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We continue using the handout from the last lecture. The relevant part is repeated below just in
case.

1 Today’s Goal

Identify the following framework of abstract interpretation [1] as an instance of adjunction. (Thanks
are due to Kengo Kido for a nice introduction.)

Definition (Galois connection). Let L and L be posets; and a: L — L and v: L — L be monotone
functions. The pair («, ) is said to be a Galois connection if, for any x € L and T € T,

a(z) <g 7 ifand only if « <p~(T) .
Example (interval domain). Let
L:=PN) and L := {0}U{[l,r]|l,r e NU{-00,00},1<r}
where each set is ordered by inclusion. Moreover,
a(S) := [minS,max X] and ~(S) == {neN|neS}.

Then the pair (a, ) is a Galois connection.

2 Today’s Agenda

2.1 Adjunction

Definition. Homset.

Definition. Adjunction.

Example. Free monoids.

Definition. Unit, counit.

Lemma. Adjoint transposes by units and counits.

Proposition. Characterization of adjuction by: 1) the universality of n (Def. 3.2 of [Lambek &
Scott], intuitive for free monoids); 2) the triangular equalities (Def. 3.1 of [Lambek & Scott]).

Lemma. 1. Adjoint functors determine each other uniquely up-to canonical natural isomor-
phisms.

2. Composition of adjoints.

2.2 Limits as Adjoints
Definition. Functor category

Proposition. A limit gives rise to an adjunction.



3 Exercises

1. Formulate and prove the following statement.
A right adjoint preserves limits.

2. Prove the following: in an adjunction F' 4 G, G is faithful if and only if every component of
the counit € is an epi. [2, Thm. IV.3.1]
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