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Summary

Interpolation of jointly infeasible predicates plays important roles in various
program verification techniques such as invariant synthesis and CEGAR. In-
trigued by the recent result by Dai et al. [2] that combines real algebraic
geometry and SDP optimization in synthesis of polynomial interpolants, the
current paper contributes its enhancement that yields sharper and simpler
interpolants. The enhancement is made possible by: theoretical observations
in real algebraic geometry; and our continued fraction-based algorithm that
rounds off (potentially erroneous) numerical solutions of SDP solvers. Experi-
ment results support our tool’s effectiveness; we also demonstrate the benefit
of sharp and simple interpolants in program verification examples.

Motivation

I An interpolant I of formulas A and B that satisfy |= ¬(A ∧ B) satisfying (1)
|= A → I , (2) |= ¬(I ∧ B) and (3) I contains only variables that appear both
in A and B.

I A polynomial interpolant is a variant of interpolants for the theory of
polynomials.
I Atomic propositions are equalities (=), inequalities (≥) and strict inequalities (>) of

polynomials.
I For example, a formula I = (y > 0) is an interpolant of A = (y > x ∧ y > −x) and

B = (y ≤ 0) (See Figure 1, Input 1).
I Polynomial interpolants are potentially useful for the verification of

polynomial programs (imperative programs that support expressions with
finitely many additions and multiplications).
I Interpolants play an important role in CEGAR [1] (a method of predicate abstraction and

program verification)
I We found that the lack of two properties below is an obstacle of the

verification in the manner of CEGAR with polynomial interpolants:
I Sharpness:

I An interpolant I of A and B is sharp ⇐⇒ the region of A and B are “touching”.
I For example, A = (y > x ∧ y > −x) and B = (y ≤ 0) in Figure 1, Input 1 are

“touching”.
I The method of Dai et al. [2] cannot generate any sharp interpolants.

I Simplicity:
I An interpolant is simple if it can be expressed with coefficients of fewer digits.
I For example, xa + 2ya ≥ 0 is simpler than

1.86858 × 10−10 + 54.1800xa + 108.3601ya ≥ 0.
I The method of Dai et al. [2] tends to yield less simple interpolants.
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Figure 1: Experiments. The blue, orange and green areas are for A, B, I , respectively.

Method for Sharpness

I The workflow is shown in Figure 2.
I The conversion from (1) to (2) in Figure 2 is based on this proposition:

Let T and T ′ be
T =

(
f1(~X , ~Y ) ≥ 0 , . . . , fs(~X , ~Y ) ≥ 0 , g1(~X , ~Y ) > 0 , . . . , gt(~X , ~Y ) > 0 ,

h1(~X , ~Y ) = 0 , . . . , hu(~X , ~Y ) = 0

)
,

T ′ =

(
f ′1(~X , ~Z ) ≥ 0 , . . . , f ′s ′(~X , ~Z ) ≥ 0 , g ′

1(
~X , ~Z ) > 0 , . . . , g ′

t ′(
~X , ~Z ) > 0 ,

h′1(~X , ~Z ) = 0 , . . . , h′u′(~X , ~Z ) = 0

) (1)

where ~X denotes the variables that occur in both of T , T ′.
Assume there exist
f ∈ C(f1, . . . , fs, g1, . . . , gt) , f ′ ∈ C(f ′1 , . . . , f ′s ′, g ′

1, . . . , g ′
t ′) ,

g ∈ SC(g1, . . . , gt) , h ∈ I(h1, . . . , hu) , and h′ ∈ I(h′1, . . . , h′u′)

such that f + f ′ + g + h + h′ = 0 . (2)
Then T and T ′ are disjoint. Moreover S := (f + g + h > 0) satisfies
the conditions of an interpolant of T and T ′, except for Condition 3.

I Algebraic structure C, SC and I are cones, strict cones, and ideals,
respectively.
I A strict cone S ⊂ R[~X , ~Y , ~Z ] is a subset of the polynomial ring that satisfies

[f , g ∈ S =⇒ (f + g ∈ S ∧ fg ∈ S)] and R>0 ⊂ S.
I Using this proposition enables us to generate sharp interpolants, which was

impossible in the method of Dai et al. [2]

Method for Sharpness (Cont’d)

(1) Formulas

𝐴, 𝐵
(2) Polynomial
Optimization

Problem

(3) SDP
Problem

(4) Numerical
Solution

of (3) 

(5) Numerical
Solution

of (2) 

(6) Interpolant

𝐼

U
s
e
 S

D
P

 S
o
lve

r

Parrilo’s Method
Method for Sharpness

Figure 2: The Workflow of the Method for Sharpness

Method for Simplicity

I The workflow is shown in Figure 3.
I Modifying “Method for Sharpness” to get the simplicity.
I Our main idea is “Assume that SDP solvers return a complicated solution that

is shifted from a simple solution by numerical error, and guess the original
simple solution by simplifying the complicated solution.”

I We use our simplification-of-ratio algorithm in the step (5) at Figure 3.
I Our simplification-of-ratio algorithm takes depth parameter d and a ratio a1 : · · · : an then

returns the d-th simplified ratio a′1 : . . . , a′n.
I By increasing d , the simplified ratio a′1 : . . . , a′n gets faithful to the original ratio a1 : · · · : an

and loses simplicity.
I For example, the simplifications of (46.7375 : 155.0975 : 60.1733) are
(1 : 3 : 1) → (3 : 10 : 4) → (31 : 103 : 40) → (97 : 322 : 125) → . . . .

I The ratio of the coefficients of polynomials is sufficient to determine a formula, so we do
not simplify the coefficients itself, but simplify the ratio (Vapnik’s principle).

I The validity of the simplified solution is checked at (6) in Figure 3, so the
generated interpolant at (8) is guaranteed to be a valid interpolant.
I The method of Dai et al. [2] does not hold this property, so the generated interpolant could

be spurious.l
I This is a best-effort method. That means, the validation at (5) in Figure 3

might fail and the method might return no interpolants even if there exists an
interpolant.
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Figure 3: The Workflow of the Method for Sharpness and Simplicity
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