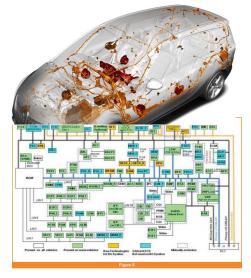
Safety Assurance of Automated Driving Systems

Krzysztof Czarnecki Waterloo Intelligent Systems Engineering Lab Electrical and Computer Engineering Department

Some Background

2011-2015

Product-line Engineering of Full Authority Digital Engine Control (FADEC) 2014-2017



Design Exploration of Automotive E/E Architectures 2016-2018

Full-stack Automated Driving Software (Autonomoose)

with Pratt & Whitney Canada

with General Motors R&D

With Renesas, AAA

Operational Design Domain (ODD)

SAE J3016 Levels of Driving Automation

A set of **conditions** under which the driving automation can operate a vehicle

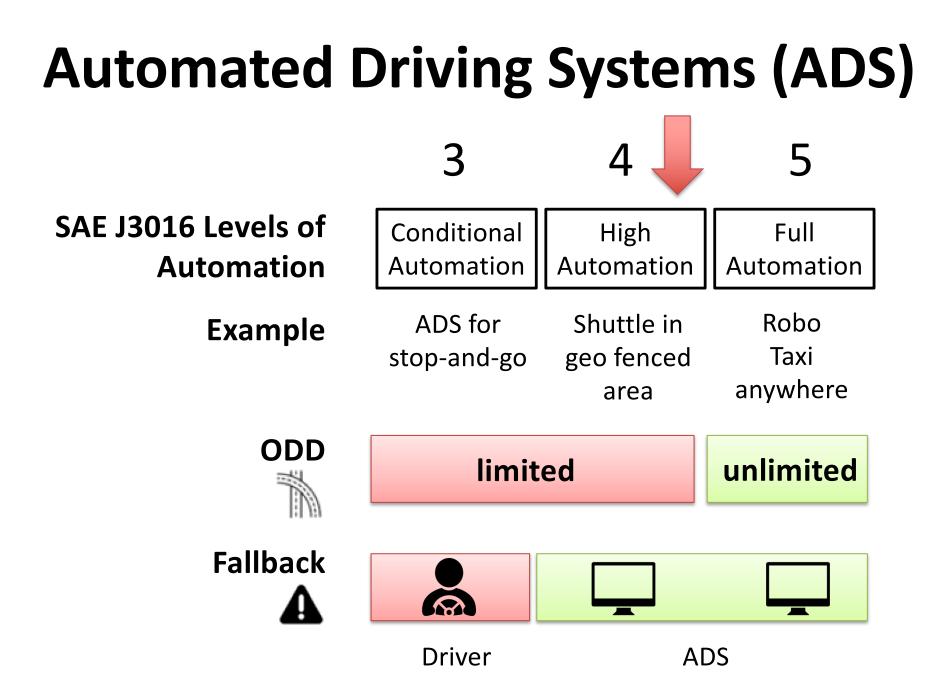
Time of day day night **Types of roads** residential urban highway Geographic area

Traffic conditions stop-and-go free flowing

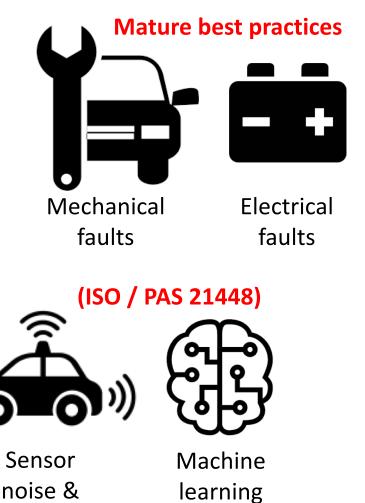
Weather conditions clear raining snowing icy

Dynamic Driving Task (DDT) Fallback

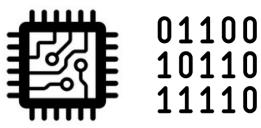
Who performs the DDT in the case of **system malfunction** or when **leaving the ODD**?



ADS Hazard Sources



ISO 26262



Computer HW faults

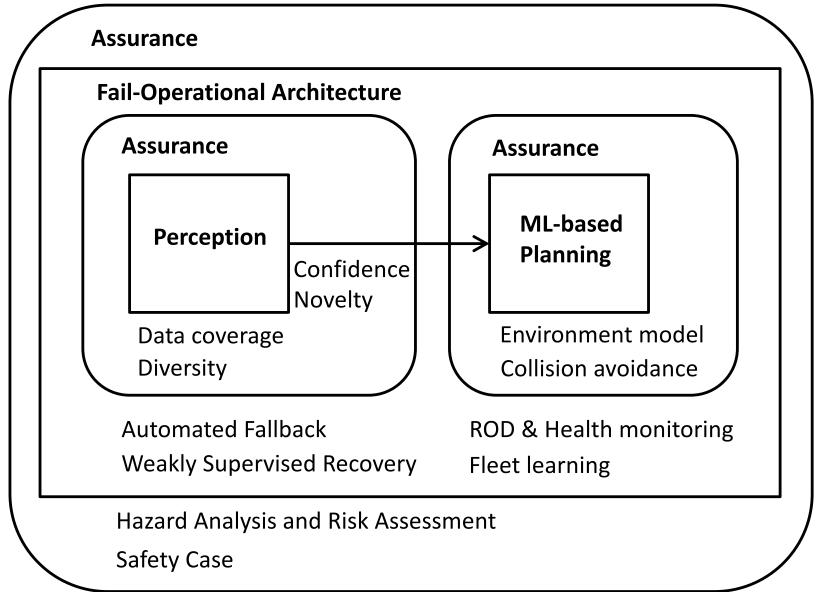
Computer SW faults

noise & limitations errors

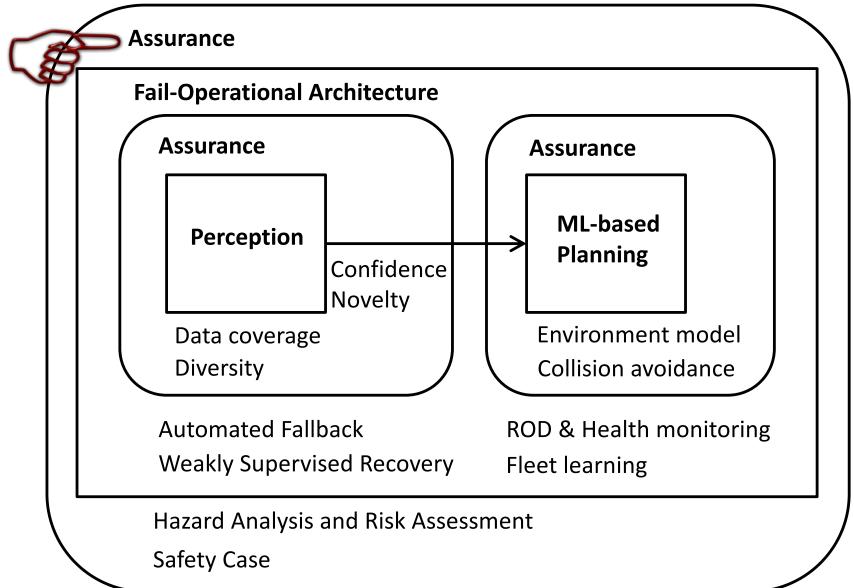
SAE J3061

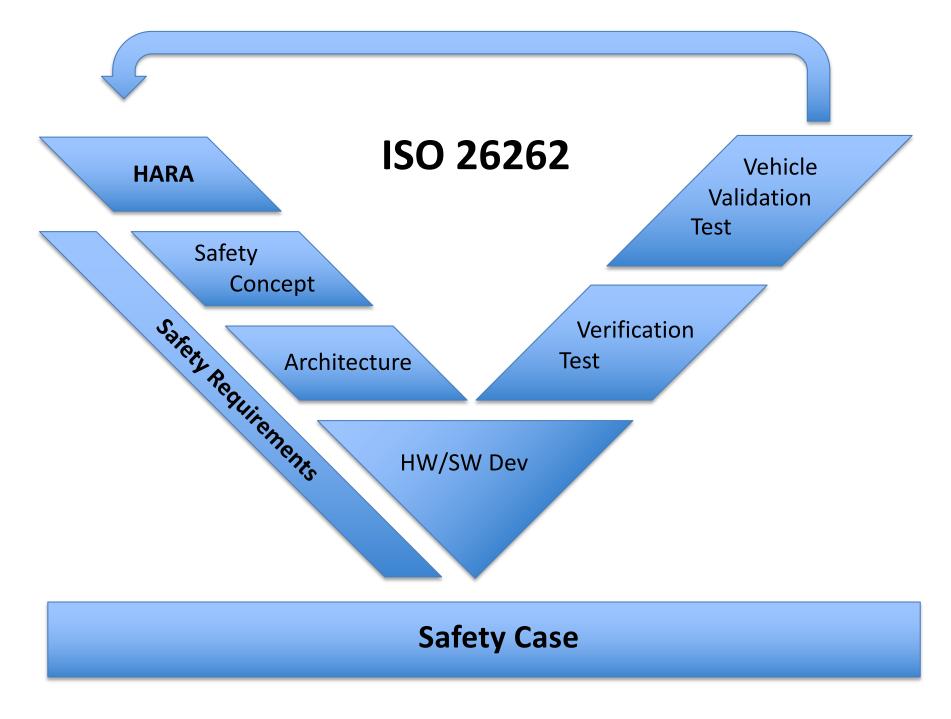
Cyber attacks

LAVA: Learned & Assured Vehicle Autonomy

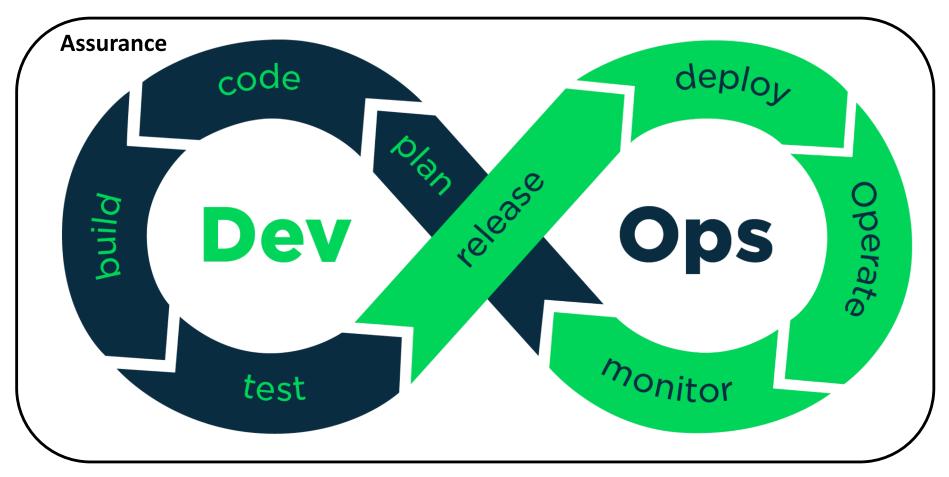


LAVA: Learned & Assured Vehicle Autonomy





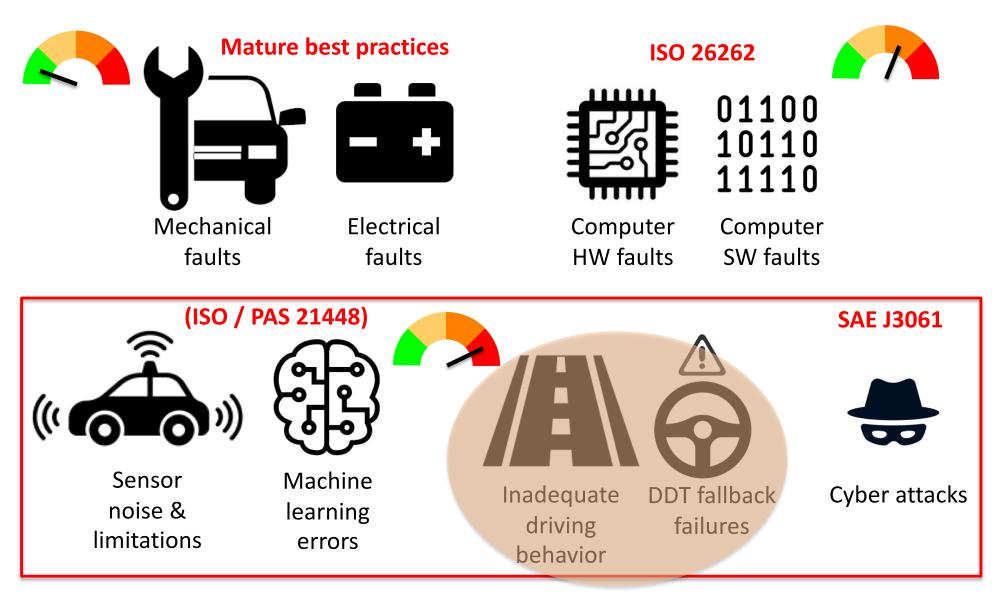
DevOps for ADS Software



Shadow testing Design of experiments & fleet learning What field data to collect? Update assurance

Incremental assurance Safety case evolution

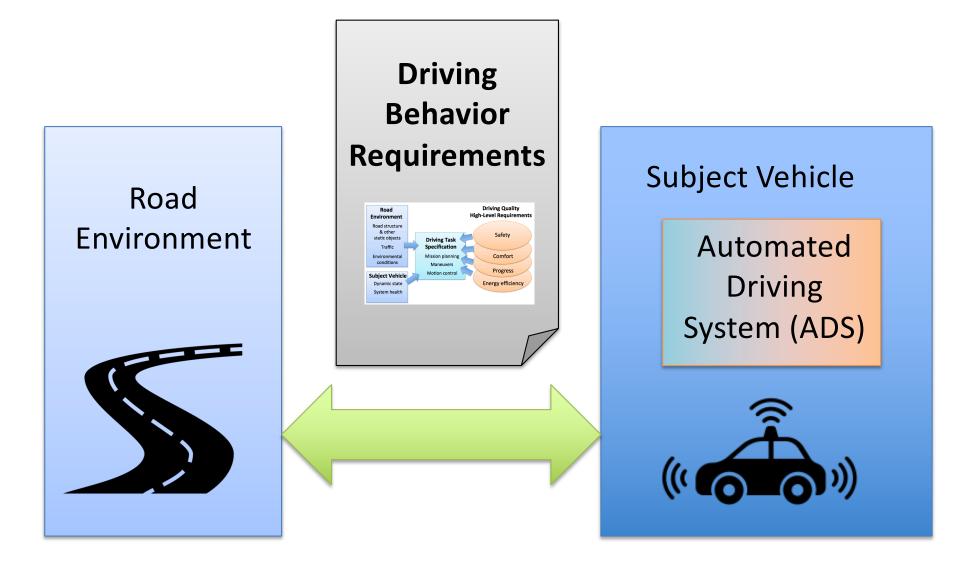
ADS Hazard Sources



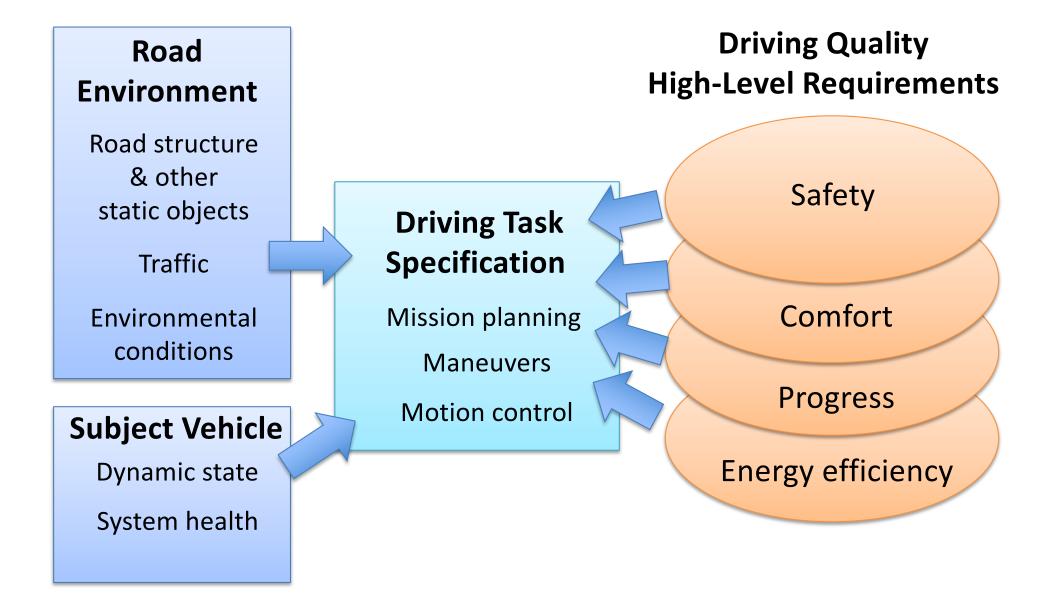
WISE Drive

- Framework for analyzing and specifying requirements for an ADS
- Instantiated for a sample ODD on UW Moose
- Input into standardization (SAE J3164)

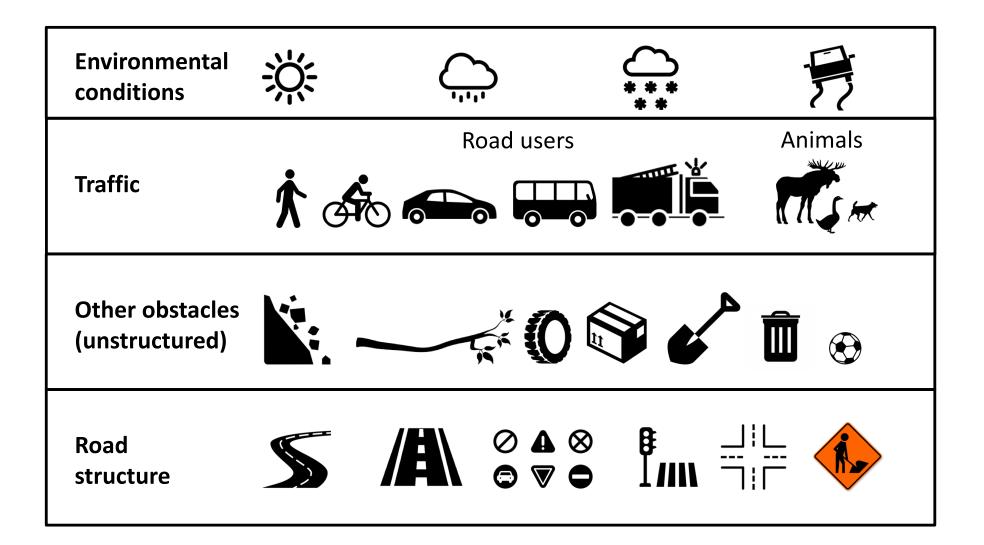
Requirements Specification



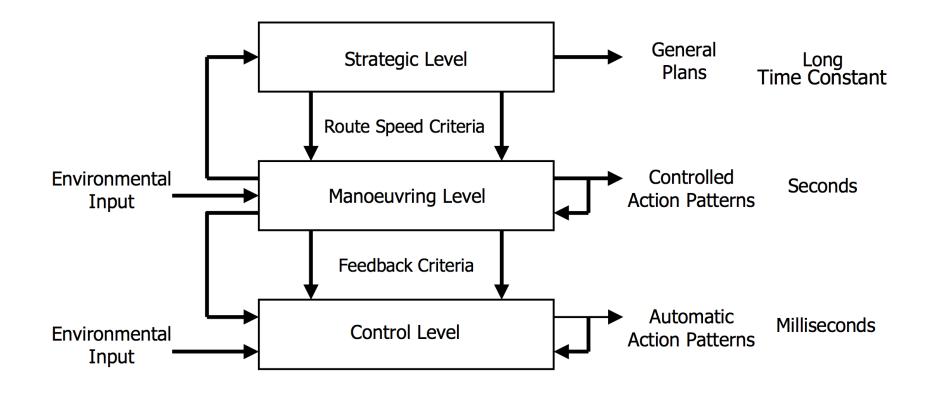
Driving Behavior Specification



Road Environment Ontology

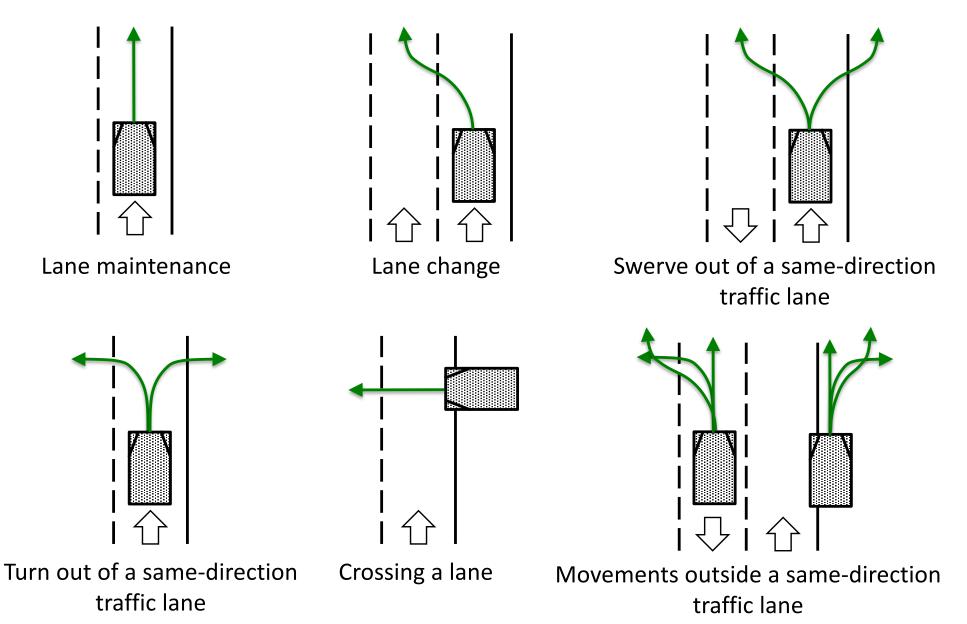


Driving Task



John Micheon, 1985

Primary Maneuvers

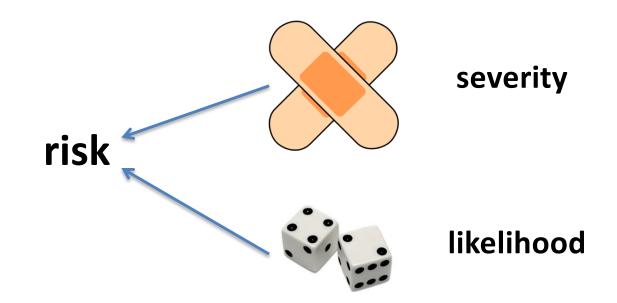


Secondary Maneuvers

- 1. Overtaking
- 2. Passing
- 3. Intersection handling
 - includes handling circular and non-circular intersections
- 4. Interchange handling
 - includes using acceleration lanes, entry and exit ramps, and weaving areas
- 5. Pedestrian crossing handling
- 6. Cycle crossing handling
- 7. Railway crossing handling
- 8. Turnabouts
- 9. Joining and leaving traffic

Safety

Absence of <u>unreasonable</u> risk of mishap

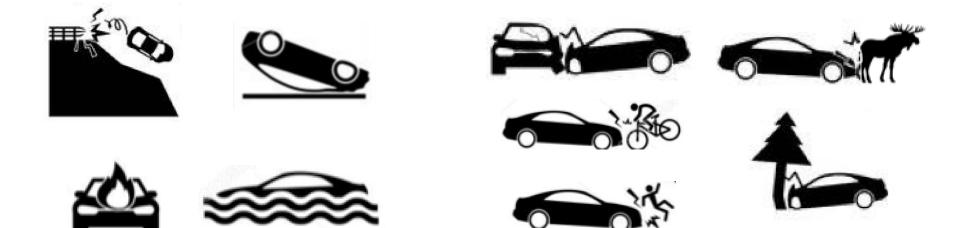


Driving Behavior Safety

Absence of unreasonable crash risk due to ADS driving behavior

Noncollisions

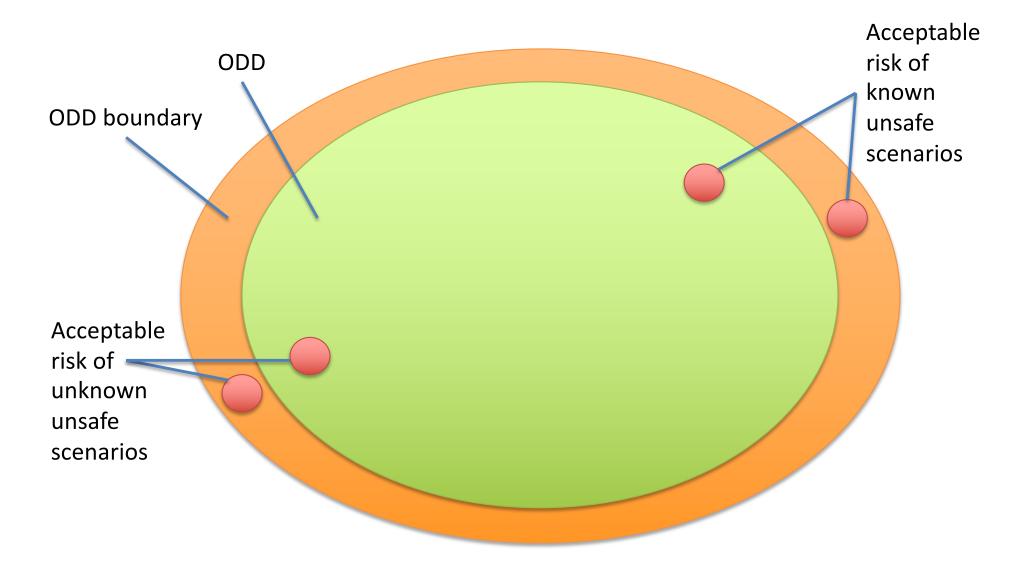
Collisions



Factors Influencing Risk Acceptability

- Risk level
- Risk reduction cost
- Benefit of the risky functionality (risk taking)
- Best practice (state of technology)
- Replacement risk
- Who controls risk
- Perception/public opinion

Assurance Target



Responsibility-Driven Safety

- Normal driving scenarios
 - Must not cause unacceptable risk increase
 - Low/high demand (incl. other road user errors)
- Emergency scenarios
 - Near-crash
 - Must avoid crash if it can
 - Crash
 - Must mitigate if it can
 - Dilemmas often addressed by blame assignment
 - Fallback
 - Must minimize overall risk

Blame vs. Injury Risk

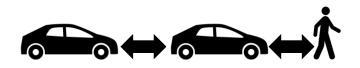
GM Cruise Chevy vs. motorcycle crash

https://www.dmv.ca.gov/portal/wcm/connect/1877d019-d5f0-4c46-b472-78cfe289787d/GMCruise_120717.pdf?MOD=AJPERES²⁴

High-Level Behavior Safety Requirements (Normal Driving)

1. Vehicle stability

2. Assured clear distance ahead



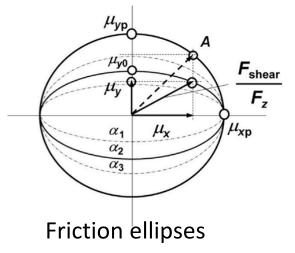
3. Minimum separation

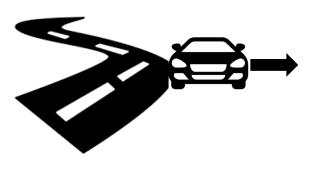
4. Traffic regulations

5. Informal traffic rules (best practices)

Behavioral Safety: 1. Vehicle Stability

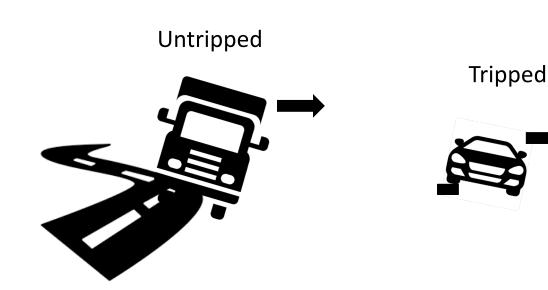
Skid stability



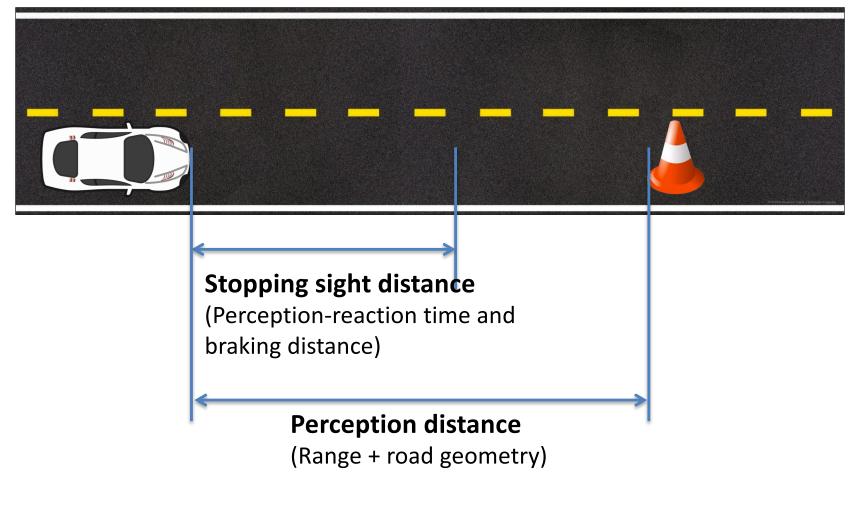


 $e + \mu_v = v^2 / 127R$

Roll stability

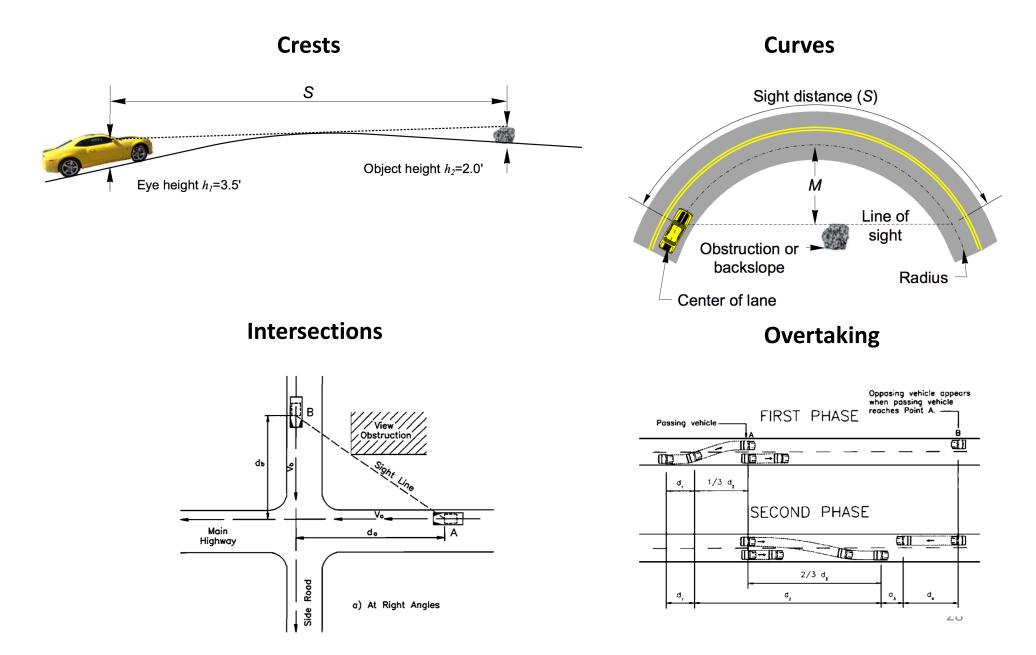


Behavioral Safety: 2. Assured Clear Distance Ahead (ACDA)



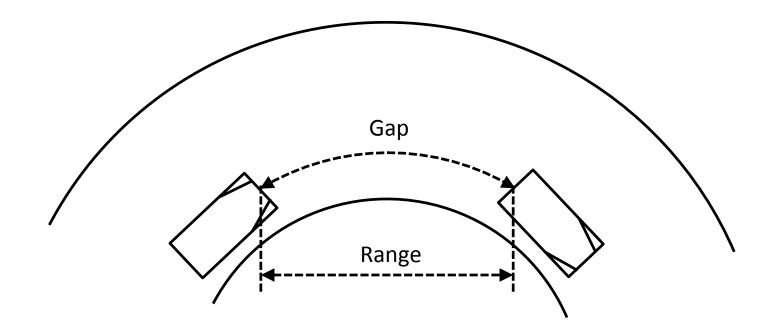
Limits safe speed

Behavioral Safety: 2. ACDA Perception Distance



Behavioral Safety: 3. Minimum Separation

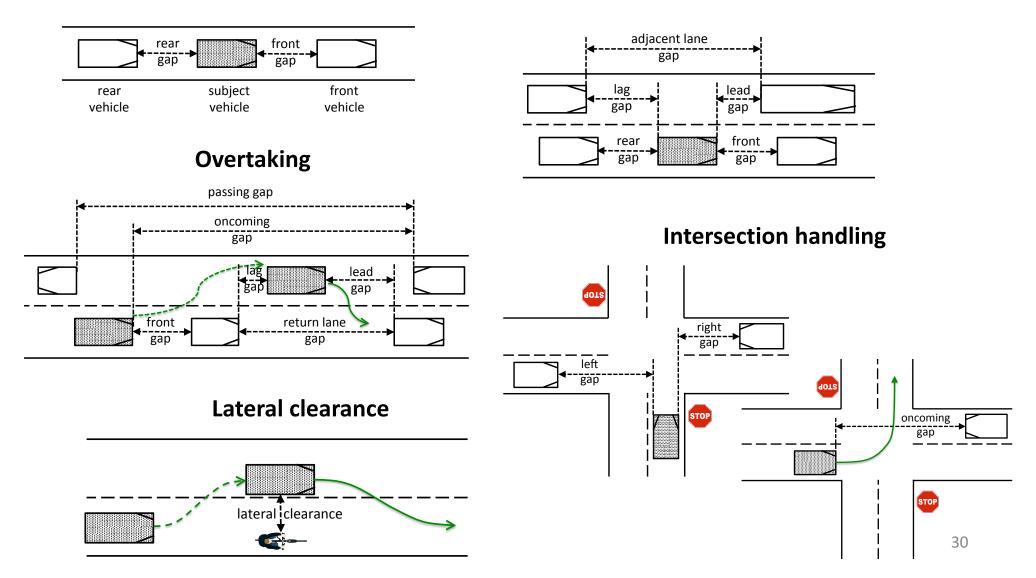
Separation in terms of distance gap, time gap, and time-to-collision



Behavioral Safety: 3. Minimum Separation Maneuver-Specific Gaps

Car following

Lane changing



Behavioral Safety: 4. Traffic Regulations

Safe speed (ACDA)

Yielding to other road users rules

Obeying regulatory traffic signs & signals

Where to drive

Reacting to emergency vehicles & school buses

U-turn prohibitions

Safe following gap

Passing rules

Signaling stops & turns

Parking restrictions

Use of passing beam

Required behavior at railway crossings

Behavioral Safety: 5. Informal Traffic Rules

2/3 – second rule

Responding to tailgaters

How early to signal turns

Delayed acceleration at signalized intersections

Lane selection

Anticipating aberrant behaviors of other road users

Responding to animals on the roadway

WISE Drive Documentation

WISE Drive comes with comprehensive documentation (over 350 pages) available from this page.

All eight documents in two zip archives: zip1, zip2

Driving Task Specification

Maneuver Catalog

K. Czarnecki. Automated Driving System (ADS) Task Analysis – Part 2: Structured Road Maneuvers. Waterloo Intelligent Systems Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI: <u>10.13140/RG.2.2.23280.76800</u>

Basic Motion Control Task Catalog

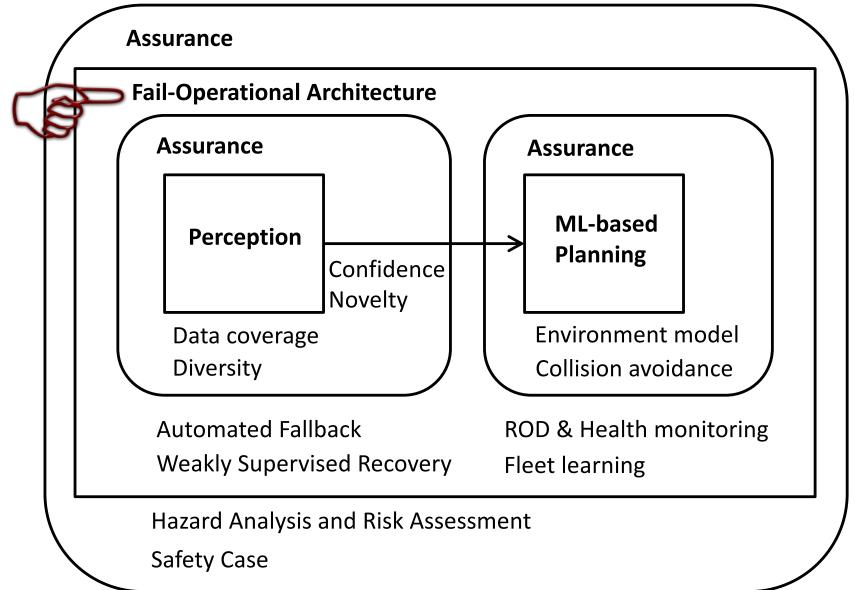
K. Czarnecki. Automated Driving System (ADS) Task Analysis – Part 1: Basic Motion Control Tasks. Waterloo Intelligent Systems Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI: <u>10.13140/RG.2.2.29991.65447</u>

Road Environment Specification

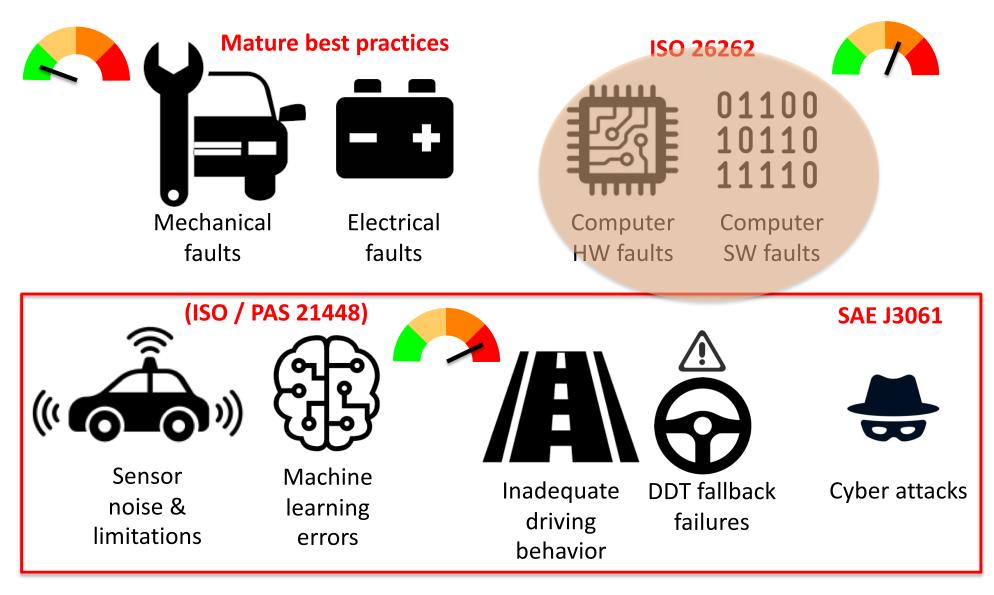
ODD Taxonomy

K. Czarnecki. Operational Design Domain for Automated Driving Systems – Taxonomy of Basic Terms. Waterloo Intelligent Systems Engineering Lab (WISE) Report, University of Waterloo, 2018, DOI:

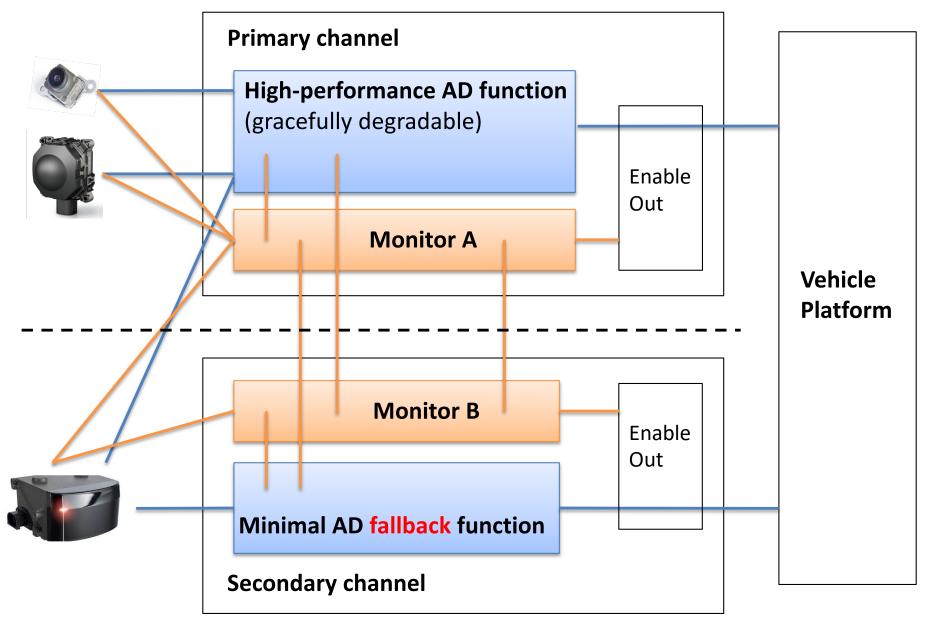
LAVA: Learned & Assured Vehicle Autonomy



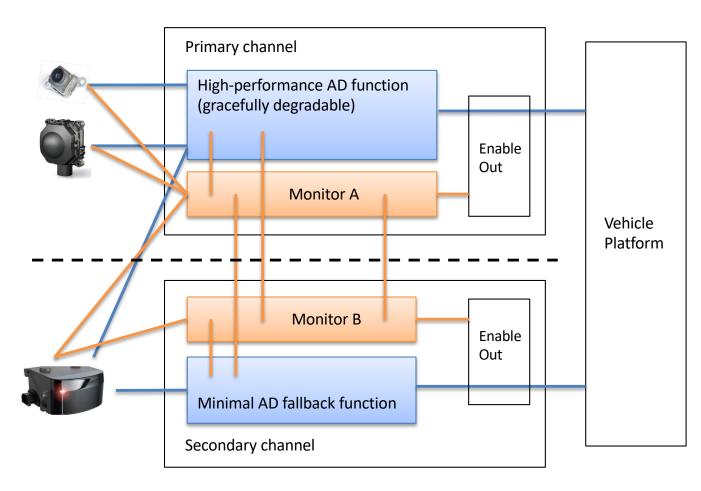
ADS Hazard Sources



Fail-Operational ADS Architecture



Fail-Operational ADS Architecture

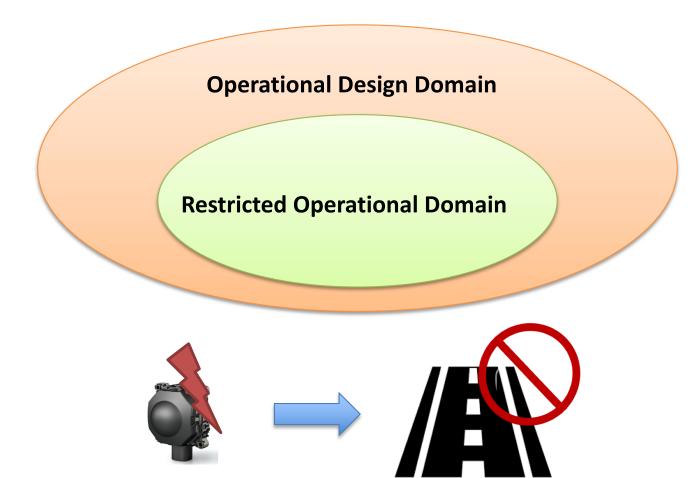


Dependability patterns:

- Redundancy
- Diversity
- Simplex
- Graceful degradation
- Monitoring of monitoring
- Minimized cost

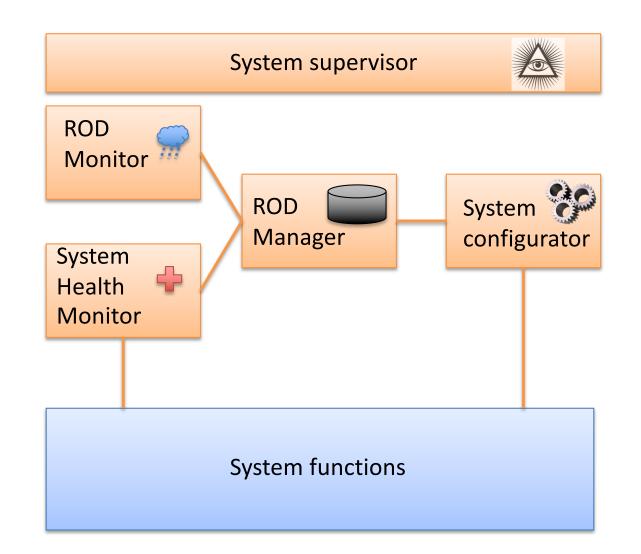
No single-point failures

ODD vs. ROD

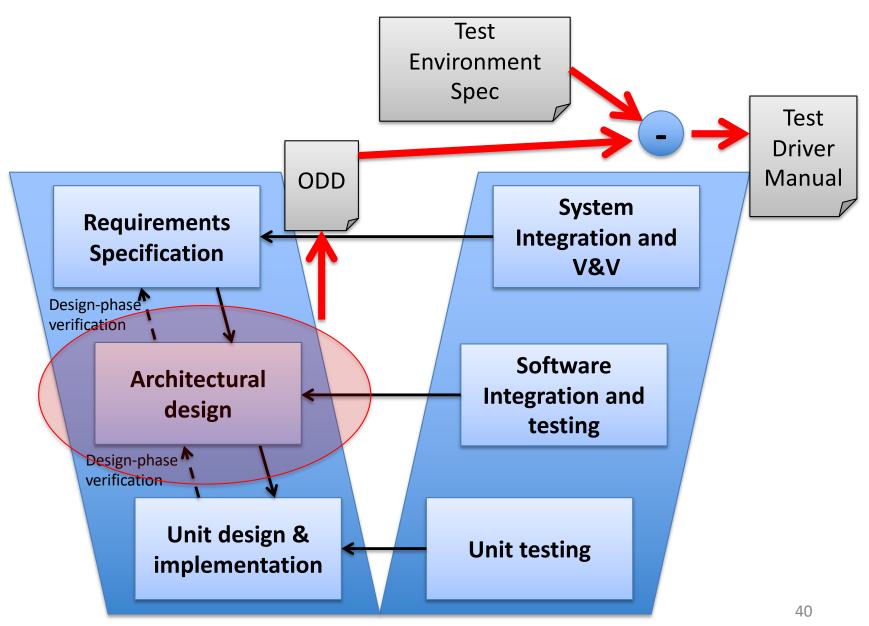


I Colwell, B Phan, S Saleem, R Salay, K Czarnecki. An Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design Domain. IEEE Intelligent Vehicles Symposium (IV), 2018 38

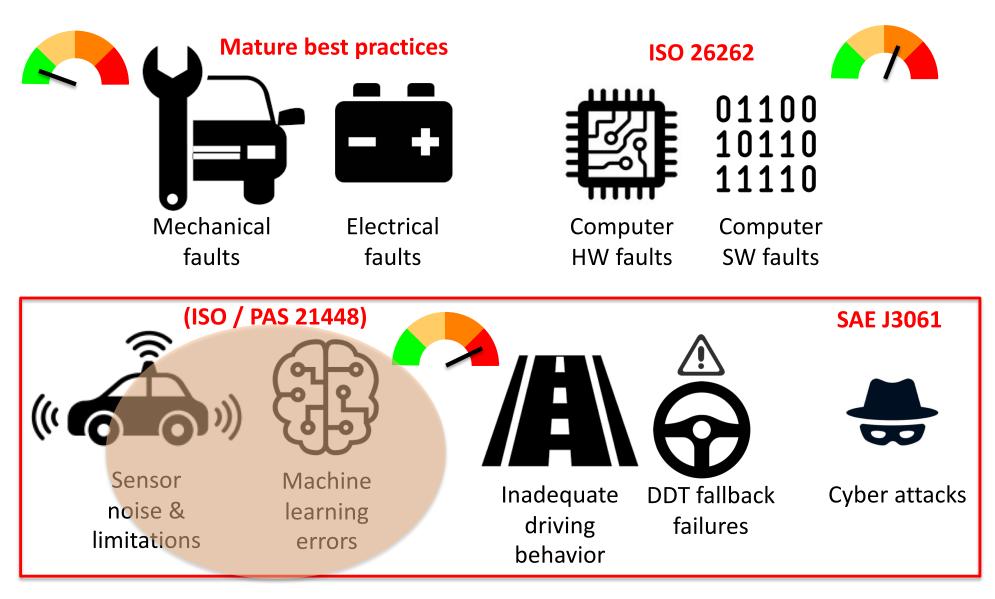
ROD Monitoring for Graceful Degradation



ODD vs. Test Environment



ADS Hazard Sources



Challenges of Assuring Machine Learned Components



Lack of specification

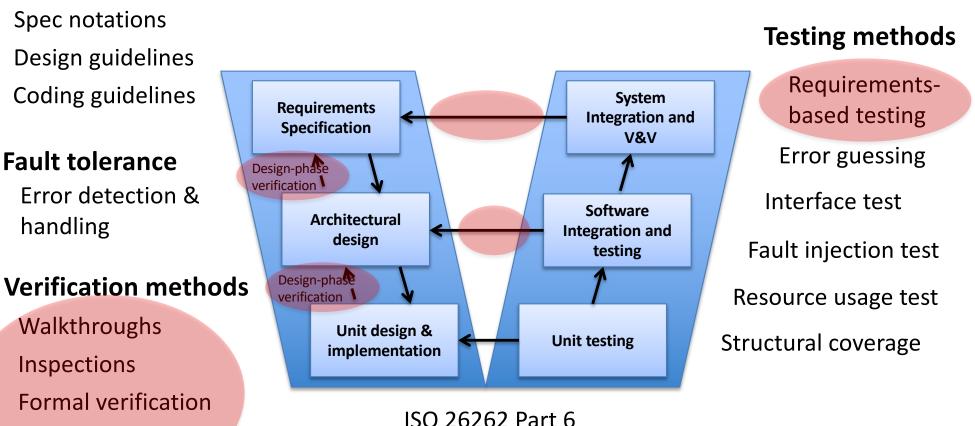
Lack of inspectability

R. Salay, R. Queiroz, K. Czarnecki. An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software. SAE, 2018-01-1075, 2018; preliminary version also available at https://arxiv.org/abs/1709.02435

Lack of Complete Spec Affects Verification and Testing

Best practices

Static code analysis



Key Recommendations

- Partial specifications
 - Assumptions, necessary/sufficient conditions, inand eqivariants
 - Runtime monitoring, test generation, regularization
- Data requirements
 - Domain coverage (e.g., ontology)
 - Risk profiling

56 pages

Using Machine Learning Safely in Automotive Software:

An Assessment and Adaption of Software Process Requirements in ISO 26262

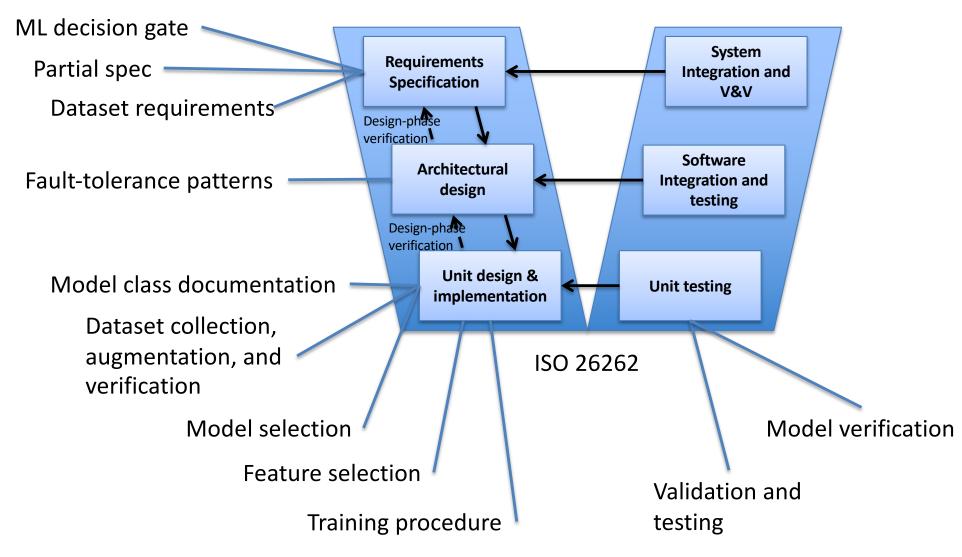
Rick Salay and Krzysztof Czarnecki Waterloo Intelligent Systems Engineering (WISE) Lab University of Waterloo Canada

35 methods in Part 6 adapted12 new methods specific to MLExtensive literature review

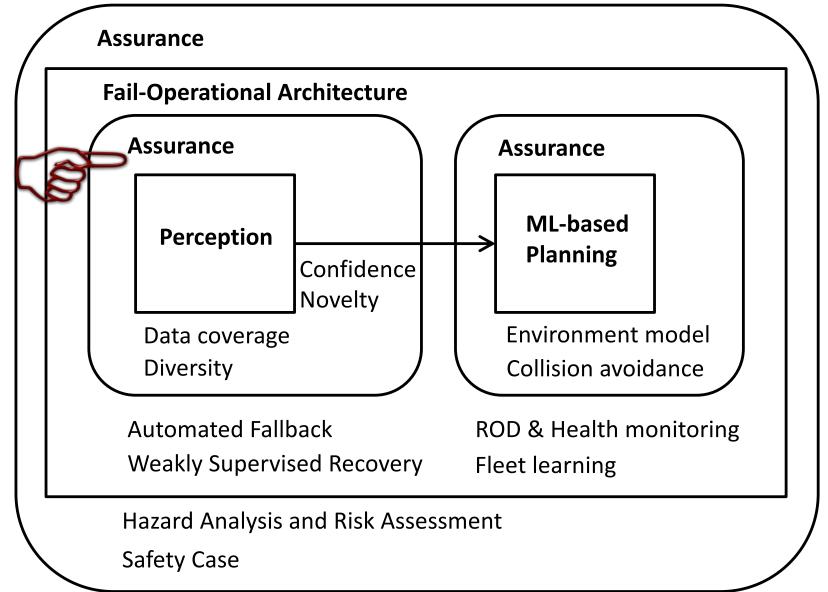
August 3, 2018

https://uwaterloo.ca/wise-lab/projects/assuredai-safety-assurance-ai-based-automated-driving

Process Extension Overview

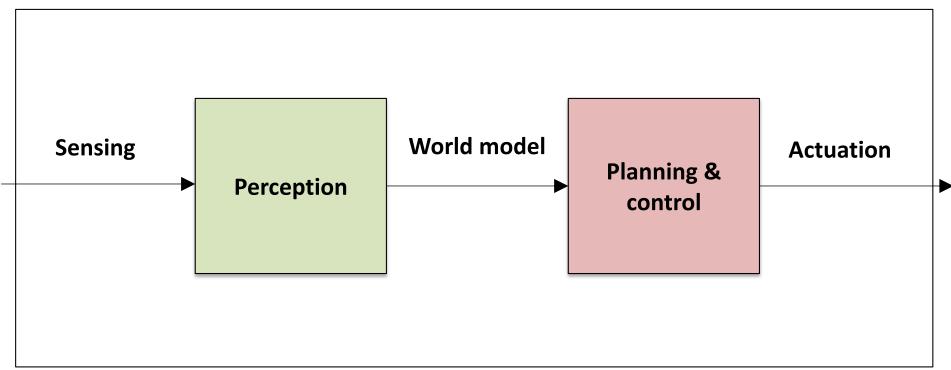


LAVA: Learned & Assured Vehicle Autonomy



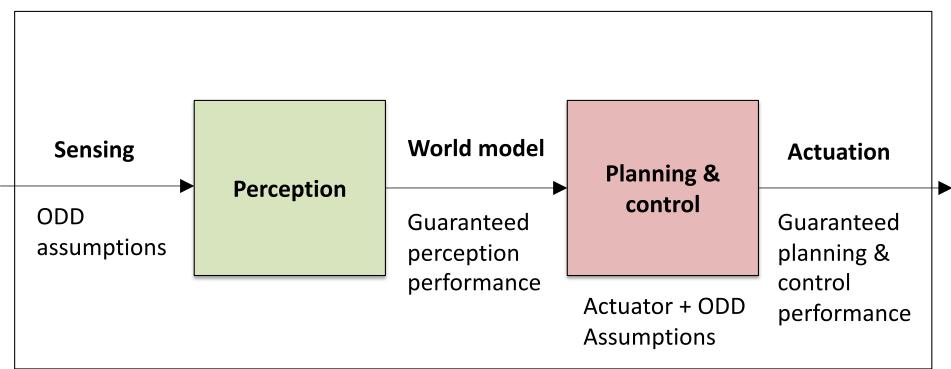
Safety Argument Decomposition

ADS



Safety Argument Decomposition

ADS

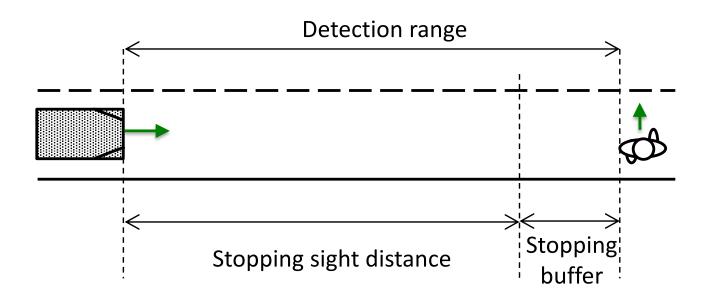


The following slides are based on Krzysztof Czarnecki and Rick Salay.

Towards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving. In WAISE, Västerås, Sweden, 2018

https://uwaterloo.ca/wise-lab/publications/towards-framework-manage-perceptual-uncertainty-safe

Sample Scenario-Dependent Perception-Performance Safety-Requirement Spec



Detect pedestrians on the roadway

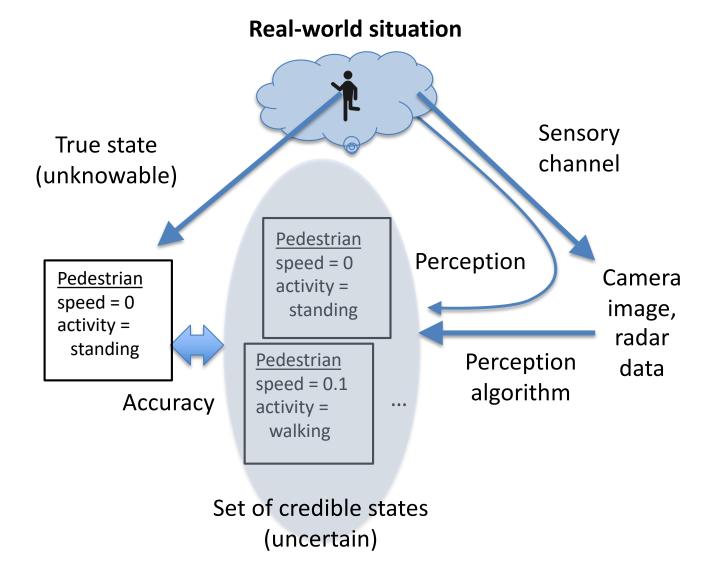
within range of 10 m and with maximum perception-reaction delay of 0.5 s with missed detection **probability** of 10^{-9} or less with localization **uncertainty** of ± 0.5 m or better within ODD conditions

Guide to the Expression of Uncertainty in Measurement (GUM)

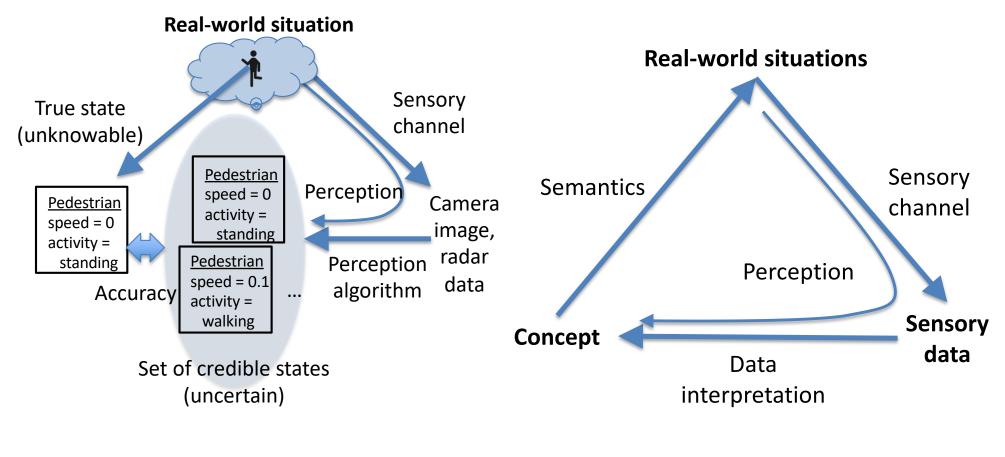
- True accuracy unknowable
 - Accuracy in ML wrt. test set only
- Must estimate uncertainty

IS	DIEC
GUI	DE 98-3
Unc	ertainty of measurement —
unce	3: de to the expression of ertainty in measurement W:1995)
Incertiti	ude de mesure —
	: Guide pour l'expression de l'incertitude de

Perception Triangle (Instance-Level)



Perceptual Triangle

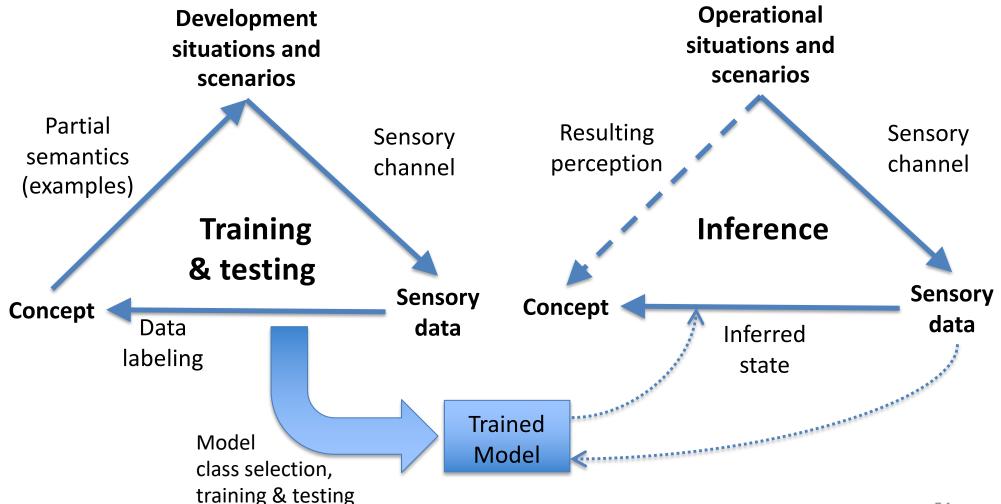


Instance-level

Domain-level (generic)

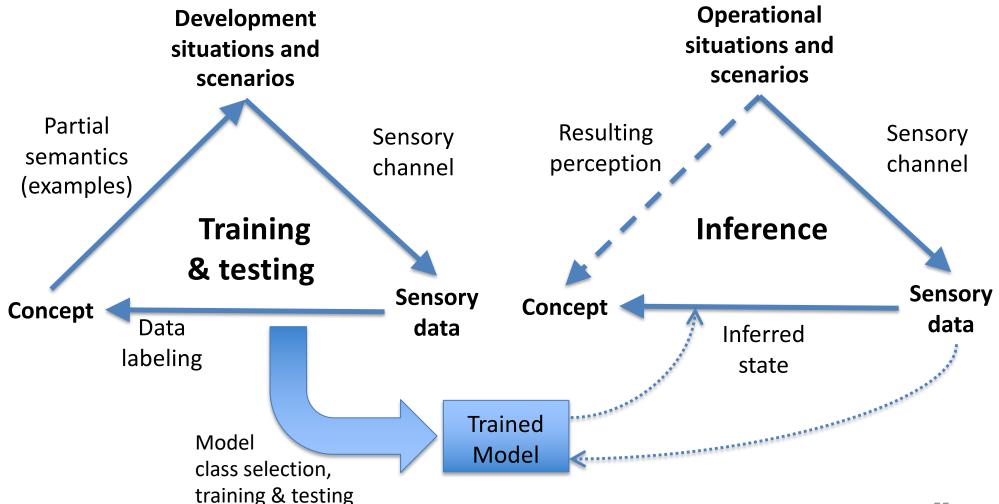
Perceptual Triangle When Using Supervised ML

Development



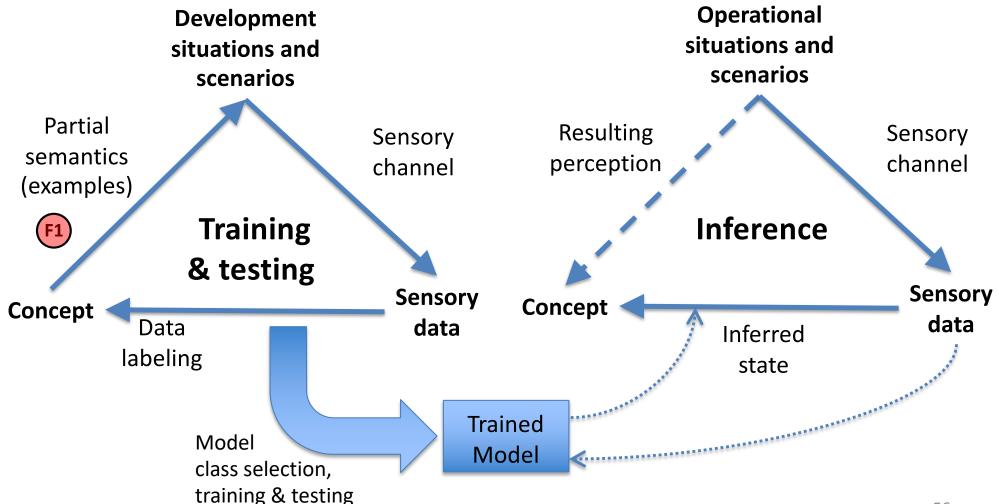
Factors Influencing Uncertainty

Development



F1: Conceptual Uncertainty

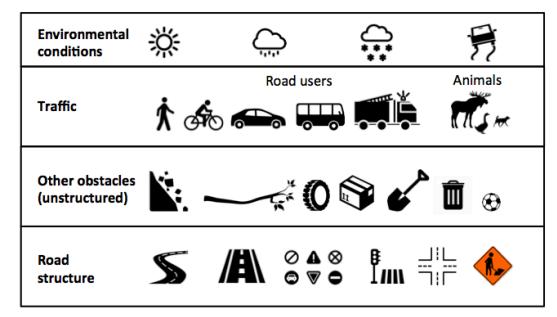
Development



F1: Conceptual Uncertainty Pedestrian or Cyclist?

F1: Conceptual Uncertainty

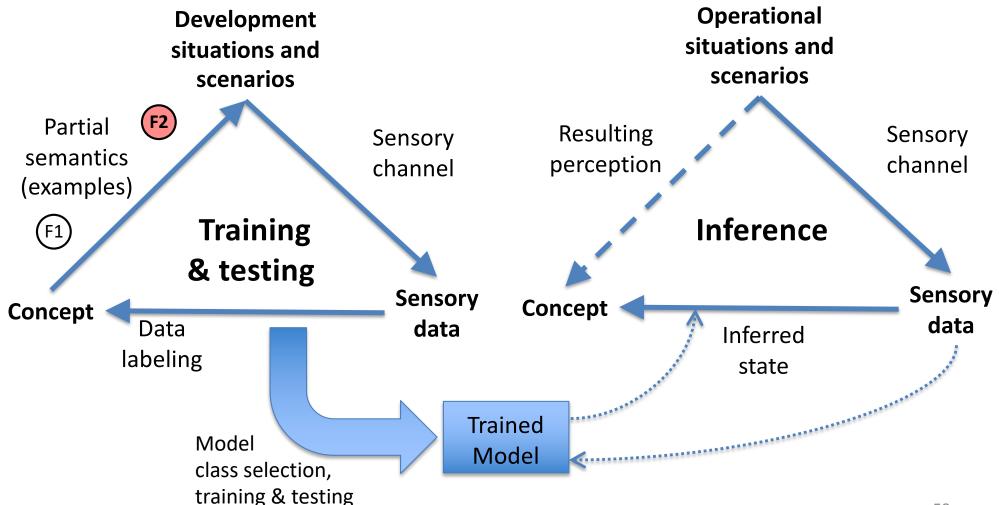
- Assessed by expert review or labeling disagreement
- Reduced by developing standard ontologies
 - E.g., WISE Drive Ontology



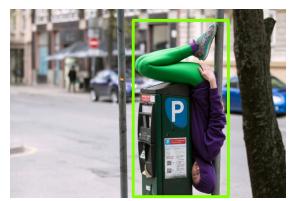
https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving

F2: Development Scenario Coverage

Development

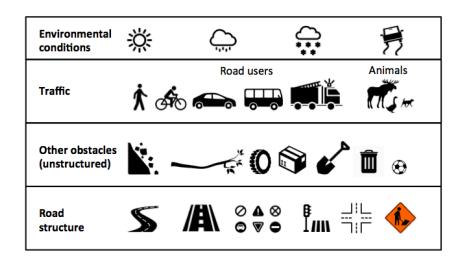


F2: Development Scenario Coverage



F2: Development Scenario Coverage

- Assessed with respect to ontologies and field validation targets
 - Must include positive/negative and near-hit/near-miss examples



• Challenge: how much data is enough?

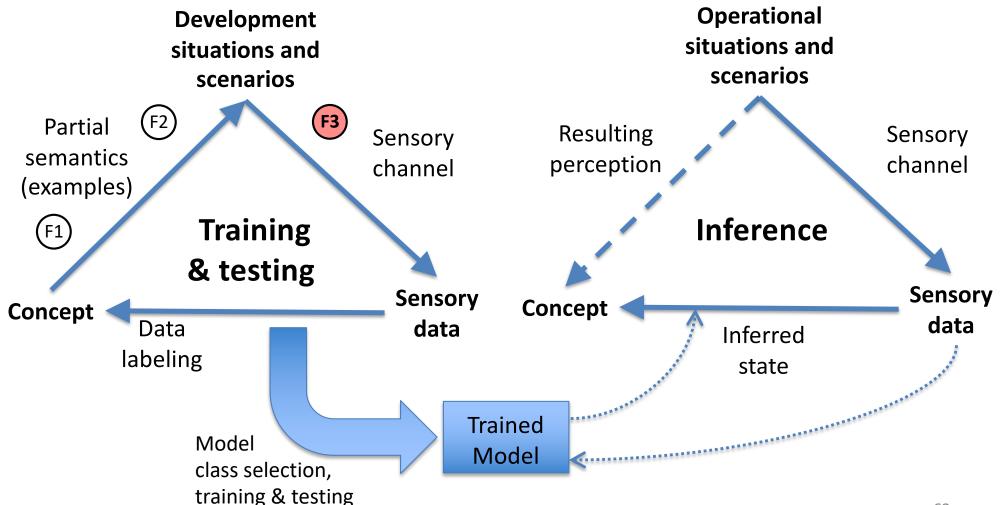
Active Learning

Data selection criteria

- 1. Uncertainty
- 2. Coverage & diversity
- 3. Collection & labeling cost
- 4. Risk profile

F3: Scene Uncertainty

Development

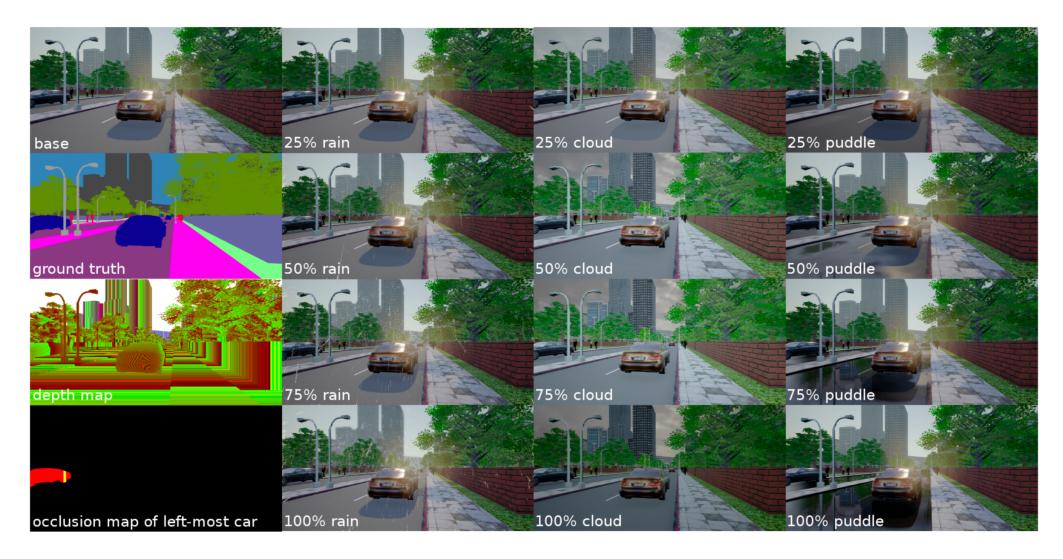


F3: Scene Uncertainty

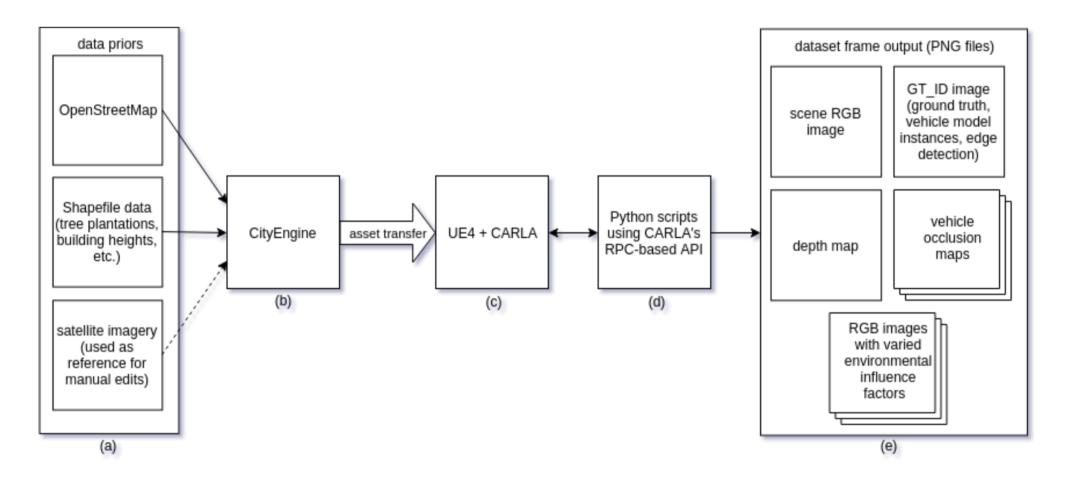
F3: Scene Uncertainty

- Surrogate measures
 - range, scale, occlusion level, atmospheric visibility, illumination, clutter and crowding level
- May compare test set accuracy and output confidence with these measures
- Also part of development data set coverage

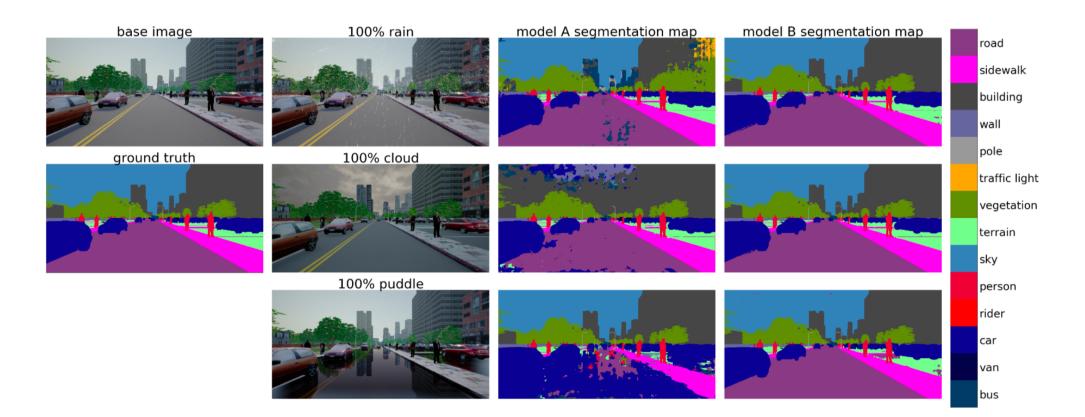
Synthetic Dataset to Study Scene Influence Factors

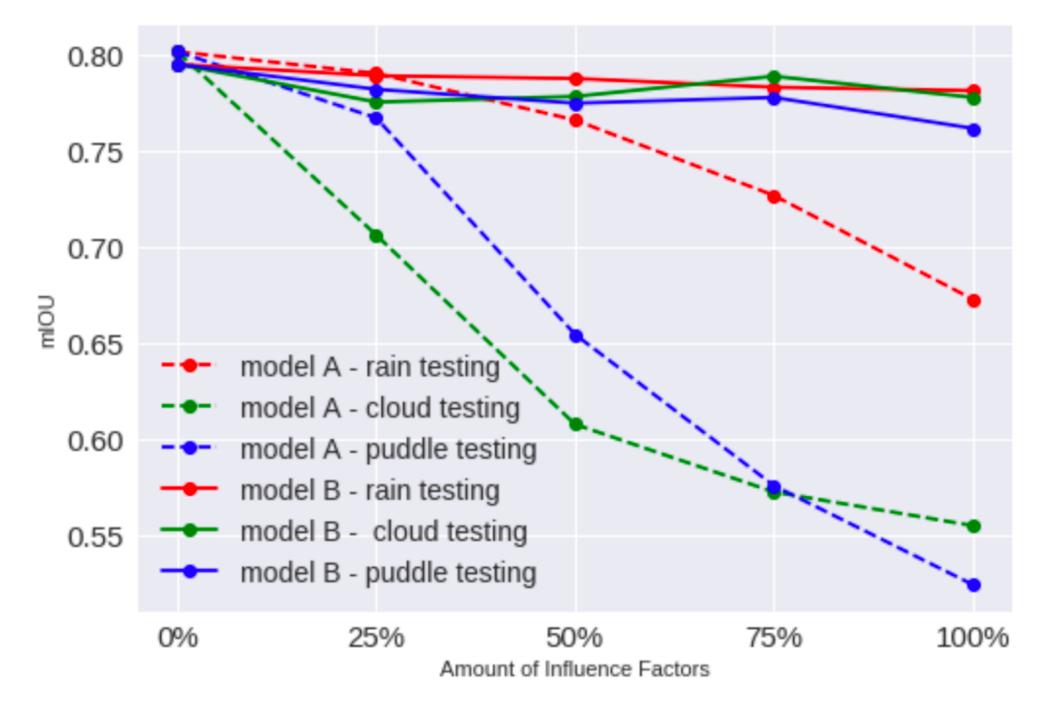


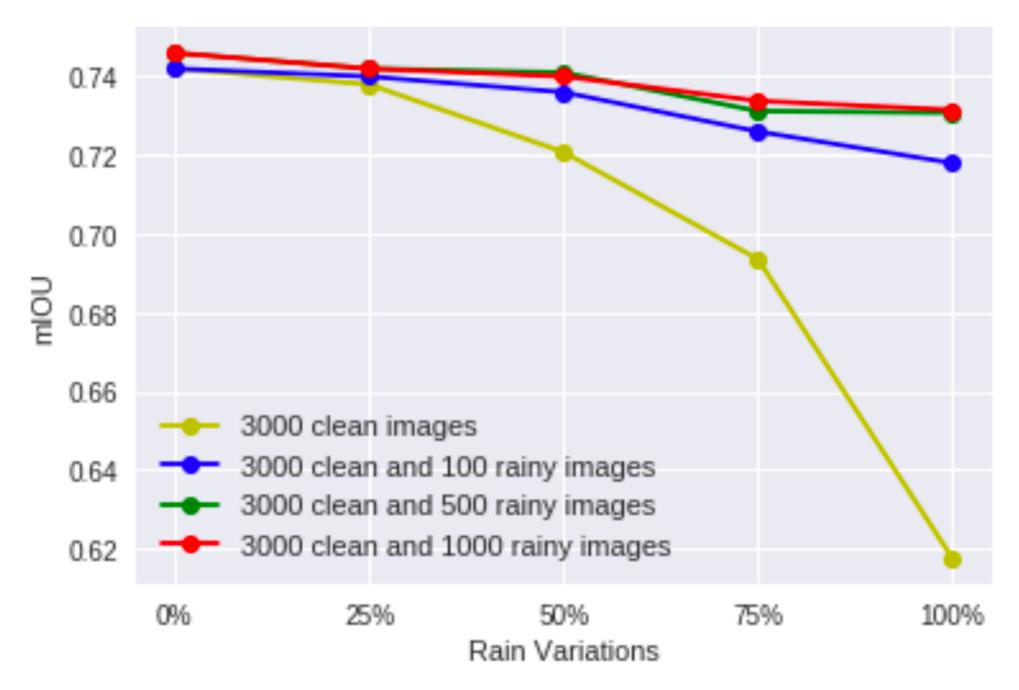
Data Generation Pipeline



Scene Influence Factors -> Accuracy

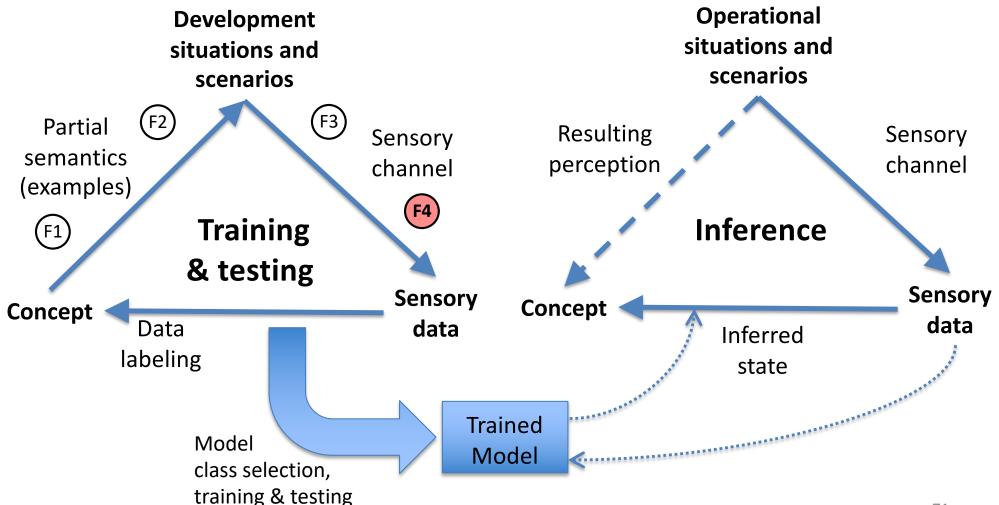




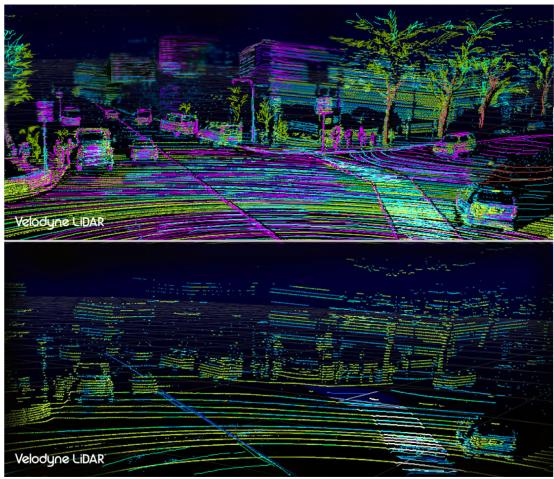


F4: Sensor Properties

Development



F4: Sensor Properties



Daylight White Balance

Cloudy White Balance

Shade White Balance

Tungsten White Balance

F4: Sensor Properties

- Mature engineering discipline
 - Determining sensor properties to capture sufficient information
 - Mode, range, resolution, sensitivity, placement, etc.
- However, interaction between ML algorithms and sensor properties must be assessed
 - E.g., how effective is ML is ignoring sensor noise or artifacts?

F5: Label Uncertainty

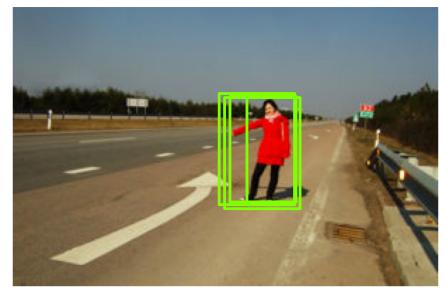
Development

Operation

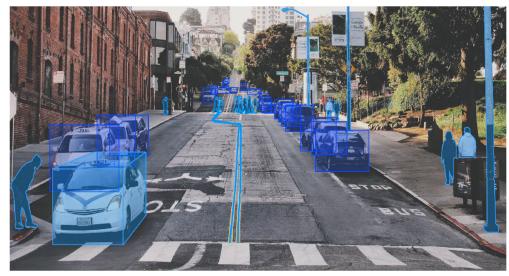


F5: Label Uncertainty

Class: cyclist vs. pedestrian



Bounding box placement uncertainty



3D bounding box placement is challenging

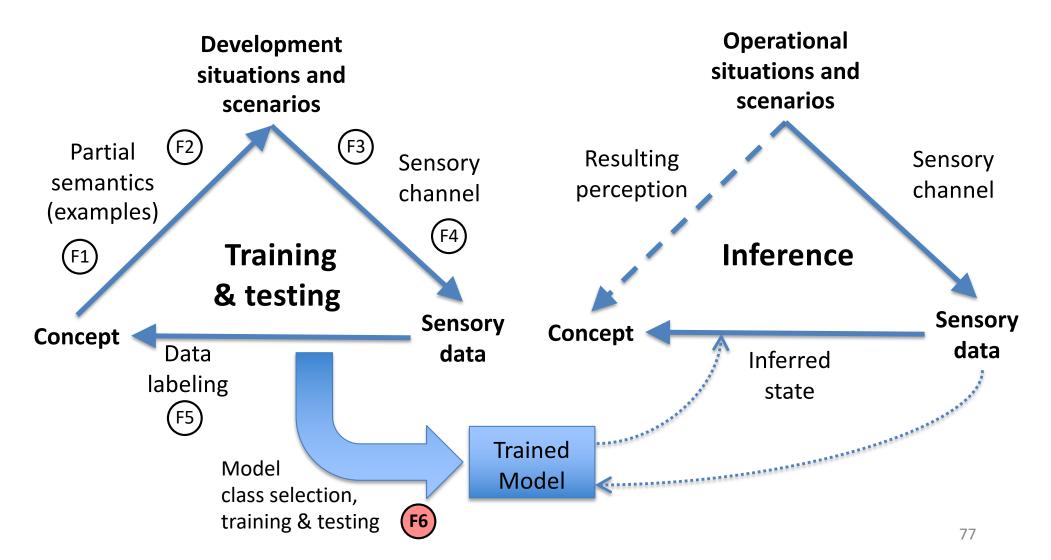
F5: Label Uncertainty

- Assessed by expert review and labeler disagreement
 - Existing research on determining number of labelers in crowd sourcing
 - E.g., may need as many as 6 independent votes
- Reduction measures
 - Conceptual clarity (F1)
 - Quality control
 - Clear instructions, training, verification, etc.
 - Bread and butter of labeling companies

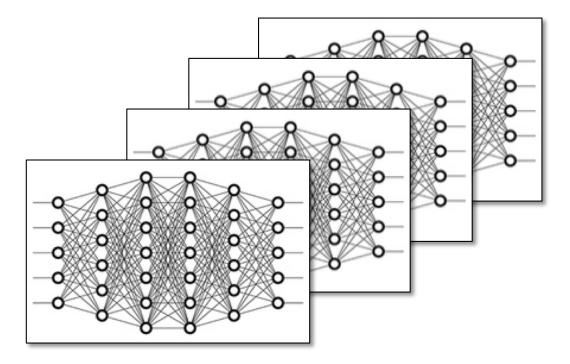
F6: Model Uncertainty

Development

Operation



F6: Model Uncertainty



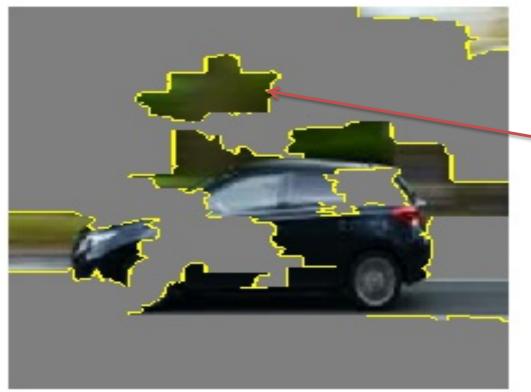
What model was learned in training? What decisions will it make in operation?

F6: Model Uncertainty

- 1. Explanation methods help validate features
- 2. Robustness measures help assess risk of misclassification
- 3. Bayesian deep learning can help assess model uncertainty

Deep Learning and Explanations

Passenger car



The explanation shows that a tree contributed to the classification decision (method: LIME)

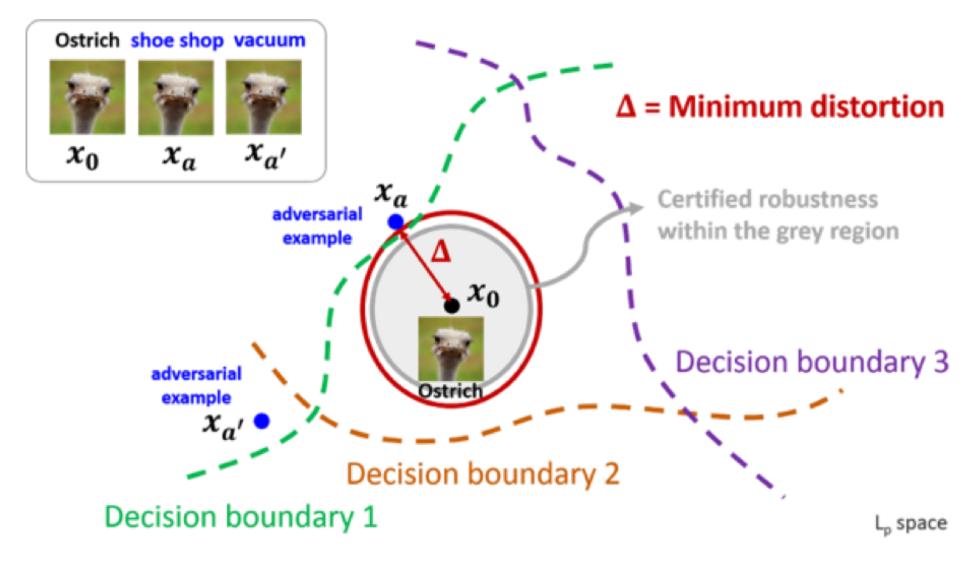
The top 15 features (superpixels) used to classify corresponding input image as a car by an Inception network trained on ImageNet

Adversarial Stickers

Misclassified as speed signs

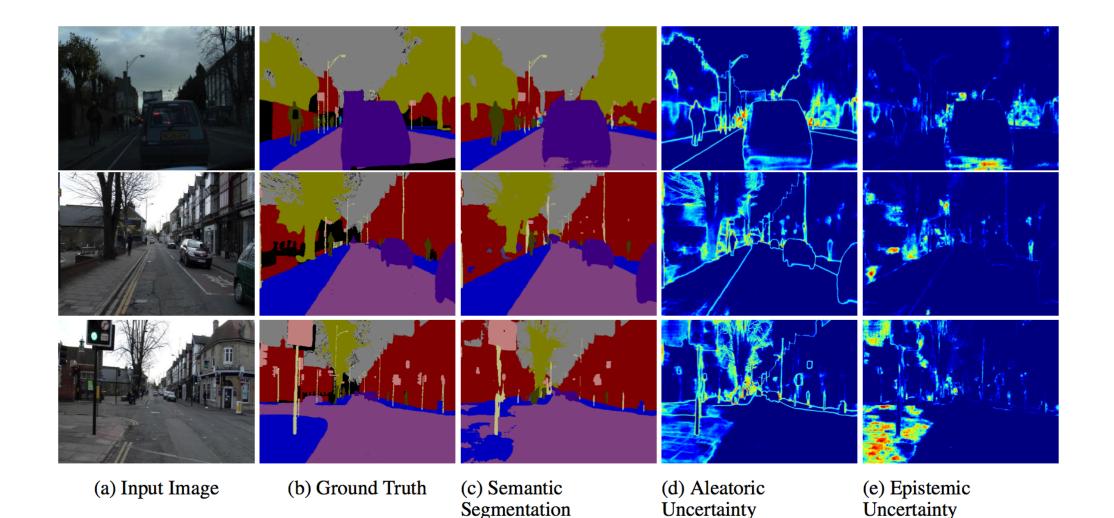
Evtimov et al.

Robustness Measures



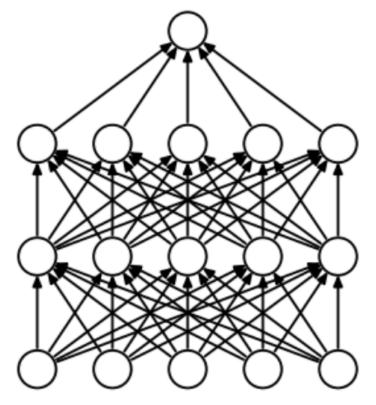
CLEVER approach by IBM

Aleatoric and Epistemic Uncertainty

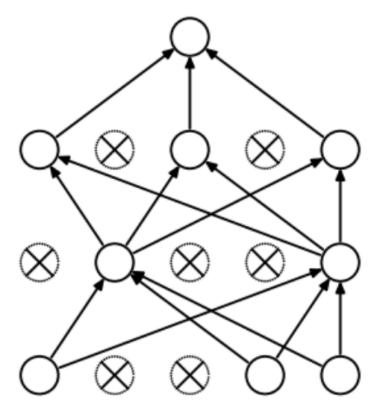


Yarin Gal, et al., https://arxiv.org/abs/1703.04977

Dropout

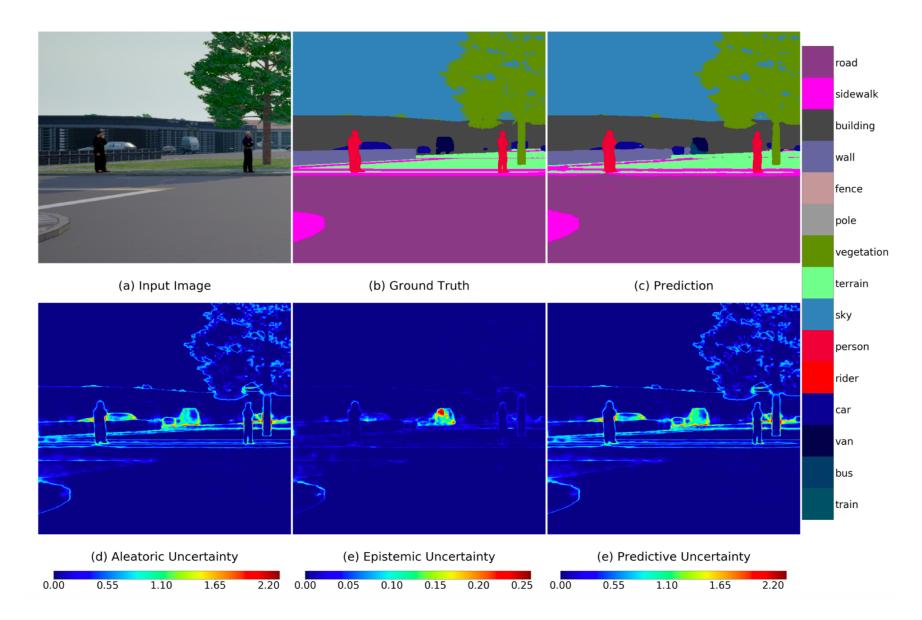


(a) Standard Neural Net

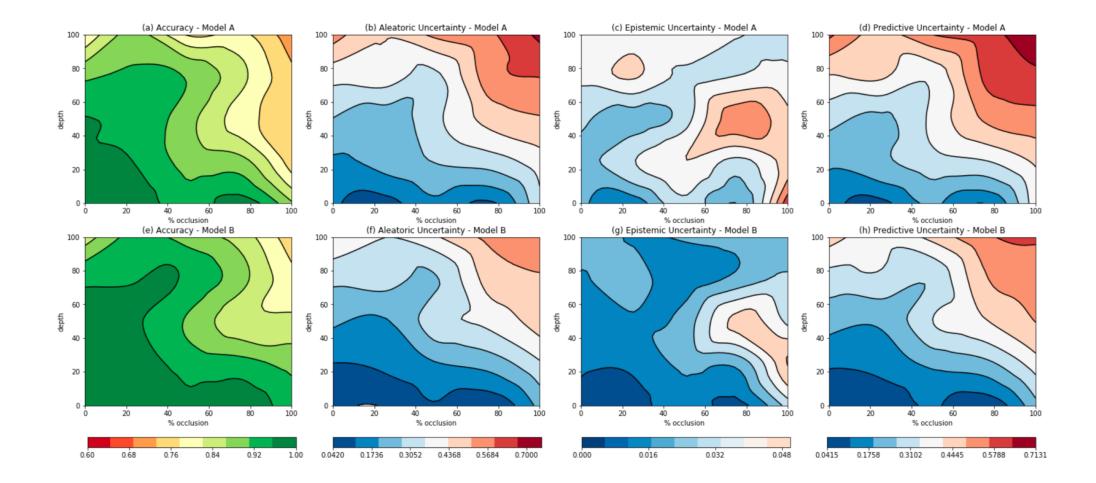


(b) After applying dropout.

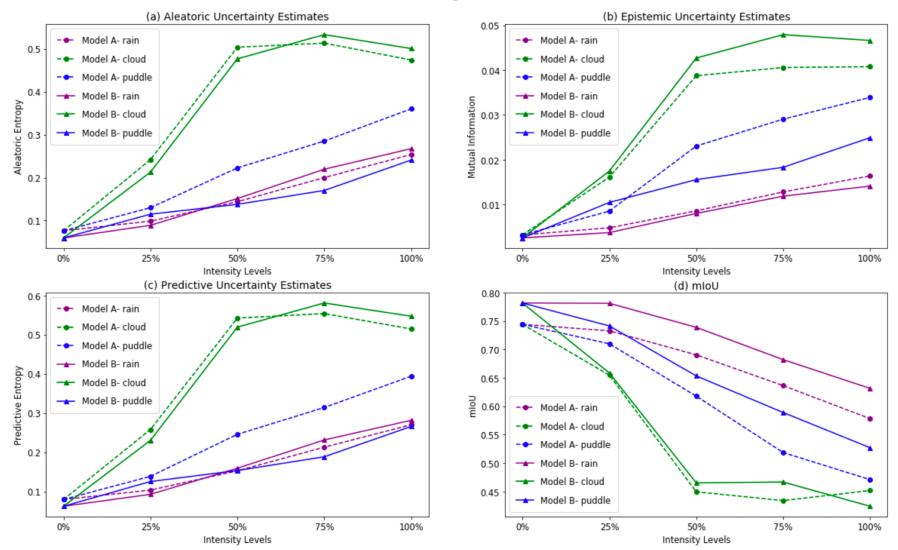
Uncertainty Estimates on Synthetic Dataset



Occlusion and Depth -> Uncertainty Estimates

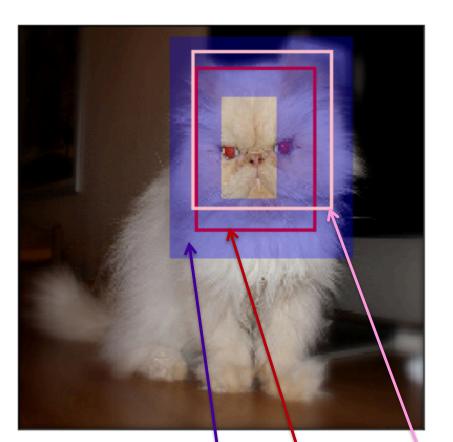


Rain, Clouds, Puddles -> Uncertainty Estimates



Uncertainty Estimation for Object Detection

- 1. Model uncertainty using MC Dropout
- 2. Data uncertainty using heteroschedastic regression
- 3. Confidence calibration



Phan, Salay, Czarnecki, Abdelzad, Denouden, Venekar. Calibrating Uncertainties in Object Localization Task. NIPS workshop. 2018, https://arxiv.org/abs/1811.11210 Ground truth

Predicted mean box

95% confidence band

F7: Operational Domain Uncertainty

Development Operation Operational Development Domain shift (F7) situations and situations and scenarios scenarios (F3) (F2 (F3) Partial (F2) Resulting Sensory Sensory semantics perception channel channel (examples) (F4) (F4) Inference Training (F1 & testing Sensory Sensory Concept Concept data Data data Inferred labeling state ****** (F5) Trained Model Model class selection,

training & testing

(F6)

F7: Operational Domain Uncertainty

New pedestrian pose

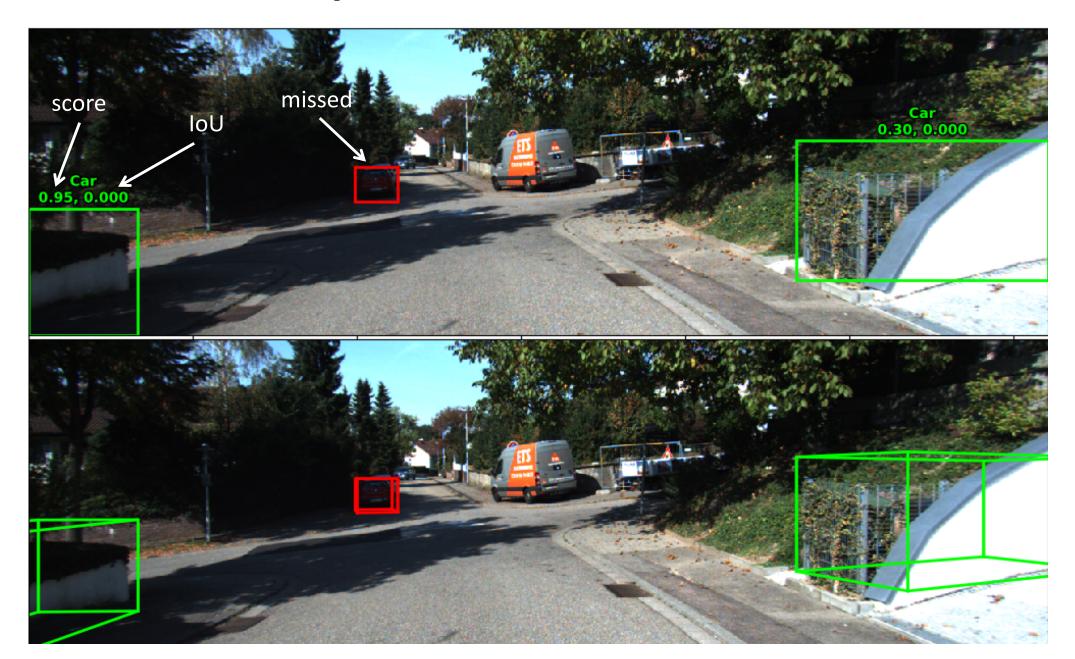
New type of car shape

Camera miscalibration

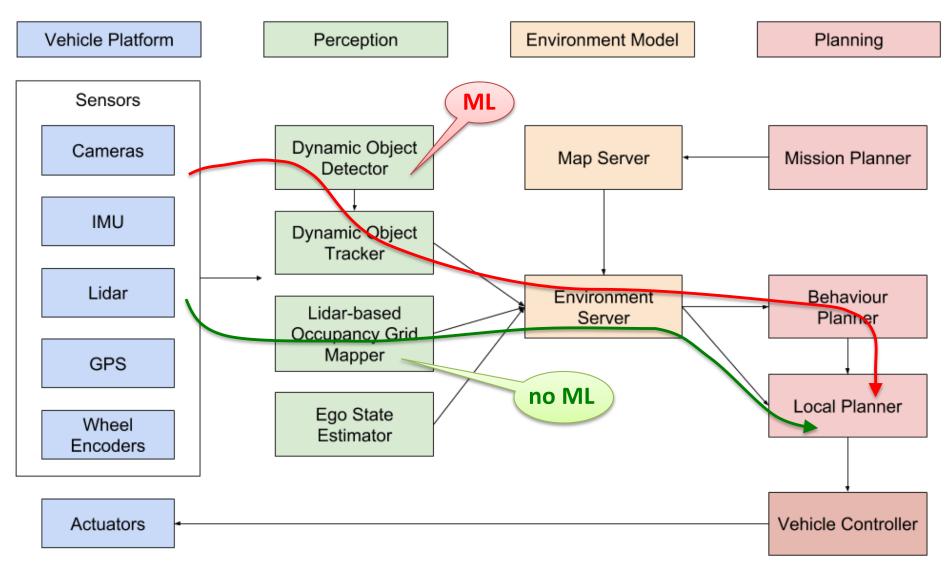
F7: Operational Domain Uncertainty

- Assess situation novelty at operation time
 - E.g., autoencoders, partial specs
- Assess impact of level of sensor miscalibration on perceptual uncertainty
- Monitor sensor parameters and ODD

Sample Incorrect Detections

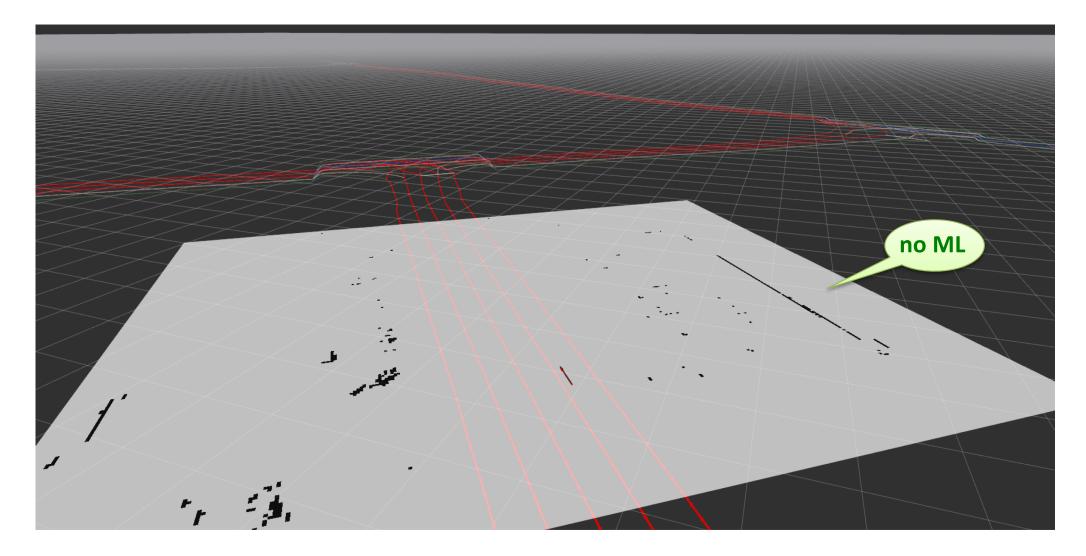


Autonomoose Architecture



Secondary path with no ML

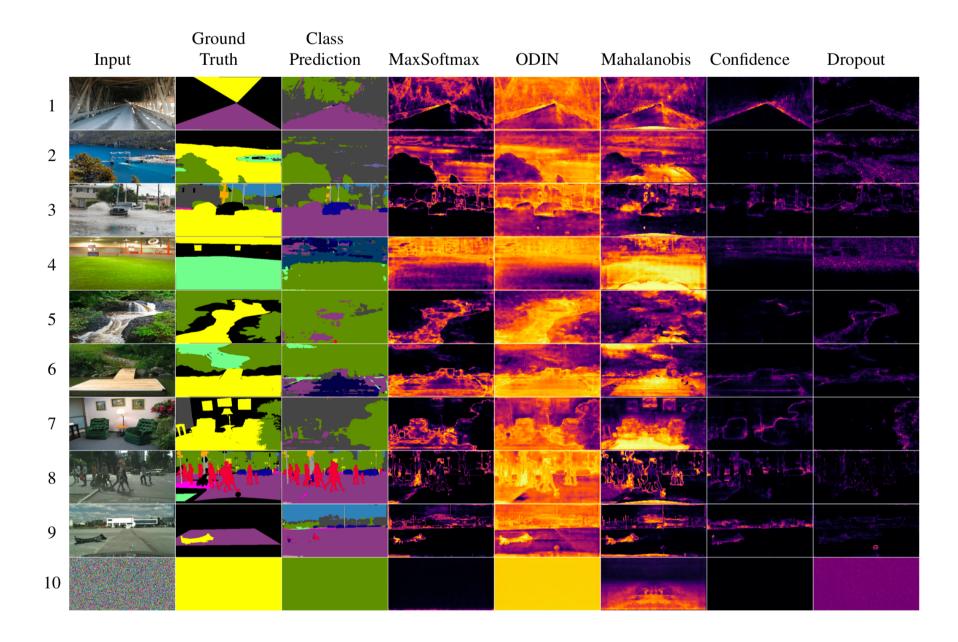
Lidar Occupancy Grid – Static Obstacle Detection



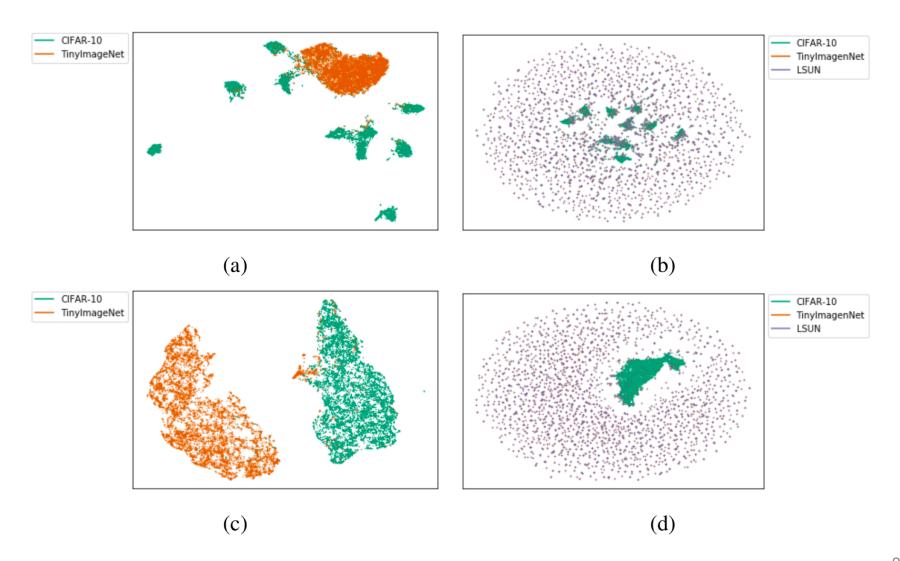
"Plastic Bag" Problem

Out-Of-Distribution (OOD) for Semantic Segmentation

Evaluation of Five OOD Methods



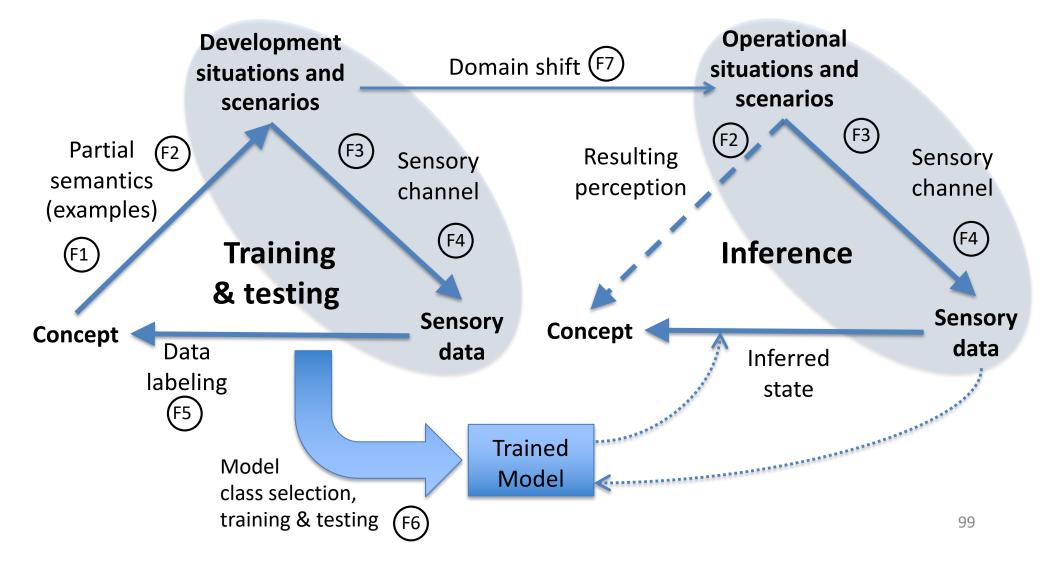
New OOD Method



Factors Influencing Uncertainty

Development

Operation

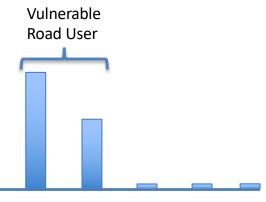


Hazard Analysis and Risk Assessment of Perceptual Failures

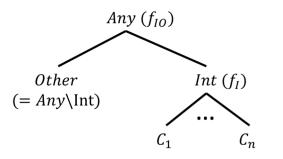
- Need Failure Mode Effects Analysis (FMEA) for perceptual components
 - Must deal with uncertainty
 - Uncertainty cannot be eliminated
 - Must systematically identify all failure modes
 - Perceptual equivalent of HAZOP
 - Must assess the effects
 - Incurred risk and progress cost
- Idea: introduce P-FMEA a family of FMEAs for different perception tasks
 - C-FMEA for classification, R-FMEA for regression, OD-FMEA for object detection, etc.

C-FMEA – Key Ideas

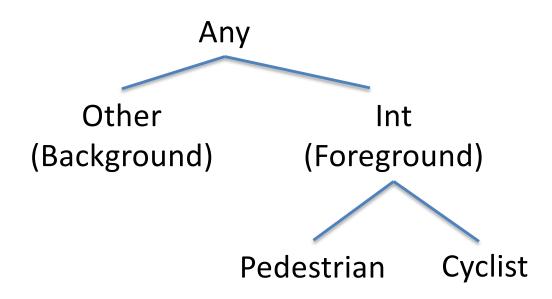
- Dealing with uncertainty
 - Abstract classes provide a more tractable representation of uncertainty than categorical distributions
- Systematic failure mode identification
 - Confusion matrix
 - Classification case taxonomy
- Effect analysis
 - Incurred risk and progress cost wrt. driving policy

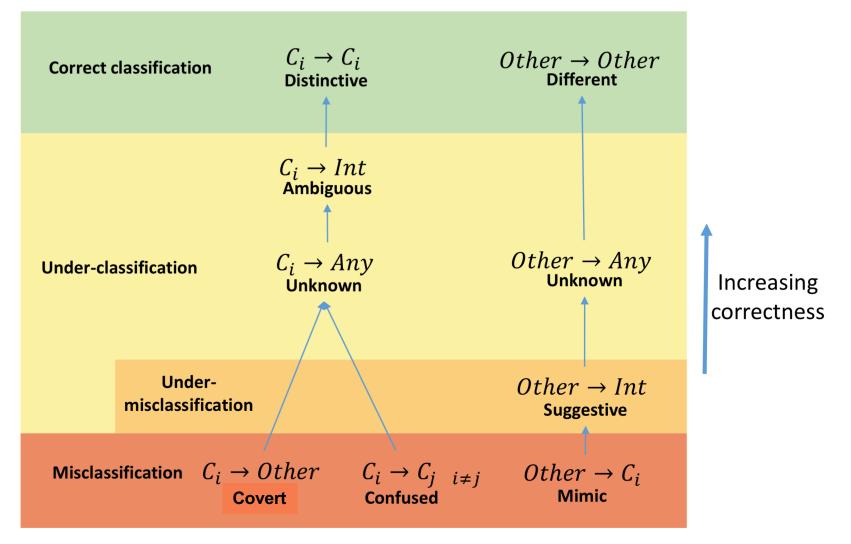


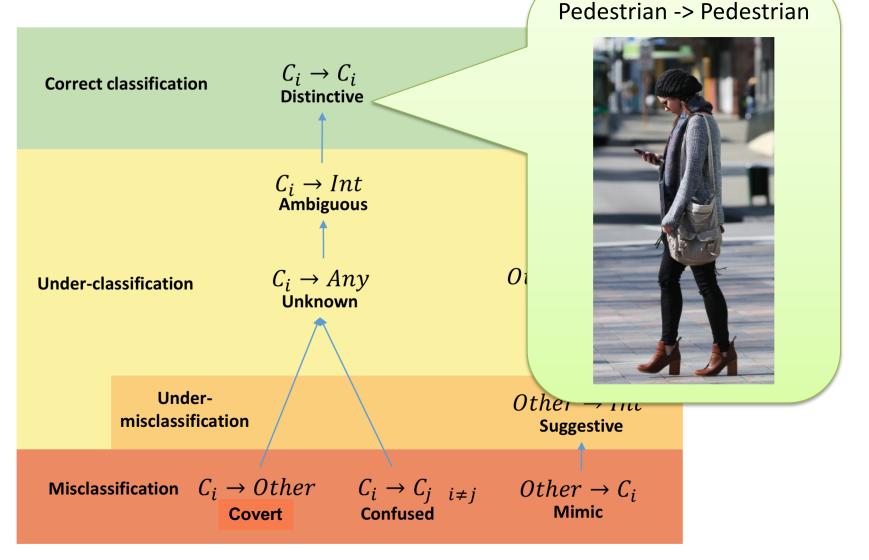
Pedes- Cyclist Animal Vehicle Other trian

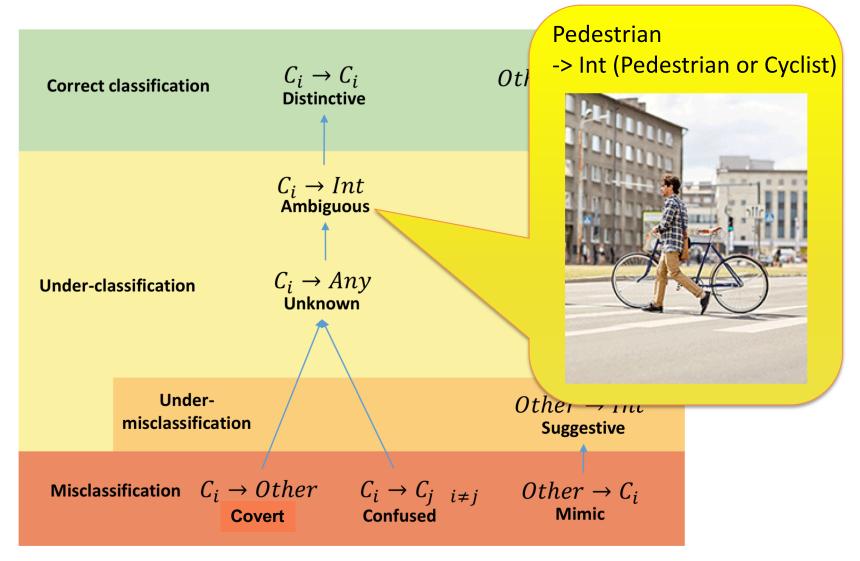


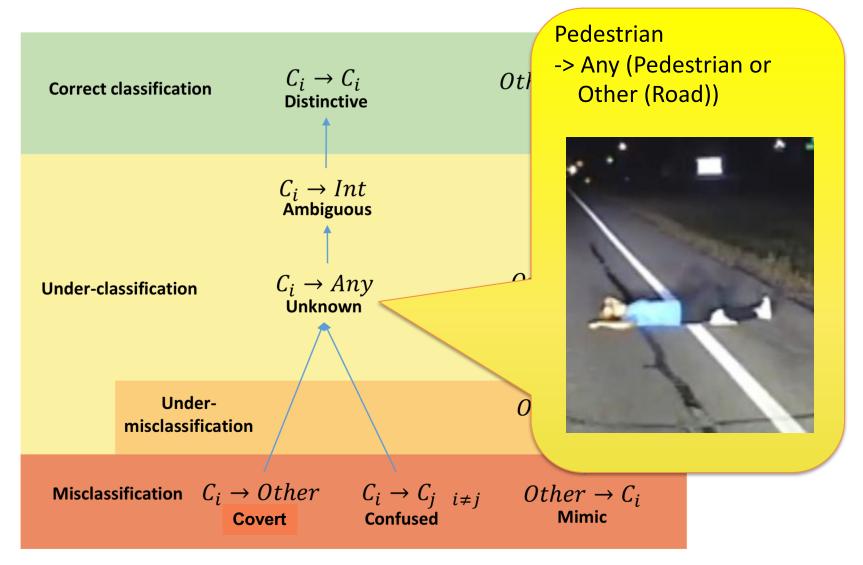
Sample Class Hierarchy

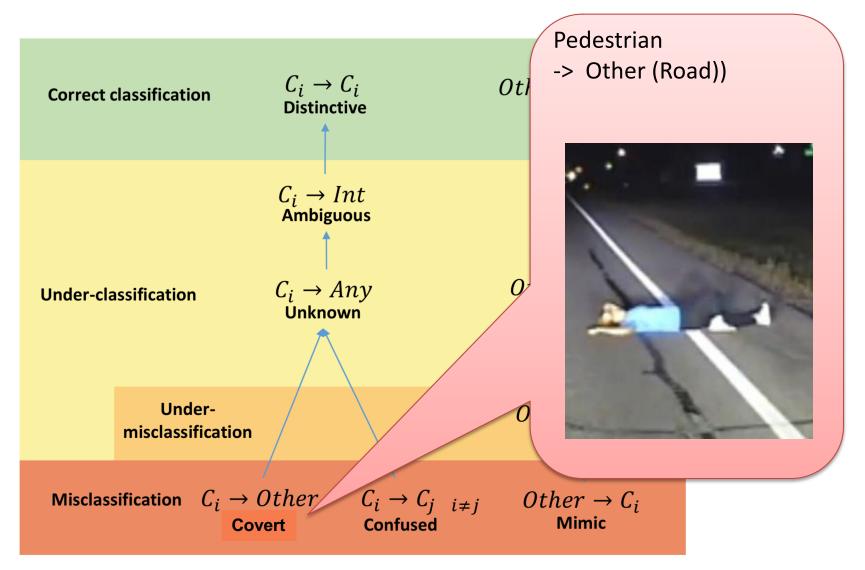


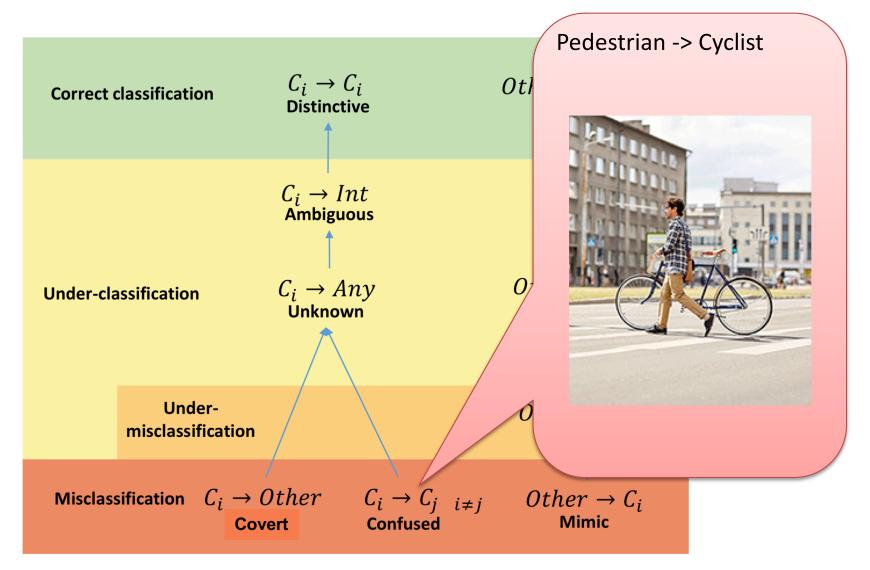


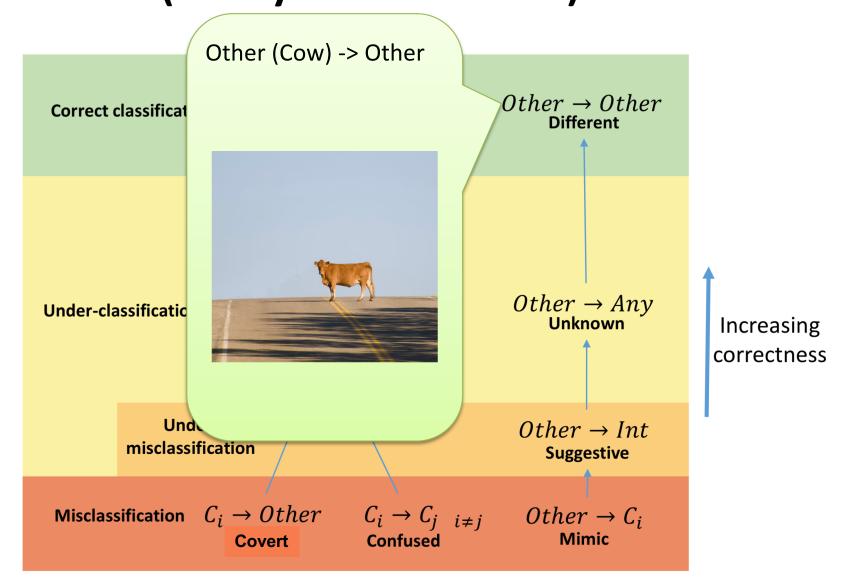


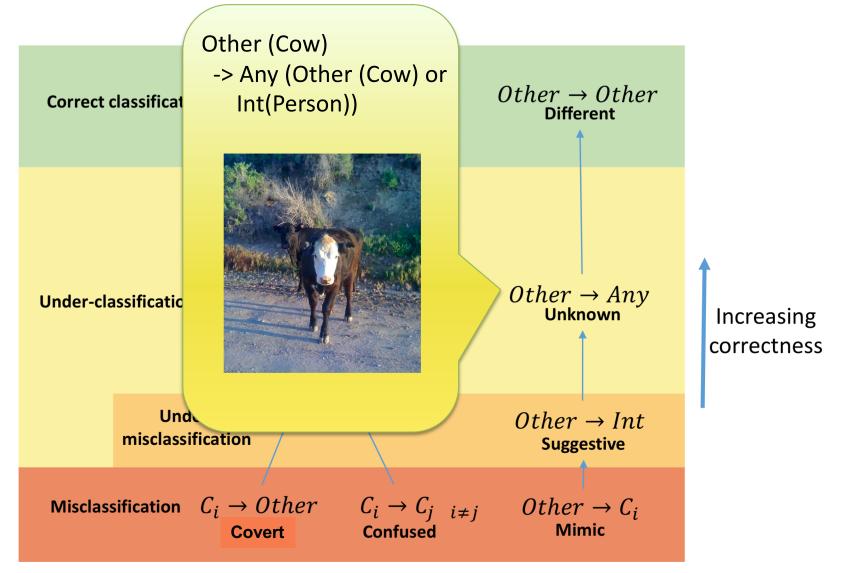


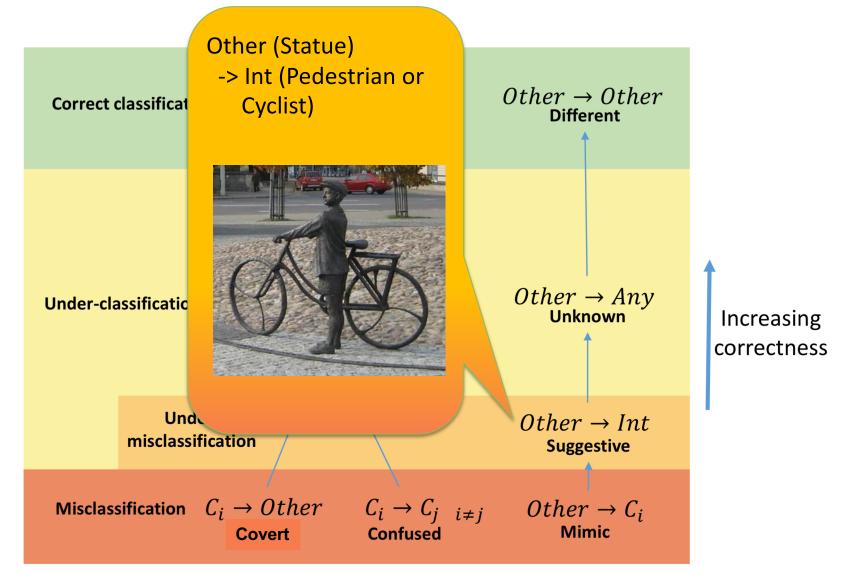


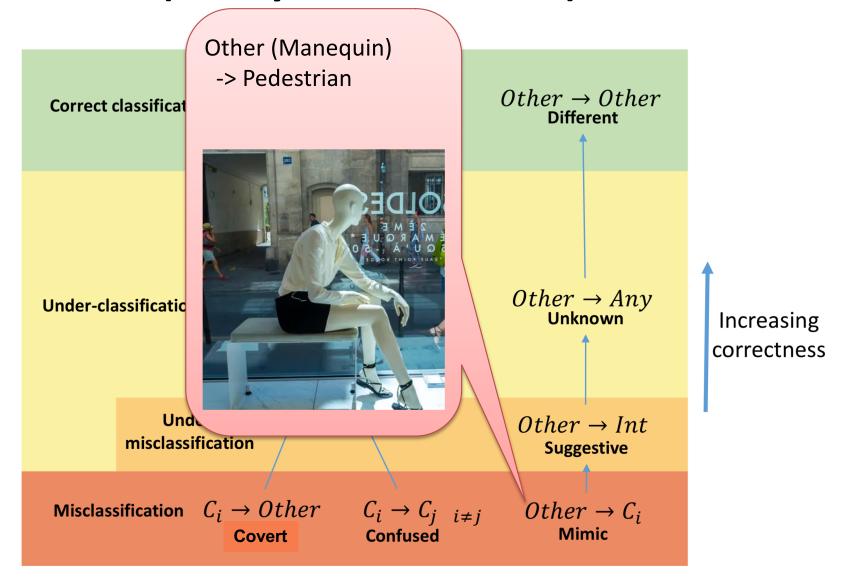


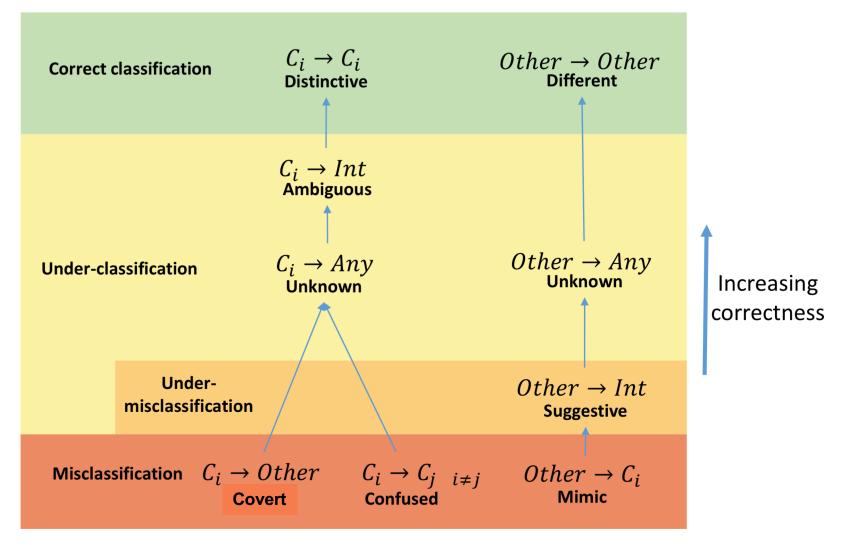




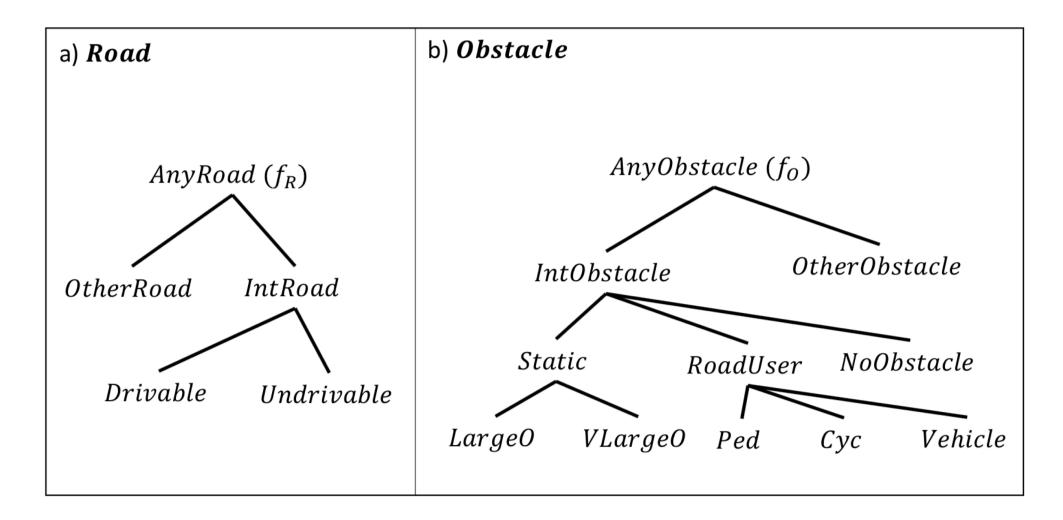








Case Study – Class Hierarchy



Case Study – Perception Module

Case Study – Driving Policy

a) π_R

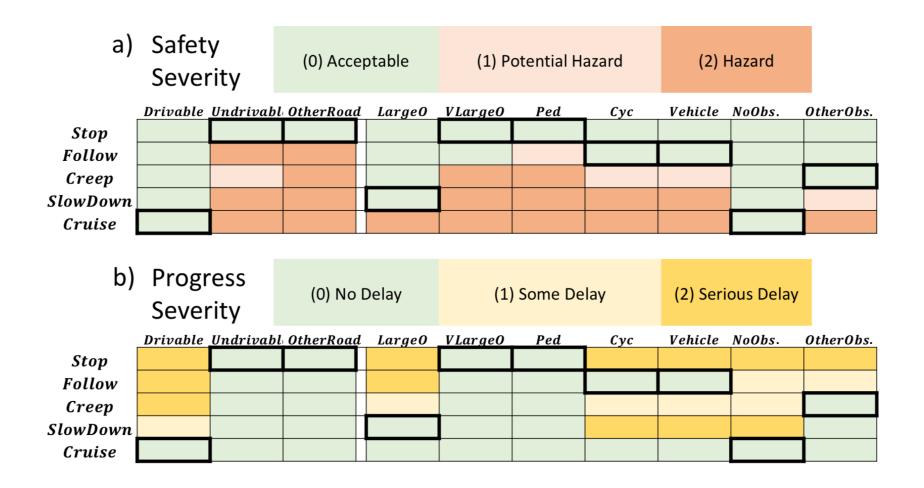
b) π_0

Class	Action		
Drivable	Cruise		
Undrivable	Stop		
OtherRoad	Stop		
IntRoad	Stop		
AnyRoad	Stop		

c)	
	Stop
1	Follow
	Creep
	Slowdown
I	Cruise

Class	Action		
Large0	Slowdown		
VLargeO	Stop		
Ped	Stop		
Сус	Follow		
Vehicle	Follow		
NoObstacle	Cruise		
OtherObstacle	Creep		
Static	Stop		
RoadUser	Stop		
IntObstacle	Stop		
AnyObstacle	Stop		

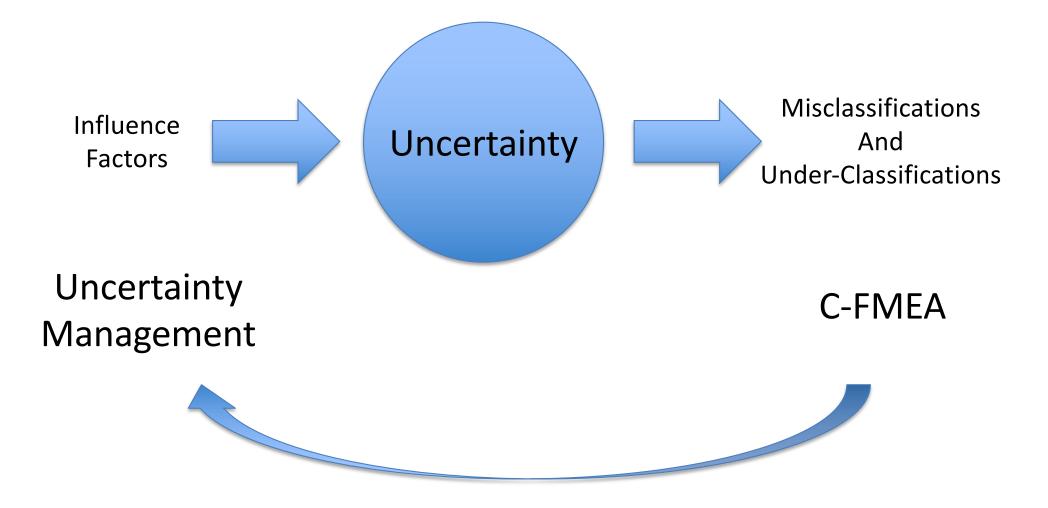
Case Study – Policy Deviation Safety and Progress Assessment



Case Study – Configuration Case Safety and Progress Assessment

	Large0	VLarge0	Ped	Сус	Vehicle	NoObs.	OtherObs.
Large0	00	20	20	22	22	02	10
VLarge0	02 (0.002)	00 (0.006)	00	02	02	02 (0.004)	02
Ped	02 (0.002)	00	00 (0.048)	02	02	02 (0.004)	02
Сус	02 (0.004)	00	10	00 (0.014)	00	01 (0.004)	01 (0.002)
Vehicle	02 (0.016)	00 (0.006)	10 (0.006)	00	00 (0.066)	01 (0.066)	01
NoObs.	20 (0.020)	20 (0.022)	20 (0.010)	20 (0.002)	20 (0.036)	00 (0.406)	20 (0.006)
OtherObs.	01	20	20	11	11	01	00
RoadUser	02 (0.004)	00	00 (0.024)	02 (0.014)	02 (0.014)	02 (0.008)	02
Static	02 (0.002)	00	00	02	02	02	02
IntObs.	02	00	00	02	02	02	02
AnyObs.	02	00	00	02	02	02	02

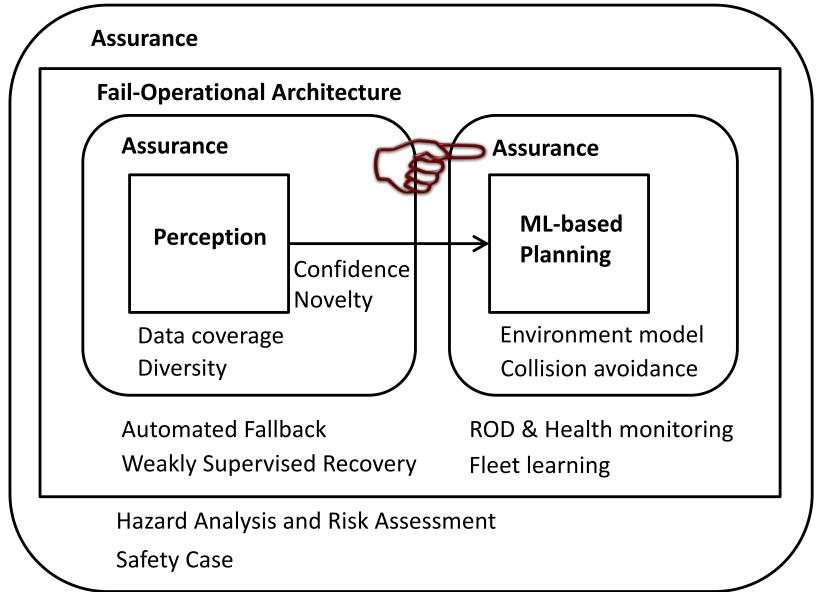
How The Ideas Fit Together?



Part II Summary

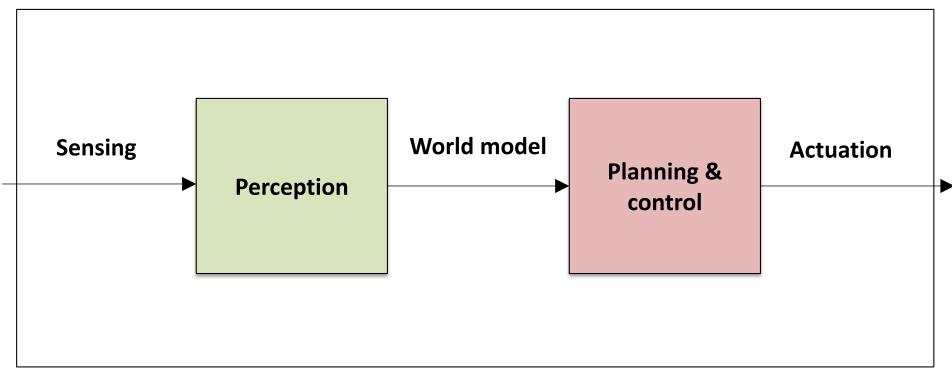
- 1. Perceptual uncertainty is a key performance measure in safety requirements
- 2. Used perceptual triangle to identify seven influence factors for perceptual uncertainty when using supervised ML
- 3. FMEA for Perception Functions
- 4. Future: methods to control the influence factors and use them in safety arguments

LAVA: Learned & Assured Vehicle Autonomy



Safety Argument Decomposition

ADS



Autonomous Trap 101

James Bridle

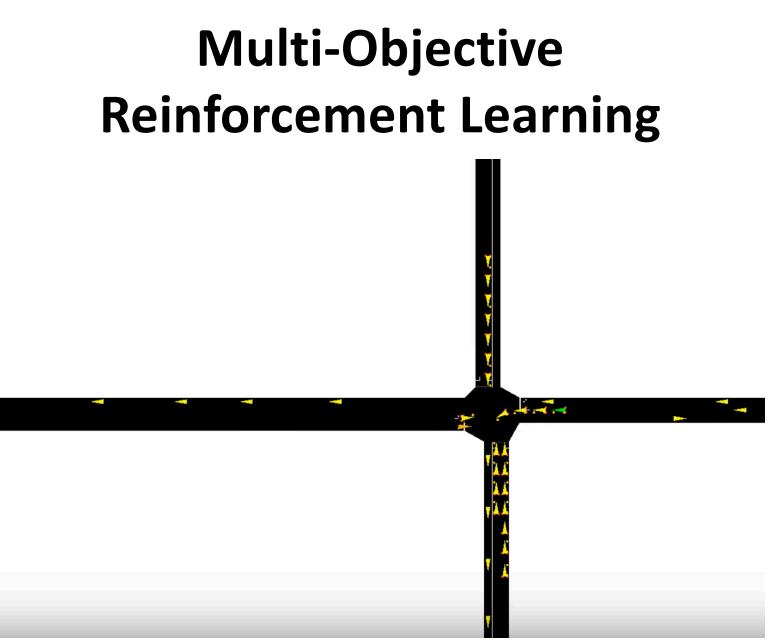
Driving Qualities

Safety

Comfort

Progress

Energy efficiency



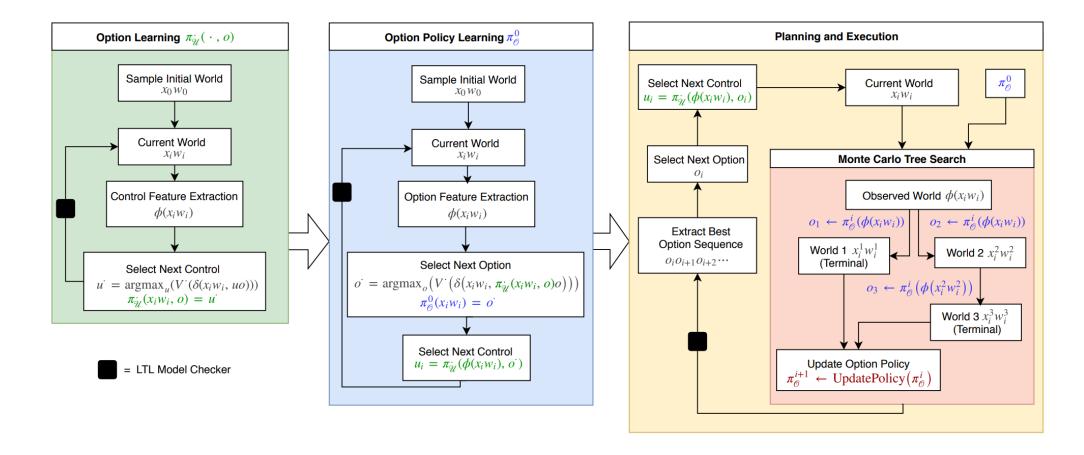
Videos: https://www.youtube.com/playlist?list=PLiZsfe-Hr4k9VPiX0tfoNoHHDUE2MDPuQ

Li et al. Urban Driving with Multi-Objective Deep Reinforcement Learning. Under review, 2018 https://arxiv.org/abs/1811.08586

Deep RL Challenges

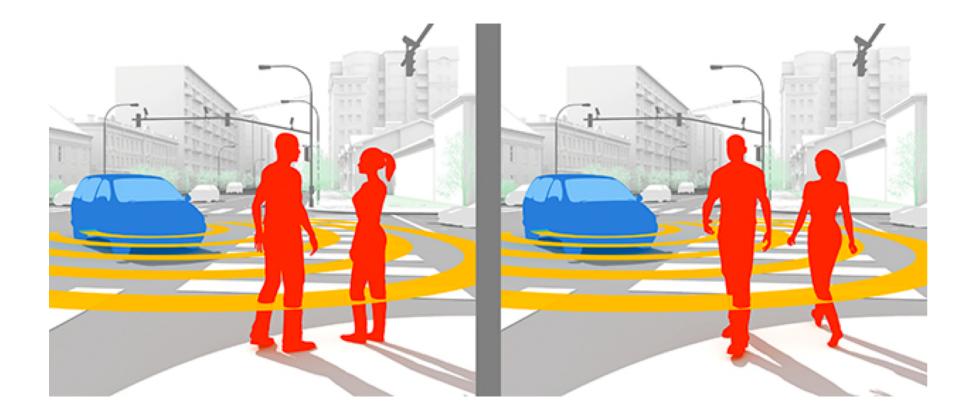
- Environment model
- Rewards and specifications
- Learning is slow
 - Should combine with imitation learning and MPCbased maneuvers
- Safety
 - Safety envelope
 - Escape path & fallback path
 - Analyzable policies

Baseline RL Architecture for Automated Driving

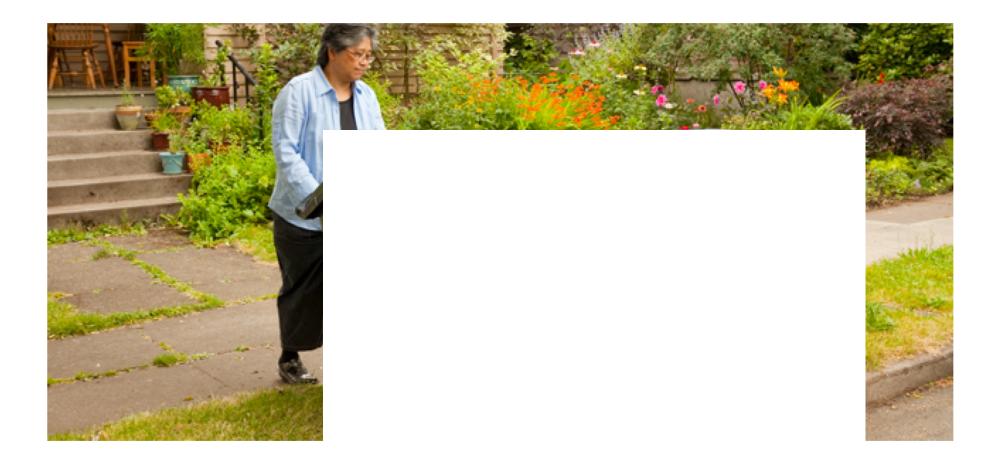


Paxton, et al. M. Combining neural networks and tree search for task and motion planning in challenging environments. arXiv preprint arXiv:1703.07887, 2017

Road User Intension

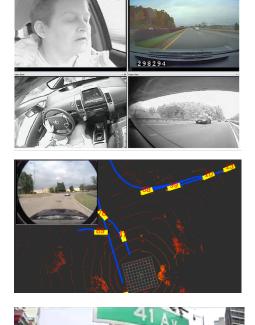


Will she cross the street?



Will she cross the street?

Traffic Data



Naturalistic driving

AV sensors & perception

Infrastructure mounted

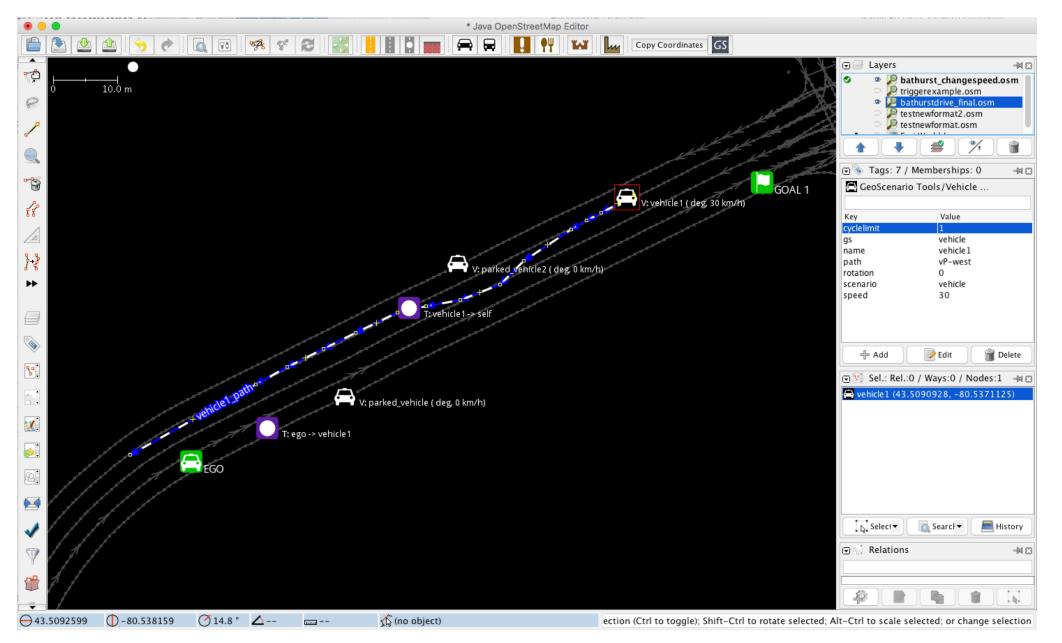
Birds-eye view

Stanford University Experiment

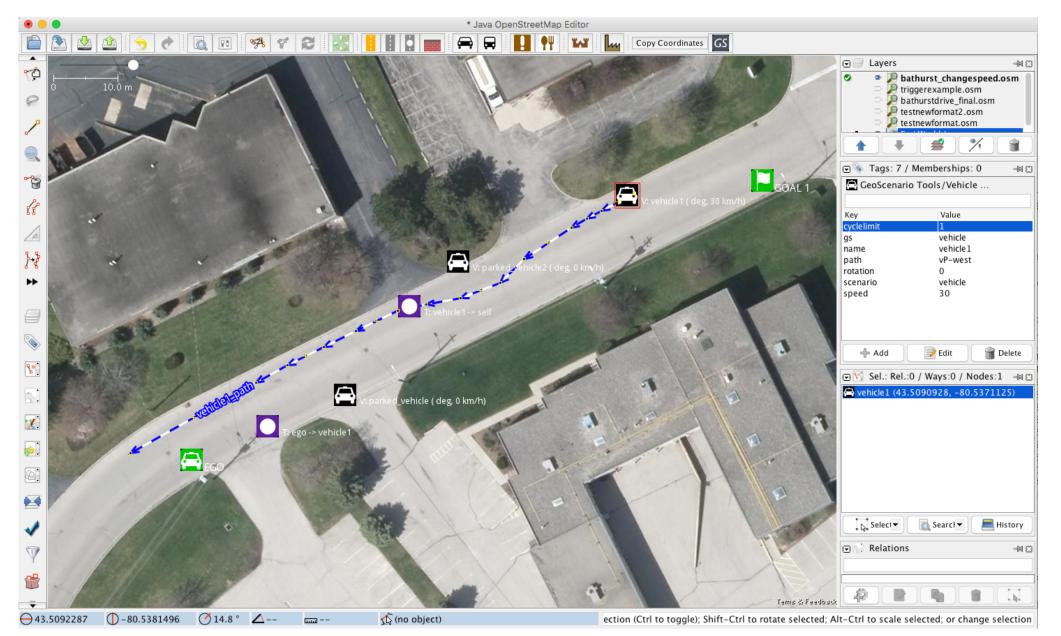
WISE Lab Simulation Environment for AV Testing

- Scenario definition in GeoScenario
 - Similar to Open Scenario
 - Location-, time-, and attribute-based triggers
 - Defined as a layer in Open Street Map
- Execution in UE4
 - Bounding box simulation
 - LIDAR simulation
 - Support for HD map
 - Collection of scoring metrics
 - Integration with ROS
 - Precise physics-based vehicle model

GeoScenario Test Definition



GeoScenario Test Definition

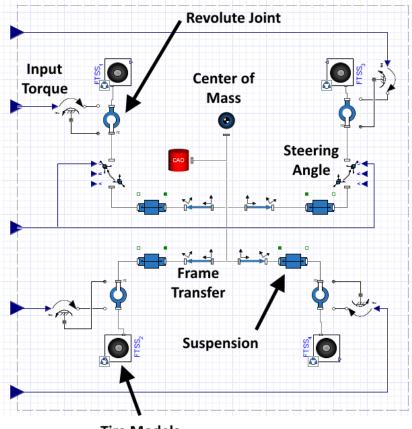


Test Execution in UE4

Test Execution in UE4

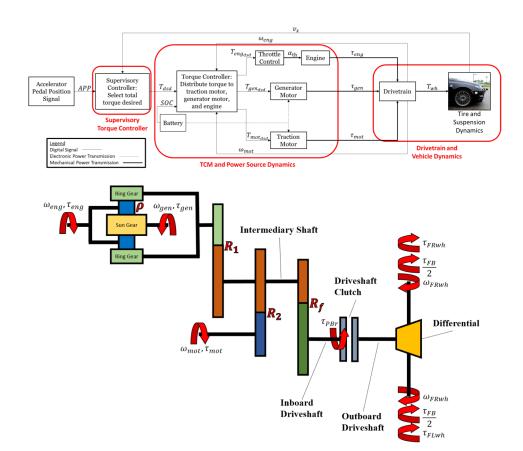
Vehicle System Identification

Vehicle Model in Maplesim



Tire Models

14 DOF vehicle dynamics model with Pacejka tires



Hybrid powertrain model (incl. power management software)

https://uwspace.uwaterloo.ca/handle/10012/14094

Human Road User Models

https://arxiv.org/abs/1903.01539

A behavior driven approach for sampling rare event situations for autonomous vehicles.

Atrisha Sarkar and Krzysztof Czarnecki University of Waterloo atrisha.sarkar@uwaterloo.ca, kczarnec@gsd.uwaterloo.ca

Abstract— Performance evaluation of urban autonomous vehicles requires a realistic model of the behavior of other road users in the environment. Learning such models from data involves collecting naturalistic data of real-world human behavior. In many cases, acquisition of this data can be prohibitively expensive or intrusive. Additionally, the available data often contain only typical behaviors and exclude behaviors that are classified as rare events. To evaluate the performance of AV in such situations, we develop a model of traffic behavior based on the theory of bounded rationality. Based on the experiments performed on a large naturalistic driving data, we show that the developed model can be applied to estimate probability of rare events, as well as to generate new traffic situations.

I. INTRODUCTION

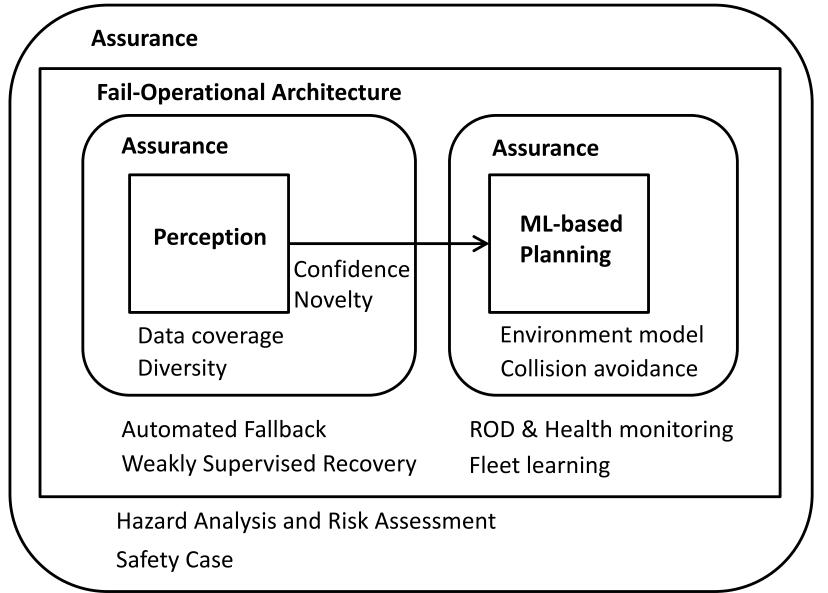
With autonomous vehicles (AV) poised to change the transportation landscape, the ability of AVs to handle a wide range of human traffic behaviors safely and reliably is of paramount importance. In order to guarantee that, it is

In recent years, RE sampling based techniques have been used for simulation based verification and testing of a wide range of motion and behavior planners. O'Kelly et al. use RE sampling for testing of planners that work in end-toend manner based on deep learning [7], whereas, other approaches apply similar techniques to evaluate performance in specific traffic situations, such as lane changes and cut-ins [8]. Most approaches that use rare event sampling for AV evaluation, uses cross-entropy based importance sampling, which is an adaptive sampling technique to search for a sampling distribution that maximizes odds of leading to crashes and near-miss scenarios.

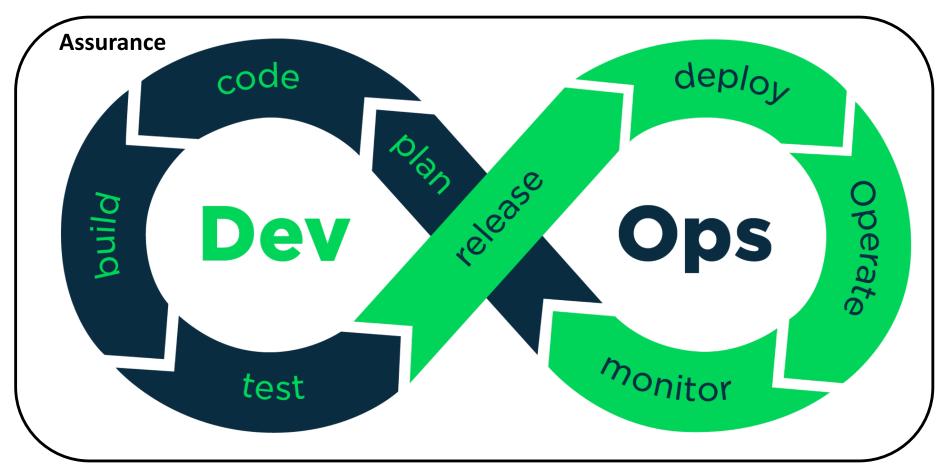
A part of the uncertainty in traffic environments arises from the inherent stochastic behavior of road users, as reflected in different driving styles of human drivers. This is in contrast to the design of motion and behavior planners

Summary

LAVA: Learned & Assured Vehicle Autonomy



DevOps for ADS Software



Shadow testing Design of experiments & fleet learning What field data to collect? Update assurance

Incremental assurance Safety case evolution