形式言語理論 2015年度 期末試験 2016年1月8日

諸注意

- 全5問,問題は2ページある.
- 解答用紙に解答せよ.裏面等を使う場合は,その旨をはっきりわかるように記すこと.
- 答案には問題の番号を明記すること.
- ノート・参考書等の参照は不可.
- 所属及び学年の欄には,進学先の学科も書いてください.
- ウェブページで合格者の学籍番号リストを掲載する予定です(追試の準備に早くとりかかれるように). これを希望しない人は,答案の冒頭に「学籍番号非公開希望」とはっきり書いてください. ただしその場合,合否は UT-MATE を通じて連絡することになります.
- 不正行為には厳正に対処する.

問 1.

アルファベット Σ を $\Sigma=\{0,1\}$ と定める.次の言語それぞれについて,その言語を認識する決定性有限オートマトン(deterministic finite automata, DFA)のうち,状態数最小のものを与えよ.

- (1) $L_1 = \{ w \in \Sigma^* \mid \exists w' \in \Sigma^* . \exists x \in \Sigma . w = w' 0x \}$.
- (2) $L_2=\{w\in\Sigma^*\mid |w|$ は偶数 $\}$. ただし |w| は文字列 w の長さを表す .
- (3) $L_3 = L_1 \cap L_2$.

問 2.

アルファベット Σ を $\Sigma = \{0,1\}$ と定める Σ 上の言語

$$\{xx \mid x \in \Sigma^*\}$$

は正則 (regular)か? 証明も与えよ.

問 3.

次の問題を解くアルゴリズムを5行以内で説明せよ.(簡潔な説明でよい.ただし要点を押さえること)

入力: アルファベット Σ 上の正規表現 (regular expressions) φ, ψ

出力: φ,ψ の表現する言語 $L(\varphi),L(\psi)\subseteq\Sigma^*$ について,

$$L(\varphi) = L(\psi)$$

が成立するかどうか.

問 4.

次の事実 (†) について考える.

 (\dagger) $L\subseteq \Sigma^*$ が文脈自由(context-free)かつ無限(すなわち,L は無限個の語を含む)であるとする.このとき L に対し,ある自然数 K>0 が存在して次が成立する: すべての自然数 $n\geq 1$ に対し, $nK\leq |s_n|\leq (n+1)K$ をみたす $s_n\in L$ が存在する.

以下の問いに答えよ.

- (1) 文脈自由言語のための pumping lemma の statement を述べよ.
- (2) 文脈自由言語のための pumping lemma を用いて,事実(†)を証明せよ.
- (3) G=(V,T,P,S) を文脈自由文法とする.このとき,G の生成する言語 $L(G)\subseteq T^*$ が無限かどうか判定する手順を考え, $2\sim 3$ 行で概略を示せ. ただし次を仮定して良い.
 - ullet G は Chomsky 標準形である. すなわち, 生成規則の集合 P の要素は

$$A \rightarrow BC$$
 または $A \rightarrow a$

の形をしている (ただし $A, B, C \in V$ かつ $a \in T$).

 \bullet 任意の変数 $A\in V$ は終端記号列を導出しうる (すなわち , ある $w\in T^*$ に対して $A\Rightarrow_C^*w$).

問 5.

L をアルファベット Σ 上の正規言語 (regular language) とする . このとき , 集合

$$\mathcal{A} = \{ w \backslash L \mid w \in \Sigma^* \} \subseteq \mathcal{P}(\Sigma^*)$$

が有限集合であることを証明せよ.ただし $w \setminus L$ は言語 Lの語 wによる左微分をあらわし,

$$w \setminus L = \{ w' \in \Sigma^* \mid ww' \in L \}$$

と定義される.

ヒント: L を認識する DFA $M=(Q,\Sigma,\delta,q_0,F)$ をとり,関数

$$f: Q \longrightarrow \mathcal{P}(\Sigma^*)$$
, $q \longmapsto L(M_q)$

を考えよ.ただし M_q は M において初期状態のみを q に変更した DFA (Q,Σ,δ,q,F) をあらわす.