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Abstract—A modal logic that is strong enough to fully charac-
terize the behavior of a system is called expressive. Recently, with
the growing diversity of systems to be reasoned about (probabilis-
tic, cyber-physical, etc.), the focus shifted to quantitative settings
which resulted in a number of expressivity results for quantitative
logics and behavioral metrics. Each of these quantitative expres-
sivity results uses a tailor-made argument; distilling the essence of
these arguments is non-trivial, yet important to support the design
of expressive modal logics for new quantitative settings. In this
paper, we present the first categorical framework for deriving
quantitative expressivity results, based on the new notion of
approximating family. A key ingredient is the codensity lifting—a
uniform observation-centric construction of various bisimilarity-
like notions such as bisimulation metrics. We show that several
recent quantitative expressivity results (e.g. by König et al. and
by Fijalkow et al.) are accommodated in our framework; a new
expressivity result is derived, too, for what we call bisimulation
uniformity.

I. INTRODUCTION

a) (Quantitative) Modal Logics and Their Coalgebraic
Unification: The role of different kinds of modal logics is per-
vasive in computer science. Their principal functionality is to
specify and reason about behaviors of state-transition systems.
With the growing diversity of target systems (probabilistic,
cyber-physical, etc.), the use of quantitative modal logics—
where truth values and logical connectives can involve real
numbers—is increasingly common. For such logics, however,
providing the necessary theoretical foundations takes a signif-
icant effort and is often done individually for each variant.

It is therefore desirable to establish unifying and abstract
foundations once and for all, which readily instantiate to
individual modal logics. This is the goal pursued by the
study of coalgebraic modal logic [1]–[7], which builds on
the general categorical modeling of state-transition systems as
coalgebras [8], [9].

b) Expressivity of Modal Logics: When using a concrete
modal logic, there are several important properties that we
expect its metatheory to address, such as soundness and com-
pleteness of its proof system. In this paper, we are interested
in the adequacy and expressivity properties of the logic. These
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properties are about comparison between 1) the expressive
power of the logic, and 2) some notion of indistinguishability
that is inherent in the target state-transition systems.

A prototypical example of such notions of indistin-
guishability is bisimilarity [10]. Expressivity with respect to
bisimilarity—that modal logic formulas can distinguish non-
bisimilar states—is the classic result by Hennessy and Mil-
ner [11]. Adequacy, the opposite of expressivity, means that
semantics of modal formulas is invariant under bisimilarity,
and holds in most modal logics. In contrast, expressivity is
a desired property but not always true. Expressivity, when it
holds, relies on a delicate balance between the choice of modal
operators, the underlying propositional connectives, and the
“size” of (branching of) the target state-transition systems.

c) Quantitative Expressivity: The aforementioned inter-
ests in quantitative modal logics have sparked research efforts
for quantitative expressivity. In quantitative settings, the inher-
ent indistinguishability notion in target systems is quantitative,
too, typically formulated in terms of a bisimulation pseudo-
metric (“how much apart the two states are”) that refines the
quantitative notion of bisimilarity (“if the two states are indis-
tinguishable or not”) [12], [13]. In the expressivity problem,
such an indistinguishability notion is compared against the
quantitative truth values of logical formulas.

Recent works that study quantitative expressivity in-
clude [13]–[18]; they often involve coalgebraic generalization,
too, since quantitative modal logics often have immediate vari-
ations. Their quantitative expressivity proofs are much more
mathematically involved compared to qualitative expressivity
proofs. This is because the aforementioned balance between
syntax and semantic equivalences is much more delicate.
Specifically, target systems are quantitative and thus exhibit
continuity of behaviors, while logical syntax is inherently
disconnected, in the sense that each logical formula is an
inductively defined and thus finitary entity. Expressivity needs
to bridge these two seemingly incompatible worlds.

In order to do so, each of the expressivity proofs in [14]–
[18] uses some kind of “approximation.” However, each of
these arguments has a specialized, tailor-made flavor: Stone–
Weierstrass-like arguments for metric spaces [17], the unique
structure theorem for analytic spaces [15], and so on. It does
not seem easy to distill the essence that is common to different
quantitative expressivity proofs. Indeed, there has not been a978-1-6654-4895-6/21/$31.00 ©2021 IEEE



coalgebraic framework that unifies them.
d) Categorical Unification of Quantitative Expressivity

via Codensity and Approximation: We present the first cat-
egorical framework that uniformly axiomatizes different ap-
proximation arguments—it uses a fibrational notion of approx-
imating family—and unifies different quantitative expressivity
results.

Our framework hinges on the construction called the coden-
sity lifting [19], [20]; it is a general method for modeling a
variety of bisimilarity-like notions (bisimilarity, probabilistic
bisimilarity, bisimulation metric, etc.). The codensity lifting
uses not only coalgebras (for unifying different state-transition
systems) but also fibrations for different observation modes;
the latter include Boolean predicates, quantitative/fuzzy pred-
icates, equivalence relations, pseudometrics, topologies, etc.
This use of fibrations provides flexibility to accommodate a
variety of quantitative bisimilarity-like notions.

The codensity lifting, while defined in abstract categorical
terms, has clear observational intuition (see §III-C). It also
gives a class of codensity bisimilarity games that charac-
terize a variety of (qualitative and quantitative) bisimilarity
notions [20] (see also §III-C).

Our key contribution of a categorical formalization of ap-
proximation is enabled by the formalization of the codensity
lifting. It has a similar observational intuition, too: see §IV-A,
where we characterize an approximating family of observations
as a “winnable” set of moves in a suitable sense.

On top of our fibrational notion of approximating family,
we establish a general expressivity framework, which is the
first to unify existing quantitative expressivity results includ-
ing [15]–[17]. In our unified framework, we have two proof
principles for expressivity—Knaster–Tarski (Thm. IV.5) and
Kleene (Thm. IV.7)—that mirror two classic characterizations
of greatest fixed points. Our general framework is presented in
terms of predicate lifting [2], [3]. This is mostly for presenta-
tion purposes (showing concrete syntax is easier this way). A
more abstract and fully fibrational recap of our framework—
where a modal logic is formalized with a dual adjunction [4]–
[7]—is found in §VIII.

We demonstrate our general framework with three ex-
amples: expressivity for the Kantorovich bisimulation met-
ric (from [17], §V); that for Markov process bisimilarity
(from [15], §VI); and that for the so-called bisimulation uni-
formity (§VII). Both the Knaster–Tarski and Kleene principles
are used for proofs. See Table I. The last is a new expressivity
result that is not previously found in the literature.

We note that the role of the notion of approximating family
is as a useful axiomatization: it tells us what key lemma to
prove in an expressivity proof, but it does not tell how to prove
the key lemma. The proof of this key lemma is where the
technical hardcore lies in existing expressivity proofs (by a
Stone–Weierstrass-like result in [17], by the unique structure
theorem in [15], etc.). For the new instance of bisimulation
uniformity (§VII), the general axiomatization of approximating
family allowed us to discover a result we need in a paper [21]
that is seemingly unrelated to modal logic. The same result

guided us in the design of modal logic, too, especially in the
choice of propositional connectives.

e) Contributions: We summarize our contributions.
• The notion of approximating family, whose instances

occur in the key steps of existing quantitative expressivity
proofs. It is built on top of the codensity lifting.

• We use it in a unified categorical expressivity framework.
It offers two proof principes (Knaster–Tarski and Kleene)
that have different applicability (Table I).

• The framework is instantiated to two known expressivity
results [15], [17] and one new result (§VII).

• The framework is given an abstract and fully fibrational
recap (§VIII) that exposes further fibrational structures.
f) Related Work: Here we list related work considering

quantitative expressivity.
Our framework is parameterized both in the kind of coalge-

bra and in the observation mode. To our knowledge, the only
existing work with this generality is [22] which combines coal-
gebras and fibrations to provide a general setting for proving
expressivity. However, that approach does not accommodate
approximation arguments, therefore failing to cover any of
the aforementioned quantitative expressivity proofs [14]–[18].
Our §VIII can be seen as an extension of [22]; our main novelty
is the accommodation of approximation arguments and thus
quantitative expressivity results, as we already discussed.

The idea of behavioral metrics was first proposed in [12].
In the setting of category theory, the behavioral pseudometric
is introduced in [14] in terms of coalgebras in the category
PMet1 of 1-bounded pseudometric spaces, and a correspond-
ing expressivity result is established. Many other formulations
of quantitative bisimilarity are based on fibrational coinduc-
tion [23]. The work [24] discusses general behavioral metrics
(but not modal logics); expressivity w.r.t. these metrics is
studied in [17] for general Set-coalgebras. The line of work
on codensity bisimilarity—including [19], [20] and the current
work—follows this fibrational tradition, too.

A recent work [18] uses a different formulation of
bisimilarity-like notions: it does not use fibrations or functor
liftings, but uses so-called fuzzy lax extensions of functors.
This approach is a descendant of relators [25]; seeking the
connection to these works is future work.

g) Organization: After recalling preliminaries in §II, we
axiomatize the data under which we study expressivity—it is
called an expressivity situation—in §III. In §IV we define our
key notion of approximating family, from which we derive the
Knaster–Tarski and Kleene proof principles for expressivity.
§V–VII present instances of our framework: two known [15],
[17] and one new (§VII). In §VIII, we recap our framework in
more abstract terms, and identify expressivity as a problem of
comparing coinductive predicates in two different fibrations.

Most proofs are deferred to the appendix.

II. PRELIMINARIES

We use coalgebras (§II-A) to accommodate different types of
systems, and fibrations (§II-B) to accommodate different “ob-



TABLE I: Examples of expressivity situations. The non-shaded rows describe data in expressivity situations, and the shaded
ones describe the resulting bisimilarity notions and modal logics, i.e. two constructs compared in the problem of expressivity.

parameter [17] (§V) proved by Kleene [15] (§VI) proved by Knaster–Tarski §VII proved by Knaster–Tarski
C Set Meas Set

category of spaces sets measurable sets sets
B B (arbitrary) (G≤1 )A B (arbitrary)

behavior functor continuous-space Markov processes
p : E→ C PMet1 → Set EqRelMeas →Meas Unif → Set

observation mode 1-bounded pseudometrics equiv. relations uniformity
Ω ∈ C [0, 1] 2 = {0, 1} [0, 1]

truth-value domain the unit interval with the discrete σ-algebra the unit interval
Ω ∈ EΩ

observation predicate
([0, 1], de)

Euclidean metric
(2,=)

equality
([0, 1],Ue)

metric uniformity
(τλ : BΩ→ Ω)λ∈Λ arbitrary but Λ = A× (Q ∩ [0, 1]) arbitrary but
observation modality must satisfy Asm. V.3 τa,r((µa)a∈A) = 1 iff µa(1) > r must satisfy Asm. VII.6

resulting
bisimilarity-like notion

B-bisimulation
metric [17]

probabilistic
bisimilarity

bisimulation
uniformity

Σ
propositional connectives

>,¬,min, and
(	q) for q ∈ Q ∩ [0, 1]

>,∧ 1,min, and
(r+), (r×) for r ∈ R

(fσ)σ∈Σ

propositional structure
Zadeh logic connectives on [0, 1] meet-semilattice

with 0 v 1
affine lattice

structure on R
resulting modal logic

(modal operators are (♥λ)λ∈Λ)
The logic in [17], generalization of

Zadeh fuzzy modal logic in [16]
PML∧ [15] A new

modal logic

servation modes.” Then quantitative bisimilarity-like notions
are formulated as coinductive predicates (§II-C).

A. Coalgebra

Coalgebras are commonly used as a categorical presentation
of state-based transition systems [8], [9]. Let C be a category
and B : C→ C be a functor. A B-coalgebra is a pair (X,x) of
an object X ∈ C and a C-arrow x : X → BX; this coalgebra
is often denoted simply by x : X → BX . A morphism of B-
coalgebras from (X,x) to (Y, y) is a C-arrow f : X → Y such
that y ◦ f = Bf ◦x.

The theory of coalgebras generalizes process theory and
automata theory, where our interests are principally in the
observational behaviors of transition systems that are insen-
sitive to internal states. Bisimilarity by Park and Milner [10]
is a prototype notion that captures such black-box behaviors.
One of the early successes of coalgebras is a categorical
characterization of bisimilarity that works for different B’s,
hence for different types of systems. In the theory, coalgebra
morphisms are identified as “behavior-preserving maps.”

A final B-coalgebra is ζ : Z → BZ such that there is a
unique morphism from each coalgebra (X,x) to (Z, ζ). It plays
an important role as a fully abstract domain of B-behaviors.

This paper’s use of coalgebras goes beyond what we de-
scribed so far. We follow [23], [26]–[28] and use them in
combination with fibrations (§II-B). In this case, a coalgebra
in a fiber is understood as a predicate (or relation, pseu-
dometric, etc.) with a suitable invariance property (§II-C).
The importance of final coalgebras remains, since those in
a fiber—called coinductive predicates in §II-C—characterize
coinductively defined bisimilarity-like notions.

B. Fibration

Fibrations give a categorical way of organizing indexed
entities. Roughly corresponding to indexed categories Cop →

Cat, a fibration p : E → C can be thought of as a collection
(EC)C∈C of categories EC given for each C ∈ C, together
with a suitable “pullback” action of arrows of C. In a fibration,
these fiber categories EC are patched up to form a single total
category E, a formulation that accommodates many structural
reasoning principles. See [29] for a comprehensive account.

The definition of fibration is simpler if restricted to posetal
fibration; see e.g. [20]. We need the following general defini-
tion for the discussions in §VIII.

Definition II.1 (fibration). Let p : E→ C be a functor.

• An E-arrow f : X → Y is said to be Cartesian if it has the
following universal property: for each E-arrow h : Z →
Y , if ph (in C) factors through pf (say ph = pf ◦ k,
see below middle), then there exists a unique E-arrow
g : Z → X such that h = f ◦ g and pg = k.

E

p

��

Z
h

''
g ))

X
f
// Y i∗Y

ĩY // Y

pZ ph

''
k
))

C pX
pf
// pY C

i
// pY

• The functor p is called a fibration if, for each Y ∈ E
and each C-arrow i : C → pY , there exists an E-arrow
ĩY : i∗Y → Y such that p(̃iY ) = i and ĩY is Cartesian.
See above right. The object i∗Y ∈ E is called the pullback
of Y along i (it is unique up-to isomorphism); the arrow
ĩY is called the Cartesian lifting of i with respect to Y .

We say that X ∈ E is above C ∈ C if pX = C; an E-arrow
above a C-arrow is defined similarly. A fibration p gives rise
to the fiber category EC for each C ∈ C: it consists of all the
objects above C and all the arrows above idC . The category
E is called the total category of the fibration. Each C-arrow
i : C → C ′ gives rise to a reindexing functor i∗ : EC′ → EC .



A fibration p : E→ C is posetal if each fiber EC is a poset.
It is a CLatu-fibration if each fiber is a complete lattice, and
each reindexing functor preserves arbitrary meets

d
.

CLatu-fibrations form a special class of topological func-
tors [30]. We prefer the fibrational presentation, following
works on coinductive predicates [19], [22], [23], [26]–[28].

Fibrations in general organize various indexed structures. In
this paper, however, our examples share the following intuition.
• The base category C is that of sets (or spaces, struc-

tured sets, etc.) and functions between them (that pre-
serve/respect those structures imposed on the objects).
We often assume an endofunctor B : C → C, for which
coalgebras model state-based systems, as in §II-A.

• A fibration p : E → C specifies the observation mode,
providing an additional reasoning structure for spaces in
C. Such a structure can be predicates, binary relations,
pseudometrics, topologies, etc. (Example II.3). In particu-
lar, a bisimilarity-like notion over X is an object P ∈ EX .

For the sake of presentation, we fix the following terminology.

Definition II.2 ((fib.) predicate). In a fibration p : E→ C, an
object P ∈ EX is called a (fibrational) predicate over X .

Note that a (fibrational) predicate can be in fact a binary
relation, a pseudometric, etc., depending on the choice of
p : E→ C. This abuse of words will be useful in §II-C.

The coming examples are all CLatu-fibrations; arrows in
fibers are denoted by v. The intuition of P v Q is that the
predicate P is more fine-grained and discriminating than Q.

Example II.3. (Pred → Set) An object of Pred is a
pair (X,P ) of a set X and a predicate P ⊆ X . An arrow
f : (X,P ) → (Y,Q) in Pred is a function f : X → Y
such that f(x) ∈ Q whenever x ∈ P . The obvious forgetful
functor Pred → Set is a fibration, with pullbacks given by
f∗(Y,Q) = (X, f−1Q). Each fiber PredX is the powerset
PX with v = ⊆ as arrows.

(ERel→ Set,EqRel→ Set,Pre→ Set) ERel→ Set
is a binary variant of Pred→ Set: an object (X,R) of ERel
is a set X with an endorelation R ⊆ X × X . Pullbacks are
given by inverse images, too. These relations are restricted to
equivalence relations and preorders, in EqRel → Set and
Pre→ Set, respectively.

(PMet1 → Set) PMet1 consists of sets with 1-bounded
pseudometrics and non-expansive maps. A pseudometric d is
much like a metric but allows d(x, y) = 0 for x 6= y, a
common setting where bisimulation metrics are formulated.
1-boundedness (that d(x, y) ≤ 1 for all x, y) is assumed
for technical convenience—any bound would do, such as
∞. The forgetful functor PMet1 → Set is a fibration, in
which pullbacks equip a set with an induced pseudometric:
f∗(Y, e) =

(
X,λ(x, x′). e(f(x), f(x′))

)
. A consequence is

that the fiber (PMet1)X consists of all 1-bounded pseudo-
metrics over X ordered by v = ≥—this concurs with the
above intuition that d is more discriminating if d v d′.

(EqRelMeas → Meas) This is a measurable variant of
EqRel → Set; Meas is the category of measurable spaces

and measurable maps. An object (X,R) of EqRelMeas is
given by a measurable set X , together with R ⊆ X ×X .

C. Coinductive Predicate in a Fibration

The combination of coalgebras and fibrations has been
actively studied, starting in [23] and more recently e.g. in [20],
[22], [26]–[28]. Fibrations introduce additional reasoning struc-
tures (§II-B) which allow to accommodate bisimilarity-like
notions beyond classical bisimilarity (including bisimilarity
pseudometrics, see e.g. [20], [31]). In fact, these bisimilarity-
like notions are defined coinductively, i.e., as suitable greatest
fixed points, which are then identified with coalgebras in
a fiber. Here we shall review this fibrational machinery for
coinductive reasoning for coalgebras.

Definition II.4 (functor lifting). Let p : E→ C be a fibration,
and B : C→ C be a functor. A functor B : E→ E is a lifting
of B along p if p ◦B = B ◦ p. We say that a lifting B is
fibered if it preserves Cartesian arrows.

A functor lifting determines the type of coinductive predi-
cates through a predicate transformer.

Definition II.5 ((fibrational) predicate transformer x∗ ◦B). In
the setting of Def. II.4, let B be a lifting of B, and x : X →
BX be a B-coalgebra. We then obtain an endofunctor

x∗ ◦B : EX → EX by the composite EX
B−→ EBX

x∗−→ EX .

The functor x∗ ◦B is called the predicate transformer induced
by B over the B-coalgebra x.

It is standard to characterize bisimilarity as a suitable
greatest fixed point (gfp). Accordingly, we are interested in
the gfp of the predicate transformer x∗ ◦B. The latter amounts
to the final x∗ ◦B-coalgebra, in our current setting where the
fiber EX is not necessarily a poset but a category.

Definition II.6 (coinductive predicate ν(x∗ ◦B) ∈ EX , and
invariant). In the setting of Def. II.5, the carrier of the final
x∗ ◦B-coalgebra (if it exists) is called the B-coinductive
predicate over x. It is denoted by ν(x∗ ◦B) ∈ EX .

An x∗ ◦B-coalgebra is called a B-invariant over x.

The names in the above definition reflect the common reason-
ing principle for gfp specifications (such as safety), namely
that an invariant underapproximates (and thus witnesses) the
gfp specification. Each B-invariant indeed witnesses the B-
coinductive predicate, in the sense that there is a unique
morphism from the former to the latter.

Example II.7 (Pred → Set). Liftings of a functor B along
Pred → Set are well-studied—they correspond to the so-
called predicate liftings [2], [3]. For example, for the powerset
functor B = P , two liftings P�,P♦ are given by

P�(X,P ) =
(
PX, �P = {U ⊆ X | U ⊆ P}

)
,

P♦(X,P ) =
(
PX, ♦P = {U ⊆ X | U ∩ P 6= ∅}

)
.

Thus a choice of lifting here amounts to a choice of modality.



Coinductive predicates in this setting represent various safety
properties. On a Kripke frame x : X → PX , the coinductive
predicate ν(x∗ ◦P♦) ⊆ X designates those states from which
there is an infinite path. A similar example appears in [26].

Example II.8 (ERel → Set,EqRel → Set,Pre → Set).
In these relational examples, a coinductive predicate embodies
some bisimilarity-like relation—more specifically, the greatest
among those relations which are preserved by one-step transi-
tions. A class of examples is given by coalgebraic bisimilarity:
see [23], where they assign a specific choice of lifting B to
each functor B. Other examples include similarity [32] (see
also [22, §4.3]), probabilistic bisimilarity [20] and the language
equivalence between deterministic automata [20].

Example II.9 (PMet1 → Set). A prototypical example is
given as follows. Let B = D≤1, the subdistribution functor that
carries a set X to D≤1X = {ξ : X → [0, 1] |

∑
x∈X ξ(x) ≤

1}. Its action on arrows is given by push-forward distributions.
One lifting D≤1 of D≤1 along PMet1 → Set is given by
the Kantorovich metric: D≤1(X, d) = (D≤1X,Kd), where
Kd(ξ, ξ′) is given by

supf : (X,d)→ne[0,1]

∣∣∑
x∈X f(x) · ξ(x)−

∑
x∈X f(x) · ξ′(x)

∣∣.
In the above supremum, f ranges over all nonexpansive
functions of the designated type. The coinductive predicate for
D≤1 coincides with the bisimulation metric from [13].

The above construction of a lifting B along PMet1 → Set
has been generalized to an arbitrary functor B. This is called
the Kantorovich lifting and is introduced in [24]. It uses a
map B[0, 1] → [0, 1] as a parameter; the latter is much like
a choice of a modality. We study this general setting in §V,
following [17] but identifying the Kantorovich lifting as a
special case of the codensity lifting (Def. III.8).

Here is an abstract account of coinductive predicates.

Proposition II.10 (from [27, Prop. 4.1 and 4.2]). Each
lifting B of B along p : E → C induces a functor
CoAlg(p) : CoAlg(B) → CoAlg(B); it carries a coal-
gebra U → BU (in E) to pU → B(pU) (in C). More-
over, the functor CoAlg(p) is a fibration if B is fibered.
The fiber CoAlg(B)(X,x) over a coalgebra x : X → BX
coincides with the category CoAlg(x∗ ◦B) of B-invariants
over (X,x).

Lemma II.11 (from [20], [27]). Let B be a lifting of B along
p. If p is a CLatu-fibration, then ν(x∗ ◦B) exists for each
B-coalgebra x : X → BX—it is the gfp of the monotone map
x∗ ◦B over the complete lattice EX . Moreover, if B is fibered,
then these coinductive predicates are preserved by reindexing
along coalgebra morphisms.

Notation II.12. Final objects shall be denoted with subscripts
(1E, 1X , etc.) to clarify in which category it is final, unless it
is obvious. We will also write > for the maximum element
of a poset, that is, the final object when the poset is thought
of as a category. This typically happens with the final object
>X ∈ EX in a fiber EX of a CLatu-fibration.

III. EXPRESSIVITY SITUATION

On top of the above preliminaries, we fix the format of
categorical data under which we study expressivity. It is called
an expressivity situation. While it may seem overwhelming, we
show that the data arises naturally, with clear intuition from the
viewpoints of modal logics and observations (§III-B–III-C).

A. Definition

Definition III.1. An expressivity situation S =
(p,B,Ω,Ω,Σ,Λ, (fσ)σ∈Σ, (τλ)λ∈Λ) is given by the following.
• A CLatu-fibration p : E→ C.
• A functor B : C→ C (a behavior functor).
• An object Ω ∈ C (a truth-value object) equipped with

finite powers (Ωn ∈ C for n ∈ N), and another object Ω
(an observation predicate) above it. It follows that Ω also
has finite powers [29, Prop. 9.2.1].

• A ranked alphabet Σ of propositional connectives and
a family of arrows

(
fσ : Ωrank(σ) → Ω

)
σ∈Σ

(a propo-
sitional structure). Moreover, we require that each
fσ : Ωrank(σ) → Ω has a lifting gσ : Ωrank(σ) → Ω (in
E) such that pgσ = fσ .

• A set Λ of modality indices and a family of algebras
(τλ : BΩ→ Ω)λ∈Λ (observation modalities).

Roughly speaking, Σ and Λ are used for modal logic syntax,
and C, B, Ω, (fσ)σ∈Σ, and (τλ)λ∈Λ are used for modal logic
semantics. The other constructs (p and Ω) are there for defining
a bisimilarity-like notion.

In what follows, we formulate the expressivity problem
on top of Def. III.1, explaining the role of each piece of
data in an expressivity situation S . More specifically, we let
S induce the following constructs: 1) the modal logic LS

(Def. III.2 and III.4); 2) the fibrational logical equivalence
LES (x) induced by LS (Def. III.6); and 3) the bisimilarity-
like notion BisimΩ,τ (x) as a codensity bisimilarity (Def. III.9).
Comparison of the last two is the problem of expressivity.
As an illustrating example, we use an expressivity situation
SKMM that arises from the real-valued logic M(Λ) in [17]
(see also §V).

B. Syntax and Semantics of Our Logic LS

The syntax of modal logic is specified by the propositional
connectives in Σ and the modality indices in Λ.

Definition III.2 (LS ). Let S be an expressivity situation in
Def. III.1. The modal logic LS has the following syntax.

ϕ,ϕ1, . . . , ϕn ::= σ(ϕ1, . . . , ϕrank(σ)) (σ ∈ Σ)

| ♥λϕ (λ ∈ Λ)

We also let LS denote the set of all formulas.

Example III.3. Let Λ be a set. To model the modal logic
M(Λ) in [17], we let Σ = {>0,min2,¬1} ∪ {(	q)1 | q ∈
Q ∩ [0, 1]}. Then the syntax is given by

ϕ,ϕ1, . . . , ϕn ::= > | ¬(ϕ) | min(ϕ1, ϕ2)

| (	q)ϕ (q ∈ Q ∩ [0, 1]) | ♥λϕ (λ ∈ Λ).



Identifying ♥λ with [λ] in the original notation, this recovers
the syntax of M(Λ) in [17].

Given a coalgebra x : X → BX of the behavior functor B,
the semantics of each formula is a C-arrow from the state space
X to the truth-value object Ω, inductively defined as follows.

Definition III.4. Let S be an expressivity situation in
Def. III.1 and let x : X → BX be a B-coalgebra. For each
ϕ ∈ LS , the interpretation JϕKx : X → Ω of ϕ with respect
to x is defined inductively as follows:

Jσ(ϕ1, . . . , ϕrank(σ))K = fσ ◦〈Jϕ1K, . . . , Jϕrank(σ)K〉, (σ ∈ Σ)

J♥λϕK = τλ ◦(BJϕK) ◦x. (λ ∈ Λ)

Example III.5. Recall Ex. III.3. Let B : Set → Set be an
endofunctor, and Ω be the unit interval [0, 1]. We specify the
propositional structure (fσ : [0, 1]rank(σ) → [0, 1])σ∈Σ by:

f>() = 1, fmin(x, y) = min(x, y),

f¬(x) = 1− x, f	q(x) = max(x− q, 0).

Here min plays the role of conjunction. Let (τλ : B[0, 1] →
[0, 1]) be a family of observation modalities, and x : X → BX
be a B-coalgebra. Then, the semantics JϕKx of each formula
ϕ in Def. III.4 coincides with the definition in [17, §3.2].

The following definition generalizes, in fibrational terms, the
conventional definition that two states are logically equivalent
if each formula’s truth values coincide.

Definition III.6 (fibrational logical equivalence LES (x)). Let
S be an expressivity situation in Def. III.1 and let x : X →
BX be a B-coalgebra. The fibrational logical equivalence
LES (x) with respect to x is a predicate above X defined by

LES (x) =
d
ϕ∈LS

JϕK∗xΩ, where
E
p��

JϕK∗xΩ // Ω

C X
JϕKx

// Ω.

Example III.7. Recall Ex. III.5. To define a logical distance,
we let p be the CLatu-fibration PMet1 → Set (Ex. II.3),
and Ω be the usual Euclidean metric de on [0, 1].

Then, for each B-coalgebra x : X → BX , the pseudometric
dLx := LESKMM(x) is equivalently described by

dLx (s, t) = supϕ de
(
JϕKx(s), JϕKx(t)

)
,

where ϕ ranges over the modal formulas. Thus Def. III.6
coincides with the notion of logical distance in [17, Def. 25].

C. Codensity Lifting and Codensity Bisimilarity

We unify different quantitative bisimilarity notions—such
as probabilistic bisimilarity and bisimulation metric—using
codensity bisimilarity. This is what is compared with the fibra-
tional logical equivalence (Def. III.6). Codensity bisimilarity
arises natually from the notion of codensity lifting [19], [20].

E
p
��

k∗Ω // Ω

C X
k // Ω

The codensity lifting, although it is for-
mulated in abstract terms (Def. III.8), has
clear observational intuition. The coden-
sity lifting B

Ω,τ
: E → E is defined for the following data,

which is part of the data in an expressivity situation (Def. III.1).

• A fibration p : E→ C for the observation mode (§II-B).
• An endofunctor B : C → C; which is to be lifted

(Def. II.4). Our target system is a B-coalgebra (§II-A).
• A truth value domain Ω ∈ C. Here we use “Ω-valued

observations,” that is, arrows k : X → Ω in C (cf. the
diagram above).

• An observation predicate Ω ∈ E above Ω. It is a “template
of observations,” whose pullback k∗(Ω) by an observation
k defines an indistinguishability notion on X . See above.
For E = EqRel, a common example is Ω = 2 and Ω =
(2,Eq2 ⊆ 2× 2); it means we distinguish elements of X
if they are mapped to different elements by an observation
k : X → 2.

• A family of observation modalities (τλ : BΩ → Ω)λ∈Λ.
An observation modality τλ specifies how observations
interact with the behavior type B. Technically, it lifts

– an observation k : X → Ω of X
– to an observation BX Bk−−→ BΩ

τλ−→ Ω of BX .
Given the above data with the observational intuition, the
codensity lifting is defined as the “indistinguishability with
respect to lifted Ω-valued observations,” as below.

Definition III.8 (codensity lifting). Let S be an expressivity
situation in Def. III.1. The codensity lifting of B with respect
to Ω and (τλ)λ∈Λ is the functor B

Ω,τ
: E→ E, defined by

B
Ω,τ

P =
d
λ∈Λ,h∈E(P,Ω)(τλ ◦B(ph))∗Ω. (1)

E
p
��

• // Ω

C BX
B(ph)
// BΩ

τλ // Ω

Some explanations are in or-
der. An arrow h : P → Ω is a le-
gitimate Ω-valued observation—
it is a function ph : X → Ω that
respects indistinguishability predicates P and Ω. The latter
legitimacy requirement instantiates to predicate- and relation-
preservation, nonexpansiveness, continuity, etc., depending on
the choice of the fibration p.

The predicate (τλ ◦ B(ph))∗Ω in (1) is over BX and
induced from “lifting h along τλ,” as shown in the above
diagram. In (1), in the end, B

Ω,τ
P arises as the coarsest

indistinguishability induced by such h’s.

Definition III.9 (codensity bisimilarity BisimΩ,τ (x)). Let S
be an expressivity situation in Def. III.1 and let x : X → BX
be a B-coalgebra. The codensity bisimilarity BisimΩ,τ (x) of x
is the B

Ω,τ
-coinductive predicate (Def. II.6), i.e., the greatest

fixed point of the map x∗ ◦BΩ,τ
: EX → EX :

BisimΩ,τ (x) = ν(x∗ ◦BΩ,τ
) ∈ EX .

Example III.10. Recall Ex. III.7. In this case we can see that
the codensity lifting coincides with the Kantorovich lifting; see
§V for details. Thus the codensity bisimilarity coincides with
the behavioral distance defined in [17, Def. 22].

Much like the codensity lifting explained in terms of “obser-
vations,” codensity bisimilarity can be regarded as an outcome
of “repeated observations.” We recall here the following game-
theoretic characterization [20], which is not used in the rest of
the paper yet is useful for providing intuitions.



TABLE II: (Untrimmed) codensity bisimilarity game

position player possible moves
P ∈ EX Spoiler k : X → Ω in C such that

∃λ ∈ Λ. P 6v x∗(Bk)∗τ∗λΩ
k ∈ C(X,Ω) Duplicator P ∈ EX s.t. P 6v k∗Ω

Fact III.11 (from [20, Cor. VI.4]). In the setting of Def. III.9,
we define a two-player infinite game called the (untrimmed)
codensity bisimilarity game as shown in Table II. Its two
players are called Spoiler and Duplicator; once a player gets
stuck, the player loses; any infinite play is won by Duplicator.

Then, for each P ∈ EX , P is below the codensity bisimi-
larity (P v BisimΩ,τ (x)) if and only if the position P ∈ EX
is winning for Duplicator.

In the codensity bisimilarity game, Spoiler repeatedly carries
out observations k : X → Ω, trying to show that the previous
move P ∈ EX by Duplicator was in fact not below the coden-
sity bisimilarity. Duplicator responds with a counter-argument
that Spoiler’s k : X → Ω is illegitimate, not respecting the
indistinguishability predicates P (on X) and Ω (on Ω).

D. Adequacy and Expressivity

We are ready to formulate adequacy and expressivity. Recall
that P v Q in a fiber means that P is more discriminating.

Definition III.12. Let S be an expressivity situation
(Def. III.1) and x : X → BX be a B-coalgebra.
• S is expressive for x if BisimΩ,τ (x) w LES (x) holds.
• S is adequate for x if BisimΩ,τ (x) v LES (x) holds.

S is expressive (or adequate) if it is expressive (or adequate,
respectively) for any B-coalgebra x.

The following result justifies our axiomatization
in Def. III.1: adequacy, a property that is a prerequisite
in most usage scenarios of modal logics, follows easily from
the axiomatization itself.

Proposition III.13. Any expressivity situation S in Def. III.1
is adequate.

Example III.14. Recall Ex. III.10. Expressivity of the expres-
sivity situation SKMM means that, for each x : X → BX
and each pair (s, t) ∈ X2 of states, the inequality dx(s, t) ≤
dLx (s, t) holds between the behavioral and logical distances
(“dLx is more discriminating”). Adequacy means that, for each
x and (s, t), dx(s, t) ≥ dLx (s, t) holds.

IV. APPROXIMATION IN QUANTITATIVE EXPRESSIVITY

In this section, based on the axiomatization in §III, we
present a fibrational notion of approximating family of obser-
vations. The notion axiomatizes and unifies the “approxima-
tion” properties that are key steps in many recent quantitative
expressivity proofs, such as in [15]–[17], [33].

We then proceed to present two proof principles for
expressivity—Knaster–Tarski and Kleene—that mirror two
classic characterizations of greatest fixed points. These proof
principles make a large part of an expressivity proof routine.

The remaining technical challenges are 1) choosing a suitable
propositional signature and 2) identifying suitable approximat-
ing families; our general framework singles out these technical
challenges and thus eases the efforts for addressing them.

We recall the two characterizations of gfps.

Theorem IV.1. Let (L,v) be a complete lattice, and f : L→
L be a monotone function.

1) (Knaster–Tarski) The set {l ∈ L | l v f(l)} of post-
fixed points is a complete lattice. Its maximum z satisfies
z = f(z), hence z is the greatest fixed point νf .

2) (Kleene) Consider the following ωop-chain in L.

> w f(>) w f2(>) w · · · (2)

If f preserves the meet
d
i∈ωop f i(>), thend

i∈ωop f i(>) is the greatest fixed point νf .

A. Approximating Family of Observations

Our categorical notion of approximating family of observa-
tions designates a “good” subset S ⊆ C(X,Ω) of Ω-valued
observations in a suitable sense. We will be asking if the
set {JϕKx : X → Ω | ϕ ∈ L′} of “logical observations” is
approximating or not, where L′ is some set of modal formulas.

Definition IV.2 (approximating family). Let S be an expres-
sivity situation in Def. III.1 and X be an object of C. A subset
S ⊆ C(X,Ω) is an approximating family of observations, or
simply approximating, if, for every morphism

h :
(d

k∈S k
∗Ω
)
−→ Ω (3)

of E and every λ ∈ Λ, the following inequality holds:
d
k′∈S,λ′∈Λ(τλ′ ◦Bk′)∗Ω v (τλ ◦B(ph))∗Ω. (4)

Note that k : X → Ω is a C-arrow while h is an E-arrow.

Some explanation is in order. Intuitively, in the definition
above, the set S is a set of “logical” observations. Each
h as in (3) is a “non-logical” legitimate observation. For
such h, the r.h.s. of (4) is the information obtained from the
observation h. (Note the way h is used: it is not h∗Ω, but
(τλ ◦B(ph))∗Ω. This corresponds to (1).) On the other hand,
the l.h.s. of (4) is the information from “logical” observations.
Thus, an intuitive meaning of the definition above is that no
“non-logical” observation gives any additional information. In
many cases, the “logical” observations in S approximate each
“non-logical” ones h. See Rem. IV.3 for details.

Another intuition is given in terms of the codensity bisimi-
larity game (Fact III.11). Roughly, S being an approximating
family says that Spoiler may restrict its moves to S ⊆ C(X,Ω).

Remark IV.3. In many examples, S being an approximating
family is proved in the following two steps: 1) showing that
ph can be approximated by observations in S; and 2) this
approximation is preserved along the lifting k 7→ τλ ◦Bk of
observations over X to those over BX . The former step is
usually the harder one, and proved via arguments specific to
the current situation (pseudometric spaces, measurable spaces,
etc.).



Example IV.4. Recall Ex. III.14. Let X be a set and S ⊆
Set(X, [0, 1]). In this case,

d
k∈S k

∗Ω ∈ (PMet1)X is the
pseudometric dS given by dS(x, y) = supk∈S de(k(x), k(y)).
Therefore, in order to show S being an approximating family,
we have to recover the pseudometric induced by h : (X, dS)→
([0, 1], de) from observations in S, for each h.

In Prop. V.6 later, it will turn out that S is approximating if
the following hold (under Asm. V.3):
• S is closed under the four operations >, min, ¬, and 	q

for every q ∈ Q ∩ [0, 1].
• (X, dS) is totally bounded.

In this case, any h : (X, dS)→ ([0, 1], de) can be uniformly ap-
proximated by a countable sequence of arrows in S. Moreover,
this approximation is preserved by the lifting k 7→ τλ ◦Bk (this
is what we require in Asm. V.3). These two facts establish that
S is approximating (cf. Rem. IV.3). See Prop. V.6 for details.

B. The Knaster–Tarski Proof Principle for Expressivity

From the Knaster–Tarski theorem, we can derive the follow-
ing simple expressivity proof principle. Its proof is by showing
that the logical equivalence LES (x) is a suitable invariant and
thus underapproximates the codensity bisimilarity (Thm. IV.1).

Theorem IV.5 (the Knaster–Tarski proof principle). Let S be
an expressivity situation in Def. III.1 and x : X → BX be a B-
coalgebra. If {JϕKx | ϕ ∈ LS } ⊆ C(X,Ω) is approximating,
then S is expressive for x.

The theorem’s applicability hinges on whether we can show
that the set {JϕKx | ϕ ∈ LS } ⊆ C(X,Ω) is an approximating
family (where ϕ ranges over all formulas). We use the theorem
for the examples in §VI & VII.

C. The Kleene Proof Principle for Expressivity

To make use of Kleene theorem, we have to consider

> w (x∗ ◦BΩ,τ
)(>) w (x∗ ◦BΩ,τ

)2(>) w · · · (5)

where the functor x∗ ◦BΩ,τ
is from Def. III.9. We also have

to assume that this sequence stabilizes after ω steps, i.e.,d
i<ω(x∗ ◦BΩ,τ

)i(>) is a fixed point of x∗ ◦BΩ,τ
.

We stratify LS corresponding to the sequence (5).

Definition IV.6 (depth). Let S be an expressivity situation in
Def. III.1. For each ϕ ∈ LS , the depth of ϕ depth(ϕ) is a
natural number defined inductively as follows:

depth(σ(ϕ1, . . . , ϕrank(σ)))

= max(depth(ϕ1), . . . ,depth(ϕrank(σ))) (σ ∈ Σ)

depth(♥λϕ) = depth(ϕ) + 1 (λ ∈ Λ)

For σ ∈ Σ with rank(σ) = 0, depth(σ()) is defined to be 0.

We formulate the following proof principle. Unlike Knaster–
Tarski (Thm. IV.1), it uses an explicit induction on the depth
i. Its proof is therefore more involved but not much more.

Theorem IV.7 (the Kleene proof principle). Let S be an
expressivity situation as in Def. III.1 and x : X → BX be a

B-coalgebra. Assume that the chain (5) in EX stabilizes after
ω steps. If the set {JϕKx | ϕ ∈ LS ,depth(ϕ) ≤ i} ⊆ C(X,Ω)
is approximating for each i, then S is expressive for x.

In Thm. IV.7, we require that {JϕKx | ϕ ∈ LS ,depth(ϕ) ≤ i}
is approximating for each depth i; this is often easier than the
case where ϕ ranges over all formulas (as in Thm. IV.5). We
use the theorem for the example in §V.

Example IV.8. Sufficient conditions for being an approximat-
ing family were given in Ex. IV.4. Combined with Thm. IV.7,
it yields expressivity (Cor. V.9), one of the main results of [17].

Remark IV.9. In Thm. IV.7, we assumed the stabilization of
the chain (5) at length ω. This assumption turns out to be
benign, essentially because our modal formulas all have a finite
depth (§III-B). Specifically we can show the following: if the
logic LS is expressive for x : X → BX , then the chain (5)
stabilizes after ω steps. See Appendix A.

V. EXPRESSIVITY FOR THE KANTOROVICH BISIMULATION
METRICS

This section shows how one of the main results in [17],
expressivity of a real-valued logic w.r.t. bisimulation metric,
is proved by our Kleene proof principle (Thm. IV.7). See also
Ex. III.3, III.5 and III.7.

Definition V.1. Define an expressivity situation SKMM by:
• Its fibration is PMet1 → Set (Ex. II.3).
• Its truth-value object is [0, 1] and its observation predicate

is de, the usual Euclidean metric on [0, 1].
• The ranked alphabet of its propositional connectives is

Σ = {>0,min2,¬1} ∪ {(	q)1 | q ∈ Q ∩ [0, 1]}. Its
propositional structure (fσ : [0, 1]rank(σ) → [0, 1])σ∈Σ is
specified by:

f>() = 1 fmin(x, y) = min(x, y)

f¬(x) = 1− x f	q(x) = max(x− q, 0)

• The behavior functor B : Set → Set, the set of
its modality indices Λ, and its observation modalities
(τλ : B[0, 1]→ [0, 1])λ∈Λ are arbitrary.

The modal logic LSKMM
is the same as the logic M(Λ)

in [17, Table 1]. What they call an evaluation map γ ∈ Γ cor-
responds to an observation modality τλ(λ ∈ Λ) in our frame-
work. Thus, the fibrational logical equivalence LESKMM

(α)
(Def. III.6) coincides with the logical distance dLα [17, Def. 25]
for a coalgebra α : X → BX .

Moreover, the codensity lifting B
de,τ specializes to the

Kantorovich lifting by [24]:

B
de,τ

(X, d) = (BX, dB) where
dB(t1, t2) = supλ,h de(τλ((Bh)(t1)), τλ((Bh)(t2))).

In the above sup, λ, h ranges over Λ and
PMet1((X, d), ([0, 1], de)), respectively. Thus, the codensity
bisimilarity Bisimde,τ (α) (Def. III.9) recovers the definition
of the behavioral distance dα [17, Def. 22] for a coalgebra
α : X → BX .



From Prop. III.13 we obtain:

Corollary V.2. For α : X → BX , dα ≥ dLα holds.

As mentioned in [17], it is harder to prove expressivity.
We use the Kleene proof principle (Thm. IV.7) here. For this
argument to work, we have to make further assumptions.

Assumption V.3. For SKMM, assume the following:
1) Λ is finite.
2) If a sequence ki of functions of type X→[0, 1] uniformly

converges into l, then τλ ◦Bki : BX → [0, 1] uniformly
converges into τλ ◦Bl for each λ ∈ Λ.

In particular, condition 2 above is satisfied if each τλ induces
a non-expansive predicate lifting [17, Def. 17].

The notion of total boundedness below is pivotal in [17].

Definition V.4 (from [17, Def. 28]). (X, d) ∈ PMet1 is
totally bounded if, for any ε > 0, there is a finite set Fε ⊆ X
satisfying the following: for each x ∈ X , there is y ∈ Fε such
that d(x, y) < ε.

A critical step in their proof used a Stone–Weierstrass-like
property of totally bounded spaces.

Proposition V.5. Let (X, d) be a totally bounded pseudometric
space. A subset S ⊆ PMet1((X, d), ([0, 1], de)) is dense
in the topology of uniform convergence if the following are
satisfied:

1) S is closed under the four operations >, min, ¬ and 	q
for every q ∈ Q ∩ [0, 1];

2) for every h ∈ PMet1((X, d), ([0, 1], de)), and every
x, y ∈ X , we have

de(h(x), h(y)) ≤ supg∈S de(g(x), g(y)) .

In our framework, this can be stated in the following form:

Proposition V.6. Assume the setting of Def. V.1. Let X ∈ Set.
Under Asm. V.3, a subset S ⊆ Set(X, [0, 1]) is approximating
if the following hold:
• S is closed under the four operations >, min, ¬ and 	q

for every q ∈ Q ∩ [0, 1].
• (X, dS) is totally bounded, where dS(x, y) =

supk∈S de(k(x), k(y)).

From now we use some facts on totally bounded space.
Using the variation of Arzelà–Ascoli theorem [16, Lemma 5.6]
for totally bounded spaces, we can show the following:

Fact V.7. Under Asm. V.3, if (X, d) ∈ PMet1 is totally
bounded, then

• B
de,τ

(X, d) is also totally bounded. 1

• If (X, d) v (X, d′), (X, d′) is also totally bounded.

These enable us to use Thm. IV.7:

1Here the finiteness of the number of modalities is crucial. When Λ is
infinite, the Kantorovich lifting does not preserve total boundedness. See Ap-
pendix B.

Proposition V.8. Let x : X → BX be a coalgebra. Under
Asm. V.3, for each i, {JϕK | ϕ ∈ LSKMM

,depth(ϕ) ≤ i} ⊆
Set(X, [0, 1]) is approximating.

Corollary V.9 (from [17, Thm. 32]). Let α : X → BX be
a coalgebra. Assume that the sequence > w (x∗B

de,τ
)(>) w

(x∗B
de,τ

)2(>) w · · · stabilizes after ω steps (as in Thm. IV.7).
Then, under Asm. V.3, dα ≤ dLα holds. In particular, dα is
characterized as the greatest pseudometric that makes all JϕKα
nonexpansive.

VI. EXPRESSIVITY FOR MARKOV PROCESS BISIMILARITY

This section shows how one of the main results in [15],
expressivity of probabilistic modal logic w.r.t. bisimilarity of
labelled Markov process, is proved by our Knaster–Tarski proof
principle (Thm. IV.5).

Throughout this section, fix a set A of labels.

Definition VI.1. Define an expressivity situation SCFKP by:
• Its fibration is EqRelMeas→Meas (Ex. II.3).
• Its behavior functor B : Meas → Meas is BX =

(G≤1X)A, where G≤1 is the variation of Giry functor,
which sends each measurable space to its space of sub-
distributions.

• Its truth-value object is 2 = {0, 1} with all subsets
measurable and its observation predicate is the equality
relation Eq2 on 2.

• The ranked alphabet of its propositional connectives is
Σ = {>0,∧2}. Its propositional structure (f>, f∧) is
specified as the usual boolean operations.

• The set of its modality indices is A × (Q ∩ [0, 1]). For
each (a, r) ∈ A × (Q ∩ [0, 1]), the observation modality
τa,r : (G≤12)A → 2 is defined by

τa,r((µa)a∈A) = thrr(µa({1})),

where thrr(s) = 1 if and only if s > r.

Note that a labelled Markov process (LMP) with label set
A [15, Definition 5.1] is the same as B-coalgebra. The modal
logic LSCFKP

(Def. III.2) has the following syntax:

ϕ1, ϕ2 ::= > | ∧(ϕ1, ϕ2) | ♥a,rϕ1 ((a, r) ∈ A×(Q∩[0, 1]))

So if we identify ♥a,r with 〈a〉r in the original notation, this
recovers the syntax of PML∧ defined in [15, Def. 2.3]. Under
this identification, the semantics (Def. III.4) is also essentially
the same as the original logic: JϕKx(s) = 1 ⇐⇒ s � ϕ holds
for any LMP x : X → (G≤1X)A, any point s ∈ X , and any
formula ϕ. The fibrational logical equivalence (Def. III.6) can
be concretely represented as

LESCFKP(x) = {(s, t) | ∀ϕ ∈ LSCFKP , s � ϕ ⇐⇒ t � ϕ}.

By expanding the definition of the codensity lifting
(Def. III.8) of (G≤1 )A, we can see that it coincides with
the one used to define probabilistic bisimulation:

Proposition VI.2. The codensity lifting (G≤1 )A
Eq2,τ satisfies

the following: for each (µa)a∈A, (νa)a∈A ∈ (G≤1X)A, they



are equivalent in (G≤1 )A
Eq2,τ

(X,R) if and only if, for each
a ∈ A and each R-closed measurable set S ⊆ X , µa(S) =
νa(S) holds.

Thus the codensity bisimilarity BisimEq2,τ (x) (Def. III.9)
coincides with the probabilistic bisimilarity used in [15].

From Prop. III.13, we readily obtain the following:

Corollary VI.3. Let x : X → (G≤1X)A be an LMP. If s, t ∈
X are probabilistically bisimilar, for any ϕ ∈ LSCFKP , s �
ϕ ⇐⇒ t � ϕ holds.

To show expressivity, we first have to review some mathe-
matical key facts. In the rest of this section, we write σ(E ) for
the σ-algebra generated by a family of sets E .

Definition VI.4. A Polish space is a separable topological
space which is metrizable by a complete metric. For any
continuous map f : X → Y between Polish spaces X and
Y , the image of f is called an analytic topological space. For
an analytic topological space (X,OX), the measurable space
(X,σ(OX)) is called an analytic measurable space.

Let us review the two key facts they used in [15]. The
first one is the following “elegant Borel space analogue of
the Stone–Weierstrass theorem” [34].

Fact VI.5 (Unique Structure Theorem [34, Thm. 3.3.5]). Let
X ∈Meas be an analytic measurable space and E be an (at
most) countable family of measurable subsets of X such that
X ∈ E . Define an equivalence relation ≡E by

x ≡E y ⇐⇒ ∀S ∈ E , (x ∈ S ⇐⇒ y ∈ S).

If S ⊆ X is measurable and ≡E -closed, then S ∈ σ(E ).

In the fact above, we use the operations of σ-algebras to
construct S. The second key fact is about “decomposing” those
operations into two parts.

Definition VI.6. Let X be a set. A family of subsets of X
is called a π-system if it is closed under finite intersections.
A family of subsets of X is a λ-system if it is closed under
complement and countable disjoint unions.

Intuitively, π-systems correspond to the propositional con-
nectives of SCFKP and λ-systems correspond to “approxima-
tion.” These two operations are enough to recover all σ-algebra
operations:

Fact VI.7 (π-λ Theorem [35]). If Π is a π-system, Λ is a
λ-system, and Π ⊆ Λ, then σ(Π) ⊆ Λ.

Using Fact VI.5 and VI.7, we obtain a sufficient condition
for being an approximating family. The proof follows the two
steps outlined in Rem. IV.3: 1) we can approximate a given
h : X → 2 by σ-algebra operations (Fact VI.5), which can be
reduced to λ-system operations (Fact VI.7); and 2) λ-system
operations are in some sense “preserved” by the modalities
(since measures are σ-additive).

Proposition VI.8. Assume the setting of Def. VI.1. Let X ∈
Meas. A subset S ⊆ Meas(X, 2) is approximating if the
following hold:
• X is an analytic measurable space.
• S is at most countable.
• For k, l ∈ S, > and k ∧ l are also included in S.

From this proposition and Thm. IV.5, we obtain the follow-
ing expressivity result:

Corollary VI.9. Let x : X → (G≤1X)A be an LMP and s, t ∈
X its states. Assume that the label set A is at most countable
and that X is an analytic measurable space.

Then SCFKP is expressive for x (Def. III.12): that is, If
s � ϕ ⇐⇒ t � ϕ holds for every ϕ ∈ LSCFKP

, then s and t
are probabilistically bisimilar.

VII. EXPRESSIVITY FOR THE BISIMULATION UNIFORMITY

In this section, we introduce bisimulation uniformity as a
coinductive predicate in a fibration and a logic for it. By using
our main results and a known mathematical result analogous
to the Stone–Weierstrass theorem, the logic is readily proved
to be adequate and expressive w.r.t. bisimulation uniformity.
This example shows how our abstract framework can help to
explore new bisimilarity-like notions.

A. Uniform Structure as Fibrational Predicate

Topological space can be regarded as an abstraction of
(pseudo-)metric spaces w.r.t. continuous maps. In much the
same way, uniform space [36] is an abstraction of (pseudo-
)metric spaces w.r.t. uniformly continuous maps.

Definition VII.1 (from [36, Def. 1]). A uniform structure, or
uniformity, on a set X is a nonempty family U ⊆ P(X ×X)
of subsets of X ×X satisfying the following:
• If V ∈ U and V ⊆ V ′ ⊆ X ×X , then V ′ ∈ U .
• If V,W ∈ U , then V ∩W ∈ U .
• If V ∈ U , then {(x, x) | x ∈ X} ⊆ V .
• If V ∈ U , then {(y, x) | (x, y) ∈ V } ∈ U .
• If V ∈ U , then there exists W ∈ U such that
{(x, z) | ∃y (x, y) ∈W ∧ (y, z) ∈W} ⊆ V .

Here each element V ∈ U is called an entourage. A pair
(X,U ) of a set and a uniformity on it is called a uniform
space.

A function f : X → Y is a uniformly continuous map
from (X,UX) to (Y,UY ) if, for each entourage V ∈ UY ,
{(x, x′) | (f(x), f(x′)) ∈ V } ⊆ X × X is an enrourage
of (X,UX). The category of uniform spaces and uniformly
continuous maps is denoted Unif .

Each entourage represents some degree of “closeness.” The
following example is an archetypal one:

Example VII.2. Let (X, d) be a pseudometric space. Define a
family U ⊆ P(X ×X) as the set of all relations of the form
{(x, x′) | d(x, x′) < ε} for ε > 0 and their supersets. Then
(X,U ) is a uniform space.



Some of the concepts considered for metric spaces, like
completion, total boundedness, and characterization of com-
pactness, can be lifted to uniform spaces. For us, the most
important fact is that they form a CLatu-fibration:

Proposition VII.3 (from [36, Propositions 4 and 5]). The
forgetful functor Unif → Set is a CLatu-fibration.

Thus we can use uniform structures as a sort of indistin-
guishability structure. A uniform structure on a finite set is
essentially the same as an equivalence relation. For infinite
sets, however, it can be a helpful way to analyze coalgebras
that is more quantitative than an equivalence relation and more
robust than a pseudometric.

B. Expressivity Situation for Bisimulation Uniformity

Definition VII.4. Define an expressivity situation SBU by:
• Its fibration is Unif → Set (Prop. VII.3).
• Its truth-value object is R and its observation predicate

is Ue, the uniformity defined using the usual Euclidean
metric as in Ex. VII.2.

• The ranked alphabet of its propositional connectives is
Σ = {10,min2} ∪ {(r+)1, (r×)1 | r ∈ R}. Its proposi-
tional structure (fσ : Rrank(σ) → R)σ∈Σ is specified by:

f1() = 1 fmin(x, y) = min(x, y)

fr+(x) = r + x fr×(x) = rx

• The behavior functor B : Set→ Set, the set of its modal-
ity indices Λ, and its observation modalities (τλ : BR→
R)λ∈Λ are arbitrary.

For a B-coalgebra x : X → BX , the codensity lifting B
Ue,τ

(Def. III.8) yields the codensity bisimilarity BisimUe,τ (x) ∈
UnifX (Def. III.9), which is a uniformity on the set X . We
call it the bisimulation uniformity of x.

On the other hand, the logic LSBU
induces the fibrational

logical equivalence LESBU(x) (Def. III.6) for each x : X →
BX . We call this the logical uniformity of x.

By Prop. III.13, we obtain the following:

Proposition VII.5. Assume the setting of Def. VII.4. Let
x : X → BX be a B-coalgebra. Any entourage of the logical
uniformity is also an entourage of the bisimulation uniformity.
In particular, for any ϕ ∈ LSBU

, JϕKx : X → R is uniformly
continuous w.r.t. the bisimulation uniformity.

To prove expressivity, we have to make further assumptions.

Assumption VII.6. For SBU, assume the following:

1) If k : X → R is bounded, then τλ ◦Bk : BX → R is
also bounded for each λ ∈ Λ.

2) If a sequence ki of functions of type X → R uniformly
converges into h, then τλ ◦Bki : BX → R uniformly
converges into τλ ◦Bh for each λ ∈ Λ.

The key in the expressivity proof is the following known
Stone–Weierstrass-like result:

Fact VII.7 (from [21, Thm. 1]). Let X be a set and Γ ⊆ R
a set of real numbers unbounded both from above and below.
Assume a family Φ of bounded real-valued function satisfies
the following:

1) Every constant is in Φ.
2) For f ∈ Φ and r ∈ Γ, rf ∈ Φ holds.
3) For f ∈ Φ and r ∈ R, r + f ∈ Φ holds.
4) For f, g ∈ Φ, min(f, g),max(f, g) ∈ Φ holds.

Let UΦ be the coarsest uniformity on X that makes every
function in Φ uniformly continuous. Then any real-valued
function uniformly continuous w.r.t. UΦ is the limit of a
uniformly convergent sequence of elements of Φ.

By using this, we can show that a suitable set is ap-
proximating. In its proof, we follow the two steps discussed
in Rem. IV.3.

Proposition VII.8. Assume the setting of Def. VII.4. Let
X ∈ Set. Under Asm. VII.6, a subset S ⊆ Set(X,R) is
approximating if the following hold:
• Every function in S is bounded.
• 1 ∈ S.
• S is closed under the three operations min, (r+), and

(r×) for every r ∈ R.

From this, we can obtain expressivity:

Corollary VII.9. Assume the setting of Def. VII.4. Let x : X →
BX be a B-coalgebra. Under Asm. VII.6, the bisimulation
uniformity coincides with the logical uniformity, i.e., the for-
mer is characterized as the coarsest uniformity making every
JϕKx : X → R uniformly continuous.

VIII. AN ABSTRACT LOOK AT EXPRESSIVITY AND
APPROXIMATION

Lastly, we take an abstract approach to the concept of
expressivity and approximation by combining two studies on
coalgebraic modal logic: fibrational formulation of adequacy
and expressivity [22], and Klin’s reformulation of duality-based
modal logic using comma categories [37]. The combination
leads us to a new look at adequacy and expressivity as a
comparison problem of final coalgebras through a functor. An
approximating family is then a key construct to solve this
comparison problem.

A. Fibrational Theory of Adequacy and Expressivity
In [22], the third and fourth authors integrated duality-based

modal logic [6] and fibrational theory of bisimulation [23], and
formulated adequacy and expressivity of modal logic. Their
formulation is built upon the following categorical situation
[22, Asm. 14, Def. 15], which we tentatively call a modal
logic with coinductive predicates K :

E
p

��

B

==

C
B

==

P //
⊥oo
Q

Dop

Q
aa

Lop

bb

+

(
α : LΦ→ Φ initial
δ : B ◦Q→ Q ◦ Lop

)

s.t.

p : CLatu-fibration

B : lifting of B

p ◦Q = Q

 (6)



The tuple L , (B,P a Q,L, δ, α) is called a duality-based
modal logic, while the tuple (p,B,B) determines a setting for
fibrational bisimulation (§II-C). Now let x : X → BX be a
coalgebra. Following [22, Def. 15], K is said to be
• adequate for x if ν(x∗ ◦B) v th∗x(QΦ), and
• expressive for x if ν(x∗ ◦B) w th∗x(QΦ).

Here, thx : X → QΦ is the theory morphism induced by x. It
corresponds to the interpretation function J Kx in Def. III.4;
see [6] for detail.

One might wonder how the above definition of adequacy
and expressivity is related to ours in Def. III.12. The following
construction establishes a formal connection:

Theorem VIII.1. For any expressivity situation S =
(p,B,Ω,Ω, · · · , τ) whose base category C has small powers
and equalizers, there is a modal logic with coinductive predi-
cates MLCP(S ) such that for any coalgebra x : X → BX ,
ν(x∗ ◦B) = BisimΩ,τ (x) and th∗x(QΦ) = LES (x) holds.

B. Fibration from Duality-Based Modal Logic

In [37], Klin studied duality-based modal logic using a
comma category (see [38, Sect. II.6] for the definition). We
quickly review his study, reusing the duality-based modal logic
L in (6). We consider the comma category IdC ↓ Q2 with the
evident first projection functor π1 : IdC ↓ Q→ C. He showed
the following results that are relevant to us:
• [37, Sect. 4] The natural transformation δ determines a

lifting ∆ of B along π1, whose object part is given by
∆(X,Y, f) = (BX,LY, δY ◦Bf).

• [37, Corollary 4.4] The initial L-algebra α induces a right
adjoint right inverse R of CoAlg(π1) : CoAlg(∆) →
CoAlg(B) (see Prop. II.10). Its object part sends a
coalgebra x : X → BX to Rx = (X,Φ, thx).

We re-interpret these results in terms of the fibrational theory
of bisimulation. First, one can easily verify that π1 : IdC ↓
Q → C is a fibration and ∆ is a fibred lifting. Second, for
any coalgebra x : X → BX , Rx is a final object in the fiber
category CoAlg(π1)x, which corresponds to a ∆-coinductive
predicate ν(x∗ ◦ ∆) over x by Prop. II.10. To summarize,
a duality-based modal logic induces a setting for fibrational
bisimulation admitting coinductive predicates.

C. Another Abstract Look at Adequacy and Expressivity

We combine fibrational theory of adequacy and expressiv-
ity, and a fibrational presentation of the duality-based modal
logic based on Klin’s study. The key factor connecting these
two studies is the fibred functor H : π1 → p given by
H(X,Y, f) = f∗(QY ).

E
p

%%

B == IdC ↓ Q

π1ww

Hoo ∆ee

CB ==

(7)

Using H , the definitions of adequacy and expressivity are
equivalently rewritten as follows. Let x : X → BX be a

2This is isomorphic to the category P ↓ IdSetΣ employed by Klin in [37].

coalgebra. Then the modal logic with coinductive predicates
K is

• adequate for x if ν(x∗ ◦B) v H(ν(x∗ ◦∆)), and
• expressive for x if ν(x∗ ◦B) w H(ν(x∗ ◦∆)).

That is, establishing adequacy and expressivity can be viewed
as a familiar problem of comparing final coalgebras in two
(fibre) categories connected by a functor.

D. Another Abstract Look at Kleene Proof Principle

From the above reformulation of expressivity (and ade-
quacy), we easily notice the following sound proof method.
Below we impose the following conditions (*) on

Theorem VIII.2. Suppose that in the modal logic with coin-
ductive predicates K (6), D has an initial object, L-initial
sequence stabilizes, and Q is a right adjoint. Let x : X → BX
be a coalgebra such that x∗ ◦B-final sequence stabilizes after
ω-steps. Then each of (8) and (9) implies that K is expressive
for x.

∀i ∈ ω . H((x∗ ◦∆)i(>)) v (x∗ ◦B)i(>) (8)

∀i ∈ ω . H ◦∆ ◦(x∗ ◦∆)i(>) v B ◦H ◦(x∗ ◦∆)i(>) (9)

In other words, (8) says that the H-image of the x∗ ◦ ∆-
final sequence is bound by the x∗◦B-final sequence. The above
theorem is working behind the proof of Kleene proof principle
for expressivity (Thm. IV.7); in the situation (7) arising from
MLCP(S ), Thm. IV.7 first shows (8) using the assumption
of approximating family of observations, then concludes the
expressivity by invoking Thm. VIII.2. On the other hand, (9)
is an analogy of approximating family of observations appeared
in Thm. IV.7 in the abstract set-up (7).

IX. CONCLUSIONS AND FUTURE WORK

We introduced a categorical framework to study expressivity
of quantitative modal logics, based on the novel notion of
approximating family. This enabled us to cover not only
existing examples (§V and §VI) but also a new one (§VII).
We conclude with some future research directions.

a) Making Use of Size Restrictions on Functors: Many
existing expressivity results make use of size restriction con-
dition on the behavior functor B. For example, [11] required
image-finiteness, [2] used κ-accessibility, and [18] was based
on a quantitative notion, finitary separability. Importing these
size restrictions is future work. A starting point can be [27],
which successfully connected the finitarity of the behavior
functor and the length of the final chain in a fiber.

b) Study of Bisimulation Uniformity: We defined bisim-
ulation uniformity in §VII, but there are many topics left to
study. One primary subject is the connection to bisimilarity and
bisimulation metric. It is also important to see if it is robust
under parameter changes of the target system.



c) Seeking Stone–Weierstrass-like Theorems: To use our
framework to show expressivity, one has to obtain a sufficient
condition for being an approximating family. In many cases,
this is reduced to finding an appropriate “Stone–Weierstrass-
like” theorem. Concretely find ones and apply them to modal
logics (other than those we have mentioned) is future work.
Another research direction is to a seek connection to [39],
where “Stone–Weierstrass-like” theorems are formulated in
another way.
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APPENDIX

A. Further on Rem. IV.9

Assume that LS is expressive for x : X → BX . First, in much the same way as Prop. III.13, we can show “stepwise
adequacy”:

(x∗ ◦BΩ,τ
)n(>) v

l

ϕ∈LS ,depth(ϕ)≤n

JϕK∗xΩ

holds for n ∈ ω. Taking the meets of both sides for n ∈ ω shows
l

n∈ω
(x∗ ◦BΩ,τ

)n(>) v
l

ϕ∈LS

JϕK∗xΩ = LES (x) v BisimΩ,τ (x).

B. More on Total Boundedness

For the arguments in §V, finiteness of Λ is crucial, which was not very obvious in [17]. Here we consider a handy
counterexample against Fact V.7 where Λ is infinite. It turns out that the counterexample also affects our approximation
argument.

Define d2 : 2× 2→ [0, 1] by

d2(x, y) =

{
0 if x = y

1 otherwise
.

Note that (2, d2) is totally bounded.
Consider an instance of the situation of Def. V.1 where
• the behavior functor B is defined by BX = Xω ,
• the set of modality indices Λ is ω = {0, 1, 2, . . . }, and
• the observation modality τi : [0, 1]ω → [0, 1] for a modality index i ∈ ω is defined as the projection τi((xj)j∈ω) = xi.

Then the codensity lifting (−)ω
de,τ

does not preserve total boundedness. In fact, the pseudometric space (−)ω
de,τ

(2, d2) is
not totally bounded. First we show a lemma. Let (2ω, d2ω ) = (−)ω

de,τ
(2, d2).

Lemma A.1. The distance function d2ω satisfies

d2ω (x, y) =

{
0 if x = y

1 otherwise
.

Proof. It suffices to show that, for x 6= y, d2ω (x, y) = 1. Let x = (xi)i∈ω and y = (yi)i∈ω . Take i ∈ ω so that xi 6= yi. Define
f : 2→ [0, 1] by f(0) = 0 and f(1) = 1. Then f is a nonexpansive map from (2, d2) to ([0, 1], de).

Using these data, we can see

d2ω (x, y) = sup
g : (2,d2)→([0,1],de),j∈ω

de(τj(((g)ω)(x)), τj(((g)ω)(y)))

≥ de(τi(((f)ω)(x)), τi(((f)ω)(y)))

= de(f(xi), f(yi))

= 1.

Proposition A.2. The pseudometric space (2ω, d2ω ) is not totally bounded.

Proof. For any given 0 < ε < 1, each disc of radius ε covers only one point. This implies that finitely many such discs cannot
cover the space (2ω, d2ω ), which means it is not totally bounded.

This space (2ω, d2ω ) also shows that we cannot simply remove total boundedness in Prop. V.5. Let F =
PMet1((2ω, d2ω ), ([0, 1], de)). Define G ⊆ F as the set of all functions that depend only on finitely many components.
Then this G satisfies the two conditions in Prop. V.5. However, this is not dense in F :

Proposition A.3. Under the topology of uniform convergence, G is not dense in F .

Proof. Define h : (2ω, d2ω )→ ([0, 1], de) by:

h((xi)i∈ω) =

{
1 if there is infinitely many i’s s.t. xi = 1

0 otherwise
.



By the lemma this is indeed nonexpansive.
Fix any g ∈ G. By the definition of G, we can take n ∈ ω such that g only depends on the first n components. Let

x = (0, 0, . . . ) ∈ 2ω . Define y ∈ 2ω so that the first n components of y are 0 and all the others are 1. Then h(x) = 0,
h(y) = 1 and g(x) = g(y) holds. This implies that de(h(x), g(x)) ≥ 1/2 or de(h(y), g(y)) ≥ 1/2 holds. In particular, the
uniform distance between h and g is at least 1/2. Since g is arbitrary, G is not dense in F .

OMITTED PROOFS FOR SECTION III

Proposition III.13. Any expressivity situation S in Def. III.1 is adequate.

Proof. Fix a B-coalgebra x : X → BX . It suffices to show that, for any ϕ ∈ LS , ν(x∗ ◦BΩ,τ
) v JϕK∗xΩ holds. We show this

by structural induction on ϕ.
Assume ϕ = σ(ϕ1, . . . , ϕrank(σ)) where σ ∈ Σ. By IH, for each i = 1, . . . , rank(σ), ν(x∗ ◦BΩ,τ

) v JϕiK∗xΩ holds, and
thus there exists an arrow hi : ν(x∗ ◦BΩ,τ

)→ Ω in E that satisfies phi = JϕiKx. Take an arrow gσ : Ωrank(σ) → Ω satisfying
pgσ = fσ (its existence is required in Def. III.1). Consider the arrow gσ ◦〈h1, . . . , hrank(σ)〉 : ν(x∗ ◦BΩ,τ

)→ Ω. Since p sends
this arrow to fσ ◦〈Jϕ1Kx, . . . , Jϕrank(σ)K〉 = JϕKx, ν(x∗ ◦BΩ,τ

) v JϕK∗xΩ holds.
Assume ϕ = ♥λϕ′ where λ ∈ Λ. By IH, ν(x∗ ◦BΩ,τ

) v Jϕ′K∗xΩ holds. Applying B
Ω,τ

to both sides yields

B
Ω,τ

ν(x∗ ◦BΩ,τ
) v BΩ,τ

Jϕ′K∗xΩ

=
l

λ′∈Λ,h : Jϕ′K∗xΩ→Ω

(B(ph))∗τ∗λ′Ω

v (BJϕ′Kx)∗τ∗λΩ.

Then by applying x∗ to both sides we obtain the claim:

ν(x∗ ◦BΩ,τ
) = x∗B

Ω,τ
ν(x∗ ◦BΩ,τ

) v x∗(BJϕ′Kx)∗τ∗λΩ = JϕK∗xΩ.

This concludes the induction.

OMITTED PROOFS FOR SECTION IV

Theorem IV.5 (the Knaster–Tarski proof principle). Let S be an expressivity situation in Def. III.1 and x : X → BX be a
B-coalgebra. If {JϕKx | ϕ ∈ LS } ⊆ C(X,Ω) is approximating, then S is expressive for x.

Proof. We show ν(x∗ ◦BΩ,τ
) w

d
ϕ∈LS

JϕK∗xΩ. By the Knaster–Tarski theorem (Thm. IV.1), it suffices to show

x∗B
Ω,τ

 l

ϕ∈LS

JϕK∗xΩ

 w l

ϕ∈LS

JϕK∗xΩ.

Since the l.h.s. is equal to l

λ∈Λ,h :
d
ϕ∈LS

JϕK∗xΩ→Ω

x∗(B(ph))∗τ∗λΩ,

it suffices to show
x∗(B(ph))∗τ∗λΩ w

l

ϕ∈LS

JϕK∗xΩ.

for each λ ∈ Λ and h :
d
ϕ∈LS

JϕK∗xΩ→ Ω.
The set {JϕKx | ϕ ∈ LS } ⊆ C(X,Ω) being approximating implies the following lower bound of the l.h.s.:

x∗(B(ph))∗τ∗λΩ w
l

ϕ′∈LS ,λ′∈Λ

x∗(τλ′ ◦BJϕ′Kx)∗Ω

=
l

ϕ′∈LS ,λ′∈Λ

J♥λ′ϕ′K∗xΩ

w
l

ϕ∈LS

JϕK∗xΩ.

This concludes the proof.



Theorem IV.7 (the Kleene proof principle). Let S be an expressivity situation as in Def. III.1 and x : X → BX be a
B-coalgebra. Assume that the chain (5) in EX stabilizes after ω steps. If the set {JϕKx | ϕ ∈ LS ,depth(ϕ) ≤ i} ⊆ C(X,Ω)
is approximating for each i, then S is expressive for x.

Proof. By Kleene theorem (Thm. IV.1), it suffices to show (x∗ ◦BΩ,τ
)i(>) w

d
ϕ∈LS

JϕK∗xΩ for each i. We show

(x∗ ◦BΩ,τ
)i(>) w

l

ϕ∈LS ,depth(ϕ)≤i

JϕK∗xΩ (10)

by induction on i.
For i = 0, (10) is trivial.
Assume that (10) holds for i = j and we show it also holds for i = j + 1. Start with (10) for i = j. Applying x∗ ◦BΩ,τ

to
both sides of it we obtain

(x∗ ◦BΩ,τ
)j+1(>) w (x∗ ◦BΩ,τ

)
l

ϕ∈LS ,depth(ϕ)≤j

JϕK∗xΩ.

Here, expanding the definition of the r.h.s. we get

(x∗ ◦BΩ,τ
)

l

ϕ∈LS ,depth(ϕ)≤j

JϕK∗xΩ =
l

λ∈Λ,h :
d
ϕ∈LS ,depth(ϕ)≤jJϕK∗xΩ→Ω

x∗(B(ph))∗τ∗λΩ.

Now let λ ∈ Λ and h :
d
ϕ∈LS ,depth(ϕ)≤jJϕK∗xΩ→ Ω. That {JϕKx | ϕ ∈ LS ,depth(ϕ) ≤ j} ⊆ C(X,Ω) is an approximating

family yields

x∗(B(ph))∗τ∗λΩ w
l

λ′∈Λ,ϕ∈LS ,depth(ϕ)≤j

x∗(BJϕKx)∗τ∗λ′Ω

=
l

λ′∈Λ,ϕ∈LS ,depth(ϕ)≤j

J♥λ′ϕK∗xΩ

w
l

ϕ′∈LS ,depth(ϕ′)≤j+1

Jϕ′K∗xΩ.

Thus we have

(x∗ ◦BΩ,τ
)j+1(>) w (x∗ ◦BΩ,τ

)
l

ϕ∈LS ,depth(ϕ)≤j

JϕK∗xΩ

=
l

λ∈Λ,h :
d
ϕ∈LS ,depth(ϕ)≤jJϕK∗xΩ→Ω

x∗(B(ph))∗τ∗λΩ

w
l

ϕ′∈LS ,depth(ϕ′)≤j+1

Jϕ′K∗xΩ.

This concludes the induction.

OMITTED PROOFS FOR SECTION V

Proposition V.5. Let (X, d) be a totally bounded pseudometric space. A subset S ⊆ PMet1((X, d), ([0, 1], de)) is dense in
the topology of uniform convergence if the following are satisfied:

1) S is closed under the four operations >, min, ¬ and 	q for every q ∈ Q ∩ [0, 1];
2) for every h ∈ PMet1((X, d), ([0, 1], de)), and every x, y ∈ X , we have

de(h(x), h(y)) ≤ supg∈S de(g(x), g(y)) .

Proof. By [16, Lemma 5.8], it suffices to show that, for each h ∈ PMet1((X, d), ([0, 1], de)), each δ > 0, and each pair of
points x, y ∈ X , there is g ∈ S such that de(h(x), g(x)) ≤ δ and de(h(y), g(y)) ≤ δ hold.

Without loss of generality, we can assume h(x) ≥ h(y). Let γ = h(x) − h(y). Since γ ≥ 0, γ = de(h(x), h(y)). By the
second assumption, there is f such that γ − δ ≤ de(f(x), f(y)). Since S is closed under ¬, we can assume that f(x) ≥ f(y)
without loss of generality. This implies γ − δ ≤ f(x)− f(y).

Now, we do a case analysis.
Firstly, assume f(y) ≥ h(y). Take r, s ∈ Q∩ [0, 1] satisfying f(y)−h(y)− δ ≤ r ≤ f(y)−h(y) and h(x) ≤ s ≤ h(x) + δ.

Then g = min(f 	 r, s) is what we want.
Secondly, assume f(y) < h(y). Take r, s ∈ Q∩ [0, 1] satisfying h(y)−f(y)−δ ≤ r ≤ h(y)−f(y) and h(x) ≤ s ≤ h(x)+δ.

Then g = min(¬((¬f)	 r), s) is what we want.



Proposition V.6. Assume the setting of Def. V.1. Let X ∈ Set. Under Asm. V.3, a subset S ⊆ Set(X, [0, 1]) is approximating
if the following hold:
• S is closed under the four operations >, min, ¬ and 	q for every q ∈ Q ∩ [0, 1].
• (X, dS) is totally bounded, where dS(x, y) = supk∈S de(k(x), k(y)).

Proof. Fix h : (X, dS)→ ([0, 1], de), λ ∈ Λ, and (z, w) ∈ (BX)2. It suffices to show the following:

sup
k∈S,λ′∈Λ

de(τλ′((Bk)(z)), τλ′((Bk)(w))) ≥ de(τλ((Bh)(z)), τλ((Bh)(w))). (11)

Use Prop. V.5 for d = dS . This ensures the existence of a sequence (kn : X → [0, 1])n=1,2,... that uniformly converges to
ph as n→∞.

Fix ε > 0. By Asm. V.3, the sequence (τλ ◦ kn)n=1,2,... also uniformly converges to τλ ◦(ph) as n→∞. Thus, we can fix n
so that de(τλ((Bk)(z)), τλ((Bkn)(z))) < ε and de(τλ((Bh)(w)), τλ((Bkn)(w))) < ε both hold. From the triangle inequality,
we obtain de(τλ((Bkn)(z)), τλ((Bkn)(w))) ≥ de(τλ((Bh)(z)), τλ((Bh)(w))) + 2ε.

Since ε is arbitrary, we have (11).

Proposition V.8. Let x : X → BX be a coalgebra. Under Asm. V.3, for each i, {JϕK | ϕ ∈ LSKMM
,depth(ϕ) ≤ i} ⊆

Set(X, [0, 1]) is approximating.

Proof. By induction, for each i, (B
de,τ

)i(>) ∈ (PMet1)X is totally bounded. By the stepwise adequacy (Rem. IV.9 &
Appendix A) and Fact V.7, for each i,

d
ϕ∈LSKMM

,rank(ϕ)≤iJϕK∗xde is also totally bounded. From this and Prop. V.6, we can
show that the desired set is approximating.

Corollary V.9 (from [17, Thm. 32]). Let α : X → BX be a coalgebra. Assume that the sequence > w (x∗B
de,τ

)(>) w
(x∗B

de,τ
)2(>) w · · · stabilizes after ω steps (as in Thm. IV.7). Then, under Asm. V.3, dα ≤ dLα holds. In particular, dα is

characterized as the greatest pseudometric that makes all JϕKα nonexpansive.

Proof. Use Thm. IV.7. The premises are satisfied by Prop. V.8.

OMITTED PROOFS FOR SECTION VI
Proposition VI.8. Assume the setting of Def. VI.1. Let X ∈ Meas. A subset S ⊆ Meas(X, 2) is approximating if the
following hold:
• X is an analytic measurable space.
• S is at most countable.
• For k, l ∈ S, > and k ∧ l are also included in S.

Proof. Fix any h :
d
k∈S k

∗Eq2 → Eq2, any a ∈ A, and any r ∈ Q ∩ [0, 1]. By definition, it suffices to show
l

k∈S,a′∈A,r′∈Q∩[0,1]

(τa′,r′ ◦Bk)∗Eq2 v (τa,r ◦B(ph))∗Eq2.

First we concretize these formulas. Let R =
d
k∈S,a′∈A,r′∈Q∩[0,1](τa′,r′ ◦Bk)∗Eq2. Using the definition of the arrow part

of the functor B = (G≤1−)A, the relation R on (G≤1X)A can be rephrased as

((µa)a∈A, (νa)a∈A) ∈ R
⇐⇒ ∀k, a′, r′, (µa′(k−1({1})) > r′ ⇐⇒ νa′(k

−1({1})) > r′)

⇐⇒ ∀k, a′, r′, (µa′(k−1({1})) = νa′(k
−1({1}))),

where k ∈ S, a′ ∈ A, and r′ ∈ Q ∩ [0, 1]. In the same way, we can concretely describe R′ = (τa,r ◦B(ph))∗Eq2 as

((µa)a∈A, (νa)a∈A) ∈ R′

⇐⇒ (µa((ph)−1({1})) > r ⇐⇒ νa((ph)−1({1})) > r).

Thus, it suffices to show that the set Y ′ = {(µa)a∈A | µa((ph)−1({1})) > r} ⊆ (G≤1X)A is R-closed. Let
X ′ = (ph)−1({1}) ⊆ X . Now Y ′ = {(µa)a∈A | µa(X ′) > r}.

The set X ′ corresponds to h, and we will “approximate” this by sets corresponding to the elements of S. Let E =
{k−1({1}) | k ∈ S} and define an equivalence relation ≡E by

x ≡E y ⇐⇒ ∀E ∈ E , (x ∈ E ⇐⇒ y ∈ E).

Since ≡E coincides with the meet
d
k∈S k

∗Eq2 ∈ (EqRelMeas)X , X ′ is ≡E -closed. Since X is analytic and S is at most
countable, we can apply Fact VI.5 and show X ′ ∈ σ(E ).



Now we show that Y ′ is R-closed. In this step, intuitively, we use the fact that the modalities “preserve” the “approximation”
by the operation of Λ-system. Assume ((µa)a∈A, (νa)a∈A) ∈ R and (µa)a∈A ∈ Y ′. Define a family Λ of measurable subsets
of X by

E ∈ Λ ⇐⇒ ∀a ∈ A,µa(E) = νa(E).

Since S is closed under > and ∧, E is a π-system. On the other hand, by the definition of measure, Λ is a λ-system. Since
((µa)a∈A, (νa)a∈A) ∈ R, E ⊆ Λ. Fact VI.7 implies σ(E ) ⊆ Λ. In particular, X ′ ∈ Λ. This and (µa)a∈A ∈ Y ′ imply
(νa)a∈A ∈ Y ′.

Corollary VI.9. Let x : X → (G≤1X)A be an LMP and s, t ∈ X its states. Assume that the label set A is at most countable
and that X is an analytic measurable space.

Then SCFKP is expressive for x (Def. III.12): that is, If s � ϕ ⇐⇒ t � ϕ holds for every ϕ ∈ LSCFKP , then s and t are
probabilistically bisimilar.

Proof. Since A is at most countable, {JϕK | ϕ ∈ LSCFKP
} ⊆ Meas(X, 2) is also at most countable. Moreover, since the

logic has > and ∧, {JϕK | ϕ ∈ LSCFKP} ⊆ Meas(X, 2) is closed under these operations. Thus we can use Prop. VI.8 and
Thm. IV.5.

OMITTED PROOFS FOR SECTION VII

Proposition VII.8. Assume the setting of Def. VII.4. Let X ∈ Set. Under Asm. VII.6, a subset S ⊆ Set(X,R) is approximating
if the following hold:
• Every function in S is bounded.
• 1 ∈ S.
• S is closed under the three operations min, (r+), and (r×) for every r ∈ R.

Proof. Define a uniformity US as the coarsest uniformity that every k ∈ S is a uniformly continuous map (X,US)→ (R,Ue).
Fix h : (X,US)→ (R,Ue) and λ ∈ Λ. We show that, in the fiber UnifX ,

l

k∈S,λ′∈Λ

(τλ′ ◦Bk)∗Ue v (τλ ◦B(ph))∗Ue

holds. Since {{(x, y) ∈ R2 | de(x, y) < ε} | ε > 0} is a fundamental system of entourages of Ue, the family {{(x, y) ∈
X2 | de((τλ ◦B(ph))(x), (τλ ◦B(ph))(y)) < ε} | ε > 0} is a fundamental system of entourages of (τλ ◦B(ph))∗Ue. So it
suffices to show that each relation in the family is an entourage of

d
k∈S,λ′∈Λ(τλ′ ◦Bk)∗Ue.

We show the following stronger claim:

Claim. For any ε > 0, there exists k ∈ S such that {(x, y) ∈ X2 | de((τλ ◦Bk)(x), (τλ ◦Bk)(y)) < ε/3} is a subset of
{(x, y) ∈ X2 | de((τλ ◦B(ph))(x), (τλ ◦B(ph))(y)) < ε}.

Use Fact VII.7 for Γ = R and Φ = S. The condition (1) is satisfied because every constant is a multiple of 1, and the
condition (4) is satisfied because max(x, y) = −min(−x,−y). This ensures the existence of a sequence (kn : X → R)n=1,2,...

that uniformly converges to ph as n→∞.
Fix ε > 0. By the assumption (2), the sequence (τλ ◦Bkn)n=1,2,... also uniformly converges to τλ ◦B(ph) as n → ∞.

Thus, we can fix n so that, for each x ∈ X , de(τλ((B(ph))(x)), τλ((Bkn)(x))) < ε/3 holds. From the triangle inequality, we
can take k = pkn for the claim above to hold.

Corollary VII.9. Assume the setting of Def. VII.4. Let x : X → BX be a B-coalgebra. Under Asm. VII.6, the bisimulation
uniformity coincides with the logical uniformity, i.e., the former is characterized as the coarsest uniformity making every
JϕKx : X → R uniformly continuous.

Proof. Use Thm. IV.5. Indeed, by the assumption (1), JϕKx is bounded for every ϕ ∈ LSBU
.

OMITTED PROOFS FOR SECTION VIII

Theorem VIII.1. For any expressivity situation S = (p,B,Ω,Ω, · · · , τ) whose base category C has small powers and
equalizers, there is a modal logic with coinductive predicates MLCP(S ) such that for any coalgebra x : X → BX ,
ν(x∗ ◦B) = BisimΩ,τ (x) and th∗x(QΦ) = LES (x) holds.

Proof. Let S = (p,B,Ω,Ω,Σ,Λ, (fσ)σ∈Σ, (τλ)λ∈Λ) be an expressivity situation. We write SΣ : Set→ Set for the signature
functor of Σ defined by SΣX =

∐
σ∈ΣX

rank(σ). An element of SΣX is represented as the form σ(v1, · · · , vrank(σ)) where
σ ∈ Σ and v1, · · · , vrank(σ) ∈ X .



We aim to construct the following modal logic with coinductive predicates MLCP(S ).

E

p

��

B
Ω,τ

==

C
B

==

P //
⊥oo
Q

(SetSΣ)op

Lop

gg

Q
dd

+

(
α : LΦ→ Φ initial
δ : B ◦Q→ Q ◦ Lop

)

s.t.

p : CLatu-fibration

B
Ω,τ

lifting of B

p ◦Q = Q

 (12)

The remaining data P,Q,Q, α, δ are defined below. In fact, Q,Q are constructed by the following common method.

Lemma A.4. Let C be a category with small powers and equalizers, and (Ω, f) be a Σ-algebra in C. Define a functor
P : C→ (SetSΣ)op by

PX = (C(X,Ω), fP ) where fP (σ(g1, · · · , grank(σ))) = fσ ◦ 〈g1, · · · , grank(σ)〉
Ph(k) = k ◦ h.

Then P has a right adjoint Q.

Proof. Let (X,x) ∈ SetSΣ . We define an object Q(X,x) to be the following equalizer in C:

Q(X,x)
eCX,x

// X t Ω
aCX,x

//

bCX,x

// ΣX t Ω

aCX,x = 〈fσ ◦ 〈πv1
, · · · , πvrank(σ)

〉〉σ(v1,··· ,vrank(σ))∈SΣX

bCX,x = 〈πx(σ(v1,··· ,vrank(σ)))〉σ(v1,··· ,vrank(σ))∈SΣX .

The reason why we annotate the category C on morphisms a, b, e is that we later consider a, b, e in different categories. When
C is evident, we omit writing it.

We define a morphism εX,x : (X,x)→ PQ(X,x) in SetSΣ by εX,x(v) = πv ◦ eX,x. It is indeed a morphism in SetSΣ as:

fP ◦ SΣεX,x(σ(v1, · · · , vrank(σ))) = fP (σ(εX,x(v1), · · · , εX,x(vrank(σ))))

= fσ ◦ 〈πv1
, · · · , πvrank(σ)

〉 ◦ eX,x
= πx(σ(v1,··· ,vrank(σ))) ◦ eX,x
= εX,x ◦ x(σ(v1, · · · , vrank(σ))).

We show that εX,x is a universal arrow from (X,x) ∈ SetSΣ to P . Let h : (X,x) → PY be a morphism in SetSΣ . That
is, h : X → C(Y,Ω) is a function such that fP ◦ SΣh = h ◦ x. Then 〈h(v)〉v∈X : Y → X t Ω equalizes aX,x and bX,x:

aX,x ◦ 〈h(v)〉v∈X = 〈fσ ◦ 〈h(v1), · · · , h(vrank(σ))〉〉σ(v1,··· ,vrank(σ))∈SΣX

= 〈fP (σ(h(v1), · · · , h(vrank(σ))))〉σ(v1,··· ,vrank(σ))∈SΣX

= 〈h(x(σ(v1, · · · , vrank(σ))))〉σ(v1,··· ,vrank(σ))∈SΣX

= bX,x ◦ 〈h(v)〉v∈X .

We thus obtain the unique morphism h̃ : Y → Q(X,x) in E such that

eX,x ◦ h̃ = 〈h(v)〉v∈X . (13)

This satisfies Ph̃ ◦ εX,x = h in SetSΣ because for any v ∈ X , we have

εX,x(v) = πv ◦ eX,x ◦ h̃ = πv ◦ 〈h(v)〉v∈X = h(v).

We show that such h̃ is unique. Let h′ : Y → Q(X,x) be a morphism in E such that Ph′ ◦ εX,x = h. This means that
πv ◦ eX,x ◦ h′ = h(v) holds for any v ∈ X , hence 〈h(v)〉v∈X = eX,x ◦ h′. From the universal property of the equalizer,
h′ = h̃.

Since C has small powers and equalizers, we define P a Q in (12) to be the one arising from S ’s Σ-algebra (Ω, f) in C
by Lemma A.4.



Since p : E → C is a CLatu-fibration, E also has small powers and equalizers that are strictly preserved by p. Moreover
S specifies another Σ-algebra (Ω, g) in E above (Ω, f); see the fourth condition in Def. III.1. Therefore we define Q in (12)
to be the right adjoint arising from (Ω, g) by Lemma A.4. Since p preserves small powers and equalizers, p ◦Q = Q holds.

We define L in (12) to be the composite FSΣ ◦ (Λ × ) ◦ USΣ , where FSΣ a USΣ : SetSΣ → Set is the adjunction
constructing free SΣ-algebras. Let us identify L-algebras:

Lemma A.5. By Σ + Λ we mean the ranked alphabet obtained by (disjointly) adding Λ-many rank-1 symbols to Σ. We have
an isomorphism of categories:

(SetSΣ)L ∼= SetSΣ+Λ . (14)

Proof. From the following bijection:

SetSΣ(L(X,x), (X,x)) ∼= Set(Λ×X,X) ∼= Set(X,X)Λ,

an L-algebra l : L(X,x) → (X,x) bijectively corresponds to a Λ-indexed family of endofunctions on X . Thus the tuple
(X,x, l) bijectively corresponds to an SΣ+Λ-algebra on X .

We define an initial algebra α : LΦ→ Φ to be the one corresponding to an initial SΣ+Λ-algebra constructed as the set LS

of formulas of S in (Def. III.2). Thus the carrier set of Φ ∈ SetSΣ is LS .
Under the right adjoint Q and an endofunctor L defined above, we obtain the following bijective correspondence:

[(SetSΣ)
op
,C](B ◦Q,Q ◦ Lop)

∼= [C, (SetSΣ)
op

](P ◦B,Lop ◦ P ) adjoint mate
∼= [Cop,SetSΣ ](L ◦ P op, P op ◦Bop)

= [Cop,SetSΣ ](FSΣ(Λ× USΣ ) ◦ P op, P op ◦Bop) by def. of L
∼= [Cop,Set]((Λ× USΣ ) ◦ P op, USΣ ◦ P op ◦Bop)

∼= [Cop,Set](USΣ ◦ P op, ( )Λ ◦ USΣ ◦ P op ◦Bop)

= [Cop,Set]
(
C( ,Ω),

(
C(B ,Ω)

)Λ )
by def. of P

∼=
(
C(BΩ,Ω)

)Λ
by the Yoneda lemma.

We therefore define δ to be the one corresponding to S ’s modality (τλ)λ∈Λ ∈ C(BΩ,Ω)Λ.
Let x : X → BX be a coalgebra. It is ovbious that ν(x∗ ◦B) = BisimΩ,τ (x). We thus show that th∗x(QΦ) = LES (x) =d
φ∈LS

JφK∗xΩ. First, we construct the theory morphism thx : X → QΦ. From the inductive definition of the interpretation

function J Kx, it is a SetSΣ -algebra homomorphism of type Φ → PX . Then we define thx to be the adjoint mate J̃ Kx :
X → QΦ. We note that eΦ ◦ thx = 〈JφKx〉φ∈LS by (13).

Next, we explicitly compute QΦ. In E, the equalizer of aEΦ, b
E
Φ : LS t Ω→ SΣLS t Ω is given by a Cartesian lifting of

the equalizing morphism of paEΦ, pb
E
Φ with LS t Ω. Since p strictly preserves powers, we have paEΦ = aCΦ, pb

E
Φ = aCΦ, hence

their equalizing morphism is eCΦ. The right half of the following diagram describes this equalizing process.

th∗(QΦ)
thx(QΦ)

// QΦ
eEΦ=eCΦ(LStΩ)

// LS t Ω
aEΦ //

bEΦ

// SΣLS t Ω E

p

��

X
thx // QΦ

eCΦ // LS t Ω
aCΦ //

bCΦ

// SΣLS t Ω C

On the left half, we also add the Cartesian lifting of thx with QΦ, yielding the object th∗(QΦ).
We finally remark that in the CLatu-fibration p : E→ C, we have LS t Ω =

d
φ∈LS

π∗φΩ. By combining these facts, we
conclude

th∗(QΦ) = th∗(e∗Φ(LS t Ω)) = th∗

e∗Φ
 l

φ∈LS

π∗φΩ

 =
l

φ∈LS

(πφ ◦ eΦ ◦ th)∗Ω =
l

φ∈LS

JφK∗xΩ.



Theorem VIII.2. Suppose that in the modal logic with coinductive predicates K (6), D has an initial object, L-initial sequence
stabilizes, and Q is a right adjoint. Let x : X → BX be a coalgebra such that x∗ ◦B-final sequence stabilizes after ω-steps.
Then each of (8) and (9) implies that K is expressive for x.

∀i ∈ ω . H((x∗ ◦∆)i(>)) v (x∗ ◦B)i(>) (8)

∀i ∈ ω . H ◦∆ ◦(x∗ ◦∆)i(>) v B ◦H ◦(x∗ ◦∆)i(>) (9)

Proof. The fibre category (C ↓ Q)X of the fibration π1 : C ↓ Q→ C is isomorphic to the comma category X ↓ Q. We
therefore work with X ↓ Q instead. Then the endofunctor x∗ ◦∆ over (C ↓ Q)X is redefined on X ↓ Q by

x∗ ◦∆(Y, f) = (LY, δ ◦Bf ◦ x).

We also consider the evident forgetful functor p : X ↓ Q→ Dop. This functor reflects isomorphisms, and x∗ ◦∆ is a lifting
of Lop along p.

First consider the final x∗ ◦∆-sequence in X ↓ Q:

> x∗ ◦∆>oo x∗ ◦∆(x∗ ◦∆>)oo · · ·oo

where > = (0, ! : X → Q0) is a terminal object. Notice that Q : Dop→ C is a right adjoint, hence Q0 is a terminal object
(here 0 is the assumed initial object in D). The unique morphism from (Y, f) to (0, !) is ! : Y → 0 in Dop (i.e. ! : 0→Y in D).

The functor p sends this final x∗ ◦∆-sequence to the following diagram, which is again the final Lop-sequcence in Dop (i.e.
L-initial sequence in D):

0 L0
L!oo L20

L2!oo · · ·oo

From the assumption, this Lop-sequence converges, say at an ordinal λ. Since p reflects isomorphisms, the final x∗◦∆-sequence
also converges at λ; without loss of gerality we assume ω ≤ λ. We write eν(x∗ ◦∆) for this converging object. We take the
evident morphism m : ν(x∗ ◦∆)→ limi∈ω(x∗ ◦∆)i>.

From the assumption, H((x∗ ◦∆)i>) v (x∗ ◦ B)i> holds for any i ∈ ω, and the ωop-limit of the right hand side yields
ν(x∗ ◦ B). On the other hand, from Q being a right adjoint, H also becomes a right adjoint too (we postpone the proof of
this claim). Therefore H(limi∈ω(x∗ ◦∆)i>) = limi∈ωH((x∗ ◦∆)i>). Therefore

H(ν(x∗ ◦∆))

v H(lim
i∈ω

(x∗ ◦∆)i>) H(m) witnesses this inequality

= lim
i∈ω

H((x∗ ◦∆)i>) H preserves limits

v ν(x∗ ◦B).

Next, we show that (9) implies (8) by induction. The base case is trivial. For the case i+ 1 ∈ ω,

H ◦(x∗ ◦∆)i+1(>)

= H ◦x∗ ◦∆ ◦(x∗ ◦∆)i(>) unfolding

= x∗ ◦H ◦∆ ◦(x∗ ◦∆)i(>) H being fibred

v x∗ ◦B ◦H ◦(x∗ ◦∆)i(>) (9)

v (x∗ ◦B)i+1(>). IH

We finally show that Q being a right adjoint implies that H is so too. We write ηX : X → QPX for the unit of the
adjunction P a Q : C→ E. Let X ∈ E. Then we obtain an object KX , (pX,PX, pηX) ∈ C ↓ Q, and we obtain a vertical
morphism X ≤ HKX = (pηX)∗(QPX), which we name η̇X .

Now let (Y, I, f) ∈ C ↓ Q be an object and h : X → H(Y, I, f) = f∗QI be a morphism in E. Then we obtain the
composite

f(QI) ◦ h : X → QI,

were f(QI) is the Cartesian lifting of f with QI . We then take the adjoint mate of this composite, and write it by m : PX → I .
It is immediate that the pair (ph,m) forms a morphism from KX to (Y, I, f) in C ↓ Q. Moreover, H(ph,m) : HKX →
H(Y, I, f) is the unique morphism above ph such that h = H(ph,m) ◦ η̇X .



Suppose that there is another (a, b) : KX → (Y, f, I) such that h = H(a, b) ◦ η̇X . Since H(a, b) is above a and η̇X is
vertical, we have ph = a. Next,

f(QI) ◦ h = f(QI) ◦H(a, b) ◦ η̇X = Qb ◦ ηX(QPX) ◦ η̇X = Qb ◦ ηX .

Therefore b = m.

X
η̇X //

h
((

(pηX)∗(QPX)
pηX(QPX)

//

H(a,b)

��

QPX

Qb

��

f∗QI
f(QI)

// QI

pX

a

��

pηX // pQPX = QPX

Qb

��

PX

b

��

Y
f

// QI I
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