
Weighted Automata Extraction from
Recurrent Neural Networks via
Regression on State Spaces

Takamasa Okudono, Masaki Waga, Taro Sekiyama, Ichiro Hasuo
@ National Institute of Informatics & the Graduate University for Advanced Studies (SOKENDAI), Japan

What’s this?

Experimental results

Method Math stuff…

We did
Weighted
Automata

(WFA)

RNN
Extract
Approx. like we do 𝑑/𝑑𝑡

Approx.

Curve Line

(1) Extraction is
quick and accurate!

(2) Extraction yields
interpretability!

(3) Extraction makes
the inference faster!

• We trained RNNs from randomly generated WFAs and applied the
extraction to the RNNs. The cells show “{error}/{time}.”

• Rows show various settings of the random WFAs / Columns show
extraction methods: RGR(*) are ours, and BFS(*) are naïve baselines.

• Two tables use different ways to generate WFAs (see our paper!)

!

x1300 faster
by using WFA
Instead of RNN

• •We trained RNNs from a weighted language (see “Math stuff”) that
are so complex that any WFAs cannot express it and applied our
extraction.

• The extracted WFAs represent a simplified version of the original
language, and it can be graphically representable as above.

• We used the same RNNs and extracted WFAs and compared
inference time for random inputs.

• Balle and Mohri’s WFA learning algorithm reduces the
problem of checking whether the target RNN and a
given WFA are equivalent in respect of behavior.

• The algorithm is on the left. The main ideas are:
• Run best-first search on Σ∗ and find the difference

between the RNN and the WFA (Line 4-7, 16)
• Find the relation between the RNN and the WFA by

making a map from the internal state of RNN to the
internal state of WFA by GPR (Line 10)

• Prioritize the visit where “the search is not enough.”
(Line 5, 14-15)

• Prune the searching where “the search is enough.”
(Line 12-13)

Future work
[Weighted language] Function Σ∗ → ℝ
[WFA] WFA 𝐴 is a quadruple of

• 𝑄𝐴 states
• 𝛼𝐴 ∈ ℝ𝑄𝐴 initial vector
• 𝛽𝐴 ∈ ℝ𝑄𝐴 final vector
• 𝐴𝜎 𝜎∈Σ ∈ ℝ𝑄𝐴×𝑄𝐴 transition matrix
WFA induces its configuration 𝛿𝐴 and output 𝑓𝐴 by:

• 𝛿𝐴 𝑤1…𝑤𝑛 = 𝛼𝐴
⊤𝐴𝑤1

…𝐴𝑤𝑛

• 𝑓𝐴 𝑤1…𝑤𝑛 = 𝛿𝐴 𝑤1…𝑤𝑛 𝛽
[RNN] RNN 𝑅 is a triple of

• 𝛼𝑅 ∈ ℝ
𝑑 initial state

• 𝛽𝑅 ∈ ℝ𝑑 → ℝ final state
• 𝑔𝑅: ℝ

𝑑 × Σ∗ → ℝ𝑑 transition func.
RNN induces its configuration 𝛿𝑅 and output 𝑓𝐴 by:
• 𝛿𝑅 𝑤1…𝑤𝑛

= ቊ
𝑔𝑅(𝛿𝑅 𝑤1…𝑤𝑛−1), 𝑤𝑛 𝑛 > 0

𝛼𝐴 𝑛 = 0

• 𝑓𝑅 𝑤1…𝑤𝑛 = 𝛽𝑅(𝛿𝑅 𝑤1…𝑤𝑛)

• Improving scalability
Currently, Σ = 15 is the maximum. Can we make
it work for larger |Σ| so that it is applicable for
NLP?

• Giving a theoretical guarantee
It is a heuristics now, and there is no guarantee for
the superiority of our method nor termination.

• Applying for quality assurance of RNN
Model-checking is a field to generate the proof of
the (typically) safety of the system. Can we
combine our technique with model checking of
WFAs and make a technique for the quality
assurance of RNN?

• Forcing the WFA to be probabilistic
Even if the target system outputs the values in
[0, 1], Balle and Mohri’s algorithm does not
necessarily output WFAs whose output is in it.
Can we fix it and improve the applicability to the
RNNs whose outputs are probabilistic?

This work is partially supported by JST ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603),
JSPS KAKENHI Grant Numbers JP15KT0012, JP18J22498, JP19K20247, JP19K22842, and JST-Mirai Program Grant Number JPMJMI18BA, Japan.

