(x)) = 0 and min
A∈π1(c(x))

sup
x′∈A

f1(x
′)+̂1 = a (by definition)

⇔ π2(c2(x)) = 0 , ∀A ∈ π1(c(x)). ∃x′ ∈ A.¬
(
f1(x

′) < a− 1
)

and ∃A ∈ π1(c(x)). ∀x′ ∈ A. f1(x′) ≤ a− 1

⇔ π2(c2(x)) = 0 , ∀A ∈ π1(c(x)). ∃x′ ∈ A.¬
(
f2(x

′) < a− 1
)

and ∃A ∈ π1(c(x)). ∀x′ ∈ A. f2(x′) ≤ a− 1
(by the induction hypothesis)

⇔ π2(c2(x)) = 0 and min
A∈π1(c(x))

sup
x′∈A

f2(x
′)+̂1 = a

⇔ rg,z ◦ Fgf2 ◦ c(x) = a (by definition)

⇔ f2(x) = a (f2 is a fixed point of Φc,rg,z) .

Let a be a limit ordinal such that a < z, and assume f(x) = a′ ⇔ g(x) = a′

for each x ∈ X and a′ < a. We have:

f1(x) = a⇔ rg,z ◦ Fgf1 ◦ c(x) = a (f1 is a fixed point of Φc,rg,z)

⇔ π2(c2(x)) = 0 and min
A∈π1(c(x))

sup
x′∈A

f1(x
′)+̂1 = a (by definition)

⇔ π2(c2(x)) = 0 , ∀A ∈ π1(c(x)). ∀a′ < a.∃x′ ∈ A.¬
(
f1(x

′) < a′
)

and ∃A ∈ π1(c(x)). ∀x′ ∈ A. f1(x′) < a

⇔ π2(c2(x)) = 0 , ∀A ∈ π1(c(x)). ∀a′ < a.∃x′ ∈ A.¬
(
f2(x

′) < a′
)

and ∃A ∈ π1(c(x)). ∀x′ ∈ A. f2(x′) < a
(by the induction hypothesis)

⇔ π2(c2(x)) = 0 and min
A∈π1(c(x))

sup
x′∈A

f2(x
′)+̂1 = a

⇔ rg,z ◦ Fgf2 ◦ c(x) = a (by definition)

⇔ f2(x) = a (f2 is a fixed point of Φc,rg,z) .

Hence we have f1(x) = a ⇔ f2(x) = a for each x ∈ X and a < z. This
immediately implies that f1(x) = z ⇔ f2(x) = z for each x ∈ X.

We finally show that ranking arrows with respect to the ranking domain
coincide with ranking functions in Definition 5.1.1.

Proposition 5.4.3. Let T = (XMax, XMin, EMax, EMin,Acc) be a reachability
game and z be an ordinal. A function b : XMax → [z] is a ranking arrow for cT
(see Example 2.4.14) with respect to (rg,z, qg,z,⊑[z]) if and only if b is a ranking

function for T . Moreover, for x ∈ XMax, b(x) < z if and only if qg,z ◦ b(x) = 1.

Proof. We have:

b : XMax → [z] is a ranking arrow for cT

⇔ ∀x ∈ XMax. b(x) ⊑ rg,z ◦ Fgb ◦ c(x) (by Definition 5.3.3)

⇔ ∀x ∈ XMax. rg,z ◦ Fgb ◦ c(x) ≤ b(x) (by the definition of ⊑)
⇔ ∀x ∈ XMax.

(
π2(c(x)) = 0 ⇒ min

A∈π1(c)(x)
sup
x′∈A

b(x′)+̂1 ≤ b(x)
)

(by the definitions of rg,z and Fg)

101

⇔ ∀x ∈ XMax.
(
x /∈ Acc ⇒ min

y:(x,y)∈EMax
sup

x′:(y,x′)∈EMin

b(x′)+̂1 ≤ b(x)
)

(by the definition of cT)

⇔ b : X → [z] is a ranking function for T (by Definition 5.1.1) .

It is immediate by definition that b(x) < z ⇔ qg,z ◦ b(x) = 1.

Note that the inequality qg,z◦rg,z ⊑ σg◦Fgqg,z is strict. (see (5.4) in the proof of
Proposition 5.4.2). Hence we cannot prove completeness using Proposition 5.3.6.
Indeed, Example 5.1.5 shows that it does not hold.

5.5 Concretization to PTSs

In this section, we apply the framework in Section 5.3 to PTSs (Definition 2.2.26).
We introduce two ranking domains for PTSs. They induce different notions of
“ranking function” for PTSs respectively.

We model a PTS T =
(
(X,FX), ξ,Acc

)
as an Fp-coalgebra cT : X → GX ×

{0, 1} as in Example 2.4.14. We first characterize reachability probability function
ReachT : X → [0, 1] (Definition 2.2.27) as the least fixed point property.

Proposition 5.5.1. For each X ∈ SB, we define a partial order ≤X over
SB(X, [0, 1]) (here [0, 1] is equipped with the standard σ-algebra) by f ≤X

g
def.⇔ ∀x ∈ X. f(x) ≤ g(x) where the last ≤ denotes the ordinary order. Let
≤:= (≤X)X∈SB. We define an Fp-modality σp : G[0, 1] × {0, 1} → [0, 1] over a
truth-value domain ([0, 1],≤) as follows:

σp(φ, t) :=

{
1 (t = 1)∫
a∈[0,1] adφ (t = 0) .

Then σp has least fixed points. Moreover, for a PTS T =
(
(X,FX), ξ,Acc

)
,

if we define an Fp-coalgebra cT : X → GX × {0, 1} as in Example 2.4.14, then
the least fixed point property JµσpKcT : X → [0, 1] coincides with the reachability
probability function ReachT .

Proof. Let f, g ∈ SB(X, [0, 1]) and assume f ≤ g. Then for each x ∈ X,

Φc,σ(f)(x)

= σ ◦ Fpf ◦ c(x) (by definition)

=

{
1 (π2(c(x)) = 1)∫
x′∈X f(x′) d(π1(c(x))) (π2(c(x)) = 0)

(by the definitions of σp and Fp)

≤

{
1 (π2(c(x)) = 1)∫
x′∈X g(x′) d(π1(c(x))) (π2(c(x)) = 0)

(by f ≤ g)

= σ ◦ Fpg ◦ c(x) (by the definitions of σp and Fp)

= Φc,σ(g)(x) (by definition) .

Hence Φc,σp is monotone.
We prove JµσpKcT = ReachT . It is easy to see that for each Fg-coalgebra

c : X → FpX there exists a PTS T such that c = cT . Hence it suffices to
show that for each PTS T =

(
(X,FX), ξ,Acc

)
, the reachability probability func-

tion ReachT : X → [0, 1] is the least fixed point of ΦcT ,σp : SB(X, [0, 1]) →
Sets(X, [0, 1]).

102

We first show that ReachT is a fixed point of ΦcT ,σp . For x ∈ X, we have:

ΦcT ,σp(ReachT)(x)

= (σp ◦ Fpf ◦ cT)(x) (by definition)

=

{
1 (x ∈ Acc)∫
x′∈X ReachT (x′) d(ξ(x)) (x /∈ Acc)

(by the definitions of cT , σp and Fp)

=

{
1 (x ∈ Acc)∫
x′∈X limk→∞ReachkT (x′) d(ξ(x)) (x /∈ Acc)

(by the definition of ReachT)

=

{
1 (x ∈ Acc)

limk→∞
∫
x′∈X ReachkT (x′) d(ξ(x)) (x /∈ Acc)

(by the dominated convergence theorem, e.g. [8, Theorem 1.6.9])

=

{
1 (x ∈ Acc)

limk→∞Reachk+1
T (x) (x /∈ Acc)

(by the definition of ReachkT (x))

= lim
k→∞

ReachkT (x) (by the definition of ReachkT (x))

= ReachT (x) (by the definition of ReachT) .

Hence ReachT is a fixed point of Φc,σp .
It remains to show that it is the least fixed point. Let f : X → [0, 1] be a

fixed point of Φc,σp . We will prove ReachT ≤X f . To this end, by the definition

of ReachT , it suffices to prove ReachkT (x) ≤ f(x) for each x ∈ X and k ∈ N. We
prove this by the induction on n.

For k = 0, it is immediate from that Reach0T (x) = 0.
For k > 0, we have:

ReachkT (x)

=

{
1 (x ∈ Acc)∫
x′∈X Reachk−1

T (x′) dξ(x) (x /∈ Acc)
(by the definition of ReachkT (x))

≤

{
1 (x ∈ Acc)∫
x′∈X f(x′) dξ(x) (x /∈ Acc)

(by the induction hypothesis)

= (σp ◦ Fpf ◦ c)(x) (by the definitions of cT , Fp and σp)

= f(x) (f is a fixed point of Φc,σp) .

Hence we have ReachkT (x) ≤ f(x) for each x ∈ X and k ∈ N, and therefore
ReachT is the least fixed point of Φc,σp .

5.5.1 Distribution-valued Ranking Supermartingale

In this and the next sections, we introduce ranking domains for σp respectively. In
this section, we introduce a ranking domain such that R is the set of distributions
over N ∪ {∞}.

We first introduce some notations.

Notation 5.5.2. We write N∞ for N ∪ {∞}. We define a σ-algebra FDN∞ over
DN∞ = {f : N∞ → [0, 1] |

∑
n∈N∞

f(n) = 1} as the smallest σ-algebra that
makes a function eva : DN∞ → [0, 1] defined by eva(φ) := φ(a) measurable for

103

each a ∈ N∞ (cf. the definition of G). As mentioned in Section 2.1, we might
write DN∞ for (DN∞,FDN∞). For φ ∈ DN∞ and A ⊆ R ∪ {∞}, φ(A) denotes∑

a∈A∩N∞
φ(a). We let [a, b] = ∅ when b < a.

In this section, we consider the following ranking domain.

Proposition 5.5.3. We define an Fp-algebra rp : FpDN∞ → DN∞, a function
qp : DN∞ → [0, 1] and a family ⊑DN∞ of partial orders as follows.

• rp : GDN∞ × {0, 1} → DN∞ is defined by:

rp(Γ, t)(a) :=


1 (t = 1)

0 (t = 0, a = 0)∫
φ∈DN∞

φ(a− 1) dΓ (t = 0, a > 0) .

• qp(φ) := φ
(
[0,∞)

)
.

• We define a partial order ⊑DN∞ over DN∞ by

φ ⊑DN∞ φ′ def.⇔ ∀a ∈ N. φ
(
[0, a]

)
≤ φ′([0, a]) ,

Moreover, for each X ∈ SB, we define a partial order ⊑X,DN∞ by f ⊑X,DN∞

g
def.⇔ ∀x ∈ X. f(x) ⊑DN∞ g(x), and define a family ⊑DN∞ of partial orders

by ⊑DN∞ := (⊑X,DN∞)X∈SB.

Then a triple (rp, qp,⊑DN∞) is a ranking domain for σp. Moreover we have
qp ◦ rp = σp ◦ Fpqp (cf. Proposition 5.3.6).

We use the following lemma in the proof of the above proposition.

Lemma 5.5.4. For every nondecreasing function G : N → [0, 1], there exists a
unique distribution φ over N∞ such that φ

(
[0, a]

)
= G(a) for each a ∈ N.

Proof. We define φ : N∞ → R by

φ(a) =


G(a) (a = 0)

G(a)−G(a− 1) (0 < a <∞)

1− lima′→∞G(a′) (a =∞) .

By definition and that G is nondecreasing, 0 ≤ φ(a) ≤ 1 for each a. By its
definition, we have

∑
a∈N∞

φ(a) = 1. Hence φ ∈ DN∞.
Let φ′ ∈ DN∞ and assume φ′([0, a]) = G(a) for each a ∈ N. Then we have

φ(0) = G(0) = φ′([0, 0]) = φ′(0). Moreover for each a ∈ N \ {0}, we have:

φ(a) = G(a)−G(a− 1) = φ′([0, a])− φ′([0, a− 1]) = φ′(a) .

Therefore we have φ(a) = φ′(a) for each a ∈ N, and this implies φ(∞) = φ′(∞).
Hence the uniqueness is proved, and this concludes the proof.

We next prove that ⊑X,DN∞ is indeed a partial order.

Lemma 5.5.5. The order ⊑X,DN∞ is a partial order.

Proof. We first prove that ⊑X,DN∞ is a partial order. Reflexivity and tran-
sitivity are immediate from those of the standard order ≤ over [0, 1]. Assume
that f ⊑X,DN∞ g and g ⊑X,DN∞ f . By the definition of ⊑X,DN∞ , we have
f(x)([0, a]) = g(x)([0, a]) for each x ∈ X and a ∈ [0,∞]. Then by Lemma 5.5.4,
we have f = g. Hence antisymmetry is also satisfied.

Proof (Proposition 5.5.3). We prove that Conditions 1–4 are satisfied.

104

Condition 1 Let (Γ, t) ∈ FpDN∞ = GDN∞ × {0, 1}. If t = 1 then by the
definitions of rp and σp, we have the following (recall that δ0 denotes the Dirac
distribution):

qp ◦ rp(Γ, t) = qp(δ0) = 1 = σp(Gqp(Γ), t) = σp ◦ Fpqp(Γ, t) .

Assume t = 0. Then we have:

qp ◦ rp(Γ, t) = rp(Γ, 1)([0,∞)) (by the definition of qp)

=
∞∑
a=0

rp(Γ, 1)(a)

=

∞∑
a=1

∫
φ∈DN∞

φ(a− 1) dΓ (by the definition of rp)

=

∫
φ∈DN∞

∞∑
a=1

φ(a− 1) dΓ

=

∫
φ∈DN∞

qp(φ) dΓ (by the definition of qp)

= σp ◦ Fpqp(Γ, t) (by the definition of σp) .

Hence Condition 1 is satisfied. We can also see that qp ◦ rp = σp ◦ Fpqp.

Condition 2 Let f1, f2 : X → DN∞ and assume f1 ⊑X,DN∞ f2. Let x ∈ X and
assume that c(x) = (ψ, t) ∈ FpX = GX × {0, 1}.

If t = 1 then by definition we have:

rp ◦ Fpf1(ψ, t) = rp ◦ Fpf2(ψ, t) = δ0.

Hence we have Φc,σp(f1)(x) = Φc,σp(f2)(x).
Assume t = 0. Let a ∈ N. If a = 0 then by the definition of rp, we have:

rp ◦ Fpf1(ψ, t)([0, a]) = rp ◦ Fpf2(ψ, t)([0, a]) = 0 .

If a > 0, we have:

rp ◦ Fpf1(ψ, t)([0, a])

=

∫
x′∈X

f1(x
′)([0, a− 1]) dψ (by the definition of rp)

≤
∫
x′∈X

f2(x
′)([0, a− 1]) dψ (by f1 ⊑X,DN∞ f2)

= rp ◦ Fpf2(ψ, t)([0, a]) (by the definition of rp) .

Therefore by the definition of ⊑DN∞ , we have rp◦Fpf1(ψ, t) ⊑DN∞ rp◦Fpf2(ψ, t),
and Φc,rp is monotone.

It is easy to see that a function f : X → DN∞ defined by f(x) := δ∞ is the
least element of (SB(X,DN∞),⊑X,DN∞).

We prove that (SB(X,DN∞),⊑X,DN∞) is ω-complete and Φc,rp is ω-
continuous. Let f0, f1, . . . ∈ SB(X,DN∞) and assume that they constitute an
increasing sequence, i.e. f0 ⊑X,DN∞ f1 ⊑DN∞

We define G : X → [0, 1]N by G(x)(a) = limn→∞ fn(x)([0, a]). Note that for
each x ∈ X and f ∈ K, a ≤ b implies f(x)([0, a]) ≤ f(x)([0, b]). Hence by the
monotonicity of supremums, G is nondecreasing. Therefore by Lemma 5.5.4, for

105

each x ∈ X there exists unique φx ∈ DN∞ such that φx([0, a]) = G(x)(a) for
each a ∈ [0,∞]. We define f : X → DN∞ by f(x) := φx.

By its definition, f is the supremum of f0, f1, . . . if we ignore measurability.
We prove measurability of f . We have:

f : X → DN∞ is measurable

⇔ ∀A ∈ FDN∞ . f
−1(A) ∈ FX (by definition)

⇔ ∀a ∈ N∞. ∀B ∈ F[0,1]. {x ∈ X | f(x)(a) ∈ B} ∈ FX (by definition)

⇔ ∀a ∈ N∞. f()(a) : X → [0, 1] is measurable

⇔ ∀a ∈ N∞. f()([0, a]) : X → [0, 1] is measurable .

As the limit of Borel-measurable functions is Borel measurable (see e.g. [8, The-
orem 1.5.4]), the last statement holds. Hence f is measurable.

We next prove that Φc,rp is ω-continuous. For each x ∈ X and a ∈ N,

Φc,rp

(⊔
i∈ω

fi
)
(x)([0, a])

= rp ◦ Fp

(⊔
i∈ω

fi
)
◦ c(x) (by definition)

=

{
1 (π2(c(x)) = 1)∫
x′∈X limi→∞ fi(x

′)([0, a− 1]) d(π1(c(x))) (π2(c(x)) = 0)

(by the definitions of σp and Fp)

=

{
1 (π2(c(x)) = 1)

limi→∞
∫
x′∈X fi(x

′)([0, a− 1]) d(π1(c(x))) (π2(c(x)) = 0)

(by the dominated convergence theorem)

=
⊔
i∈ω

rp ◦ Fpfi ◦ c(x)([0, a]) (by the definitions of σp and Fp)

=
⊔
i∈ω

Φc,σ(fi)(x)([0, a]) (by definition) .

Hence by Lemma 5.5.4, we have Φc,rp(
⊔

i∈ω f) =
⊔

i∈ω Φc,rp(fi). Therefore Φc,rp

is ω-continuous.

Condition 3 We first prove that qp is monotone. Let f1, f2 : X → DN∞ and
assume that f1 ⊑DN∞ f2. Then we have:

qp ◦ f1(x) = f1(x)([0,∞)) (by the definition of qp)

= lim
a→∞

f1(x)([0, a])

≤ lim
a→∞

f2(x)([0, a]) (by f1 ⊑DN∞ f2)

= f2(x)([0,∞))

= qp ◦ f2(x) . (by the definition of qp)

Hence we have qp ◦ f1 ≤ qp ◦ f2, and therefore qp ◦ () is monotone.
Recall that the least element ⊥X,DN∞ of Kℓ(Gs)(X,DN∞) is given by

⊥X,DN∞(x) = δ∞ (i.e. the Dirac distribution). By the definition of qp, we have
qp(δ∞) = 0. Hence qp ◦ () is strict.

We prove that qp is ω-continuous. We define f0, f1, . . . and f in SB(X,DN∞)
as in the proof of Condition 2. As the limit of Borel-measurable functions is

106

Borel measurable (see e.g. [8, Theorem 1.5.4]), we can calculate the supremum
of qp ◦ f0 ≤X qp ◦ f1 ≤X . . . in the pointwise manner. For each x ∈ X, we have:

qp

(⊔
i∈ω

fi

)
(x) = lim

a→∞

(⊔
i∈ω

fi

)
(x)([0, a]) (by the definition of qp)

= lim
a→∞

lim
i→∞

fi(x)([0, a]) (by the proof of Condition 2)

= lim
i→∞

lim
a→∞

fi(x)([0, a])

= lim
i→∞

qp ◦ fi(x) (by the definition of qp)

=
(∨
i∈ω

qp ◦ fi
)
(x) .

Therefore qp ◦ () is ω-continuous.

Condition 4 Let c : X → FpX be an Fp-coalgebra. It suffices to show that the
function Φc,rp : SB(X,DN∞)→ SB(X,DN∞) has a unique fixed point.

By Condition 2 proved above and Theorem 2.3.2.2, Φc,rg,z has the least fixed
point. We prove that this is the unique fixed point. Let f1, f2 : X → DN∞ be
fixed points of Φc,rp . We prove

f1(x)(a) = f2(x)(a) (5.5)

for each x ∈ X and a ∈ N.
Let x ∈ X and assume π2(c(x)) = 1. Then we have:

f1(x) = rp ◦ Fpf1 ◦ c(x) (f1 is a fixed point of Φc,rp)

= δ0 (by definition)

= rp ◦ Fpf2 ◦ c(x) (by definition)

= f2(x) (f2 is a fixed point of Φc,rp) .

Hence we have f1(x)(a) = f2(x)(a) for each a.
Let x ∈ X and assume π2(c(x)) = 0. We prove (5.5) for each a ∈ N by the

induction on a.
If a = 0 then by the definition of rp, we have

f1(x)(a) = rp ◦ Fpf1 ◦ c(x)(a) = 0 = rp ◦ Fpf2 ◦ c(x)(a) = f2(x)(a).

Let a > 0 and assume f1(x
′)(a′) = f2(x

′)(a′) for each x′ ∈ X and a′ < a.

f1(x)(a) = rp ◦ Fpf1 ◦ c(x)(a) (f1 is a fixed point of Φc,rp)

=

∫
x′∈X

f1(x
′)(a− 1) d(π1(c(x))) (by the definition of rp)

=

∫
x′∈X

f2(x
′)(a− 1) d(π1(c(x))) (by the induction hypothesis)

= rp ◦ Fpf2 ◦ c(x)(a) (by the definition of rp)

= f2(x)(a) (f2 is a fixed point of Φc,rp) .

Therefore we have f1(x)(a) = f2(x)(a) for each x ∈ X and a ∈ N, and this
implies that fx(x)(∞) = f2(x)(∞) for each x ∈ X. This concludes the proof.

In automata-theoretic terms, a ranking arrow with respect to (rp, qp,⊑DN∞)
and its soundness theorem are given as follows.

107

Definition 5.5.6 (distribution-valued ranking function). Let T =
(
(X,FX), ξ,Acc

)
be a PTS. A distribution-valued ranking function for T is a measurable function
b : X → DN∞ that satisfies the following:

∀x ∈ X \ Acc. ∀a ∈ N. b(x)([0, a]) ≤
∫
x′∈X

b(x′)
(
[0, a− 1]

)
dξ(x) . (5.6)

Theorem 5.5.7. Let b : X → DN∞ be a distribution-valued ranking function for
a PTS T =

(
(X,FX), ξ,Acc

)
. Then

∀x ∈ X. b(x)
(
[0,∞)

)
≤ ReachT (x) .

Proof. We define an Fp-coalgebra cT : X → FpX as in Example 2.4.14. By the
definitions of rp and Fp, we can easily see that b : X → DN∞ is a ranking arrow
for cT with respect to (rp, qp,⊑DN∞) (i.e. b(x)([0, a]) ≤ rp ◦ Fpb ◦ cT (x)([0, a])
for each x ∈ X \ Acc and a ∈ N) if and only if b is a distribution-valued ranking
function for T . Moreover, by the definition of qp, we have b(x)([0,∞)) = qp◦b(x).

Hence the theorem is immediate by Theorem 5.3.4.

By the above soundness theorem, we can use distribution-valued ranking func-
tion for underapproximating the reachability probability of PTSs. This means
that we can do quantitative reasoning using distribution-valued ranking func-
tion. This is in contrast to a well-known ranking function-like notion for PTSs
called ranking supermartingales [19, 34] which can verify a qualitative property
called almost-sure termination, i.e. that the reachability probability is 1 (see also
Definition 6.0.1 and Theorem 6.0.2).

As we have seen in Proposition 5.5.3, we have qp ◦ rp = σp ◦ Fpqp. Hence by
Proposition 5.3.6, we have the following completeness theorem.

Theorem 5.5.8. For a PTS T =
(
(X,FX), ξ,Acc

)
, there exists a distribution-

valued ranking function b : X → DN∞ such that

∀x ∈ X. b(x)([0,∞)) = ReachT (x) .

x0

x1u x2

1
3 ;;

1
3

OO

1
3

;;
1 ;;

1

cc
Example 5.5.9. We define a PTS T =

(
(X,FX), ξ,Acc

)
by X = {x0, x1, x2}, FX = PX, ξ(x0) = [x0 7→ 1

3 , x1 7→
1
3 , x2 7→

1
3], ξ(x1) = [x1 7→ 1] and ξ(x2) = [x2 7→ 1] and

Acc = {x1}. The function b : X → DN∞ defined by b(x0) =
[i 7→ 1/3i+1,∞ 7→ 1/2], b(x1) = [0 7→ 1] and b(x2) = [∞ 7→ 1] is a distribution-
valued ranking function. Hence we can conclude ReachT (x0) ≥ (1− 1

2) =
1
2 . (As

mentioned in Section 2.1, we are identifying GX with DX.)

5.5.2 γ-Scaled Submartingale

Fix a real number γ ∈ [0, 1). We next consider the following ranking domain.

Proposition 5.5.10. We assume that [0, 1] is equipped with the standard σ-
algebra. We define an Fp-algebra r

′
p,γ : Fp[0, 1] → [0, 1], a function qp : [0, 1] →

[0, 1] and a family ≤ of partial orders as follows.

• r′p,γ : G[0, 1]× {0, 1} → [0, 1] is define as follows:

r′p,γ(φ, t) =

{
1 (t = 1)

γ ·
∫
a∈[0,1] adφ (otherwise) .

108

• q′p : [0, 1]→ [0, 1] is the identity function id[0,1].

• ≤:= (≤X)X∈SB is defined as in Proposition 5.5.1.

Then (r′p,γ , q
′
p,≤) is a ranking domain for σp.

Proof. We prove that Conditions 1–4 are satisfied.

Condition 1 Let (φ, t) ∈ Fp[0, 1] = G[0, 1]× {0, 1}. Then we have:

q′p ◦ r′p,γ(φ, t) =

{
q′p(1) (t = 1)

q′p
(
γ ·
∫
a∈[0,1] a dφ

)
(t = 0)

(by the definition of r′p,γ)

=

{
1 (t = 1)

γ ·
∫
a∈[0,1] adφ (t = 0)

(by the definition of q′p)

≤

{
1 (t = 1)∫
a∈[0,1] adφ (t = 0)

(by γ < 1)

= σp(φ, t) (by the definition of σp)

= σp ◦ Fpq
′
p(φ, t) (by the definition of q′p) .

Hence we have q′p ◦ r′p,γ ≤ σp ◦ Fpq
′
p.

Condition 2 We first prove that Φc,r′p,γ is monotone. Let f1, f2 : X → [0, 1]
and assume that f1 ≤X f2. Let x ∈ X and assume that c(x) = (ψ, t) ∈ FpX =
GX × {0, 1}. Then we have:

r′p,γ ◦ Fpf1(ψ, t) =

{
1 (t = 1)∫
x∈X f1(x) dψ (t = 0)

(by the definitions of Fp and r′p,γ)

≤

{
1 (t = 1)∫
x∈X f2(x) dψ (t = 0)

(by f1 ≤ f2)

= r′p,γ ◦ Fpf2(ψ, t) (by the definitions of r′p,γ and Fp) .

Hence Φc,r′p,γ is monotone.
It is easy to see that the least element of (SB(X, [0, 1]),≤X) is given by the

function that maps each x ∈ X to 0.
We show that (SB(X, [0, 1]),≤X) is ω-complete and Φc,r′p,γ is ω-continuous.

Let f0, f1, · · · ∈ SB(X, [0, 1]) and assume f0 ≤X f1 ≤X We define f : X →
[0, 1] by f(x) :=

∨
i∈ω fi(x). As the limit of Borel-measurable functions is Borel

measurable (see e.g. [8, Theorem 1.5.4]), f is measurable. It is easy to see that
f is the supremum of a chain f0, f1,

Moreover, we have:

Φc,r′p,γ

(∨
i∈ω

fi
)
(x) = r′p,γ ◦ Fp

(∨
i∈ω

fi
)
◦ c(x) (by definition)

=

{
1 (π2(c(x)) = 1)

γ ·
∫
x′∈X limi→∞ fi(x

′) d(π1(c(x))) (π2(c(x)) = 0)

(by the definitions of r′p,γ and Fp)

=

{
1 (π2(c(x)) = 1)

limi→∞ γ ·
∫
x′∈X fi(x

′) d(π1(c(x))) (π2(c(x)) = 0)

(by the dominated convergence theorem)

109

=
∨
i∈ω

r′p,γ ◦ Fpfi ◦ c(x) (by the definitions of r′p,γ and Fp)

=
∨
i∈ω

Φc,r′p,γ (fi)(x) (by definition) .

Hence Φc,r′p,γ is ω-continuous.

Condition 3 Immediate from that q′p = id[0,1].

Condition 4 Let c : X → FpX be an Fp-coalgebra. We prove that Φc,r′p,γ has
the unique fixed point.

By Condition 2 proved above and Theorem 2.3.2.2, Φc,rg,z has the least fixed
point f : X → [0, 1]. We prove that this is the unique fixed point. Let g : X →
[0, 1] be a fixed point of Φc,r′p,γ . As f is the least fixed point, we have f(x) ≤ g(x)
for each x ∈ X. Define h : X → [0, 1] by h(x) = g(x)− f(x). Then,

sup
x∈X

h(x) = sup
x∈X

(
g(x)− f(x)

)
(by the definition of h)

= sup
x∈X

(
Φc,r′p,γ (g)(x)− Φc,r′p,γ (f)(x)

)
(f and g are fixed points)

≤ sup
x∈X

(
γ ·
∫
x′∈X

g(x′) dπ1(c(x))− γ ·
∫
x′∈X

f(x′) dπ1(c(x))
)

(by the definition of r′p,γ and that π2(c(x)) = 1 ⇒ Φc,r(f)(x) = Φc,r(g)(x) = 1)

= γ · sup
x∈X

∫
x′∈X

(g(x′)− f(x′)) dπ1(c(x))

= γ · sup
x∈X

∫
x′∈X

h(x′) dπ1(c(x)) (by the definition of h)

≤ γ · sup
x∈X

sup
x′∈X

h(x′) (by
∫
x′∈X dπ1(c(x)) = 1)

= γ · sup
x∈X

h(x) .

As 0 ≤ γ < 1, we have supx∈X h(x) = 0. Hence we have f = g.

A ranking arrow with respect to (r′p,γ , q
′
p,≤) and its soundness theorem are

as follows.

Definition 5.5.11 (γ-scaled submartingale). Let T =
(
(X,FX), ξ,Acc

)
be a

PTS. Let γ ∈ (0, 1). A γ-scaled submartingale for T is a measurable function
b : X → [0, 1] that satisfies the following:

∀x ∈ X \ Acc. b(x) ≤ γ ·
∫
x′∈X

b(x′)dξ(x) . (5.7)

Theorem 5.5.12. Let b : X → [0, 1] be a γ-scaled submartingale for a PTS
T =

(
(X,FX), ξ,Acc

)
. Then for each x ∈ X,

b(x) ≤ ReachT (x) .

Proof. We define an Fp-coalgebra cT : X → FpX as in Example 2.4.14. By the
definitions of r′p,γ and Fp, we can easily see that b : X → [0, 1] is a ranking arrow
for cT with respect to (r′p,γ , q

′
p,≤), (i.e. b(x) ≤ r′p,γ ◦Fpb ◦ cT (x) for each x ∈ X)

if and only if b is a γ-scaled submartingale for T . Moreover, by the definition of
q′p, we have b(x) = q′p ◦ b(x).

Hence the theorem is immediate by Theorem 5.3.4.

110

Example 5.5.13. Consider the PTS T in Example 5.5.9. For each γ ∈ [0, 1),
we define bγ : X → [0, 1] by bγ(x0) =

γ
3−γ , bγ(x1) = 1 and bγ(x2) = 0. Then bγ is

a γ-scaled submartingale. Hence by Theorem 5.5.12 we have ReachT (x0) ≥ γ
3−γ .

Properties of γ-scaled Submartingales

In the rest of this section, we present three properties of γ-scaled submartingales.
The following proposition shows that the bigger γ we take, the better bound we
can obtain.

Proposition 5.5.14. Let T =
(
(X,FX), ξ,Acc

)
be a PTS. Let γ1, γ2 ∈ [0, 1) and

assume γ1 ≤ γ2. If b1 : X → [0, 1] is a γ1-scaled submartingale for T then there
exists a γ2-scaled submartingale b2 : X → [0, 1] for T such that b1(x) ≤ b2(x) for
each x ∈ X.

Proof. Immediate by the Knaster-Tarski theorem (Corollary 2.3.3.1) and that
b1 is a post fixed point of Φc,rp,γ2

.

We move onto the second property of γ-scaled submartingales. We can see
in the proof of Proposition 5.5.10 that the inequality q′p ◦ r′p,γ ≤ σp ◦ Fpq

′
p is

strict. Hence we cannot imply completeness using Proposition 5.3.6. Indeed, in
Example 5.5.13, the probability bound γ

3−γ of ReachT (x0) given by bγ is strictly

smaller than the true reachability probability 1
2 .

However, if we let γ → 1 then we have γ
3−γ →

1
2 . As

γ
3−γ ≤ ReachT (x0) holds

for each γ < 1, this implies 1
2 ≤ ReachT (x0). The following proposition shows

that the completeness in such an asymptotic sense does hold.

Proposition 5.5.15. Let T =
(
(X,FX), ξ,Acc

)
be a PTS. Let (γi ∈ [0, 1))i∈ω

be an increasing sequence of real numbers that converges to 1, i.e. 0 ≤ γi < 1
for each i, γ0 ≤ γ1 ≤ γ2 ≤ · · · and limi→∞ γi = 1. Then there exists a sequence
(bi : X → [0, 1])i∈ω of measurable functions such that:

1. for each i ∈ ω, bi : X → [0, 1] is a γi-scaled submartingale; and

2. (bi)i∈ω is an increasing sequence and converges to ReachT , i.e. for each
x ∈ X, b0(x) ≤ b1(x) ≤ . . . and limi→∞ bi(x) = ReachT (x).

We prove the above proposition as a corollary of the following categorically
general result. The theorem shows a setting where such the completeness in an
asymptotic sense holds.

Theorem 5.5.16. Let F : C → C, (Ω,⊑Ω) be a truth-value domain and σ :
FΩ → Ω be an F -modality over (Ω,⊑Ω) that has least fixed points. Let r′ :
FR → R be an F -algebra, q : R → Ω be an arrow, and ⊑R= (⊑X,R)X∈C be
a family of partial orders where ⊑X,R is define over C(X,R). We assume the
following conditions.

1. There exists an increasing sequence r0 ⊑FR,R r1 ⊑FR,R · · · ∈ C(FR,R) of
arrows such that r′ =

⊔
i∈ω ri.

2. For each i ∈ ω, a triple (ri, q,⊑R) is a ranking domain.

3. For each f : X → Y , a function () ◦ f : C(Y,R) → C(X,R) is monotone
and ω-continuous with respect to ⊑Y,R and ⊑X,R.

4. For an F -coalgebra c : X → FX, the function Φc,r′ : C(X,R)→ C(X,R) is
monotone and ω-continuous with respect to ⊑X,R.

111

5. q ◦ r′ = σ ◦ Fq .

Let c : X → FX be an F -coalgebra. By the definition of a ranking domain, for
each i ∈ ω, there exists a unique arrow (|c|)ri : X → R such that Φc,ri((|c|)ri) =
(|c|)ri. Then we have:

I.
(
(|c|)ri : X → R

)
i∈ω is an increasing sequence with respect to ⊑X,R.

II.
⊔

i∈ω(q ◦ (|c|)ri) = JµσKc .
Proof. We first prove (|c|)ri ⊑ (|c|)ri+1 for each i ∈ ω. Note that (|c|)ri is the least
fixed point of Φc,ri . Hence by the Knaster-Tarski theorem (Corollary 2.3.3.1), it
suffices to show that (|c|)ri+1 is a pre-fixed point of Φc,ri . We have:

Φc,ri((|c|)ri+1) = ri ◦ F (|c|)ri+1 ◦ c (by definition)

⊑X,R ri+1 ◦ F (|c|)ri+1 ◦ c (by the assumption)

= Φc,ri+1((|c|)ri+1) (by definition)

= (|c|)ri+1 (ri+1 is a fixed point) .

Hence
(
(|c|)ri : X → R

)
i∈ω is an increasing sequence.

We next prove
⊔

i∈ω(q ◦ (|c|)ri) = JµσKc. Note that for each i, (|c|)ri : X → R
is a ranking arrow for c with respect to (ri, q,⊑R). Hence by the soundness of
ranking arrows (Theorem 5.3.4), we have q ◦ (|c|)ri ⊑X,Ω JµσKc for each i. Hence
we have

⊔
i∈ω(q ◦ (|c|)ri) ⊑Ω JµσKc .

We shall prove the opposite direction. To this end, as JµσKc is defined as the
least fixed point of Φc,σ, it suffices to show that

⊔
i∈ω(q ◦ (|c|)ri) is a fixed point

of Φc,σ. We have:

Φc,σ

(⊔
i∈ω

(q ◦ (|c|)ri)
)
= σ ◦ F

(⊔
i∈ω

(q ◦ (|c|)ri)
)
◦ c (by the definition of Φc,σ)

= σ ◦ Fq ◦ F
(⊔
i∈ω

(|c|)ri
)
◦ c

(by Condition 3 of Definition 5.3.2)

= q ◦ r′ ◦ F
(⊔
i∈ω

(|c|)ri
)
◦ c (by Assumption 5)

= q ◦
⊔
i∈ω

(
r′ ◦ F (|c|)ri ◦ c

)
(by Assumption 4)

= q ◦
⊔
i∈ω

((⊔
j∈ω

)
rj ◦ F (|c|)ri ◦ c

)
(by Assumption 1)

= q ◦
⊔
i∈ω

⊔
j∈ω

(
rj ◦ F (|c|)ri ◦ c

)
(by Assumption 3)

= q ◦
⊔
i∈ω

(
ri ◦ F (|c|)ri ◦ c

)
= q ◦

⊔
i∈ω

(|c|)ri ((|c|)ri is a fixed point of Φc,ri)

=
⊔
i∈ω

(q ◦ (|c|)ri) (by Condition 3 of Definition 5.3.2) .

This concludes the proof.

112

Proof (Proposition 5.5.15). We define r′p : G[0, 1]× {0, 1} → [0, 1] as follows:

r′p(φ, t) =

{
1 (t = 1)∫
a∈[0,1] a dφ (otherwise) .

Moreover, we define a function q′p : [0, 1] → [0, 1] and a family ≤= (≤X)X∈C of
partial orders as in Proposition 5.5.10. We prove that Conditions 1–5 of Theo-
rem 5.5.16 are satisfied.

For each i ∈ ω we define ri : Fp[0, 1] → [0, 1] by ri := r′p,1−1/2i
where the

right-hand side is defined as in Proposition 5.5.10. It is easy to see that (ri)i∈ω
is an increasing sequence and

∨
i∈ω ri = r′p (Condition 1).

By Proposition 5.5.10, for each i ∈ ω, (ri, q′p,≤) is a ranking domain (Condi-
tion 2).

Let f : X → Y and x ∈ X. For g, g′ : Y → [0, 1] such that g ≤Y g′, we have

g ◦ f(x) = g(f(x)) ≤ g′(f(x)) = g′ ◦ f(x).

For g1, g2, . . . : Y → [0, 1] such that g1 ≤Y g2 ≤Y . . . , we have(∨
i∈ω

gi
)
◦ f(x) =

∨
i∈ω

(
gi(f(x))

)
=
∨
i∈ω

(
gi ◦ f(x)

)
=
∨
i∈ω

(gi ◦ f)(x).

Hence Condition 3 is satisfied.
In a similar manner to the proof of Proposition 5.5.10 (Condition 2 of Defini-

tion 5.3.2), we can show that Condition 4 is satisfied.
In a similar manner to the proof of Proposition 5.5.10 (Condition 1 of Defini-

tion 5.3.2), we can prove q′p ◦ r′p = σp ◦ Fq′p . Hence Condition 5 holds.
For each i ∈ ω, we let bi := (|cT |)ri . By definition, each bi is a (1−1/2i)-scaled

submartingale. Moreover, by Theorem 5.5.16,
(
bi : X → [0, 1]

)
i∈ω is an increasing

sequence, and for each x ∈ X we have:

ReachT (x) = JµσpKcT (x) (by Proposition 5.5.1)

=
∨
i∈ω

q′p ◦ bi(x) (by Theorem 5.5.16)

= bi(x) (by definition).

This concludes the proof.

We conclude this section by showing that we can relax the definition of γ-
scaled submartingale. Definition 5.5.11 fixes the range of a γ-scaled submartingale
b to [0, 1]. The following proposition shows that we can extend it to [−∞, 1]. This
relaxation is convenient when we synthesize γ-scaled submartingales.

Proposition 5.5.17. Theorem 5.5.12 still holds if we extend the range of b in
Definition 5.5.11 to b : X → (−∞, 1].
Proof. Immediate from that if b : X → (−∞, 1] satisfies the inequality (5.7) in
Definition 5.5.11 then b′ : X → [0, 1] defined by b′(x) = max{0, b(x)} also satisfies
the inequality and hence is a γ-scaled submartingale.

5.6 Conclusion and Related Work

We have categorically generalized the notion of ranking function and proved its
soundness in the categorical level. In the generalization, a categorical notion of
corecursive algebra played the central role. We then instantiated the generaliza-
tion for PTSs, and obtained two ranking function-like notions for them. The in-
duced notions were named distribution-valued ranking function (Definition 5.5.6)
and γ-scaled submartingale (Definition 5.5.11).

113

Related Work For the soundness of ranking function (Theorem 5.1.2), well-
foundedness of [z] played an important role. We have used corecursive algebras to
characterize well-foundedness categorically. In fact, in category theory, a notion
called well-founded coalgebra exists [106]. It is known that under some weak
assumptions, the notion of well-founded coalgebra coincides with that of recursive
coalgebra [106]. As its name suggests, the notion of recursive coalgebra is dual to
that of corecursive algebra. A relationship between anti-founded algebra (the dual
notion of well-founded coalgebra) and corecursive algebra is studied in [16]. It is
remarkable that well-foundedness of coalgebras is commonly used to prove well-
foundedness (i.e. termination) of the coalgebra itself. In contrast, in this thesis,
we have used corecursive algebras to prove termination of another coalgebra.

We have induced kinds of martingales from our categorical framework. A cat-
egorical study of martingales is also found in [72]. There, a relationship between
two classical results in the measure theory called Kolmogorov extension theorem
and Doob’s martingale convergence theorem is investigated.

In Chapter 5 we have categorically modeled a modality as an F -algebra σ :
FΩ → Ω. Another standard modeling is one by a predicate lifting, a natural
transformation σX : ΩX ⇒ ΩFX (see e.g. [95]). These two modelings are related
by the Yoneda lemma (see e.g. [45]).

114

Chapter 6

γ-Scaled Submartingale for Probabilistic

Programs and its Synthesis

In this chapter, we discuss an algorithm for synthesizing γ-scaled submartin-
gales for probabilistic programs. A probabilistic program is a variant of a while
program augmented with probabilistic assignments and probabilistic branchings.
Probabilistic programs can model not only randomized algorithms but also sys-
tems including physical phenomena [92].

Our algorithm is adapted from existing ones. It is obtained by modifying
template-based synthesis algorithms for ranking supermartingales [19]. Ranking
supermartingale is a well-known ranking function-like notion for probabilistic
systems. We can use it for proving almost-sure termination of a probabilistic
system (i.e. that the system terminates in probability 1).

Definition 6.0.1 (ranking supermartingale [19, 34]). Let T =
(
(X,FX), ξ,Acc

)
be a PTS. An (additive) ranking supermartingale for T is a measurable function
b : X → [0,∞] that satisfies the following condition:

∀x ∈ X \ Acc. b(x) ≥
∫
x′∈X

b(x′)dξ(x) + 1 . (6.1)

Theorem 6.0.2 (soundness, [19, 34]). Let b : X → [0,∞] be a ranking super-
martingale for a PTS T =

(
(X,FX), ξ,Acc

)
. Then for each x ∈ X,

b(x) <∞ ⇒ ReachT (x) = 1 .

The definitions of ranking supermartingale and γ-scaled submartingale are
very similar. We found that an existing synthesis algorithm for ranking super-
martingales can be easily adapted for γ-scaled submartingales.

In this chapter, we first give a linear template-based algorithm based on an
algorithm in [19, 23]. It fixes a linear template for a γ-scaled submartingale
and searches for a valuation of parameters (unknown coefficients) that makes the
template a ranking supermartingale using a linear programming (LP) solver. We
have implemented the algorithm and tested it for several probabilistic programs.
We have also compared it with another algorithm in [23] that is for the same
purpose, i.e. underapproximating termination probability. The algorithm in [23]
is similar to ours: it synthesizes a repulsing supermartingale, yet another ranking
function-like notion for probabilistic systems, using a linear template. We will
compare the lower bounds of the termination probability calculated by our and
their algorithms.

For ranking supermartingales over probabilistic programs, a polynomial
template-based synthesis algorithm is also known [21]. It fixes a polynomial tem-
plate for a ranking supermartingale and searches for a valuation of parameters

115

using a semidefinite programming (SDP) solver. Similarly to the linear template-
based algorithm, it can be easily adapted for γ-scaled submartingales.

We also implemented the polynomial template-based algorithm and tested
it for probabilistic programs. However, it turned out that our implementation
does not work well because of numerical errors that seem to be caused by the
SDP solver. We nevertheless present our polynomial template-based algorithm,
(failed) efforts to remedy the problems caused by numerical errors, and the ex-
perimental results for the record.

This chapter consists of two sections. In Section 6.1, we present our linear
template-based algorithm, explain its implementation, and give the experimental
results. In Section 6.2 we do the same for a polynomial template-based algorithm.

This chapter extends a part of [102].

6.1 Linear Template-Based Algorithm

In this section, we consider synthesizing a γ-scaled submartingale for probabilistic
programs using a linear template.

6.1.1 Syntax of Probabilistic Programs

The syntax of probabilistic programs we use in this thesis mainly follows the one
in [23] except that we do not include nondeterministic assignments and branchings
so that the theory developed in the previous chapter is applicable.1

Definition 6.1.1 (linear probabilistic program). Let V be a countably infinite
set of variables. A linear probabilistic program (LPP) is a program ⟨prog⟩ defined
by the following BNF notation:

⟨prog⟩ ::= ⟨stmt⟩
⟨stmt⟩ ::= ⟨stmt⟩;⟨stmt⟩ | ⟨assgn⟩ | skip | while ⟨pbexpr⟩ do ⟨stmt⟩ od

| if ⟨pbexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩ f i (6.2)

⟨assgn⟩ ::= ⟨pvar⟩ := ⟨expr⟩ | ⟨pvar⟩ := sample(⟨dist⟩)
⟨expr⟩ ::= ⟨const⟩ | ⟨pvar⟩ | ⟨const⟩ · ⟨pvar⟩

| ⟨expr⟩+ ⟨expr⟩ | ⟨expr⟩ − ⟨expr⟩ (6.3)

⟨pbexpr⟩ ::= prob(p) | ⟨bexpr⟩ (where p ∈ [0, 1])

⟨bexpr⟩ ::= ⟨conjexpr⟩ | ⟨conjexpr⟩ or ⟨bexpr⟩
⟨conjexpr⟩ ::= ⟨literal⟩ | ⟨literal⟩ and ⟨conjexpr⟩
⟨literal⟩ ::= ⟨expr⟩ ≤ ⟨expr⟩ | ⟨expr⟩ < ⟨expr⟩
⟨pvar⟩ ::= v ∈ V ⟨dist⟩ ::= d ∈ GR ⟨const⟩ ::= c ∈ R .

We further assume the following:

(†) for each probability measure d appearing in ⟨prog⟩, an algorithm that cal-
culates the expectation of d is given.

We write {{stmt}}lin, {{assgn}}lin, {{expr}}lin, etc... for the sets of formulas defined
by the BNF notation above (i.e. {{pvar}}lin = {v ∈ V} for example). We call an
element in {{expr}}lin a linear expression.

1In fact, it was proved later by another author that a γ-scaled submartingale can be defined
for probabilistic systems with nondeterminism and its soundness theorem is provable [102].
Moreover, the original algorithms in [19, 23, 21] from which our algorithm is adapted can deal
with probabilistic programs with demonic nondeterminism. Hence all the discussions in this
chapter are also applicable for probabilistic programs with nondeterminism.

116

For ⟨expr⟩ ∈ {{expr}}lin, its semantics J⟨expr⟩K : RV → R is defined in the
standard manner (we omit the definition). Similarly, the semantics JbK ⊆ RV of
b ∈ {{bexpr}}lin ∪ {{conjexpr}}lin ∪ {{literal}}lin is ordinarily defined.

In the rest of this chapter, we may identify semantically equivalent expressions
like x1 · x2 and x2 · x1, or x1 + x2 and x2 + x1. No confusion is likely.

6.1.2 Problem

We formalize the problem. The problem is stated in terms of probabilistic control
flow graph, a syntactic object that is induced from an LPP.

Definition 6.1.2 ([5]). A linear probabilistic control flow graph (linear pCFG)
is a tuple Γ = (LA, LB, linit, τA, τB) consisting of the following components:

• finite sets LA and LB of assignment locations and branching locations;

• an initial location linit ∈ LA ∪ LB; and

• transition functions τA : LA → {{assgn}}lin × L and τB : LB →
{{pbexpr}}lin × L× L .

We write VΓ for the finite set of variables in V appearing in Γ. We call l ∈ LA∪LB

a location, λ ∈ RVΓ a valuation, and a pair (l, λ) ∈ (LA∪LB)×RVΓ a configuration.

An LPP induces a pCFG as follows.

Definition 6.1.3. For an LPP ⟨prog⟩ a countably infinite set L and a symbol

lterm /∈ L, we inductively define a linear pCFG ΓL,lterm
⟨prog⟩ = (LA, LB, linit, τA, τB) as

follows.

• Assume ⟨prog⟩ = ⟨stmt⟩1;⟨stmt⟩2. Fix countably infinite sets L1,L2 ⊆ L so

that L1 ∩ L2 = ∅. Assume ΓL2,lterm
⟨stmt⟩2 = (L2

A, L
2
B, l

2
init, τ

2
A, τ

2
B) and Γ

L1,l2init
⟨stmt⟩1 =

(L1
A, L

1
B, l

1
init, τ

1
A, τ

1
B). Then we let LA := L1

A ∪ L2
A, LB := L1

B ∪ L2
B, linit :=

l1init, τA(l) := τ1A(l) if l ∈ L1
A and τ2A(l) if l ∈ L2

A, and τB(l) := τ1B(l) if
l ∈ L1

B and τ2B(l) if l ∈ L2
B

• Assume ⟨prog⟩ = ⟨assgn⟩. Then we choose lnew ∈ L and let LA :=
{lnew, lterm}, LB := ∅, linit := lnew, τA(lnew) = (⟨assgn⟩, lterm) and τB be
the empty function.

• If ⟨prog⟩ = skip then we choose v ∈ V and let Γ⟨stmt⟩ := Γv:=v.

• Assume ⟨prog⟩ = while ⟨pbexpr⟩ do ⟨stmt⟩′ od. We choose lnewL and

assume Γ
L\{lnew},lnew
⟨stmt⟩′ = (L′

A, L
′
B, l

′
init, τ

′
A, τ

′
B). Then let LA := L′

A, LB :=

L′
B, linit := lnew, τA(l) := τ ′A(l) and τB(l) :=

(
⟨pbexpr⟩, l′init, lterm

)
if l = lnew

and τB(l) := τ ′B(l) otherwise.

• Assume ⟨prog⟩ = if ⟨pbexpr⟩ then ⟨stmt⟩1 else ⟨stmt⟩2 f i. Fix countably
infinite sets L1,L2 ⊆ L and lnew ∈ L so that L1∩L2 = ∅ and lnew /∈ L1∪L2.
Assume ΓLi,lterm

⟨stmt⟩i = (Li
A, L

i
B, l

i
init, τ

i
A, τ

i
B) for i ∈ {1, 2}. We then let LA :=

L1
A ∪ L2

A, LB := {lnew} ∪ L1
B ∪ L2

B, linit := lnew, τA(l) := τ iA(l) when l ∈ Li
A

and τB(l) :=
(
⟨pbexpr⟩, l1init, l2init

)
if l = lnew and τB(l) := τ iB(l) if l ∈ Li

B

(here i ∈ {1, 2}).

117

We next introduce notions of invariant and terminal configuration. An invari-
ant specifies ranges of variables while a terminal configuration specifies accepting
states. Both of them are defined as predicate maps, functions that assign Boolean
expressions to each location of a pCFG.

Definition 6.1.4 (linear predicate map). Let Γ = (LA, LB, linit, τA, τB) be a
pCFG. A linear predicate map is a function p : LA + LB → {{bexpr}}lin.

1 x := 5 ;
2 wh i l e x > 0 do
3 i f prob (0 . 5) then
4 x := x + 1
5 e l s e
6 x := x − 1
7 f i
8 od

We first explain invariants. For example, in the
LPP on the right, we always have x > 0 at line 3.
Hence a linear predicate map assigning “x > 0” to
the corresponding location is an invariant.

An invariant allows us to find a better γ-scaled
submartingale that gives tighter bound for the
reachability probability. In this thesis, we assume
that a correct invariant is provided by the user
and do not discuss how to obtain a correct invariant. A synthesis algorithm for
invariants is found in e.g. [69].

Definition 6.1.5 (invariant). Let Γ = (LA, LB, linit, τA, τB) be a linear pCFG.
A linear predicate map I : LA + LB → {{expr}}lin is called a linear invariant if
for each l ∈ LA ∪ LB and λ ∈ JI(l)K, the following conditions are satisfied.

• If l ∈ LA and τA(l) =
(
⟨assgn⟩, l′

)
then

– if ⟨assgn⟩ =
(
v := ⟨expr⟩

)
then λ[v 7→ J⟨expr⟩K(λ)] ∈ JI(l′)K, and

– if ⟨assgn⟩ =
(
v := sample(⟨dist⟩)

)
where ⟨D⟩ = d then λ[v 7→ c] ∈JI(l′)K for each c ∈ supp(d) :=

{
r ∈ R

∣∣∀O : open ⊆ R. r ∈ O ⇒
d(O) > 0

}
.

• If l ∈ LB and τB(l) =
(
⟨pbexpr⟩, l1, l2

)
then

– if ⟨pbexpr⟩ = prob(p) then λ ∈ JI(li)K for each i ∈ {1, 2},
– if ⟨pbexpr⟩ = ⟨bexpr⟩ and λ ∈ J⟨bexpr⟩K then λ ∈ JI(l1)K, and
– if ⟨pbexpr⟩ = ⟨bexpr⟩ and λ /∈ J⟨bexpr⟩K then λ ∈ JI(l2)K.

Finally, a terminal configuration specifies accepting states. It is simply defined
as a predicate map. A pCFG, an invariant and a terminal configuration together
induce a PTS as follows.

Definition 6.1.6. Let Γ = (LA, LB, linit, τA, τB) be a linear pCFG, I : LA+LB →
{{expr}}lin be a linear invariant, and T : LA + LB → {{expr}}lin be a linear
predicate map. Let L = LA + LB. We define a PTS TΓ,I,T =

(
(X,FX), ξ,Acc

)
as follows (recall that δx denotes the Dirac measure):

• (X,FX) :=
⨿

l∈L
(JI(l)K,Fl

)
where Fl =

{
A ∩ JI(l)K ∣∣A ⊆ RVΓ , A is

measurable
}
.

• Let l ∈ LA + LB and λ ∈ JI(l)K.
– If l ∈ LA and τA(l) =

(
⟨assgn⟩, l′

)
then

∗ if ⟨assgn⟩ =
(
v := ⟨expr⟩

)
then ξ(l, λ) := δ(l′,λ[v 7→JexprK(λ)]), and

∗ if ⟨assgn⟩ =
(
v := sample(⟨dist⟩)

)
then ξ(l, λ)

(
{l′′} × A

)
:=

⟨dist⟩
(
{λ′(v) | λ′ ∈ A,∀v′ ∈ VΓ \ {v}. λ′(v′) = λ(v′)}

)
if l′′ = l′

and 0 otherwise.

118

– If l ∈ LB and τB(l) =
(
⟨pbexpr⟩, l1, l2

)
then

∗ if ⟨pbexpr⟩ = prob(p) then ξ(l, λ)
(
{l′′} × A

)
:= p if l′′ = l1 and

λ ∈ A; 1− p if l′′ = l2 and λ ∈ A; and 0 otherwise.

∗ if ⟨pbexpr⟩ = ⟨bexpr⟩ and λ ∈ J⟨bexpr⟩K then ξ(l, λ) := δ(l1,λ), and

∗ if ⟨pbexpr⟩ = ⟨bexpr⟩ and λ /∈ J⟨bexpr⟩K then ξ(l, λ) := δ(l2,λ).

The probability measure ξ(l, λ) is well-defined because I is an invariant.

• Acc :=
{
(l, λ) | λ ∈ JT(l)K}.

We can now formalize the problem that we tackle in this section.

Problem 6.1.7. input: a linear pCFG Γ = (LA, LB, linit, τA, τB)
an initial valuation λinit : VΓ → R
a linear invariant I for a pCFG Γ
a linear predicate map T for a pCFG Γ

output: p ∈ R such that p ≤ ReachTΓ,I,T
(linit, λinit)

6.1.3 Algorithm

Our algorithm is almost the same as the one for ranking supermartingales in [19],
although Lemma 6.1.12 given later seems to be new.

Throughout this section, let Γ = (LA, LB, linit, τA, τB) be a linear pCFG,
L = LA+LB and {x1, . . . , xn} = VΓ. Let I : L→ {{expr}}lin be a linear invariant
and T : L → {{expr}}lin be a linear predicate map, and assume that an initial
valuation λinit ∈ JI(linit)K(⊆ RVΓ) is given. We fix γ ∈ [0, 1). The algorithm
consists of four steps.

Fix a Template

The algorithm first fixes a linear template for a γ-scaled submartingale.

Definition 6.1.8 (linear expression map and linear template).

• A linear expression map for Γ is a function f : L → {{expr}}lin. We defineJfK : L× RVΓ → R by JfK(l, λ) := Jf(l)K(λ).
• A linear template over Γ is a family t =

(
t(l)
)
l∈L of formulas of a form

t(l) = al1x1 + · · ·+ alnxn + bl .

For each l ∈ L, al1, . . . , a
l
n, b

l are new variables. We call each of them a
parameter and write PΓ for the set of parameters. For a valuation χ :
PΓ → R of parameters, we write tχ for a linear expression map l 7→
χ(al1)x1 + · · ·+ χ(aln)xn + χ(bl).

Suppose that we fix a linear template for Γ. Recall that the state space of
a PTS TΓ,I,T is given by

⨿
l∈LJI(l)K ⊆ L × RVΓ . Our goal is to synthesize a

valuation χ : PΓ → R of parameters so that:

• JtχK|⨿
l∈LJI(l)K :

⨿
l∈LJI(l)K → R is a γ-scaled submartingale over the PTS

TΓ,I,T (in this case we say that tχ is a γ-scaled submartingale); and

• maximize the probability bound JtχK(linit, λinit) ∈ R given by the γ-scaled
submartingale.

119

Collect Conditions for Parameters

We next turn the axioms of γ-scaled submartingales to conditions on the param-
eters. For example, suppose that there exists a state l ∈ LB such that

• I(l) =
(
⟨conjexpr⟩1 or · · · or, ⟨conjexpr⟩k

)
;

• T(l) =
(
⟨conjexpr⟩k+1 or · · · or, ⟨conjexpr⟩k+k′

)
; and

• τB(l) = (prob(p), l1, l2).

Here T(l) ∈ {{bexpr}}lin is a “negation” of T(l) in the following sense:

Lemma 6.1.9. For ⟨bexpr⟩ ∈ {{bexpr}}lin, there exists ⟨bexpr⟩ ∈ {{bexpr}}lin
such that J⟨bexpr⟩K = RVΓ \ J⟨bexpr⟩K.

In general, the formula ⟨bexpr⟩ can be exponentially larger than ⟨bexpr⟩.
Then the inequality (5.7) in Definition 5.5.11 for the location l boils down to

the following formula.

∀λ ∈ RVΓ . ∀i ∈ {1, . . . , k, k + 1, . . . , k + k′}.
λ ∈ J⟨conjexpr⟩i(l)K ⇒ Jtχ(l)K(λ) ≤ γ · (p · Jtχ(l1)K(λ) + (1− p) · Jtχ(l2)K(λ))
Note that the premise is representable as a conjunction of linear inequalities

over VΓ without parameters, and the consequence is representable as a linear
inequality over VΓ whose coefficients are linear expressions over PΓ. We will later
observe that this is the case for all the cases. Therefore if we collect all the
conditions for the parameters so that tχ is a γ-scaled submartingale, then we
obtain a formula that is a conjunction of formulas of the following form:(

d1 ▷1 0 ∧ · · · ∧ dk ▷k 0
)
⇒ e ≥ 0 (6.4)

Here ▷i ∈ {≥, >}, d1, . . . , dk are linear expressions over VΓ without parameters,
and e is a formula of the following form:

e = p1x1 + · · ·+ pnxn + q (6.5)

where each coefficient pi is a linear expression over PΓ. For a valuation χ :
PΓ → R of the parameters, we write χ(e) for a linear expression Jp1K(χ)x1+ · · ·+JpnK(χ)xn + JqnK(χ).

We write down all the concrete constructions of such formulas for a record.

Definition 6.1.10. Let Γ = (LA, LB, linit, τA, τB) be a linear pCFG, I and C be
linear predicate maps, and γ ∈ [0, 1). Let L = LA + LB and {x1, . . . , xn} = VΓ.
We write Fml⇒ for the set of formulas of a form as in (6.4). Without loss of
generality, for each l ∈ L, let

I(l) =
((
αl
1,1 ▷l

1,1 0 and · · · and αl
1,M l

1
▷l

1,M l
1
0
)
or · · ·

or
(
αl
N l,1 ▷

l
N l,1 0 and · · · and αl

N l,M l
Nl

▷l
N l,M l

Nl

0
))

; and

T(l) =
((
βl1,1 ▷′l

1,1 0 and · · · and βl
1,M ′l

1
▷′l

1,M ′l
1
0
)
or · · ·

or
(
βlN ′l,1 ▷

′l
N ′l,1 0 and · · · and βl

N ′l,M ′l
Ml

▷′l
N ′l,M ′l

Ml

0
))
.

where ▷l
i,j ,▷′l

i,j ∈ {≥, >} and αl
j,k and βli are linear expressions for each l.

120

For each l ∈ L, we define Al
1, A

l
2 ⊆ Fml⇒ as follows. Firstly, Al

1 is defined by:

Al
1 :=

{M l
i∧

j=1

(αl
i,j ▷l

i,j 0)⇒
(
(−al1)x1+ · · ·+(−aln)xn+(1− bl) ≥ 0

) ∣∣∣ 1 ≤ i ≤ N l
}
.

Moreover, Al
2 is defined as follows.

• If l ∈ LA, τA(l) =
(
⟨assgn⟩, l′

)
, ⟨assgn⟩ =

(
xk := ⟨expr⟩

)
and ⟨expr⟩ =

r1x1 + · · ·+ rnxn + r where r1, . . . , rn, r ∈ R, then

Al
2 :=



M l
i∧

j=1

(αl
i,j ▷l

i,j 0) ∧
M ′l

i′∧
j=1

(βli′,j ▷′l
i′,j 0)⇒

(γ(al
′

1 + r1a
l′

k)− al1)x1 + · · ·

+ (γ(al
′

k−1 + rk−1a
l′

k)− alk−1)xk−1

+ (γrka
l′

k − alk)xk + (γ(al
′

k+1 + rk+1a
l′

k)− alk+1)xk−1

+ · · ·+ (γ(al
′

n + rna
l′

k)− aln)xn + (γ(bl
′
+ ral

′

k)− bl)

 ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ≤ i ≤ N l,

1 ≤ i′ ≤ N ′l


.

• If l ∈ LA, τA(l) =
(
⟨assgn⟩, l′

)
, ⟨assgn⟩ =

(
xk := sample(⟨dist⟩)

)
and the

expectation of ⟨dist⟩ is r ∈ R, then

Al
2 :=



M l
i∧

j=1

(αl
i,j ▷l

i,j 0) ∧
M ′l

i′∧
j=1

(βli′,j ▷′l
i′,j 0)⇒

(γal
′

1 − al1)x1 + · · ·+ (γal
′

k−1 − alk−1)xk−1 − alkxk
+ (γal

′

k+1 − alk+1)xk−1 + · · ·+ (γal
′

n − aln)xn
+ (γ(bl

′
+ ral

′

k) + (γr − bl))

 ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ≤ i ≤ N l,

1 ≤ i′ ≤ N ′l


.

• If l ∈ LB, τB(l) =
(
⟨pbexpr⟩, l1, l2

)
and ⟨pbexpr⟩ = prob(p), then

Al
2 :=



M l
i∧

j=1

(αl
i,j ▷l

i,j 0) ∧
M ′l

i′∧
j=1

(βli′,j ▷′l
i′,j 0)⇒

(γ
(
pal11 + (1− p)al21)− a

l
1)x1 + · · ·

+ (γ(pal1n + (1− p)al2n)− aln)xn
+ (γ

(
pbl1 + (1− p)bl2)− bl)

 ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ≤ i ≤ N l,

1 ≤ i′ ≤ N ′l


.

• If l ∈ LB, τB(l) =
(
⟨pbexpr⟩, l1, l2

)
, ⟨pbexpr⟩ = ⟨bexpr⟩, J⟨bexpr⟩K =∨S

s=1

∧Ts
t=1(εs,t ▷s,t 0) and J⟨bexpr⟩K = ∨S′

s=1

∧T ′
s′

s=1(ε
′
s,t ▷′

s,t 0) where εs,t, ε
′
s,t

are linear expressions over VΓ, then

Al
2 :=


M l

i∧
j=1

(αl
i,j ▷l

i,j 0) ∧
M ′l

i′∧
j=1

(βl
i′,j ▷′l

i′,j 0) ∧
Ts∧
t=1

(εs,t ▷s,t 0)⇒(
(γal11 − al1)x1 + · · ·+ (γal1n − aln)xn + (γbl1 − bl)

)
≥ 0

∣∣∣∣∣∣∣∣
1 ≤ i ≤ N l,

1 ≤ i′ ≤ N ′l,

1 ≤ s ≤ S


∪


M l

i∧
j=1

(αl
i,j ▷l

i,j 0) ∧
M ′l

i′∧
j=1

(βl
i′,j ▷′l

i′,j 0) ∧
T ′
s∧

t=1

(ε′s,t ▷′
s,t 0)⇒(

(γal21 − al1)x1 + · · ·+ (γal2n − aln)xn + (γbl2 − bl)
)
≥ 0

∣∣∣∣∣∣∣∣
1 ≤ i ≤ N l,

1 ≤ i′ ≤ N ′l,

1 ≤ s ≤ S′

 .

121

Proposition 6.1.11. Let t =
(
al1x1 + · · ·+ alnxn + bl

)
l∈L and χ : PΓ → R. If

∀λ : VΓ → R. ∀
((

d1 ▷1 0 ∧ · · · ∧ dk ▷k 0
)
⇒ ei ≥ 0

)
∈
∪
l∈L

(
Al

1 ∪Al
2

)
.(Jd1K(λ)▷1 0 ∧ · · · ∧ JdkK(λ)▷k 0

)
=⇒ Jχ(e)K(λ) ≥ 0 ,

then JtχK is a γ-scaled submartingale for TΓ,I,T.

Relax Strict Inequalities

We next relax each formula of a form (6.4) to the following formula.(
d1 ≥ 0 ∧ · · · ∧ dk ≥ 0

)
⇒ e ≥ 0 (6.6)

The same relaxation is done in the algorithm for additive ranking supermartin-
gales in [19, 23].

Obviously, if a valuation χ : PΓ → R makes (6.6) hold then it also makes (6.4)
hold. Its converse does not necessarily hold, and hence completeness is lost in
general. The following lemma, which is easy to prove but seems new to the best
of our knowledge, presents a sufficient condition for the converse to hold.

Lemma 6.1.12. Assume that Jd1 ≥ 0 ∧ · · · ∧ dk ≥ 0K ⊆ RVΓ is an n-manifold
with a boundary, i.e. each λ ∈ Jd1 ≥ 0 ∧ · · · ∧ dk ≥ 0K has a neighborhood that is
homeomorphic to an open subset in either Rn or Rn−1 × [0,∞). Then for each
χ : PΓ → R and λ : VΓ → R,(

λ ∈ Jd1 ▷1 0 ∧ · · · ∧ dk ▷k 0K ⇒ Jχ(e)K(λ) ≥ 0
)

⇒
(
λ ∈ Jd1 ≥ 0 ∧ · · · ∧ dk ≥ 0K ⇒ Jχ(e)K(λ) ≥ 0

)
.

Proof. Assume λ ∈ Jd1 ▷1 0 ∧ · · · ∧ dk ▷k 0K ⇒ e(χ)(λ) ≥ 0. It suffices to prove
that for each λ ∈ Jd1 ≥ 0 ∧ · · · ∧ dk ≥ 0K \ Jd1 ▷1 0 ∧ · · · ∧ dk ▷k 0K and ε > 0 we
have Jχ(e)K(λ) ≥ −ε.

By the assumption that Jd1 ≥ 0 ∧ · · · ∧ dk ≥ 0K is an n-manifold with a
boundary, for each δ > 0 there exists λ′ ∈ Jd1 ▷1 0 ∧ · · · ∧ dk ▷k 0K such that
∥λ − λ′∥ ≤ δ. Moreover, by the continuity of Jχ(e)K : RVΓ → R, there exists
δ > 0 such that for each λ′ ∈ Jd1 ▷1 0 ∧ · · · ∧ dk ▷k 0K, if ∥λ − λ′∥ ≤ δ then
∥Jχ(e)K(λ)− Jχ(e)K(λ′)∥ ≤ ε. Hence we have:

e(χ)(λ) ≥ e(χ)(λ′)− ε ≥ −ε .

Reduce to LP problem

Using matrices, we can express a formula of a form (6.6) as follows:

∀x ∈ Rn. Ax ≤ b ⇒ cTx ≤ d. (6.7)

Here A ∈ Rm×n is a matrix and b ∈ Rm is a column vector whose elements are
real numbers, and c is a column vector and d is a scalar whose elements are linear
expressions over PΓ. Recall that our goal is to find a valuation χ : PΓ → R that
makes (6.7) hold.

In [19], it was translated to an LP problem. We explain the translation. We
first observe that the following is obviously a sufficient condition for (6.7):

∀x ∈ Rn. ∃y ∈ Rm. ∃z ∈ R.
(
d−cTx

)
= z+yT

(
b−Ax

)
∧ y ≥ 0 ∧ z ≥ 0 . (6.8)

A natural question would be about the completeness of the above reduction. The
following theorem partially answers the question.

122

Theorem 6.1.13 (affine form of Farkas lemma, see e.g. [94, Corollary 7.1h]). If
{x ∈ Rn | Ax ≤ b} is nonempty, then (6.7) implies (6.8).

By comparing the coefficients on both sides of (6.8), we can see that it is
equivalent to the following:

∃y ∈ Rm. ATy = c ∧ bTy ≥ d ∧ y ≥ 0 . (6.9)

Hence if we find a valuation PΓ → R and a vector y ∈ Rm satisfying (6.9) then
(6.7) is satisfied. As parameters in PΓ do not appear in A or b, (in)equalities in
(6.9) are linear with respect to y and parameters in PΓ. Hence the satisfiability
problem is efficiently solvable using an LP solver.

Recall that we wish to maximize the probability bound JtχK(linit, λinit) given
by the synthesized γ-scaled submartingale. We can achieve this task by settingJtχK(linit, λinit), which is a linear expression over the parameters, to the objective
function of the LP problem.

To summarize, the linear template-based algorithm is as follows:

Algorithm 0 Turn the axioms of γ-scaled submartingale for the pCFG into a
conjunction of formulas of a form (6.7). For each of the formulas, fix a vector
y consisting of new parameters, and collect linear equalities as in (6.9) for all of
such formulas. We then ask the LP solver to maximize JtχK(linit, λinit) under the
collected conditions.

6.1.4 Implementation

We have implemented the algorithm described in the previous section.
So that we can designate an invariant and a terminal configuration, we have

augmented the syntax of LPPs in Definition 6.1.1 with two components {⟨expr⟩}
and [⟨expr⟩]. Concretely, we replaced (6.2) in Definition 6.1.1 with the following.

⟨stmt⟩ ::= ⟨stmt⟩;⟨stmt⟩ | ⟨assgn⟩ | skip | while ⟨pbexpr⟩ do ⟨stmt⟩ od
| if ⟨pbexpr⟩ then ⟨stmt⟩ else ⟨stmt⟩ f i | {⟨expr⟩} | [⟨expr⟩]

1 x := 1 ;
2 {0 <= x}
3 wh i l e x > 0 do
4 {1 <= x}
5 i f prob (0 . 7 5) then
6 {1 <= x}
7 x := x + 1
8 e l s e
9 {1 <= x}

10 x := x − 1
11 f i ;
12 {0 <= x}
13 od ;
14 {x <= 0} [t r u e]

A statement {⟨expr⟩} assigns the expression
⟨expr⟩ to the location just after it as an invari-
ant. A statement [⟨expr⟩] assigns ⟨expr⟩ to the
location just after it as a terminal configuration.
An example of input is shown on the right. It
implements a simple unbounded random walk.

We have implemented the algorithm by mod-
ifying an existing implementation. Nonnegative
repulsing supermartingale is a ranking function-
like notion for PTSs introduced in [102]. We can
use it for overapproximating reachability probabilities of PTSs.

Definition 6.1.14 (nonnegative repulsing supermartingale). Let T =(
(X,FX), ξ,Acc

)
be a PTS. A nonnegative repulsing supermartingale for T is

a measurable function b : X → [0,∞] that satisfies the following condition:

∀x ∈ X \ Acc. b(x) ≥
∫
x′∈X

b(x′)dξ(x) and ∀x ∈ Acc. b(x) ≥ 1 .

123

Theorem 6.1.15 ([102]). Let b : X → [0,∞] be a nonnegative repulsing su-
permartingale for a PTS T =

(
(X,FX), ξ,Acc

)
. Then for each x ∈ X,

ReachT (x) ≥ b(x) .

As we can see, the definition of nonnegative repulsing supermartingale is
very similar to those of γ-scaled submartingale (Definition 5.5.11) and ranking
supermartingale (Definition 6.0.1). As we have done in the previous section,
in [102], a linear (and polynomial) template-based synthesis algorithm for finding
a nonnegative repulsing supermartingale is given by modifying the algorithm
for ranking supermartingales in [19, 21]. In [102], an implementation of the
algorithm, which is written in OCaml, was also given.

By modifying the implementation in [102], we have implemented a program
that takes an LPP and γ ∈ [0, 1) as inputs and outputs an LP problem as is
described in the previous section. If we feed the output to an LP solver, then its
optimal solution p ∈ [0, 1] satisfies p ≤ ReachT (linit, 0⃗).

Note that our program assumes that the initial valuation is 0⃗. This is not
a restriction because we can fix the initial valuation by inserting an assignment
instruction to the beginning of the LPP.

6.1.5 Experiments I: Probabilistic Programs in the Literature

As described in the previous section, our implementation outputs input to an LP
solver. We have used glpk [40] (version 4.63) as an LP solver. The experiments
were conducted on a MacBook Pro laptop with a Core i5 processor (2.6 GHz, 2
cores) and 16 GB RAM.

We first tested our implementation for the following probabilistic programs.

1. (bounded random walk) A simple bounded random walk (it is sometimes
called gambler’s ruin problem [7]). A pebble is at a position x = n first.
In each turn, it moves to the right with a probability p and moves to the
left with the remaining probability. If the pebble reaches x = 0 then the
program terminates, and if it reaches x = 100 the program diverges. The
code is shown in Figure 6.1. The true termination probability is

(
1 −

(p
1−p)

100−n
)
/
(
1− (p

1−p)
100
)
if p ̸= 0.5 and 1− n/100 if p = 0.5 (see e.g. [7]).

2. (room temperature) A model of an air-conditioning control system for
two adjacent rooms. A similar model is used in [20]. Each room exchange
heat with the other room and the open air. An air conditioner is installed
to each room, and it tries to keep the temperature of the room to 19.5◦C.
The room temperatures perturb following a uniform distribution. We are
interested in the probability where the temperatures of the rooms go out of
specified ranges until 100 seconds. The code is in Figure 6.2. It is parame-
terized by a constant C that determines the magnitude of the perturbations.

3. (simple pendulum) An approximated model of a pendulum. A similar
model is used in [100]. It perturbs following a uniform distribution. We
wish to know the probability where the position of the weight goes out of a
specified range in 100 seconds. The code is in Figure 6.3. It is parameterized
by constants C and D that determine the magnitude of the perturbations.

The results are in Table 6.1. We let γ = 0.999. The first column shows the
input probabilistic program (the numbers correspond to the above enumeration)
and the values of constants. The next two columns show the results: the total

124

1 x := n ;
2 { 1 <= x and x <= 99 }
3 wh i l e 0 <= x do
4 { 1 <= x and x <= 99 }
5 i f prob (p) then
6 { 1 <= x and x <= 99 }
7 x := x + 1
8 e l s e
9 { 1 <= x and x <= 99 }

10 x := x − 1
11 f i ;
12 { 0 <= x and x <= 100 }
13 wh i l e x >= 100 do
14 { 100 <= x }
15 s k i p
16 od
17 od ;
18 { x < 0 } [t r u e]

Figure 6.1: code for 1

param. time (s) bound true prob.

1 n = 10
p = 0.1 0.023638 ≥ 0.90437 1− 1.3127

× 10−86

n = 90
p = 0.1 0.021892 ≥ 0.10757 1− 2.8680

× 10−10

n = 10
p = 0.9 0.018067 ≥ 0 2.8680

× 10−10

n = 50
p = 0.5 0.018341 ≥ 0 0.5

2 C = 1 0.047402 ≥ 0 —
C = 10 0.049987 ≥ 0.75037 —
C = 20 0.053965 ≥ 0.93285 —
C = 100 0.071837 ≥ 0.95676 —

3 C = −0.01
D = 0.01 0.028786 ≥ 0 —

C = −1
D = 1 0.027086 ≥ 0 —

C = −1
D = 9 0.025237 ≥ 0 —

C = −1
D = 99 0.025537 ≥ 0 —

Table 6.1: experimental results for the
linear template-based algorithm

time consumed to translate an LPP to an LP problem and calculate a probabil-
ity bound using glpk, and the calculated probability bounds. As we can easily
calculate the true termination probabilities for 1, they are also shown.

For 1 (bounded random walk), a nontrivial probability bound was given when
the true reachability probability is close to 1. For 2 (room temperature), a non-
trivial bound was given when the perturbation is large (i.e. when the reachability
probability is large). These two examples show that the probability bound given
by a linear γ-scaled submartingale increases discontinuously as the true reacha-
bility increases.

For 3 (simple pendulum), our algorithm could not give any nontrivial prob-
ability bound. This would be because of the shape of the function of the true
probabilities. In the code in Figure 6.3, the probability to reach the terminal
configuration within 100 seconds is 1 at positions theta1 = 0.01 and −0.01, and
it takes the minimum value at theta1 = 0. This means that the function giving
the true probabilities is U-shaped, and this might make it hard to approximate
it with a linear function.

6.1.6 Experiments II: Comparison with Existing Work

Compared to those for proving almost-sure termination, the number of algorithms
for underapproximating the termination probability is limited. One of them is
in [23]. In this section, we compare it with our algorithm.

We first briefly explain the theory and the algorithm in [23]. The key notions
are repulsing supermartingale and stochastic invariant. The former is a new rank-
ing function-like notion that can over -approximate the reachability probability.

Definition 6.1.16 ([23], repulsing supermartingale). Let T =
(
(X,FX), ξ,Acc

)
be a PTS such that FX is a Borel σ-algebra with respect to a topology OX over
X. A repulsing supermartingale for T is a measurable function b : X → R∪{∞}
that satisfies the following condition:

∀x ∈ X \ Acc. b(x) ≥
∫
x′∈X

b(x′)dξ(x) + 1 and ∀x ∈ Acc. b(x) ≥ 0 .

For κ > 0, we say that b has κ-bounded differences (with respect to OX) if

∀x ∈ X. ∀x′ ∈ supp(ξ(x)). |b(x)− b(x′)| ≤ κ .

125

1 x0 := 6 ; x1 := 18 ; x2 := 19 ; t := 0 ;
2 { x0 = 6 and 17 <= x1 and x1 <= 22 and 16 <= x2 and x2 <= 23 and 0 <= t
3 and t <= 101 }
4 wh i l e t <= 100 do
5 { x0 = 6 and 17 <= x1 and x1 <= 22 and 16 <= x2 and x2 <= 23 and
6 0 <= t and t <= 100 }
7 c o n t r o l l e r 1 := 19 .5 − x1 ;
8 { x0 = 6 and 17 <= x1 and x1 <= 22 and 16 <= x2 and x2 <= 23 and
9 −2.5 <= c o n t r o l l e r 1 and c o n t r o l l e r 1 <= 2.5 and 0 <= t and t <= 100 }

10 c o n t r o l l e r 2 := 19 .5 − x2 ;
11 { x0 = 6 and 17 <= x1 and x1 <= 22 and 16 <= x2 and x2 <= 23 and
12 −2.5 <= c o n t r o l l e r 1 and c o n t r o l l e r 1 <= 2.5 and −3.5 <= c o n t r o l l e r 2
13 and c o n t r o l l e r 2 <= 3.5 and 0 <= t and t <= 100 }
14 no i s e 1 := Un i f (−1 ,C) ;
15 { x0 = 6 and 17 <= x1 and x1 <= 22 and 16 <= x2 and x2 <= 23 and
16 −2.5 <= c o n t r o l l e r 1 and c o n t r o l l e r 1 <= 2.5 and −3.5 <= c o n t r o l l e r 2
17 and c o n t r o l l e r 2 <= 3.5 and −1 <= no i s e 1 and no i s e 1 <= C and 0 <= t
18 and t <= 100 }
19 no i s e 2 := Un i f (−C , 1) ;
20 { x0 = 6 and 17 <= x1 and x1 <= 22 and 16 <= x2 and x2 <= 23 and
21 −2.5 <= c o n t r o l l e r 1 and c o n t r o l l e r 1 <= 2.5 and −3.5 <= c o n t r o l l e r 2
22 and c o n t r o l l e r 2 <= 3.5 and −1 <= no i s e 1 and no i s e 1 <= C and
23 −C <= no i s e 2 and no i s e 2 <= 1 and 0 <= t and t <= 100 }
24 x1 := x1 + 0.0375 ∗ x0 − 0 .0375 ∗ x1 + 0.0625 ∗ x2 − 0 .0625 ∗ x1
25 + 0.5 ∗ c o n t r o l l e r 1 + no i s e 1 ;
26 { x0 = 6 and 16 <= x1 and x1 <= 22+C and 16 <= x2 and x2 <= 23 and
27 −3.5 <= c o n t r o l l e r 2 and c o n t r o l l e r 2 <= 3.5 and −C <= no i s e 2 and
28 no i s e 2 <= 1 and 0 <= t and t <= 100 }
29 x2 := x2 + 0.025 ∗ x0 − 0 .025 ∗ x2 + 0.0625 ∗ x1 − 0 .0625 ∗ x2
30 + 0.5 ∗ c o n t r o l l e r 2 + no i s e 2 ;
31 { x0 = 6 and 16 <= x1 and x1 <= 22+C and 16−C <= x2 and
32 x2 <= 23+1.0625∗C and 0 <= t and t <= 100 }
33 t := t + 1 ;
34 { x0 = 6 and 16 <= x1 and x1 <= 22+C and 16−C <= x2 and
35 x2 <= 23+1.0625∗C and 0 <= t and t <= 101 }
36 [x1 < 17 or x1 > 22 or x2 < 16 or x2 > 23]
37 s k i p
38 od

Figure 6.2: code for 2

1 t h e t a1 := 0 ; d t t h e t a := 0 ; t := 0 ;
2 { −0.01 + 0.01 ∗ d t t h e t a <= the ta1 and the t a1 <= 0.01 + 0.01 ∗ d t t h e t a
3 and −2+C <= d t t h e t a and d t t h e t a <= 2+D and 0 <= t and t <= 100.01 }
4 [t h e t a1 > 0 .01 or the t a1 < −0.01]
5 wh i l e t <= 100 do
6 { −0.01 <= the ta1 and the t a1 <= 0.01 and −2 <= d t t h e t a and
7 d t t h e t a <= 2 and 0 <= t and t <= 100 }
8 w1 := Un i f (C ,D) ;
9 { −0.01 <= the ta1 and the t a1 <= 0.01 and −2 <= d t t h e t a and

10 d t t h e t a <= 2 and C <= w1 and w1 <= D and 0 <= t and t <= 100 }
11 d t t h e t a := d t t h e t a − 0 .1 ∗ t h e t a1 + w1 ;
12 { −0.01 <= the ta1 and the t a1 <= 0.01 and −2+C <= d t t h e t a and
13 d t t h e t a <= 2+D and 0 <= t and t <= 100 }
14 t h e t a1 := the ta1 + 0.01 ∗ d t t h e t a ;
15 { −0.01 + 0.01 ∗ d t t h e t a <= the ta1 and
16 t h e t a1 <= 0.01 + 0.01 ∗ d t t h e t a and −2+C <= d t t h e t a and
17 d t t h e t a <= 2+D and 0 <= t and t <= 100 }
18 t := t + 0.01
19 od

Figure 6.3: code for 3

126

Here supp(ξ(x)) ⊆ X denotes the support of ξ(x), i.e. supp(ξ(x)) =
{
x′ ∈ X |

∀O ∈ OX . x
′ ∈ O ⇒ ξ(x)(O) > 0

}
.

Theorem 6.1.17 ([23]). Let b : X → R ∪ {∞} be a repulsing supermartingale
having κ-bounded differences for a PTS T =

(
(X,FX), ξ,Acc

)
as in Defini-

tion 6.1.16.

1. For each x ∈ X,

ReachT (x) ≤ e
b(x)

(κ+1)2 · (e
− 1

2(κ+1)2)⌈
|b(x)|

κ
⌉

1− (e
− 1

2(κ+1)2)
. (6.10)

2. For each x ∈ X, b(x) <∞ ⇒ ReachT (x) < 1 .

In [23], it is shown that we can under -approximate a reachability probability
by over -approximating a reachability probability to some set of states and then
synthesizing a ranking supermartingale (Definition 6.0.1). The main idea is to
find a stochastic invariant.

Definition 6.1.18 (stochastic invariant). Let T =
(
(X,FX), ξ,Acc

)
be a PTS.

A stochastic invariant is a pair (PI, p) of PI ⊆ X and p ∈ [0, 1] such that
ReachT (x,X \ PI) ≤ p . We call a pure invariant for an invariant in Defini-
tion 6.1.5 for distinction.

Note that we can prove that a given pair (PI, p) is a stochastic invariant by
overapproximating the reachability probability to X \ PI.

Using stochastic invariants, we can under -approximate reachability probabil-
ities as follows.

Theorem 6.1.19 ([23]). Let T =
(
(X,FX), ξ,Acc

)
be a PTS, and (PI1, p1),

. . . , (PIn, pn) be stochastic invariants. Let b : X → [0,∞] be a ranking super-
martingale supported by PI1∩· · ·∩PIn, i.e. it satisfies b(x) ≥

∫
x′∈X b(x′)dξ(x)+1

for each x ∈ (PI1 ∩ · · · ∩ PIn) \ Acc. Then for each x ∈ X, ReachT (x) ≥
1−

∑n
i=1pi .

Using the above results, the following algorithms are given in [23].

Algorithm A For a given linear pCFG Γ, a linear pure invariant I and linear
predicate maps T and I′, it computes p ∈ [0, 1] that makes (JI′K, p) a stochastic
invariant over TΓ,I,T.

Algorithm B For a given linear pCFG Γ, a linear pure invariant I and a linear
predicate map T, it computes a linear predicate map I′ and p ∈ [0, 1] such that
(JI′K, p) is a stochastic invariant over TΓ,I,T.

Algorithm A computes p by synthesizing a repulsing supermartingale for the
inputs. The synthesis can be done in a very similar manner to the standard
synthesis algorithm for ranking supermartingales, from which our algorithms are
also adapted. While our algorithm tries to maximize the probability bound,
Algorithm A tries to minimize the probability bound. However, as a repulsing
supermartingale is parameterized by κ (see Definition 6.1.16), unlike our setting,
the probability bound given by a repulsing supermartingale (6.10) is not linear
nor polynomial with respect to the parameters in the template and κ. Hence
we cannot naively set it to the objective function of an LP solver. In [23] the

127

following heuristics is used: we first synthesize a repulsing supermartingale so that
κ is minimized (we let κmin be the calculated κ). Then for each κ ∈ {κmin, κmin+

1, . . . , κmin +N}, we synthesize a repulsing supermartingale so that |b(linit,xI)|
κ is

minimized, and then take the minimum probability bound among them. They
let N = 1000 in [23].

Algorithm B is more complicated. It fixes a template for a ranking super-
martingale, a repulsing supermartingale and a stochastic invariant. Then it re-
duces the axioms of ranking supermartingale and repulsing supermartingale to
inequalities over the parameters in the templates. Unlike Algorithm A, the re-
sulting inequalities are not necessarily linear but quadratic in general. However,
they are solvable as the first order theories of real numbers are decidable [104].

Unfortunately, no implementation of Algorithm B was accessible for us and it
seems hard to implement, while an implementation of Algorithm A can be easily
obtained by modifying our implementation for γ-scaled submartingale. More-
over, in [23] experiments were conducted only for Algorithm A, and only the
resulting probability bounds are presented as experimental results. Hence we
decided to compare our and their algorithms as follows: we first implemented the
algorithm in [23] by modifying our implementation. In [23], their implementa-
tion of Algorithm A is tested for three probabilistic programs equipped with pure
and stochastic invariants such that a ranking supermartingale supported by the
stochastic invariant exists. For each combination of a probabilistic program (it
induces a pCFG Γ, an invariant I and a terminal configuration T) and a stochas-
tic invariant I′, we have compared: i) 1− p, where p ∈ [0, 1] is calculated by our
implementation of Algorithm A so that it makes (JI′K, p) a stochastic invariant
over TΓ,I,T; and ii) an underapproximation of the termination probability calcu-
lated by a 0.999-scaled submartingale. We have not compared time consumption
as the efficiency of Algorithm B would depend on the way to solve the quadratic
inequalities, that is not explicitly specified in [23].

The probabilistic programs and their stochastic invariants used in [23] are
shown in Figures 6.4–6.6. The programs model variants of 1D, 2D, and 3D ran-
dom walks respectively. Stochastic invariants are represented as / · · · /. We have
modified some pure invariants in the probabilistic programs in [23] because our
implementation of Algorithm A could not find a repulsing supermartingale for the
original probabilistic programs. The probabilistic programs are parameterized,
and in [23] experiments were conducted for three combinations of parameters for
each.

We have also tested the algorithm in [23] and our algorithm for the bounded
random walk in Figure 6.1 by fixing a seemingly reasonable stochastic invariant
I′. Concretely, the stochastic invariant I′ assigns x >= 99.5 to line 13, and true
to the other locations.

The experimental results are shown in Table 6.2. A term “> 0” means that a
repulsing supermartingale failed to give a probability bound but it proved that it
terminates in a positive probability using Theorem 6.1.17.2. A term “infeasible”
in the last row means that no repulsing supermartingale was found.

For all the probabilistic programs used in [23], the algorithm in [23] gave
tighter probability bounds than ours. In contrast, for a bounded random walk,
our algorithm gave better bounds for some parameters.

128

1 x := 100 ;
2 { −2 <= x }
3 wh i l e x >= 0 do
4 { 0 <= x }
5 i f x <= 1000.5 then
6 { 0 <= x and x <= 1000 }
7 i f prob (0 . 5) then
8 { 0 <= x and x <= 1000 }
9 x := x − 2

10 e l s e
11 { 0 <= x and x <= 1000 }
12 x := x + 1
13 f i
14 e l s e
15 { 1001 <= x }
16 i f prob (0 . 5) then
17 { 1001 <= x }
18 x := x − 1
19 e l s e
20 { 1001 <= x }
21 x := x + 2
22 f i
23 f i
24 od ;
25 { x <= −1 } [t r u e]

Figure 6.4: 1D random walk

1 x := 400 ; y := 50 ;
2 { 0 <= y }
3 wh i l e 1 <= y do
4 { 1 <= y }
5 i f prob (0 . 5) then
6 { 1 <= y }
7 i f prob (0 . 7 5) then
8 { 1 <= y }
9 x := x + 1

10 e l s e
11 { 1 <= y }
12 x := x − 1
13 f i
14 e l s e
15 { 1 <= y }
16 i f prob (0 . 7 5) then
17 { 1 <= y }
18 y := y − 1
19 e l s e
20 { 1 <= y }
21 y := y + 1
22 f i
23 f i ;
24 { 0 <= x and 0 <= y } / x < 1 /
25 wh i l e x <= 0 do
26 { x <= 0 and 0 <= y }
27 x := 0
28 od
29 od ;
30 { 1 <= x and y <= 0 } [t r u e]

Figure 6.5: 2D random walk

1 x := 300 ; y := 100 ; z := 150 ;
2 { −1 <= x and −1 <= y and −1 <= z } / x + y + z > 1000 /
3 wh i l e 0 <= x and 0 <= y and
4 0 <= z do
5 { 0 <= x and 0 <= y and 0 <= z } i f prob (0 . 9) then
6 { 0 <= x and 0 <= y and 0 <= z } i f prob (0 . 5) then
7 { 0 <= x and 0 <= y and 0 <= z } x := x − 1 ;
8 { −1 <= x and 0 <= y and 0 <= z } y := y − 1
9 e l s e

10 { 0 <= x and 0 <= y and 0 <= z } z := z − 1
11 f i
12 e l s e
13 { 0 <= x and 0 <= y and 0 <= z } i f prob (0 . 5) then
14 { 0 <= x and 0 <= y and 0 <= z } x := x + 0 . 1 ;
15 {0 .1 <= x and 0 <= y and 0 <= z } y := y + 0 .2
16 e l s e
17 { 0 <= x and 0 <= y and 0 <= z } z := z + 0 .1
18 f i
19 f i
20 od ;
21 { x <= −1 and y <= −1 and z <= −1 } [t r u e]

Figure 6.6: 3D random walk

6.2 Polynomial Template-Based Algorithm

The experimental result and the discussion for a probabilistic program modeling a
pendulum in Section 6.1.5 encourages us to fix a more complicated template for a
γ-scaled submartingale. In this section, we focus on a polynomial template-based
synthesis of γ-scaled submartingales.

A polynomial template-based synthesis algorithm for ranking supermartin-
gales is found in [21]. We have adapted the algorithm for our setting again, and
implemented it. However, to get straight to the result, our implementation did
not work well, possibly because of numerical errors. We made an attempt to
remedy the situation, but it also failed. We still present them for record.

129

param. algorithm in [23] our algorithm true prob.

Fig. 6.4 x = 10 ≥ 1− 5.2959× 10−15 ≥ 0.90347 —
x = 50 ≥ 1− 1.25427× 10−14 ≥ 0.58836 —
x = 100 ≥ 1− 1.8083× 10−13 ≥ 0.19448 —

Fig. 6.5 x, y = 1000, 10 ≥ 1− 1.7674× 10−16 ≥ 0 —
x, y = 500, 40 ≥ 1− 1.2930× 10−6 ≥ 5.9952× 10−15 —
x, y = 400, 50 ≥ 1− 1.4439× 10−4 ≥ 0 —

Fig. 6.6 x, y, z = 100, 100, 100 ≥ 1− 1.91158× 10−70 ≥ 6.5725× 10−14 —
x, y, z = 100, 150, 200 ≥ 1− 1.5420× 10−54 ≥ 3.2085× 10−14 —
x, y, z = 300, 100, 150 ≥ 1− 2.1891× 10−44 ≥ 0 —

Fig. 6.1 n, p = 10, 0.1 ≥ 0.010200 ≥ 0.90437 1− 1.3127× 10−86

n, p = 90, 0.1 > 0 ≥ 0.10757 1− 2.8680× 10−10

n, p = 10, 0.9 ≥ 0 ≥ 0 2.8680× 10−10

n, p = 50, 0.5 infeasible ≥ 0 0.5

Table 6.2: comparison with the algorithm in [23]

6.2.1 Syntax of Probabilistic Programs

If we use a polynomial template, we can deal with programs including polynomial
expressions.

Definition 6.2.1 (polynomial probabilistic program). A polynomial probabilistic
program (PPP) is defined in almost the same way as Definition 6.1.1 except that:
i) line (6.3) in Definition 6.1.1 is replaced by:

⟨expr⟩ ::= ⟨const⟩ | ⟨pvar⟩ | ⟨expr⟩ · ⟨expr⟩ | ⟨expr⟩+ ⟨expr⟩ | ⟨expr⟩ − ⟨expr⟩

and the (†) in Definition 6.1.1 is replaced by the following:

(†’) for each probability measure d appearing in ⟨prog⟩ and each n ∈ N, an
algorithm that calculates the n-th moment of d is given.

We write {{stmt}}poly, {{assgn}}poly, {{expr}}poly, etc... for the sets of formulas
defined by this new BNF notation. We call an element in {{expr}}poly a polynomial
expression.

We define VΓ and notions of location, valuation and configuration as in Defini-
tion 6.1.1. We define J⟨expr⟩K : RV → R and JbK ⊆ RV in the standard manners.

6.2.2 Problem

A polynomial probabilistic control flow graph is defined in the same manner as
Definition 6.1.2, except that {{assgn}}lin and {{pbexpr}}lin in the third bullet
of Definition 6.1.2 are replaced by {{assgn}}poly and {{pbexpr}}poly respectively.
Moreover, a polynomial pCFG induced by a PPP, a polynomial predicate map
p : LA + LB → {{expr}}poly, a polynomial invariant I : LA + LB → {{expr}}poly
for a polynomial pCFG, and a PTS TΓ,I,T induced by a polynomial pCFG, a
polynomial invariant and a polynomial predicate map are all defined in the same
way as Definitions 6.1.3–6.1.6.

We can now state the problem as follows.

Problem 6.2.2. input: a polynomial pCFG Γ = (LA, LB, linit, τA, τB)
an initial valuation λinit : VΓ → R

a polynomial invariant I for a pCFG Γ
a polynomial predicate map T for a pCFG Γ

output: p ∈ R such that p ≤ ReachTΓ,I,T
(linit, λinit)

130

6.2.3 Algorithm

The algorithm is adapted from the existing one for ranking supermartingales
in [21]. Throughout this section, let Γ = (LA, LB, linit, τA, τB) be a polynomial
pCFG, L = LA + LB and {x1, . . . , xn} = VΓ. Let I : L → {{expr}}poly be a
polynomial invariant and T : L → {{expr}}poly be a polynomial predicate map,
and assume that an initial valuation λinit ∈ JI(linit)K(⊆ RVΓ) is given.

The algorithm is similar to the linear template-based one.

Fix a Template

In this case, a template has a polynomial shape.

Definition 6.2.3 (polynomial expression map and polynomial template).

• A polynomial expression map for Γ is a function f : L → {{expr}}poly. We
define JfK : L× RVΓ → R as in Definition 6.1.8.

• Let d ∈ N. We writeM≤d for the set of monomials over VΓ whose degrees
are no greater than d, i.e.

M≤d :=
{
xd11 · · ·x

dn
n

∣∣∣ d1, . . . , dn ≥ 0, d1 + · · ·+ dn ≤ d
}
.

A polynomial template over Γ is a family t =
(
t(l)
)
l∈L of formulas of a form

t(l) =
⨿

h∈M≤d
alhh . Here each a

l
h is a new variable called a parameter. We

write PΓ for the set of all parameters. For a valuation χ : PΓ → R of param-
eters, we write tχ for a polynomial expression map l 7→

⨿
h∈M≤d

χ(alh)h.

Similarly to the linear case, we wish to synthesize χ : PΓ → R that makes
tχ a “γ-scaled submartingale” in the sense that JtχK|⨿

l∈LJI(l)K is a γ-scaled sub-
martingale, and maximizes JtχK(linit, λinit) ∈ R.

Collect Conditions for Parameters

We reduce the axioms of γ-scaled submartingales to conditions on the parameters.
In a similar manner to the linear case, we can reduce the axioms to a conjunc-
tion of formulas of a form as in (6.4), but in the current setting, d1, . . . , dk are
polynomial expressions over VΓ. Moreover, e has a form∑

h∈M≤d
ph · h (6.11)

where each coefficient ph is a linear expression over PΓ. We will write χ(e) for a
polynomial expression

∑
h∈M≤d

JphK · h.
The reduction is similar to Definition 6.1.10, so we do not write down all the

concrete constructions. The most non-trivial case would be the one of probabilis-
tic assignment. If l ∈ LA, τA(l) =

(
⟨assgn⟩, l′

)
, ⟨assgn⟩ =

(
xk := sample(⟨dist⟩)

)
and the t-th moment of ⟨dist⟩ is rt ∈ R for each t ∈ N, a set of formulas that is
analogous to Al

2 in Definition 6.1.10 is given as follows:

M l
i∧

j=1

(αl
i,j ▷l

i,j 0) ∧
M ′l

i′∧
j=1

(βli′,j ▷′l
i′,j 0)⇒

∑
h=x

d1
1 ···xdn

n
∈M≤d,dk=0

γd−(d1+···+dn)∑
d′
k=0

al
′

x
d1
1 ···x

dk−1
k−1 x

d′
k

k x
dk+1
k+1 ···xdn

n

rd′
k
− alh

h

−
∑

h=x
d1
1 ···xdn

n ∈M≤d,dk ̸=0

alhh


≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ≤ i ≤ N l,

1 ≤ i′ ≤ N ′l


.

131

Relax Strict Inequalities

As in the linear case, we then relax the strict inequalities and obtain a conjunction
of formulas of a form (6.6), where d1, . . . , dk, e are polynomial. An analogous
statement to Lemma 6.1.12 holds.

Reduce to SDP problem

In the linear case, we reduced a conjunction of formulas of a form (6.6) to an
LP problem using the Farkas lemma. In the polynomial case, we reduce it to a
semidefinite programming (SDP) problem using a theorem called Positivstellen-
satz.

There exist several variants for Positivstellensatz. In [21] three of them,
Schmüdgen’s Positivstellensatz, Putinar’s Positivstellensatz and Handelman’s
Positivstellensatz, were used for the synthesis of ranking supermartingales. They
induce different algorithms from each other. In this thesis, we use the former
two. Use of Handelman’s Positivstellensatz is left as future work.

We now sketch the reduction to an SDP problem following [21]. Here the
notion of sum of square is important.

Definition 6.2.4 (SOS). A polynomial expression h over VΓ is sum of square
(SOS) if it has a form h =

∑s
i=1 i

2
i where each ii is a polynomial expression.

We write SOS(VΓ) for the set of SOS polynomial expressions over VΓ.
We can easily see that if h is SOS then JhK(λ) ≥ 0 for each λ : VΓ → R. Hence

for each χ : PΓ → R and λ : VΓ → R, we have

λ ∈ Jd1 ≥ 0 ∧ · · · ∧ dk ≥ 0K ⇒ Jχ(e)K(λ) ≥ 0 (6.12)

if either of the following conditions is satisfied:

∃
(
hi ∈ SOS(VΓ)

)
i∈{1,...,k}. e = h0 +

∑
i∈{1,...,k}

hidi , or (6.13)

∃
(
hw1,...,wk

∈ SOS(VΓ)
)
w1,...,wk∈{0,1}

. e =
∑

w1,...,wk∈{0,1}

hw1,...,wk

k∏
i=1

dwi
i . (6.14)

Recall that in the linear case, completeness was partially ensured by the Farkas
lemma. In the polynomial case, the role is played by Positivstellensatz’s.

Theorem 6.2.5 (Positivstellensatz’s).

1. (Putinar, [87]) If Jdi ≥ 0K is compact for some i, then λ ∈ Jd1 ≥ 0∧· · ·∧dk ≥
0K ⇒ Jχ(e)K(λ) > 0 implies (6.13).

2. (Schmüdgen, [93]) If Jd1 ≥ 0 ∧ · · · ∧ dk ≥ 0K is compact, then λ ∈ Jd1 ≥
0 ∧ · · · ∧ dk ≥ 0K ⇒ Jχ(e)K(λ) > 0 implies (6.14).

Reducing positivity to sum-of-square is useful in implementation as the con-
dition that a polynomial is SOS is representable using positive semidefiniteness.

Proposition 6.2.6 (see e.g. [54]). Let h be a polynomial expression whose degree
is no greater than 2m. The following are equivalent.

• h is SOS.

• There exists a positive semidefinite matrix A ∈ RM≤m×M≤m such that
h = yT

≤mAy≤m, where y≤m is a vector whose components consist of all the
elements ofM≤m.

Hence we can obtain the following two algorithms that synthesize χ : PΓ → R
so that tχ is a γ-scaled submartingale.

132

Algorithm 1 Turn the pCFG to a conjunction of formulas of a form (6.12). Fix
a maximum degree m ∈ N for SOS polynomial expressions. For each a formula
of a form (6.12), fix a set U := {αt,i,j | t ∈ {0, 1, . . . , k}, 1 ≤ i ≤ |M≤k|, 1 ≤ j ≤
|M≤k|} of new parameters, and collect linear equalities over PΓ∪U by comparing
coefficients of an equality e = yT

mA0ym +
∑

t∈{1,...,k} y
T
mAtym · dt, where At is

a |M≤m| × |M≤m|-matrix whose (i, j)-element is αt,i,j . We then ask the SDP
solver to maximize JtχK(linit, λinit) under the collected conditions, assuming that
each Al

t is positive semidefinite.

Algorithm 2 Turn the pCFG to a conjunction of formulas of a form (6.12). Fix
a maximum degree m ∈ N for SOS polynomial expressions. For each a formula
of a form (6.12), fix a set U := {αw,i,j | w ∈ {0, 1}k, 1 ≤ i ≤ |M≤k|, 1 ≤ j ≤
|M≤k|} of new parameters, and collect linear equalities over PΓ∪U by comparing

coefficients of an equality e =
∑

w=w1...wk∈{0,1}k y
T
mAwym ·

∏k
j=1 d

wj

j , where Aw

is a |M≤m| × |M≤m|-matrix whose (i, j)-element is αw,i,j . We then ask the SDP
solver to maximize JtχK(linit, λinit) under the collected conditions, assuming that
each Al

w is positive semidefinite.

These two algorithms have weak points and strong points.
A weak point of Algorithm 1 would be that the condition where the corre-

sponding Positivstellensatz holds is weaker (see Theorem 6.2.5). Note that (6.13)
is a special case of (6.14). Hence Algorithm 2 always gives tighter bound for the
reachability probability than Algorithm 1.

A weak point of Algorithm 2 would be that the size of a family(
hw1,...,wk

)
w1,...,wk∈{0,1}

in (6.14) can be easily large. Note that k is the num-

ber of literals in the premise, and it is mainly determined by an invariant I
and a terminal configuration T. For example, suppose that the program has n
variables x1, . . . , xn all of which are assumed to be in [0, 1]. If we naively spec-
ify the assumption as an invariant, then it would result in a conjunction of 2n
inequalities 0 ≤ x1, x1 ≤ 1, . . . , 0 ≤ xn, xn ≤ 1. This means that the family(
hw1,...,wk

)
w1,...,wk∈{0,1}

has a size 22n at least.

To summarize, there is a trade-off between speed and quality.

6.2.4 Improvement of Polynomial Template-based Algorithm

The last section was almost a review of existing algorithms for ranking super-
martingale. In this section, we give new results: we will present an improvement
of the algorithms that is peculiar to γ-scaled submartingale.

In the algorithms given in the previous sections, γ was regarded as a constant
and the user was required to provide it to the algorithm. As we have discussed in
Section 5.5.2, the bigger value we fix γ to, the better bound we can obtain. We
cannot fix γ to 1, but it is allowed to let γ → 1 after symbolically synthesizing a
γ-scaled submartingale. This observation encourages us to modify the polynomial
template-based algorithm so that it regards γ as a variable (such as x ∈ VΓ) that
ranges over [γmin, 1) for some γmin < 1. Note that this is difficult in the linear
case because the resulting inequalities are no longer linear.

The synthesized γ-scaled submartingale is a polynomial function and hence
continuous. Therefore letting γ→1 is equivalent to letting γ = 1. We can achieve
this task by defining the initial valuation λinit : VΓ∪{γ} → R so that λinit(γ) = 1.

To summarize, we can modify the polynomial template-based algorithm in
the previous section as follows:

• We add γ to VΓ.

133

• When collecting conditions on parameters, we regard γ as a variable instead
of a constant. Moreover, we add γmin ≤ γ and γ ≤ 1 to the premises of
collected formulas of the form (6.6).

• update the initial valuation λinit so that λinit(γ) = 1.

We can easily see that the probability bound calculated by the above new
algorithm is no worse than the bound calculated by the algorithm in the previous
section letting γ = γmin. However, we should also note that this modification
increases the number of variables and hence can slow down the algorithm: we
can again see a speed-quality trade-off.

6.2.5 Implementation

Similarly to the linear case, we have augmented the syntax of PPPs so that we can
designate an invariant and a terminal configuration. In the polynomial case, they
are allowed to be polynomial expressions. By modifying an implementation of a
polynomial template-based algorithm for nonnegative repulsing supermartingales
in [102], we have obtained a program that executes one of the following tasks
depending on the provided option:

• take a PPP, the maximum degrees of a template and SOS polynomials and
γ ∈ [0, 1) as inputs, and by constructing a γ-scaled submartingale from a
polynomial template, outputs input to MATLAB [79]. If we feed the output
to MATLAB, then it calculates p ∈ [0, 1] such that p ≤ ReachT (linit, 0⃗)
using an external SDP solver.

• take a PPP, the maximum degrees of a template and SOS polynomials and
γmin ∈ [0, 1) as inputs, and by constructing a γ-scaled submartingale from a
polynomial template regarding γ as a variable ranging over [γmin, 1], outputs
an input to MATLAB. If we feed the output to MATLAB, it calculates
p ∈ [0, 1] such that p ≤ ReachT (linit, 0⃗) using an SDP solver.

We have also made use of a MATLAB toolbox called SOSTOOLS [83] (ver-
sion 3.03) in the implementation. It helps us to turn SOS equalities ((6.13) or
(6.14)) to an SDP problem.

We have modified some codes of SOSTOOLS for the sake of speedup. We
found that SOSTOOLS is very slow in adding a new constraint to a problem,
and one of its reason was a procedure to substitute all the variables in a term
with 0. In the original code, the procedure tries to substitute all the variables
that have been declared so far, but we modified it so that it only substitutes
variables appearing in the input term.

6.2.6 Experiments

We have used SeDuMi [98] (version 1.32) as an SDP solver. The version and the
release number of MATLAB were 9.4.0.813654 (R2018a). The experiments were
conducted on a MacBook Pro laptop with a Core i5 processor (2.6 GHz, 2 cores)
and 16 GB RAM.

We tested our implementation for bounded random walks that were used in
the linear case (Figure 6.1). Recall that we can choose: i) a Positivstellensatz
between Putinar’s one or Schmüdgen’s one, and ii) how to deal with γ between
regarding it as a constant or regarding it as a variable. Hence we have four choices
in total. We have fixed γ and γmin to 0.99, and we fixed the degrees of a template

134

Putinar Schmüdgen true
γ:constant γ:variable γ:constant γ:variable prob.

param. time (s) bound time (s) bound time (s) bound time (s) bound

1
n = 10
p = 0.1 29.650 ≥ 0.4616 133.254 ≥ 0.9998 92.633 ≥ 0.9866 711.143 ≥ 1.0≥ 1.0≥ 1.0

1− 1.3127
× 10−86

n = 90
p = 0.1 31.267 ≥ 1.0≥ 1.0≥ 1.0 116.936 ≥ 1.0≥ 1.0≥ 1.0 94.035 ≥ 1.0≥ 1.0≥ 1.0 693.341 ≥ 1.0≥ 1.0≥ 1.0

1− 2.8680
× 10−10

n = 10
p = 0.9 29.745 ≥ 0.7389≥ 0.7389≥ 0.7389 105.798 ≥ 0.9999≥ 0.9999≥ 0.9999 92.046 ≥ 0.9998≥ 0.9998≥ 0.9998 730.187 ≥ 1.0≥ 1.0≥ 1.0

2.8680
× 10−10

n = 50
p = 0.5 28.736 ≥ 1.0≥ 1.0≥ 1.0 108.437 ≥ 1.0≥ 1.0≥ 1.0 96.824 ≥ 1.0≥ 1.0≥ 1.0 799.545 ≥ 1.0≥ 1.0≥ 1.0 0.5

Table 6.3: experimental results for the polynomial template-based algorithm

and SOS polynomials to 2. The results are shown in Table 6.3. As in the linear
case, the true termination probabilities are also shown.

We can see that our implementation returns unsound probability bounds for
many cases (they are written with bold letters in the table). It seems that these
incorrect bounds are due to numerical errors caused by the SDP solver. Hence
we cannot use the implementation as it is.

6.2.7 (Failed) Attempt to Remedy the Situation

Although they are very fast, SDP solvers are not suitable for verifications com-
pared to SMT solvers because of numerical errors. Nevertheless, there exist
several studies for using SDP solvers in verifications. One of them is found in a
series of papers by Jansson and his coauthors [62, 64]. The techniques introduced
in those papers resulted in a tool named VSDP [63, 118]. It is a wrapper of exist-
ing SDP solvers, which is written in MATLAB using INTLAB [91]. It processes
an output of an SDP solver and calculates rigorous error bounds of the optimal
value of the objective function.

We have modified SOSTOOLS so that it calls SDP solvers via VSDP, and
tested it for the bounded random walks used in the previous section. However,
it did not work well again: the lower bounds of the termination probabilities
calculated by considering error bounds using VSDP were all −∞, which is trivial.

6.3 Conclusion and Related Work

We have developed algorithms for synthesizing γ-scaled submartingales for proba-
bilistic programs following existing synthesis algorithms for ranking supermartin-
gales. We considered two algorithms: linear template-based one and polynomial
template-based one. We have implemented the algorithms and conducted several
experiments. While the linear template-based algorithm exhibited its applica-
bility, the polynomial template-based algorithm did not work well because of
numerical errors.

Related Work We have reviewed a notion of ranking supermartingale in Def-
inition 6.0.1. The ranking supermartingale-based reachability analysis is stud-
ied in [5, 19, 21, 22, 9]. We have shown that distribution-valued ranking func-
tions and γ-scaled submartingales satisfy completeness (see Theorem 5.5.8 and
Proposition 5.5.15). It is known that completeness also holds for ranking super-
martingales in the following sense: if a PTS (without nondeterminism) exhibits
strongly almost-sure termination (i.e. the expected number of steps to an accept-
ing state is finite), then there exists an additive ranking supermartingale that
proves it [86, 100].

135

In the context of probabilistic systems, the Büchi condition is sometimes called
recurrence property. Similarly, the co-Büchi condition (i.e. accepting states are
visited only finitely many times) is called persistence property. It is known that
ranking supermartingales can be also used for proving almost-sure recurrence or
persistence of probabilistic systems [20].

136

Chapter 7

Related Work

We have already reviewed much related work in the chapters so far. Here we
discuss related work that were omitted in individual chapters.

Applications of “Generalize-and-concretize” Framework Throughout
this thesis, we have followed the categorical “generalize-and-concretize” frame-
work. This framework is not new: as we have mentioned in Section 1.2, a con-
ventional notion of forward and backward simulation [74] was categorically gen-
eralized in [43] and concretized for weighted automata in [111]. We shall give two
more examples where we can find this framework.

One of the most popular examples would be bisimulation (see e.g. [12]). As
its name suggests, a bisimulation is understood as a “bidirectional simulation.”
While the existence of a simulation implies behavioral inclusion between transi-
tion systems, that of a bisimulation implies language equivalence. A bisimulation
notion was originally defined for CCS (calculus of communicating systems, a kind
of process algebra) [84, 81], and its variant was defined for various systems includ-
ing nondeterministic automata [71] and (discrete-state) probabilistic transition
systems [73]. A categorical generalization of bisimulation is found in [1], and it
was used in [29] to define a bisimulation notion for continuous-state probabilistic
transition systems. Another categorical generalization of bisimulation is in [51].
A relationship between multiple categorical bisimulation notions is studied in [99].

Another example is Scott domain [97]. A Scott domain is a special poset sat-
isfying certain properties. It is one of the most common domains in domain the-
ory, where the basis for defining denotational semantics for programs are studied.
Studies of categorical generalizations of Scott domain are found in [2, 107, 68, 18].
In [18], the developed framework is said to constitute a basis for extending do-
main theory for concurrency. In [56], in addition to the possibility of obtaining
a new variant by concretization, several other reasons for generalizing domain
theory are discussed.

FX

=

// FΩ
a
��

X

c

OO

// Ω

Predicate Transformer Semantics We have used different
frameworks for categorically characterizing behaviors of systems in
Chapters 3–4 (Definition 3.3.1) and Chapters 5–6 (Definition 5.2.2).
However, if we focus on the fact that the coalgebra JζF : νF →p FνF in
Definition 3.6.3 is an isomorphism and hence invertible, we can see not onlyJµσKc : X → Ω in Definition 5.2.2 but also [trB1 (c), tr

B
2 (c)] : X →p νF in Def-

inition 3.3.1 can be characterized as a fixed point of a function Φc,a (Defini-
tion 2.4.22) for a suitable algebra a.

If we regard an arrow of a type X →p νF or X → Ω as a (multi-valued)
predicate over X, then Φc,a can be thought of as a transformer that transforms

137

predicates in a backward manner. A technique to define semantics of a program
as such a predicate transformer is known as predicate transformer semantics [77].
Categorical studies of predicate transformer semantics are found in [37, 82, 78, 57].
We can also define semantics of a program as a state transformer, which trans-
forms (a superposition of) states in a forward manner. A categorical relationship
between state- and predicate-transformer semantics is studied in [45, 61].

Various Probabilistic Transition Systems In Chapters 3–4, we have con-
sidered PBTAs whose transition function has a type X → G

⨿
n∈ω Σn ×Xn (see

Definition 2.2.12). In Chapters 5–6, we considered PTSs whose transition func-
tion has a type X → GX × {0, 1} (see Definition 2.2.26 and Example 2.4.14).
Both of them can be regarded as generative pure probabilistic systems: in each
state, the system randomly chooses a next transition without taking any input.

Of course, there exist many other types of probabilistic transition systems.
For example, a probabilistic system with a transition type X → (GX)A can be
thought of as a reactive probabilistic automaton: in each state, the system takes
an input from the alphabet A, and randomly choose a successor state according to
the input. Another example is a system with a transition function X → PGX. It
can be regarded as a system that exhibits both probabilistic and nondeterministic
branching (such a system is often called Markov decision process, see e.g. [12]).

While the notions that we have induced aim at generative probabilistic sys-
tems, there exist many verification methods aiming at other types of probabilis-
tic systems. In [66] simulation notions are introduced for probabilistic systems.
It is introduced for systems with a transition type X → DX × 2A. A proba-
bilistic bisimulation notion in [73] aims at reactive probabilistic systems. The
notions of ranking supermartingale (Definition 6.0.1) and nonnegative repulsing
supermartingale (Definition 6.1.14) were originally defined for Markov decision
processes. As we have remarked in the footnote of page 116, it is known that
γ-scaled submartingale can be also generalized for Markov decision processes.
A comprehensive study of various types of probabilistic transition systems and
hierarchy between them is found in [13].

138

Chapter 8

Conclusion and Future Work

We have categorically generalized notions of fair simulation and ranking function.
For the former, we had to categorically characterize behaviors of Büchi au-

tomata first (Chapter 3). We gave two categorical characterizations—the logical
fixed point-based one and the categorical fixed point-based one. They differ in how
to categorically involve the notion of alternating fixed point, which is known to
be strongly related to Büchi and parity automata. The logical fixed point-based
characterization regards a homomorphism as a fixed point and considers an alter-
nating fixed point in a homset by assuming an order on the homset. In contrast,
the categorical fixed point-based characterization refers to a well-known analogy
between categories and posets and considers a sort of an alternating fixed point
of a functor. We have proved that the latter characterization induces the former
and hence they can be thought of as essentially the same characterization.

In Chapter 5, using the developed categorical characterization of Büchi au-
tomata, we have categorically generalized fair simulation, a simulation notion for
Büchi automata. We have introduced two categorical fair simulation notions:
one with dividing and one without dividing. The latter is more practical but we
need more axioms than the former does to prove its soundness categorically. We
then concretized them for probabilistic systems. Categorical fair simulation with
dividing resulted in a simulation notion that is sound for general probabilistic
Büchi tree automata while one without dividing produced a notion that is sound
only for finite-state probabilistic Büchi word automata.

For categorically generalizing ranking function, we have used existing char-
acterization for capturing behaviors of systems (Chapter 5). The key in the
generalization was the categorical notion of corecursive algebra. Intuitively, its
role was to merge the least and the greatest fixed points into one unique fixed
point so that a categorical ranking function, which is defined as a post-fixed point
of a certain function, can underapproximate the reachability, which is character-
ized as the least fixed point. We then concretized them for probabilistic systems
and induced several new notions for probabilistic transition systems: distribution-
valued ranking function and γ-scaled submartingale.

For γ-scaled submartingales, we gave a synthesis algorithm for probabilistic
programs (Chapter 6). We found that existing linear and polynomial template-
based synthesis algorithms in [19, 23, 21] for ranking supermartingales, yet an-
other ranking function-like notion for probabilistic systems, can be easily adapted
for our setting. We have implemented them and tested them for several proba-
bilistic programs. While the linear template-based algorithm achieved a certain
result, the polynomial template-based one did not work seemingly because of
numerical errors.

139

Future Work Applying the “generalize-and-concretize” approach used
throughout this thesis for other verification notions is one main possible direc-
tion of future work. One common scenario of the “generalize-and-concretize”
approach is, as we have done in this thesis, to transfer a qualitative existing
method to a quantitative method. Another possible scenario would be to first
unify “seemingly similar” notions in different fields of computer science using
category theory and extend the notions using the categorical characterization.

Here is an example. We have seen that there exists a notion of ranking
function that can be used to prove termination of nondeterministic transition
systems. A seemingly similar notion called Lyapunov function is known for ordi-
nary differential equations (ODEs). We can use a Lyapunov function for proving
the stability of ODEs. If we succeeded in categorically unifying definitions of
ranking function and Lyapunov function, then it might be possible to obtain
counterparts of progress measures (Definition 4.3.7), ranking supermartingales
(Definition 6.0.1) or γ-scaled submartingales (Definition 5.5.11) for ODEs.

When we are generalizing or unifying existing notions, the theoretical basis
developed in this thesis in the course of generalization might be helpful. One of
the candidates is the categorical fixed point-based characterization of the par-
ity condition, which was used only for proving the correctness of the logical fixed
point-based characterization. We can aim at investigating another usage of it. For
example, as we have done with the logical fixed point-based characterization, we
can use the categorical fixed point-based characterization for categorically gener-
alizing existing verification techniques. A candidate is delayed simulation [32, 36],
a yet another simulation notion for Büchi automata that is known to be useful
for state-space reduction of Büchi automata.

We gave no implementation for probabilistic fair simulation or distribution-
valued ranking function. Their algorithms and implementations are future work.

In Chapters 3–4, we have focused on systems with simple branching types.
Extending this for systems with more complicated branching types like two-player
games, systems including both probabilistic branching and demonic nondetermin-
ism (Markov decision process), or ones including probabilistic branching and both
angelic and demonic nondeterminism (sometimes called 21

2 -player game) would
be interesting. Similarly, we can consider extending Chapters 5–6 to Markov
decision processes or 21

2 -player games.
We can possibly combine the frameworks in Chapter 3 and Chapters 5–6.

As we have noted in the previous chapter, a ranking supermartingale (Defini-
tion 6.0.1) is known to be also useful for proving almost-sure recurrence (i.e. the
Büchi condition) and persistence (i.e. the coBüchi condition) [20]. Extending our
categorical framework so that it induces a technique for underapproximating the
recurrence or persistence probability would be interesting.

In Chapter 4, we have focused on simulation between Büchi automata. Ex-
tending it for parity automata would be challenging, partly because a fair simu-
lation between parity automata is not representable as a parity game.

We are also interested in the decidability and the complexity of probabilistic
fair simulations. As the problem of determining the winner of a finite-state parity
game is decidable and in NP ∩ co-NP (see e.g. [67]), a fair simulation between
NBTAs is also decidable and in NP ∩ co-NP. We wish to study the same thing
for the probabilistic case.

We mentioned in Chapter 7 that there exist three related notions to core-
cursive algebra: well-founded coalgebra, recursive coalgebra, and anti-founded
algebra. Studying their relationship would be useful for extending Chapter 5.

There would be room for improving our algorithm and implementation in

140

Chapter 6. Our implementation of the polynomial template-based algorithm
failed because of numerical errors of an SDP solver. We have tried to remedy
the situation using a tool called VSDP, but it also failed. However, there exist
other works that consider using SDP solvers for verifications, e.g. [89, 90]. Espe-
cially in [89], it is proposed to integrate an SDP solver with an SMT solver. It
might be also possible to use other templates than linear and polynomial ones,
e.g. exponential one. Another possible way to remedy the situation would be
to rely on Handelman’s Positivstellensatz instead of Schmüdgen’s or Putinar’s
Positivstellensatz. Handelman’s Positivstellensatz was used for the synthesis of
ranking supermartingales in [21].

Another direction of future work would be to extend the framework in this
thesis for higher-order programs. An obstacle towards this direction would be
that the category Meas of measurable spaces and functions does not have an
exponential object XY . A categorical framework for dealing with probabilistic
higher-order functions is introduced in [52]. There, a measurable setX is replaced
by a subset MX ⊆ [R→ X] of the set of functions from R to X. It allows us to
make use of the measurable structure over R, which is well-behaved.

141

References

[1] Peter Aczel and Nax Mendler. A final coalgebra theorem. In David H. Pitt,
David E. Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné,
editors, Category Theory and Computer Science, pages 357–365, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg.

[2] Jiŕı Adámek. A categorical generalization of scott domains. Mathematical
Structures in Computer Science, 7(5):419–443, 1997.

[3] Jiŕı Adámek and Václav Koubek. Least fixed point of a functor. J. Comput.
Syst. Sci., 19(2):163–178, 1979.

[4] Jiŕı Adámek, Stefan Milius, and Lawrence S. Moss. Fixed points of functors.
Journal of Logical and Algebraic Methods in Programming, 95:41 – 81, 2018.

[5] Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. Lexico-
graphic ranking supermartingales: an efficient approach to termination of
probabilistic programs. PACMPL, 2(POPL):34:1–34:32, 2018.

[6] André Arnold and Damian Niwiński. Rudiments of µ-Calculus. Studies in
Logic and the Foundations of Mathematics. Elsevier, Amsterdam, 2001.

[7] Robert B. Ash. Basic Probability Theory. Wiley, 1970.

[8] Robert B. Ash and Catherine A. Doléans-Dade. Probability and Measure
Theory. Academic Press, 2 edition, 1999.

[9] Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic
term rewriting. In FLOPS, volume 10818 of Lecture Notes in Computer
Science, pages 132–148. Springer, 2018.

[10] Steve Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press,
2006.

[11] Christel Baier and Marcus Größer. Recognizing omega-regular languages
with probabilistic automata. In LICS, pages 137–146. IEEE Computer
Society, 2005.

[12] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[13] Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of proba-
bilistic system types. Theor. Comput. Sci., 327(1-2):3–22, 2004.

[14] Francis Borceux. Handbook of Categorical Algebra:, volume 2. Cambridge
University Press, Cambridge, 11 1994.

142

[15] Julius R. Büchi. On a Decision Method in Restricted Second-Order Arith-
metic. In International Congress on Logic, Methodology, and Philosophy of
Science, pages 1–11. Stanford University Press, 1962.

[16] Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Corecursive algebras:
A study of general structured corecursion. In SBMF, volume 5902 of Lecture
Notes in Computer Science, pages 84–100. Springer, 2009.

[17] Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in au-
tomata on infinite trees. ACM Trans. Comput. Log., 15(3):24:1–24:33, 2014.

[18] Gian Luca Cattani and GlynnWinskel. Profunctors, open maps and bisimu-
lation. Mathematical Structures in Computer Science, 15(3):553–614, 2005.

[19] Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic pro-
gram analysis with martingales. In CAV, volume 8044 of Lecture Notes in
Computer Science, pages 511–526. Springer, 2013.

[20] Aleksandar Chakarov, Yuen-Lam Voronin, and Sriram Sankaranarayanan.
Deductive proofs of almost sure persistence and recurrence properties. In
Marsha Chechik and Jean-François Raskin, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 22nd International Con-
ference, TACAS 2016, Proceedings, volume 9636 of LNCS, pages 260–279.
Springer, 2016.

[21] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. Ter-
mination analysis of probabilistic programs through positivstellensatz’s. In
CAV (1), volume 9779 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2016.

[22] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hashem-
inezhad. Algorithmic analysis of qualitative and quantitative termination
problems for affine probabilistic programs. In POPL, pages 327–342. ACM,
2016.

[23] Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. Stochastic invari-
ants for probabilistic termination. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proc. of POPL 2017, pages 145–160. ACM, 2017.

[24] Vincenzo Ciancia and Yde Venema. Stream automata are coalgebras. In
CMCS, volume 7399 of Lecture Notes in Computer Science, pages 90–108.
Springer, 2012.

[25] Corina Ĉırstea. From branching to linear time, coalgebraically. In FICS,
volume 126 of EPTCS, pages 11–27, 2013.

[26] Rance Cleaveland, Marion Klein, and Bernhard Steffen. Faster model
checking for the modal mu-calculus. In CAV, volume 663 of Lecture Notes
in Computer Science, pages 410–422. Springer, 1992.

[27] Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s fixed
point theorems. Pacific Journal of Mathematics, 82(1):43–57, 1979.

[28] Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, and Alexandra Silva. Borel
kernels and their approximation, categorically. CoRR, abs/1803.02651,
2018.

143

[29] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition
systems: a coalgebraic approach. Theoretical Computer Science, 221(1):271
– 293, 1999.

[30] J.L. Doob. Measure Theory. Graduate Texts in Mathematics. Springer
New York, 1994.

[31] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-
nacy. In Proceedings of the 32Nd Annual Symposium on Foundations of
Computer Science, SFCS ’91, pages 368–377, Washington, DC, USA, 1991.
IEEE Computer Society.

[32] Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair simula-
tion relations, parity games, and state space reduction for Büchi automata.
SICOMP, 34(5):1159–1175, 2005.

[33] Berndt Farwer. ω-Automata, pages 3–21. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2002.

[34] Luis Maŕıa Ferrer Fioriti and Holger Hermanns. Probabilistic termination:
Soundness, completeness, and compositionality. In POPL, pages 489–501.
ACM, 2015.

[35] Robert W. Floyd. Assigning meanings to programs. In J.T. Schwartz, edi-
tor, Mathematical Aspects of Computer Science, volume 19 of Proceedings
of Symposium on Applied Mathematics, pages 19–32, 1967.

[36] Carsten Fritz and Thomas Wilke. Simulation relations for alternating büchi
automata. Theor. Comput. Sci., 338(1-3):275–314, 2005.

[37] Paul H.B. Gardiner, Clare E. Martin, and Oege de Moor. An algebraic
construction of predicate transformers. Science of Computer Programming,
22(1):21 – 44, 1994.

[38] Neil Ghani, Peter Hancock, and Dirk Pattinson. Representations of stream
processors using nested fixed points. Logical Methods in Computer Science,
5(3), 2009.

[39] Michele Giry. A categorical approach to probability theory. In Proc. Cate-
gorical Aspects of Topology and Analysis, volume 915 of Lect. Notes Math.,
pages 68–85, 1982.

[40] The GNU linear programming kit. http://www.gnu.org/software/glpk.

[41] Erich Grädel and Igor Walukiewicz. Positional determinacy of games with
infinitely many priorities. Logical Methods in Computer Science, 2(4), 2006.

[42] Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors. Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, New York, NY, USA, July 5-8, 2016. ACM, 2016.

[43] Ichiro Hasuo. Generic forward and backward simulations. In Christel Baier
and Holger Hermanns, editors, CONCUR, volume 4137 of Lecture Notes in
Computer Science, pages 406–420. Springer, 2006.

[44] Ichiro Hasuo. Generic forward and backward simulations II: probabilis-
tic simulation. In CONCUR, volume 6269 of Lecture Notes in Computer
Science, pages 447–461. Springer, 2010.

144

[45] Ichiro Hasuo. Generic weakest precondition semantics from monads en-
riched with order. Theor. Comput. Sci., 604:2–29, 2015.

[46] Ichiro Hasuo and Bart Jacobs. Context-free languages via coalgebraic trace
semantics. In Proc. CALCO 2005, volume 3629 of LNCS, pages 213–231.
Springer, 2005.

[47] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via
coinduction. Logical Methods in Computer Science, 3(4:11), 2007.

[48] Ichiro Hasuo, Yoshinobu Kawabe, and Hideki Sakurada. Probabilistic
anonymity via coalgebraic simulations. Theor. Comput. Sci., 411(22-
24):2239–2259, 2010.

[49] Ichiro Hasuo, Shunsuke Shimizu, and Corina Ĉırstea. Lattice-theoretic
progress measures and coalgebraic model checking. In POPL, pages 718–
732. ACM, 2016.

[50] Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. Fair
simulation. Inf. Comput., 173(1):64–81, 2002.

[51] Claudio Hermida and Bart Jacobs. Structural induction and coinduction
in a fibrational setting. Inf. Comput., 145(2):107–152, September 1998.

[52] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A con-
venient category for higher-order probability theory. In LICS, pages 1–12.
IEEE Computer Society, 2017.

[53] Wataru Hino, Hiroki Kobayashi, Ichiro Hasuo, and Bart Jacobs. Healthi-
ness from duality. In Grohe et al. [42], pages 682–691.

[54] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, New York, NY, USA, 2nd edition, 2012.

[55] Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theor. Comput.
Sci., 327(1-2):71–108, 2004.

[56] Martin Hyland. Some reasons for generalising domain theory. Mathematical
Structures in Computer Science, 20(2):239–265, 2010.

[57] Pierre Hyvernat. Predicate transformers and linear logic, yet another de-
notational model. CoRR, abs/0905.3998, 2009.

[58] Bart Jacobs. Trace semantics for coalgebras. Electr. Notes Theor. Comput.
Sci., 106:167–184, 2004.

[59] Bart Jacobs. From coalgebraic to monoidal traces. In Coalgebraic Methods
in Computer Science (CMCS 2010), volume 264 of Elect. Notes in Theor.
Comp. Sci., pages 125–140. Elsevier, Amsterdam, 2010.

[60] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States
and Observation, volume 59 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2016.

[61] Bart Jacobs. A recipe for state-and-effect triangles. Logical Methods in
Computer Science, 13(2), 2017.

145

[62] Christian Jansson. Termination and verification for ill-posed semidefinite
programming problems, 2005.

[63] Christian Jansson. VSDP: A MATLAB software package for verified
semidefinite programming. NOLTA, pages 327–330, 2006.

[64] Christian Jansson, Denis Chaykin, and Christian Keil. Rigorous error
bounds for the optimal value in semidefinite programming. SIAM J. Nu-
merical Analysis, 46(1):180–200, 2007.

[65] Thomas Jech. Set Theory. Springer, the third millennium edition, 2003.

[66] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of
probabilistic processes. In LICS, pages 266–277. IEEE Computer Society,
1991.

[67] Marcin Jurdzinski. Small progress measures for solving parity games. In
Horst Reichel and Sophie Tison, editors, STACS, volume 1770 of Lecture
Notes in Computer Science, pages 290–301. Springer, 2000.

[68] Panagis Karazeris. Categorical domain theory: Scott topology, powercat-
egories, coherent categories. Theory and Applications of Categories, 9, 01
2002.

[69] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C.
Morgan. Linear-invariant generation for probabilistic programs: - auto-
mated support for proof-based methods. In SAS, volume 6337 of Lecture
Notes in Computer Science, pages 390–406. Springer, 2010.

[70] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and
James Worrell. Language equivalence for probabilistic automata. In
CAV, volume 6806 of Lecture Notes in Computer Science, pages 526–540.
Springer, 2011.

[71] Dexter Kozen. Automata and Computability. Springer-Verlag, Berlin, Hei-
delberg, 1st edition, 1997.

[72] Dexter Kozen. Kolmogorov extension, martingale convergence, and com-
positionality of processes. In Grohe et al. [42], pages 692–699.

[73] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing.
Information and Computation, 94(1):1–28, 1991.

[74] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simula-
tions. I. Untimed systems. Inf. Comput., 121(2):214–233, 1995.

[75] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simula-
tions. II. Timing based systems. Inf. Comput., 128(1):1–25, 1996.

[76] Saunders Mac Lane. Categories for the Working Mathematician. Springer,
Berlin, 2nd edition, 1998.

[77] Ernest. G. Manes. Predicate Transformer Semantics. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1992.

[78] Clare Martin. Towards a calculus of predicate transformers. In Jǐŕı Wie-
dermann and Petr Hájek, editors, Mathematical Foundations of Computer
Science 1995, pages 489–498, Berlin, Heidelberg, 1995. Springer Berlin Hei-
delberg.

146

[79] MATLAB. https://www.mathworks.com/products/matlab.html.

[80] Stefan Milius. Completely iterative algebras and completely iterative mon-
ads. Information and Computation, 196(1):1 – 41, 2005.

[81] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, Berlin,
Heidelberg, 1982.

[82] David A. Naumann. A recursion theorem for predicate transformers on
inductive data types. Inf. Process. Lett., 50(6):329–336, 1994.

[83] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler,
and P. A. Parrilo. SOSTOOLS: Sum of squares optimization tool-
box for MATLAB. http://arxiv.org/abs/1310.4716, 2013. Avail-
able from http://www.eng.ox.ac.uk/control/sostools, http://www.

cds.caltech.edu/sostools and http://www.mit.edu/\~{}parrilo/

sostools.

[84] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science, pages 167–183, Berlin, Hei-
delberg, 1981. Springer Berlin Heidelberg.

[85] John Power and Daniele Turi. A coalgebraic foundation for linear time
semantics. Electr. Notes Theor. Comput. Sci., 29:259–274, 1999.

[86] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. Stochastic safety
verification using barrier certificates. In 2004 43rd IEEE Conference on
Decision and Control. IEEE , Piscataway, pages 929–934, 2004.

[87] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indi-
ana University Mathematics Journal, 42(3):969–984, 1993.

[88] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web trans-
actions. ACM Trans. Inf. Syst. Secur., 1(1):66–92, 1998.

[89] Pierre Roux, Mohamed Iguernlala, and Sylvain Conchon. A non-linear
arithmetic procedure for control-command software verification. In TACAS
(2), volume 10806 of Lecture Notes in Computer Science, pages 132–151.
Springer, 2018.

[90] Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan. Validat-
ing numerical semidefinite programming solvers for polynomial invariants.
Formal Methods in System Design, 53(2):286–312, 2018.

[91] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, edi-
tor, Developments in Reliable Computing, pages 77–104. Kluwer Academic
Publishers, Dordrecht, 1999. http://www.ti3.tuhh.de/rump/.

[92] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani.
Static analysis for probabilistic programs: inferring whole program proper-
ties from finitely many paths. In PLDI, pages 447–458. ACM, 2013.

[93] Konrad Schmüdgen. Thek-moment problem for compact semi-algebraic
sets. Mathematische Annalen, 289(1):203–206, Mar 1991.

[94] Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1986.

147

[95] Lutz Schröder and Dirk Pattinson. PSPACE bounds for rank-1 modal
logics. ACM Trans. Comput. Log., 10(2), 2009.

[96] Christoph Schubert. Terminal coalgebras for measure-polynomial functors.
In Jianer Chen and S. Barry Cooper, editors, Proc. TAMC 2009, volume
5532 of Lect. Not. in Comp. Sci., pages 325–334. Springer, 2009.

[97] Dana S. Scott. Domains for denotational semantics. In Mogens Nielsen and
Erik Meineche Schmidt, editors, Automata, Languages and Programming,
pages 577–610, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg.

[98] SeDuMi. http://sedumi.ie.lehigh.edu/.

[99] Sam Staton. Relating coalgebraic notions of bisimulation. Logical Methods
in Computer Science, 7(1), 2011.

[100] Jacob Steinhardt and Russ Tedrake. Finite-time regional verification of
stochastic non-linear systems. I. J. Robotics Res., 31(7):901–923, 2012.

[101] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor. Math-
ematical Theory of Domains. Cambridge University Press, New York, NY,
USA, 1994.

[102] Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. Ranking
and repulsing supermartingales for reachability in probabilistic programs.
In ATVA, volume 11138 of Lecture Notes in Computer Science, pages 476–
493. Springer, 2018.

[103] Terence Tao. An Introduction to Measure Theory. Graduate studies in
mathematics. American Mathematical Society, 2011.

[104] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951.

[105] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5, 06 1955.

[106] Paul Taylor. Practical foundations of mathematics. Cambridge studies in
advanced mathematics. Cambridge University Press, Cambridge, New York
(N. Y.), Melbourne, 1999.

[107] Vera Trnková and Jiri Velebil. On categories generalizing universal domains.
Mathematical Structures in Computer Science, 9(2):159–175, 1999.

[108] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1937.

[109] Natsuki Urabe, Masaki Hara, and Ichiro Hasuo. Categorical liveness check-
ing by corecursive algebras. In LICS, pages 1–12. IEEE Computer Society,
2017.

[110] Natsuki Urabe and Ichiro Hasuo. Fair simulation for nondeterministic and
probabilistic buechi automata: a coalgebraic perspective. Logical Methods
in Computer Science, 13(3), 2017.

[111] Natsuki Urabe and Ichiro Hasuo. Quantitative simulations by matrices.
Inf. Comput., 252:110–137, 2017.

148

[112] Natsuki Urabe and Ichiro Hasuo. Categorical büchi and parity conditions
via alternating fixed points of functors. In CMCS, volume 11202 of Lecture
Notes in Computer Science, pages 214–234. Springer, 2018.

[113] Natsuki Urabe and Ichiro Hasuo. Coalgebraic Infinite Traces and Kleisli
Simulations. Logical Methods in Computer Science, Volume 14, Issue 3,
September 2018.

[114] Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic trace
semantics for buechi and parity automata. In CONCUR, volume 59 of
LIPIcs, pages 24:1–24:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2016.

[115] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for
modal logics of programs. J. Comput. Syst. Sci., 32(2):183–221, 1986.

[116] Yde Venema. Automata and fixed point logic: A coalgebraic perspective.
Inf. Comput., 204(4):637–678, 2006.

[117] Thomas von Bomhard. Minimization of tree automata. BSc thesis, Uni-
versität des Saarlandes, September 2008.

[118] VSDP. http://www.ti3.tuhh.de/jansson/vsdp/.

149

