Injective Objects and Fibered Codensity Liftings

Yuichi Komorida (Sokendai & NII, Tokyo)

Categorical Algebra and Computation Kyoto, 23 Dec 2019

Background

- Functor lifting along a <u>fibration</u> is used e.g. for <u>bisimilarity</u> and its generalizations
- Codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18] is a general method to obtain a functor lifting

Contribution

- When codensity lifting yields a fibered functor?
- We obtained the first general sufficient condition for that.
- We defined <u>c-injective object</u> to formulate it.

Background

- Functor lifting along a <u>fibration</u> is used e.g. for <u>bisimilarity</u> and its generalizations
- Codensity lifting [Katsumata & Sato CALCO15]
 [Sprunger+ CMCS18] is a general method to obtain a functor lifting

Coalgebra

 \mathbb{C} : category $F: \mathbb{C} \to \mathbb{C}$

An *F*-coalgebra is a pair How states behave

 $(X \in \mathbb{C}, t: X \to FX)$

We'll mainly consider $\mathbb{C}=\mathbf{Set}$.

- P-coalgebras = Kripke frames
- \mathcal{D} -coalgebras = Markov chains
- LTS, (non-deterministic/deterministic/ weighted) automata, and many others

Bisimilarity

- Which states behave "the same"?
- For $t: X \to FX$, if $x \sim y$ holds, then " $t(x) \sim t(y)$ " should also hold
 - The greatest relation \sim on X among such is the <u>bisimilarity relation</u>
- We need a map $2^{X \times X} \rightarrow 2^{FX \times FX}$
 - ⇒ Functor lifting gives one!

Bisimulation metric

[Desharnais+,TCS318(3),2004]

- Which states "behave alike"?
- Pseudometric on X
- We need a map
 - turns a pseudometric on X
 - into a pseudometric on FX
 - → Functor lifting gives one!

Fibrations

I'll explain later

- Fibration: functor $p: \mathbb{E} \to \mathbb{C}$ satisfying cartesian lifting property.
- $R \in \mathbb{E}$ is above $X \in \mathbb{C} \Leftrightarrow pR = X$
- Fiber \mathbb{E}_X over $X \in \mathbb{C}$ object: $R \in \mathbb{E}$ above X arrow: f in \mathbb{E} s.t. $pf=1_X$

Cartesian lifting property

$$\begin{array}{c|c}
\mathbb{E} & R \\
p \downarrow & \vdots \\
\mathbb{C} & X \longrightarrow Y \\
f^* \colon \mathbb{E}_Y \to \mathbb{E}_X
\end{array}$$

- Category ERel
 - object: set with binary rel.
 - arrow: relation-preserving map
- Forgetful func. U: **ERel** \rightarrow **Set** is a fibration.
- Fiber $\mathbf{ERel}_X = 2^{X \times X}$

- Category PMet₁
 - object: set with [0,1]-valued pseudometric
 - arrow: non-expansive map
- Forgetful func. U: **PMet**₁ \rightarrow **Set** is a fibration.
- Fiber $(\mathbf{PMet}_1)_X$ is the set of all [0,1]-valued pseudometrics on X

$$f^*d(x,x') = d(f(x),f(x'))$$

$CLat_{\square}$ -fibration

- ··· is a fibration where
- each fiber \mathbb{E}_X is a complete lattice
- each pullback functor $f^* \colon \mathbb{E}_Y \to \mathbb{E}_X$ preserves meets
- Examples: ERel \rightarrow Set, PMet₁ \rightarrow Set,
- **PreOrd** → **Set**, **Top** → **Set**, …

Remark on the "order"

- . Order in \mathbb{E}_X : $E \sqsubseteq E'$ means $E \to E'$
- . In ERel, (X,R) \sqsubseteq (X,R') means R \subseteq R'
- . In PMet₁, it is "reversed"
 - $(X,d) \sqsubseteq (X,e)$ means, for each x_1,x_2 , $d(x_1,x_2) \ge e(x_1,x_2)$
 - . Meet ⊓ means sup of the values

Functor lifting

 \dot{F} is called a lifting of F along p if \cdots

Fibrational coinduction

[Hermida & Jacobs 1998]

$$p: \mathbb{E} \to \mathbb{C}$$
: fibration, $F: \mathbb{C} \to \mathbb{C}$,

 $\dot{F} \colon \mathbb{E} \to \mathbb{E}$: lifting of F along p,

 $t: X \to FX F$ -coalgebra

Background

- Functor lifting along a <u>fibration</u> is used e.g. for <u>bisimilarity</u> and its generalizations
- Codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18] is a general method to obtain a functor lifting

Codensity lifting

Generalization:

Kantorovich distance

 \downarrow

Kantorovich lifting [Baldan et al. FSTTCS14]

 \downarrow

Codensity lifting [Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

Kantorovich distance

- ②: Set → Set: the discrete prob. dist.
 functor
- $(X,d) \in \mathbf{PMet}_1, p,q \in \mathcal{D}X$

$$d^{K}(p,q) = \sup_{f} \left| \sum_{x} f(x)p(x) - \sum_{x} f(x)q(x) \right|$$

Kantorovich distance

- $e: \mathcal{D}[0,1] \rightarrow [0,1]$: expected value function
- $(X,d) \in \mathbf{PMet}_1, p,q \in \mathcal{D}X$

$$d^{K}(p,q) = \sup_{f} d_{\mathbb{R}} \left(e((\mathcal{D}f)(p)), e((\mathcal{D}f)(q)) \right)$$

Kantorovich lifting

[Baldan et al. FSTTCS14]

- $F: \mathbf{Set} \to \mathbf{Set}$
- Use $\tau: F[0,1] \to [0,1]$
- $(X, d) \in \mathbf{PMet}_1, p, q \in FX$

$$d^{\uparrow F}(p,q) = \sup_{f} d_{\mathbb{R}} \left(\tau((Ff)(p)), \tau((Ff)(q)) \right)$$

Kantorovich lifting

[Baldan et al. FSTTCS14]

- $F: \mathbf{Set} \to \mathbf{Set}$
- Use $\tau: F[0,1] \to [0,1]$
- $\cdot (X, d) \in \mathbf{PMet}_1$

$$d^{\uparrow F} = \prod_{f} (\tau \circ Ff)^* d_{\mathbb{R}}$$

Codensity lifting

[Katsumata & Sato CALCO15] [Sprunger+ CMCS18]

- $F: \mathbb{C} \to \mathbb{C}, p: \mathbb{E} \to \mathbb{C}$ (CLat_{\square}-fibration)
- . Use $\tau \colon F\Omega \to \Omega, \Omega \in \mathbb{E}_{\Omega}$
- $X \in \mathbb{C}, E \in \mathbb{E}_X$

$$F^{\mathbf{\Omega},\tau}E = \prod_{f} (\tau \circ Fpf)^*\mathbf{\Omega}$$

- f ranges over arrows $E \to \Omega$ in $\mathbb E$
- A functor $F^{\Omega,\tau} \colon \mathbb{E} \to \mathbb{E}$ is defined

Contribution

- When codensity lifting yields a fibered functor?
- We obtained the first general sufficient condition for that.
- We defined <u>c-injective object</u> to formulate it.

Fiberedness

- Fibered lifting: functor lifting that interact well with pullbacks
- $F: \mathbb{C} \to \mathbb{C}, p: \mathbb{E} \to \mathbb{C}$ (CLat_{\square}-fibration)
- Lifting $\dot{F} \colon \mathbb{E} \to \mathbb{E}$ is fibered if
 - for any $f: X \to Y$ in $\mathbb C$ and $E \in \mathbb E_Y$,
 - $\dot{F}(f^*E) = (Ff)^*\dot{F}E$ holds.

Application of fiberedness

• Thm. If \dot{F} is fibered, the coinductive predicate is stable under coalgebra morphisms:

For $t: X \to FX$, $u: Y \to FY$, and $f: X \to Y$, if $u \circ f = Ff \circ t$ holds, then $\nu(t^* \circ \dot{F}) = f^*\nu(u^* \circ \dot{F})$ holds.

Contribution

- When codensity lifting yields a fibered functor?
- We obtained the first general sufficient condition for that.
- We defined <u>c-injective object</u> to formulate it.

- Kantorovich lifting is always fibered [Baldan et al. FSTTCS14]
 - In that case fiberedness ⇔ preservation of isometries
- Codensity lifting ····· ???

Property of [0,1]

[Baldan et al. FSTTCS14]

- $f: X \to Y \text{ and } (Y, d) \in \mathbf{PMet}_1$
- For any g, there exists h:

C-injective object

- p: \mathbb{E} → \mathbb{C} (CLat_{\square}-fibration)
- Def. $\Omega \in \mathbb{E}_{\Omega}$ is <u>c-injective</u> if, for any $f: X \to Y$, $E \in \mathbb{E}_{Y}$, and $g: f^*E \to \Omega$, the following h exists:

Main theorem

• Thm. If $\Omega \in \mathbb{E}$ is c-injective, then the codensity lifting $F^{\Omega,\tau} \colon \mathbb{E} \to \mathbb{E}$ is a fibered lifting of F.

Examples of fibered codensity liftings

TABLE VI CODENSITY LIFTING OF FUNCTORS

	fibration $p:\mathbb{E} \to \mathbb{C}$	functor $F \colon \mathbb{C} \to \mathbb{C}$	obs. dom. Ω	modality $ au$	lifting $F^{\Omega,\tau}$ of F
1	$\mathbf{Pre} o \mathbf{Set}$	powerset \mathcal{P}	$(2, \leq)$	$\diamond \colon \mathcal{P}2 \to 2$	lower preorder [14]
2	$\mathbf{Pre} o \mathbf{Set}$	powerset \mathcal{P}	$(2,\geq)$	$\diamond \colon \mathcal{P}2 \to 2$	upper preorder [14]
3	$\mathbf{ERel} o \mathbf{Set}$	powerset \mathcal{P}	$(2, \operatorname{Eq}_2)$	$\diamond \colon \mathcal{P}2 \to 2$	(for bisimulation, see Ex. III.3 & VII.2)
4	$\mathbf{EqRel} \to \mathbf{Set}$	powerset \mathcal{P}	$(2, \operatorname{Eq}_2)$	$\diamond \colon \mathcal{P}2 \to 2$	(for bisimulation, see Ex. III.2 & VII.2)
5	$\mathbf{PMet}_1 \to \mathbf{Set}$	subdistrib. $\mathcal{D}_{\leq 1}$	$([0,1],d_{[0,1]})$	$e \colon \mathcal{D}_{\leq 1}[0,1] \to [0,1]$	Kantorovich metric
6	$\mathbf{PMet}_1 \to \mathbf{Set}$	powerset \mathcal{P}	$([0,1],d_{[0,1]})$	$\inf \colon \mathcal{P}[0,1] \to [0,1]$	Hausdorff pseudometric (cf. Appendix C)
7	$U^*(\mathbf{PMet}_1) o \mathbf{Meas}$	sub-Giry $\mathcal{G}_{\leq 1}$	$([0,1],d_{[0,1]})$	$e \colon \mathcal{G}_{\leq 1}[0,1] \to [0,1]$	Kantorovich metric
8†	$\mathbf{Pre} \to \mathbf{Set}$	powerset \mathcal{P}	$(2, \leq), (2, \geq)$	$\diamond \colon \mathcal{P}2 \to 2$	convex preorder [14]
9†	$\mathbf{EqRel} \to \mathbf{Set}$	subdistrib. $\mathcal{D}_{\leq 1}$	$(2, \operatorname{Eq}_2)$	$(\tau_r \colon \mathcal{D}_{\leq 1} 2 \to 2)_{r \in [0,1]}$	(for prob. bisim., see §VIII-G)
10 [†]	$\mathbf{Top} \to \mathbf{Set}$	$2 \times (_)^{\Sigma}$	Sierpinski space	(see Ex. VI.5)	(for bisim. topology, see Ex. VI.5)

(Taken from [K. et al. LICS19])

Examples of fibered codensity liftings

fibration	Ω	c-injective?	examples
Pre→Set	(2,≦)	Yes	upper, lower, convex preorders
ERel→Set	(2,=)	No	(for bisimilarity)
EqRel→Set	(2,=)	Yes	(for bisimilarity)
PMet₁→Set	([0,1],d _R)	Yes	Hausdorff and Kantorovich distances
U*(PMet ₁)→ Meas	([0,1],d _R)	No	Kantorovich distance
Top→Set	Sierpinski space	Yes	(for bisimulation topology)

Future work

- Application to modal logic (ongoing with C.Kupke and J.Rot)
 - In particular to the fibrational framework [Kupke & Rot CSL20 to appear]
- Study of c-injective objects in a unified way?
 - . In Top → Set, they are continuous lattices [Scott 1972]
 - In PreOrd → Set, they are complete lattices [Banashewski & Bruns 1967]
 - . In $\mathbf{PMet}_1 \to \mathbf{Set}$, they are called bounded hyperconvex spaces
 - S.Fujii recently identified in some other cases [Fujii arXiv 2019]