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Some Background
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Engine Control (FADEC)
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Operational Design Domain (ODD)

SAE J3016 Levels of Driving Automation “”\

A set of conditions under which
the driving automation can operate a vehicle

Time of day Typesofroads Geographic Traffic conditions  Weather conditions

day residential area stop-and-go clear
night urban free flowing raining
highway snowing

icy




Dynamic Driving Task (DDT)
Fallback A\

Who performs the DDT
in the case of system malfunction or

when leaving the ODD?

¥
Driver Computer



Automated Driving Systems (ADS)
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ADS Hazard Sources
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DevOps for ADS Software

ﬂ;surance

~

Dev Ops

/

Shadow testing

Incremental assurance
Design of experiments & fleet learning

What field data to collect?
Update assurance 10

Safety case evolution



ADS Hazard Sources

Mature best practices ISO 26262 /‘
01100
10110
11110
Mechanical Electrical Computer Computer
faults faults HW faults SW faults
(1SO / PAS 21448) SAE J3061
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WISE Drive

* Framework for
analyzing and specifying
requirements for an
ADS

* |Instantiated for a
sample ODD on UW
Moose

* |nputinto

standardization
(SAE J3164)

https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving 12



Requirements Specification

Road
Environment

Driving
Behavior
Requirements
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Driving Behavior Specification

Road
Environment

Road structure
& other
static objects

Driving Quality

High-Level Requirements

Driving Task

Traffic

Specification

Environmental
conditions

Mission planning

Maneuvers

Subject Vehicle
Dynamic state

System health

e
&
=
ﬁ Motion control

Safety

Comfort

Progress

Energy efficiency



Road Environment Ontology

Environmental A Q -ﬁ'
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Driving Task

— Strategic Level —p  General ~ Long
Plans Time Constant
l Route Speed Criteria l
Environmental _ Controlled Seconds
Input — Manoeuvring Level Action Patterns
l Feedback Criteria l
—p Automatic s
Environmental Control Level I Action Patterns | liseconds
Input =

John Micheon, 1985



Primary Maneuvers
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Lane maintenance Lane change Swerve out of a same-direction
traffic lane
N |
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Turn out of a same-direction Crossing a lane Movements outside a same-direction
traffic lane traffic lane



O 0 N,

Secondary Maneuvers

Overtaking
Passing

Intersection handling
— includes handling circular and non-circular intersections

Interchange handling

— includes using acceleration lanes, entry and exit ramps, and
weaving areas

Pedestrian crossing handling
Cycle crossing handling
Railway crossing handling
Turnabouts

Joining and leaving traffic



Safety

Absence of unreasonable risk of mishap

/88 severity
\ ces . likelihood

risk



Driving Behavior Safety
Absence of unreasonable crash risk due to ADS driving behavior

Noncollisions Collisions

ﬁ Qg, =a> il
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Factors Influencing Risk Acceptability

Risk level
Risk reduction cost
Benefit of the risky functionality (risk taking)

Best practice (state of technology)
Replacement risk

Who controls risk
Perception/public opinion



Assurance Target

Acceptable
risk of
known
unsafe
scenarios

ODD boundary

Acceptable
risk of
unknown
unsafe

scenarios
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Responsibility-Driven Safety

* Normal driving scenarios
— Must not cause unacceptable risk increase
— Low/high demand (incl. other road user errors)

* Emergency scenarios

— Near-crash
e Must avoid crash if it can

— Crash

* Must mitigate if it can
* Dilemmas often addressed by blame assignment

— Fallback

* Must minimize overall risk

(related: Responsibility-Sensitive Safety, https://arxiv.org/pdf/1708.06374)



Blame vs. Injury Risk

GM Cruise Chevy vs. motorcycle crash
https://www.dmv.ca.gov/portal/wcm/connect/1877d019-d5f0-4c46-b472-78cfe289787d/GMCruise_120717.pdf?MOD=AJPERES 24



Environment

High-Level Behavior Safety =

Traffic

Environmental Mission planning

Requirements (Normal Driving) - ==
-ﬁ' 1. Vehicle stability
1,
S 2. Assured clear distance ahead

e e 3. Minimum separation

4. Traffic regulations

5. Informal traffic rules
(best practices)




Behavioral Safety: 1. Vehicle Stability

Skid stability

Friction ellipses e+p,=v2/127R

Roll stability

Qa,

Untripped

5= -
g =




Behavioral Safety: 2. Assured Clear
Distance Ahead (ACDA)

<€

Stopping sight distaje
(Perception-reaction time and
braking distance)

<€ >
Perception distance

(Range + road geometry)

Limits safe speed
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Behavioral Safety: 2. ACDA
Perception Distance

Crests Curves
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Behavioral Safety:
3. Minimum Separation

Separation in terms of distance gap, time gap, and time-to-collision




Behavioral Safety: 3. Minimum Separation
Maneuver-Specific Gaps

Car following Lane changing
~ ~ ! adjacent lane !
B B T gap T >
rear subject front
vehicle vehicle vehicle
Overtaking
passing gap
[ = = = e e e e e e >
. oncoming i . .
T ] > Intersection handling

oncoming

1
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Behavioral Safety:
4. Traffic Regulations

Safe speed (ACDA)
Yielding to other road users rules

Obeying regulatory traffic signs &
signals

Where to drive

Reacting to emergency vehicles &
school buses

U-turn prohibitions

Safe following gap
Passing rules

Signaling stops & turns
Parking restrictions
Use of passing beam

Required behavior
at railway crossings



Behavioral Safety:
5. Informal Traffic Rules

2/3 — second rule

Responding to tailgaters

How early to signal turns
Delayed acceleration at signalized intersections
Lane selection

Anticipating aberrant behaviors of other road users

Responding to animals on the roadway

L X N J 32



WISE Drive Documentation

WISE Drive comes with comprehensive documentation (over 350
pages) available from this page.

All eight documents in two zip archives: zip1, zip2

Driving Task Specification
Maneuver Catalog

K. Czarnecki. Automated Driving System (ADS) Task Analysis — Part
2: Structured Road Maneuvers. Waterloo Intelligent Systems
Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI:
10.13140/RG.2.2.23280.76800

Basic Motion Control Task Catalog

K. Czarnecki. Automated Driving System (ADS) Task Analysis — Part
1: Basic Motion Control Tasks. Waterloo Intelligent Systems
Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI:
10.13140/RG.2.2.29991.65447

Road Environment Specification
0DD Taxonomy

K. Czarnecki. Operational Design Domain for Automated Driving
Systems — Taxonomy of Basic Terms. Waterloo Intelligent Systems
Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI:

33



LAVA: Learned & Assured
Vehicle Autonomy

Assurance \
Fail-Operational Architecture
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Data coverage Environment model
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Automated Fallback ROD & Health monitoring
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Safety Case




ADS Hazard Sources

Mature best practices ISO 26262 /‘
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Fail-Operational ADS Architecture

Primary channel

High-performance AD function

(gracefully degradable)
Enable
| / i | Out
: Monitor A
Vehicle
Platform
Monitor B
Enable
Out

Minimal AD fallback function

Secondary channel




Fail-Operational ADS Architecture

Primary channel

High-performance AD function

(gracefully degradable)
Enable
| /— ‘ Out
/ f Monitor A
| ] !
Monitor B
Enable
. Out

Minimal AD fallback function

Secondary channel

Vehicle
Platform

No single-point failures

Dependability patterns:

Redundancy

Diversity

Simplex

Graceful degradation
Monitoring of monitoring
Minimized cost

37



ODD vs. ROD

Operational Design Domain

Restricted Operational Domain

- I

| Colwell, B Phan, S Saleem, R Salay, K Czarnecki. An Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design
Domain. IEEE Intelligent Vehicles Symposium (IV), 2018




ROD Monitoring for
Graceful Degradation

System supervisor
ROD
Monitor

ROD () System ‘@5

Manager configurator

System
Health
Monitor

System functions




ODD vs. Test Environment

Test
Environment

Spec
E' Test
Driver

OoDD Manual
i S
Requirements yst-em 7
Specification Integration and
i V&V
Design-phas
verificati
Architectural SOftv.vare
i Integration and
testing
Unit design & Unikitestine

implementation
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ADS Hazard Sources

Mature best practices ISO 26262 /‘
01100
10110
11110
Mechanical Electrical Computer Computer
faults faults HW faults SW faults
(1ISO / PAS 21448) SAE J3061
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Challenges of Assuring Machine
Learned Components
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Lack of specification Lack of inspectability

R. Salay, R. Queiroz, K. Czarnecki. An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software. SAE,

2018-01-1075, 2018; preliminary version also available at https://arxiv.org/abs/1709.02435 1



Lack of Complete Spec Affects
Verification and Testing

Best practices

Spec notations

Testing methods
Design guidelines

Coding guidelines Requirements-

) System .
Rsequ!;fem:nts Integration and based testing
pecitication V&V :
Fault tolerance f Error guessing
Error detection & _ e Interface test
handling Arc(ri\;tseictnural Integration and o ]
& testing Fault injection test
Verification methods ‘ ] Resource usage test

-
Walkthroughs Unit design &
. implementation
Inspections

Formal verification

Unit testing Structural coverage

_ ISO 26262 Part 6
Static code analysis

43



Key Recommendations

e Partial specifications

— Assumptions, necessary/sufficient conditions, in-
and eqgivariants

— Runtime monitoring, test generation,
regularization

* Data requirements
— Domain coverage (e.g., ontology)
— Risk profiling



Using Machine Learning Safely in Automotive Software:

An Assessment and Adaption of Software Process Requirements in ISO 26262

Rick Salay and Krzysztof Czarnecki

Waterloo Intelligent Systems Engineering (WISE) Lab

University of Waterloo
Canada

August 3, 2018

https://uwaterloo.ca/wise-lab/projects/assuredai-safety-assurance-ai-based-automated-driving

56 pages

35 methods in Part 6 adapted

12 new methods specific to ML

Extensive literature review

45



https://uwaterloo.ca/wise-lab/projects/assuredai-safety-assurance-ai-based-automated-driving

Process Extension Overview

ML decision gate

: Requirement System
Partial spec RS Integration and
Specification V&V
Dataset requirement _hrr
Design-phdse
verificationV
. Software
Architectural .
Fault-tolerance patterns design Integration and

‘ I . testing

Model class documentation v
Dataset collection,
augmentation, and ISO 26262
verification
Model selection Model verification

Feature selection N
Validation and

Training procedure testing

46



LAVA: Learned & Assured

Vehicle Autonomy

ﬂssurance
Fail-Operational Architecture

(éAssura nce

Perception

\

ML-based

Data coverage

K Diversity

Confidence
Novelty

/

Automated Fallback
Weakly Supervised Recovery

Planning

Environment model

/ Assurance \

K Collision avoidance/

ROD & Health monitoring

Fleet learning

~

Hazard Analysis and Risk Assessment
Safety Case
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Safety Argument Decomposition

ADS

Sensing World model Actuation
Planning &

>  Perception >
control




Safety Argument Decomposition

ADS
Sensing World model Actuation
Planni
Perception < anning &
control
ODD Guaranteed Guaranteed
assumptions perception planning &
performance control
Actuator + ODD performance

Assumptions

The following slides are based on Krzysztof Czarnecki and Rick Salay.
Towards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving.

In WAISE, Vasteras, Sweden, 2018

https://uwaterloo.ca/wise-lab/publications/towards-framework-manage-perceptual-uncertainty-safe




Sample Scenario-Dependent
Perception-Performance
Safety-Requirement Spec

Detection range

Stopping sight distance .

Detect pedestrians on the roadway

within range of 10 m and with maximum perception-reaction delay of 0.5 s
with missed detection probability of 10 or less

with localization uncertainty of £ 0.5 m or better

within ODD conditions



Guide to the Expression of
Uncertainty in Measurement (GUM)

* True accuracy 150|1EC
unknowable

GUIDE 98-3
— Accuracy in ML wrt. test

set only

Uncertainty of measurement —

* Must estimate oot 5
Guide to the expression of

U n Ce rta | nty uncertainty in measurement

(GUM:1995)




Perception Triangle (Instance-Level)

Real-world situation

Sensory
channel

True state
(unknowable)

Pedestrian
speed =0 Perception

Pedestrian activity = Camera
speed =0 standing image,
aCtIVIty = % radar
standin ¢> . .
& Pedestrian Perception data
speed =0.1 | .
rithm
Accuracy | activity = algorit
walking

Set of credible states
(uncertain)

52



Perceptual Triangle

Real-world situation
Real-world situations

Sensory

True state
channel

(unknowable)

Pedestrian ) . Sensory
Pedestrian speed =0 Perceptio Camera Semantics o |
d=0 activity = - channe
Zi;iit\;z ¢> standing <_|mage,
standing Pedestrian Perception radar Perception
speed =0.1 | ith data P
Accuracy i algorithm
walking = nsor
Set of credible states Data
(uncertain) interpretation
Instance-level Domain-level (generic)

53



Perceptual Triangle When Using
Supervised ML

Development Operation
Development Operational
situations and situations and

scenarios scenarios

Partia.l Sensory RESUlting / Sensory
semantics channel perception channel
(examples) /

Training // Inference
& testing J 3
CONCept M NS0T Concept Sensory
P d : data
Data ata 7 Inferred ,
labeling ' state '

T
s selection—— 1 IMMGUGI<
class selection,

training & testing 54



Factors Influencing Uncertainty

Development

Development
situations and
scenarios

Pa rtla.l Sensory
semantics channel
(examples)

Training
& testing

Concept M—— Sensory

data

Data
labeling

Concept

Operation

Operational
situations and
scenarios

Resulting /
perception / /
/
4 Inference

Sensory
channel

/
I

Sensory
Inferred da.ta
state

training & testing

T
Coss selection, 1 MAMOGEI .o
class selection,

55



F1: Conceptual Uncertainty

Development

Development
situations and
scenarios

Pa rtla.l Sensory
semantics channel
(examples)

@

Training
& testing

Concept M—— Sensory

data

Data
labeling

Concept

Operation

Operational
situations and
scenarios

Resulting /
perception / /
/
4 Inference

Sensory
channel

/
I

Sensory
Inferred da.ta
state

training & testing

T
Coss selection, 1 MAMOGEI .o
class selection,
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F1: Conceptual Uncertainty
Pedestrian or Cyclist?

TP~ v g - I“‘,_ -"t«
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F1: Conceptual Uncertainty

* Assessed by expert review or labeling
disagreement

 Reduced by developing standard ontologies
— E.g., WISE Drive Ontology

Environmental <3 oy
conditions ‘9‘ @ s %

Road users Animals

-
R o e e ST
e K. — =0 & O o
:tc::‘:ture S /A\ ggg ?"“ ;l.::— (rli

https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving




F2: Development Scenario Coverage

Development

Development
situations and

scenarios
Partial @ Sensory
semantics channel
(examples)

Training
& testing

Concept M—— Sensory

data

Data
labeling

Concept

Operation

Operational
situations and
scenarios

Resulting /
perception / /
/
4 Inference

Sensory
channel

/
I

Sensory
Inferred da.ta
state

training & testing

e -
s selection 17 INMGGEI<
class selection,
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F2: Development Scenario Coverage




F2: Development Scenario Coverage

* Assessed with respect to ontologies and field
validation targets
* Must include positive/negative and near-hit/near-miss examples

Environmental _s‘éb_ Q oy
conditions T e s P

o K. — <=0 & O o
i
e O M\ 392 T 5F

* Challenge: how much data is enough?



Active Learning

Data selection criteria
1. Uncertainty
. Coverage & diversity

2
3. Collection & labeling cost
4. Risk profile



F3: Scene Uncertainty

DEVEIOpment

Development
situations and

Partial @

semantics

@ SenSOry

channel

Training
& testing

Coneept @ Sensory

data

Data
labeling

conCept

OperatiOnal
situations and

Resulting y
perception 4
/
/ InferEncE

/
I

Sensory
Inferred da.ta
state

training & testing

) -
o selection—— 1 RGOS
class selection,
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F3: Scene Uncertainty

64



F3: Scene Uncertainty

* Su rrogate measures

— range, scale, occlusion level, atmospheric visibility,
illumination, clutter and crowding level

 May compare test set accuracy and output
confidence with these measures

* Also part of development data set coverage



Synthetic Dataset to Study
Scene Influence Factors

N~ |

’Ei

25% puddle E

mlz

=~ —

50% puddle 5
JJ ‘ ' — » 5
is

== 75% rain % s 75% puddle

>

occlusion map of left-most car [ 100% rain “- ‘ 100% cloud




data priors

OpenStreetMap

Shapefile data
(tree plantations,
building heights,

etc.)

CityEngine

satellite imagery | ,

(used as
reference for
manual edits)

(@)

(b)

asset transfer

Data Generation Pipeline

dataset frame output (PNG files)

scene RGB
image

GT_ID image
(ground truth,
vehicle model
instances, edge
detection)

Python scripts
UE4 + CARLA [«—»( using CARLA's
RPC-based API

(©) (d)

depth map

vehicle
occlusion
maps

RGB images
with varied
environmental
influence
factors

(€)
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Scene Influence Factors -> Accuracy

base image 100% rain model A segmentation map_ model B segmentation map

road
sidewalk
building

wall

100% cloud pole

"

round truth

traffic light
vegetation

terrain

sky
100% puddle person
rider
car

van

bus

68
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—&— 3000 clean images
=@~ 3000 clean and 100 rainy images
—&— 3000 clean and 500 rainy images
=&~ 3000 clean and 1000 rainy images
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Rain Vanations
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F4: Sensor Properties

DEVEIOpment

Development
situations and

Partial @

semantics

<:> SenSOry

channel

Training
& testing

Coneept @ Sensory

data

Data
labeling

conCept

OperatiOnal
situations and

Resulting y
perception 4
/
/ InferEncE

/
I

Sensory
Inferred da.ta
state

training & testing

) -
o selection—— 1 RGOS
class selection,
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F4: Sensor Properties

2
Shade White Balance Tungsten White Balance

72



F4: Sensor Properties

 Mature engineering discipline
— Determining sensor properties to capture
sufficient information
— Mode, range, resolution, sensitivity, placement,
etc.
* However, interaction between ML algorithms
and sensor properties must be assessed

— E.g., how effective is ML is ignoring sensor noise
or artifacts?



F5: Label Uncertainty

DEVEIOpment

Development
situations and

Partial @

semantics

<:> SenSOry

channel

Training
& testing

Coneept @ Sensory

data

Data
labeling

conCept

OperatiOnal
situations and

Resulting y
perception 4
/
/ InferEncE

/
I

Sensory
Inferred da.ta
state

®

training & testing

) -
o selection—— 1 RGOS
class selection,
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F5: Label Uncertainty

3D boundlngbox placement is challenging 75



F5: Label Uncertainty

* Assessed by expert review and labeler
disagreement

— Existing research on determining number of labelers
in crowd sourcing

— E.g., may need as many as 6 independent votes

e Reduction measures
— Conceptual clarity (F1)

— Quality control
e Clear instructions, training, verification, etc.
* Bread and butter of labeling companies



F6: Model Uncertainty

DEVEIOpment

Development
situations and

Partial @

semantics

<:> SenSOry

channel

Training
& testing

Coneept @ Sensory

data

Data
labeling

conCept

OperatiOnal
situations and

Resulting y
perception 4
/
/ InferEncE

/
I

Sensory
Inferred da.ta
state

®

training & testing

) -
s .@ .......................
class selection,
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F6: Model Uncertainty

What model was learned in training?
What decisions will it make in operation?

78



F6: Model Uncertainty

. Explanation methods help validate features

. Robustness measures help assess risk of
misclassification

. Bayesian deep learning can help assess
model uncertainty



Deep Learning and Explanations

Passenger car

The explanation
shows

that a tree
contributed

to the classification
decision

(method: LIME)

The top 15 features (superpixels) used to classify corresponding input image
as a car by an Inception network trained on ImageNet

(see LIME at https://github.com/marcotcr/lime) 30



Adversarial Stickers

Misclassified as speed signs

Evtimov et al. 81



Robustness Measures

Ostrich shoe shop vacuum - o
-~ — -
- o A~ o _ .
L A t 2 7 ) A = Minimum distortion
| /
X0 Xq Xa' / ~ -
adversarial xa / Certified robustness
example within the grey region
/
|
\ | .
adversarial  \ | \ Decision boundary 3
example “\ I ~\~ _ - N
xal./\\-_-—’f \——
- Decision boundary 2 N
Decision boundary 1 L, space

CLEVER approach by IBM 82



Aleatoric and Epistemic Uncertainty

(a) Input Image (b) Ground Truth  (c¢) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Yarin Gal, et al., https://arxiv.org/abs/1703.04977 83



Dropout

(b) After applying dropout.

L Sl S
CE—Copg B8
N
R

_ \ /
«V»«@

Standard Neural Net

P iy
]
o —

84



Uncertainty Estimates
on Synthetic Dataset

road
sidewalk
building
wall
fence

pole

vegetation

(a) Input Image (b) Ground Truth (c) Prediction terrain

sky

person

rider

train

(d) Aleatoric Uncertainty (e) Epistemic Uncertainty (e) Predictive Uncertainty

0.00 0.55 1.10 1.65 2.20 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.55 1.10 1.65 2.20
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(a) Accuracy - Model A
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(e) Accuracy - Model B
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% occlusion
076 084

Occlusion and Depth ->
Uncertainty Estimates

(b) Aleatoric Uncertainty - Model A

20 40 60
% occlusion
(f) Aleatoric Uncertainty - Model B
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Aleatoric Entropy
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Uncertainty Estimation for
Object Detection

1. Model uncertainty
using MC Dropout

2. Data uncertainty using
heteroschedastic
regression

3. Confidence calibration

Ground truth

Phan, Salay, Czarnecki, Abdelzad, Denouden, Venekar. Predicted mean box
Calibrating Uncertainties in Object Localization Task.

NIPS workshop. 2018, https://arxiv.org/abs/1811.11210 95% confidence band88



F7: Operational Domain Uncertainty
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F7: Operational Domain Uncertainty
®

New pedestrian pose

R— Camera miscalibration
New type of car shape 70



F7: Operational Domain Uncertainty

* Assess situation novelty at operation time
— E.g., autoencoders, partial specs

* Assess impact of level of sensor miscalibration
on perceptual uncertainty

* Monitor sensor parameters and ODD



Sample Incorrect Detections

Car -
0.30;:0:000




Autonomoose Architecture

Vehicle Platform Perception Environment Model Planning
Sensors ML
Cameras Dynamic Object ) L
— Detector Map Server Mission Planner
A\
Ll Dynamic™Qbject
Tracker
Lidar ; Environment ehaviour
Lidar-based Server Planher
Qccupancy Grid
GPS Mapper | / ‘
no ML
v Ego State / \L:cal Planner
Estimator
Encoders
Actuators Vehicle Controller

Secondary path with no ML
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Lidar Occupancy Grid —
Static Obstacle Detection




“Plastic Bag” Problem




Out-Of-Distribution (OOD) for
Semantic Segmentation

0
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Evaluation of Five OOD Methods

Ground Class
Input Truth Prediction = MaxSoftmax ODIN Mahalanobis Confidence Dropout
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New OOD Method

—— CIFAR-10

- TinylmagenNet

— LSUN

—— (CIFAR-10

—— TinylmageNet

(b)

(a)

—— CIFAR-10

—— TinylmagenNet

— LSUN

—— (CIFAR-10

- TinylmageNet

(d)

(c)
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Factors Influencing Uncertainty

Development Operation
Development Operational
situations and Domain shift @ situations and
scenarios scenarios
Partial @ @ Sensory Resulting @/ @ Sensory

semantics

channel perception / channel

(examples) ,
@) Training L7 Inference
& testing b <
ensor
Concept M—— Sensory Concept Y
labeling s state

®

EEET
s selection—— 1 INMGUGIY<
class selection,

training & testlng ‘ 99



Hazard Analysis and Risk Assessment
of Perceptual Failures

* Need Failure Mode Effects Analysis (FMEA) for
perceptual components

— Must deal with uncertainty
* Uncertainty cannot be eliminated

— Must systematically identify all failure modes
* Perceptual equivalent of HAZOP

— Must assess the effects
* Incurred risk and progress cost

* |dea: introduce P-FMEA — a family of FMEAs for
different perception tasks

— C-FMEA for classification, R-FMEA for regression, OD-FMEA
for object detection, etc.



C-FMEA — Key Ideas

Vulnerable

* Dealing with uncertainty Road User

— Abstract classes provide a |
more tractable

representation of D
L R —

uncertainty than
Categorlcal dIStrIbUtlonS Pedes- Cyclist Animal Vehicle Other

e Systematic failure mode trian
identification

— Confusion matrix
— Classification case Other Int (f;)

(= Any\Int)
taxonomy AN

e Effect analysis
_ Incurred riSk and progress Drivable Undrivabl OtherRoad _LargeO _ViargeO __ Ped Cyc __ Vehicle NoObs. _ OtherObs.

Stop

Any (fio)

Follow

cost wrt. driving policy

SlowDown




Sample Class Hierarchy

Any

/\
Other Int
(Background) (Foreground)

RN

Pedestrian Cyclist



Classification Cases
(Safety-Related Order)

Correct classification C_i - Ci Other — Other
Distinctive Different
Ci - Int
Ambiguous
T "
Under-classification C; » Any Other — Any _
Unknown Unknown Increasing
correctness
Under- Other — Int
misclassification Suggestive
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Classification Cases
(Safety-Related Order

Pedestrian -> Pedestriah

Correct classification C_i _) Ci
Distinctive
Ci - Int
Ambiguous

Under-classification C; » Any 01
Unknown

Under- Ot»% 7 1ILL
misclassification Suggestive
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Classification Cases
(Safety-Related Order)

ﬁedestrian \

-> Int (Pedestrian or Cyclist)
Correct classification C_i _) Ci Ot
Distinctive
Ci - Int
Ambiguous
Under-classification Ci - Any
Unknown
Under- Ot ') - 4 I1vee /
misclassification Suggestive
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Classification Cases
(Safety-Related Order)

ﬂadestrian \

-> Any (Pedestrian or
C; = Otl
Dilstinctivle Other (Road))

|

Ci - Int
Ambiguous

T

Under-classification C; - Any
Unknown

Correct classification

Under-
misclassification
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Classification Cases
(Safety-Related Order)

ﬂadestrian \

-> Other (Road))

C; = C; Otl

Distinctive

|

Ci - Int
Ambiguous

T

Under-classification C; - Any
Unknown

Correct classification

Under-
misclassification
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Classification Cases
(Safety-Related Order)

Pedestrian -> Cyclist \

C; = C; Ot

Distinctive

|

Ci - Int
Ambiguous

T

Under-classification C; » Any 0
Unknown

Correct classification

Under-

misclassification /

108



Cl

assification Cases

(Safety-Related Order)

Correct classificat

Under-classificatic

Gcher (Cow) -> Other

Other — Other

Different
4&
4
: Other - Any
Unknown Increasing
{ correctness

Un& / Other — Int
misclassifica Suggestive
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Classification Cases
(Safety-Related Order)

Gcher (Cow) \

-> Any (Other (Cow) or
Correct classificat Int(Person)) Oth e&ﬂ:)reetther
4k
4
Under-classificatic Other — Any _
L F i Unknown Increasing
Uns\ Other — Int
misclassifica Suggestive
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Classification Cases
(Safety-Related Order)

Other - Other

Correct classifica Different
ﬂk
Under-classificatic Other — Any _
Unknown Increasing
correctness
. N Other — Int
misclassificatic Suggestive
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Classification Cases
(Safety-Related Order)

Gcher (Manequin) \

-> Pedestrian

Correct classificaf 0 theT. — Other
Different

A

A
Under-classificatic Other — Any _
TR Unknown Increasing
- [ correctness
Un& Other — Int
misclassifica Suggestive
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Classification Cases
(Safety-Related Order)

Correct classification C_i - Ci Other — Other
Distinctive Different
Ci - Int
Ambiguous
T "
Under-classification C; » Any Other — Any _
Unknown Unknown Increasing
correctness
Under- Other — Int
misclassification Suggestive
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Case Study — Class Hierarchy

a) Road

AnyRoad (fg)

N\

OtherRoad IntRoad

N\

Drivable Undrivable

b) Obstacle

AnyObstacle (fp)

T

IntObstacle OtherObstacle

A S

Static RoadUser NoObstacle

N [

LargeO

VLargeO Ped Cyc Vehicle
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Case Study — Perception Module

Drivable: NN |91.144 Detected Road:
Undrivablell___—101.881 Drivable

LargeO: - [EE 100.309

ViargeO: [ 101.928 Detected Obstacle:
Ped: L admil Ped

Cyc: L TR 1 Vehicle

Vehicle: M 107.629

00D: (T
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Case Study — Driving Policy

a) mp

Class Action

Drivable Cruise

Undrivable
OtherRoad
IntRoad
AnyRoad

Stop
Stop
Stop
Stop

Stop

Follow

Creep

Slowdown

Cruise

b) 7o

Class

LargeO
VLargeO
Ped

Cyc

Vehicle
NoObstacle
OtherObstacle
Static
RoadUser
IntObstacle
AnyObstacle

Action
Slowdown
Stop
Stop
Follow
Follow
Cruise
Creep
Stop
Stop
Stop
Stop
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Case Study — Policy Deviation Safety
and Progress Assessment

a) Safety _
. (0) Acceptable (1) Potential Hazard (2) Hazard
Severity
Drivable Undrivabl OtherRoad LargeO VLargeO Ped Cyc Vehicle NoObs. OtherObs.
Stop
Follow
Creep
SlowDown
Cruise
b) Progress _
. (0) No Delay (1) Some Delay (2) Serious Delay
Severity
Drivable Undrivabl OtherRoad LargeO _VLlargeO Ped Cyc Vehicle NoObs. OtherObs.
Stop
Follow
Creep
SlowDown
Cruise




Case Study — Configuration Case
Safety and Progress Assessment

LargeO
VLargeO
Ped
Cyc
Vehicle

NoObs.

OtherObs.

RoadUser
Static
IntObs.

AnyObs.

LargeO VLargeO Ped Cyc Vehicle NoObs. OtherObs.
00 20 20 22 22 02 10
02 00 00 02 02 02 02

(0.002) (0.006) (0.004)
02 00 00 02 02 02 02
(0.002) (0.048) (0.004)

02 00 10 00 00 01 01
(0.004) (0.014) (0.004) (0.002)
02 00 10 00 00 01 01

(0.016) (0.006) (0.006) (0.066) (0.066)

20 20 20 20 20 00 20
(0.020) (0.022) (0.010) (0.002) (0.036) (0.406) (0.006)
01 20 20 1 1 01 00
02 00 00 02 02 02 02

(0.004) (0.024) (0.014) (0.014) (0.008)

02 00 00 02 02 02 02

(0.002)

02 00 00 02 02 02 02
02 00 00 02 02 02 02

Confusion Matrix




How The Ideas Fit Together?

Misclassifications
Influence
Fact And
actors Under-Classifications

Uncertainty C-EMEA
Management

~_




Part Il Summary

. Perceptual uncertainty is a key performance
measure in safety requirements

. Used perceptual triangle to identify seven
influence factors for perceptual uncertainty
when using supervised ML

. FMEA for Perception Functions

4. Future: methods to control the influence

factors and use them in safety arguments



LAVA: Learned & Assured

Vehicle Autonomy

ﬂssurance
Fail-Operational Architecture
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Safety Argument Decomposition

ADS

Sensing World model Actuation
Planning &

>  Perception >
control




Autonomous Trap 101
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Driving Qualities
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Multi-Objective
Reinforcement Learning

Videos: https://www.youtube.com/playlist?list=PLiZsfe-Hr4k9VPiXO0tfoNoHHDUE2MDPuQ

Li et al. Urban Driving with Multi-Objective Deep Reinforcement Learning. Under review, 2018
https://arxiv.org/abs/1811.08586



Deep RL Challenges

Environment model
Rewards and specifications

Learning is slow

— Should combine with imitation learning and MPC-
based maneuvers

Safety

— Safety envelope
e Escape path & fallback path

— Analyzable policies



Baseline RL Architecture for
Automated Driving

Option Learning 7,,( - , 0) Option Policy Learning r:(‘f Planning and Execution
Sample Initial World Sample Initial World Select Next Control «|  Current World Ty
XoWo XoWo up = 1, (Pp(xiwi), 0) » XiW;
4
Y Y
> Curreqt World > Current World A Y
XiWi XiWi Select Next Option Monte Carlo Tree Search
¢ 0;
i o ; ‘
Control Feature Extraction Option Feature Extraction Observed World ¢(x;w;)
P(xiw;) Pxiw;) ; :
01 < m-(p(xiw;)) 0y <« m(p(xiw;))
Extract Best o(PLiw Y P
Option Sequence R
A J A (’: oo q World 1 x/'w! World 2 x2w?
) 0i410i42 .
Select Next Control Select Next Option iCi+10+ (Terminal)
— | u = argmax, (V' (6(x;w;, uo))) o' = argmax, (V" (8(xiwi, 75, (xiwi, 0)o) )) 03 « my (p(xPw?))
75, (Xiwi, 0) = U O (xiw;) = o
World 3 xw?
¢ (Terminal)
A 4
Select Next Control Y
. = LTL Model Checker ui = 1;,(p(xiw;), 0°) MUpdate Option Pgllcy '
. n;t! « UpdatePolicy (x )

]

Paxton, et al. M. Combining neural networks and tree search for task and motion planning

in challenging environments. arXiv preprint arXiv:1703.07887, 2017
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Road User Intension

)] | _

.‘ ;:——
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Will she cross the street?
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Will she cross the street?
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Traffic Data

Naturalistic driving

AV sensors & perception

Infrastructure mounted

Birds-eye view
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Stanford University Experiment




WISE Lab Simulation Environment for
AV Testing

 Scenario definition in GeoScenario

— Similar to Open Scenario
* Location-, time-, and attribute-based triggers

— Defined as a layer in Open Street Map

* Execution in UE4
— Bounding box simulation
— LIDAR simulation
— Support for HD map
— Collection of scoring metrics
— Integration with ROS
— Precise physics-based vehicle model
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© 43.5092287

GeoScenario Test Definition

* Java OpenStreetMap Editor
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Test Execution in UE4

base_unreal_project (64-bit, GLSL_430)

k-




Test Execution in UE4

base_unreal_project (64-bit, GLSL_430)




Vehicle System Identification




Vehicle Model in Maplesim

y, Revolute Joint
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Frame
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Suspension & o

Transfer .

Tire Models

14 DOF vehicle dynamics model
with Pacejka tires
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https://uwspace.uwaterloo.ca/handle/10012/14094
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Human Road User Models

https://arxiv.org/abs/1903.01539

A behavior driven approach for sampling rare event situations for
autonomous vehicles.

Atrisha Sarkar and Krzysztof Czarnecki

University of Waterloo
atrisha.sarkar@uwaterloo.ca, kczarnec @ gsd.uwaterloo.ca

Abstract— Performance evaluation of urban autonomous ve-
hicles requires a realistic model of the behavior of other road
users in the environment. Learning such models from data in-
volves collecting naturalistic data of real-world human behavior.
In many cases, acquisition of this data can be prohibitively
expensive or intrusive. Additionally, the available data often
contain only typical behaviors and exclude behaviors that are
classified as rare events. To evaluate the performance of AV in
such situations, we develop a model of traffic behavior based
on the theory of bounded rationality. Based on the experiments
performed on a large naturalistic driving data, we show that
the developed model can be applied to estimate probability of
rare events, as well as to generate new traffic situations.

I. INTRODUCTION

With autonomous vehicles (AV) poised to change the
transportation landscape, the ability of AVs to handle a
wide range of human traffic behaviors safely and reliably is
of paramount importance. In order to guarantee that, it is

In recent years, RE sampling based techniques have been
used for simulation based verification and testing of a wide
range of motion and behavior planners. O’Kelly et al. use
RE sampling for testing of planners that work in end-to-
end manner based on deep learning [7], whereas, other
approaches apply similar techniques to evaluate performance
in specific traffic situations, such as lane changes and cut-ins
[8]. Most approaches that use rare event sampling for AV
evaluation, uses cross-entropy based importance sampling,
which is an adaptive sampling technique to search for a
sampling distribution that maximizes odds of leading to
crashes and near-miss scenarios.

A part of the uncertainty in traffic environments arises
from the inherent stochastic behavior of road users, as
reflected in different driving styles of human drivers. This
is in contrast to the design of motion and behavior planners
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DevOps for ADS Software

ﬂ;surance

~

Dev Ops

/

Shadow testing

Incremental assurance
Design of experiments & fleet learning

What field data to collect?
Update assurance 143

Safety case evolution



