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Operational Design Domain (ODD)
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A set of conditions under which
the driving automation can operate a vehicle

SAE J3016 Levels of Driving Automation

Time of day
day
night

Types of roads 
residential
urban
highway

Geographic
area

Traffic conditions 
stop-and-go
free flowing

Weather conditions
clear
raining
snowing
icy



Dynamic Driving Task (DDT)
Fallback
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ComputerDriver

Who performs the DDT
in the case of system malfunction or
when leaving the ODD?



Automated Driving Systems (ADS)
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Fallback

limited unlimited

Conditional
Automation

ADS for
stop-and-go

High
Automation

Shuttle in
geo fenced

area

Full
Automation

Robo
Taxi

anywhere

3 4 5

ODD

Example

SAE J3016 Levels of
Automation

Driver ADS



ADS Hazard Sources
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Mechanical
faults

Electrical
faults

Computer
HW faults

Computer
SW faults

Sensor
noise &

limitations

Machine
learning
errors

Inadequate
driving

behavior

DDT fallback
failures

Cyber attacks

Mature best practices ISO 26262

(ISO / PAS 21448) SAE J3061



LAVA: Learned & Assured
Vehicle Autonomy
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Assurance
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Novelty

Assurance

Environment model
Collision avoidance

Fail-Operational Architecture

Assurance

Automated Fallback
Weakly Supervised Recovery

Hazard Analysis and Risk Assessment
Safety Case

ROD & Health monitoring

Diversity

Fleet learning



LAVA: Learned & Assured
Vehicle Autonomy
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HW/SW Dev

Verification
Test

HARA

Safety
Concept

Vehicle
Validation

Test

Architecture
Safety Requirements

Safety Case

ISO 26262



DevOps for ADS Software
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What field data to collect?
Update assurance

Design of experiments & fleet learning
Shadow testing

Safety case evolution

Assurance

Incremental assurance



ADS Hazard Sources
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Mechanical
faults

Electrical
faults

Computer
HW faults

Computer
SW faults

Sensor
noise &

limitations

Machine
learning
errors

Inadequate
driving

behavior

DDT fallback
failures

Mature best practices ISO 26262

(ISO / PAS 21448)

Cyber attacks

SAE J3061



WISE Drive
• Framework for 

analyzing and specifying 
requirements for an 
ADS

• Instantiated for a 
sample ODD on UW 
Moose

• Input into 
standardization
(SAE J3164) 

12https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving



Requirements Specification

Road
Environment

Subject Vehicle

Automated
Driving

System (ADS)

Driving 
Behavior

Requirements



Driving Behavior Specification

Driving Task
Specification 

Safety

Driving Quality
High-Level Requirements

Comfort

Progress 

Energy efficiency  

Mission planning 
Maneuvers

Motion control

Road
Environment
Road structure

& other
static objects

Traffic

Environmental
conditions

Subject Vehicle

System health

Dynamic state



Road Environment Ontology

Road
structure

Other obstacles
(unstructured)

Road users

Environmental
conditions

Animals

Traffic



Driving Task
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John Micheon, 1985



Lane maintenance Lane change Swerve out of a same-direction
traffic lane

Turn out of a same-direction
traffic lane

Crossing a lane Movements outside a same-direction
traffic lane

Primary Maneuvers



Secondary Maneuvers
1. Overtaking
2. Passing
3. Intersection handling

– includes handling circular and non-circular intersections
4. Interchange handling

– includes using acceleration lanes, entry and exit ramps, and 
weaving areas

5. Pedestrian crossing handling
6. Cycle crossing handling
7. Railway crossing handling
8. Turnabouts
9. Joining and leaving traffic
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Safety
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Absence of unreasonable risk of mishap

risk 
severity

likelihood



Driving Behavior Safety
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Absence of unreasonable crash risk due to ADS driving behavior

Noncollisions Collisions



Factors Influencing Risk Acceptability

• Risk level
• Risk reduction cost
• Benefit of the risky functionality (risk taking)
• Best practice (state of technology)
• Replacement risk
• Who controls risk
• Perception/public opinion

21



ODD boundary

Assurance Target

22

ODD

Acceptable
risk of
unknown
unsafe
scenarios

Acceptable
risk of
known
unsafe
scenarios



Responsibility-Driven Safety
• Normal driving scenarios

– Must not cause unacceptable risk increase 
– Low/high demand (incl. other road user errors)

• Emergency scenarios
– Near-crash

• Must avoid crash if it can
– Crash

• Must mitigate if it can
• Dilemmas often addressed by blame assignment

– Fallback
• Must minimize overall risk

23
(related: Responsibility-Sensitive Safety, https://arxiv.org/pdf/1708.06374)



Blame vs. Injury Risk
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GM Cruise Chevy vs. motorcycle crash
https://www.dmv.ca.gov/portal/wcm/connect/1877d019-d5f0-4c46-b472-78cfe289787d/GMCruise_120717.pdf?MOD=AJPERES



High-Level Behavior Safety 
Requirements (Normal Driving)
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1. Vehicle stability

2. Assured clear distance ahead

3. Minimum separation

4. Traffic regulations

5. Informal traffic rules
(best practices)



Behavioral Safety: 1. Vehicle Stability
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Tripped
Untripped

Roll stability

e + µy = v2 / 127R 

Skid stability

Friction ellipses



Behavioral Safety: 2. Assured Clear 
Distance Ahead (ACDA)
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Stopping sight distance
(Perception-reaction time and
braking distance)

Perception distance
(Range + road geometry)

Limits safe speed



Behavioral Safety: 2. ACDA
Perception Distance

28

Crests Curves

Intersections Overtaking



Behavioral Safety:
3. Minimum Separation
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Separation in terms of distance gap, time gap, and time-to-collision

Gap$

Range$



Behavioral Safety: 3. Minimum Separation
Maneuver-Specific Gaps

30

subject(
vehicle(

rear(
vehicle(

front(
vehicle(

rear(
gap(

front(
gap(

Car following

rear$
gap$

front$
gap$

lag$
gap$

lead$
gap$

adjacent$lane$
gap$

Lane changing

front&
gap&

return&lane&
gap&

lag&
gap&

lead&
gap&

oncoming&
gap&

passing&gap&

Overtaking

right&
gap&

le+&
gap&

oncoming'
gap'

Intersection handling

lateral&&clearance&

Lateral clearance



Behavioral Safety: 

4. Traffic Regulations
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Safe speed (ACDA) Safe following gap

Passing rules

Obeying regulatory traffic signs &

signals
Signaling stops & turns

Reacting to emergency vehicles &

school buses

Use of passing beam

Yielding to other road users rules

…

Where to drive Parking restrictions

U-turn prohibitions
Required behavior

at railway crossings



Behavioral Safety:

5. Informal Traffic Rules
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Delayed acceleration at signalized intersections

Responding to tailgaters

Lane selection

How early to signal turns

2/3 – second rule

Anticipating aberrant behaviors of other road users

Responding to animals on the roadway

…
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LAVA: Learned & Assured
Vehicle Autonomy
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Planning

Assurance

Data coverage

Confidence
Novelty

Assurance

Environment model
Collision avoidance

Fail-Operational Architecture

Assurance

Automated Fallback
Weakly Supervised Recovery

Hazard Analysis and Risk Assessment
Safety Case

ROD & Health monitoring

Diversity

Fleet learning



ADS Hazard Sources
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Mechanical
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faults

Computer
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Computer
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Machine
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Fail-Operational ADS Architecture
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Primary channel

Secondary channel

High-performance AD function
(gracefully degradable)

Minimal AD fallback function

Monitor A

Monitor B

Vehicle
Platform

Enable
Out

Enable
Out



Fail-Operational ADS Architecture
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Primary channel

Secondary channel

High-performance AD function
(gracefully degradable)

Minimal AD fallback function

Monitor A

Monitor B

Vehicle
Platform

Enable
Out

Enable
Out

Dependability patterns:
• Redundancy
• Diversity
• Simplex
• Graceful degradation
• Monitoring of monitoring
• Minimized cost

No single-point failures



ODD vs. ROD
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Operational Design Domain

Restricted Operational Domain

I Colwell, B Phan, S Saleem, R Salay, K Czarnecki. An Automated Vehicle Safety Concept Based on Runtime Restriction of the Operational Design 
Domain. IEEE Intelligent Vehicles Symposium (IV), 2018



ROD Monitoring for
Graceful Degradation
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System
Health
Monitor

ROD
Monitor

ROD
Manager

System functions

System
configurator

System supervisor



ODD vs. Test Environment

Requirements 
Specification

Architectural 
design

Unit design & 
implementation

System 
Integration and 

V&V

Software 
Integration and 

testing

Unit testing

Design-phase
verification

Design-phase
verification

ODD

Test
Driver
Manual

Test
Environment

Spec

-
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ADS Hazard Sources
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Mechanical
faults

Electrical
faults

Computer
HW faults

Computer
SW faults

Sensor
noise &

limitations

Machine
learning
errors

Inadequate
driving

behavior

DDT fallback
failures

Mature best practices ISO 26262

(ISO / PAS 21448)

Cyber attacks

SAE J3061



Challenges of Assuring Machine 
Learned Components
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Lack of specification Lack of inspectability

R. Salay, R. Queiroz, K. Czarnecki. An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software. SAE, 
2018-01-1075, 2018; preliminary version also available at https://arxiv.org/abs/1709.02435



Lack of Complete Spec Affects 
Verification and Testing
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Best practices

Verification methods

Fault tolerance

Testing methodsSpec notations
Design guidelines
Coding guidelines

Walkthroughs

Error detection &
handling

Requirements-
based testing

Inspections
Formal verification
Static code analysis

Error guessing

Interface test

Fault injection test

Resource usage test

Structural coverage

Requirements 
Specification

Architectural 
design

Unit design & 
implementation

System 
Integration and 

V&V

Software 
Integration and 

testing

Unit testing

Design-phase
verification

Design-phase
verification

ISO 26262 Part 6



Key Recommendations

• Partial specifications
– Assumptions, necessary/sufficient conditions, in-

and eqivariants
– Runtime monitoring, test generation, 

regularization
• Data requirements
– Domain coverage (e.g., ontology)
– Risk profiling

44
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35 methods in Part 6 adapted
12 new methods specific to ML
Extensive literature review

https://uwaterloo.ca/wise-lab/projects/assuredai-safety-assurance-ai-based-automated-driving

56 pages

https://uwaterloo.ca/wise-lab/projects/assuredai-safety-assurance-ai-based-automated-driving


Process Extension Overview
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Requirements 
Specification

Architectural 
design

Unit design & 
implementation

System 
Integration and 

V&V

Software 
Integration and 

testing

Unit testing

Design-phase
verification

Design-phase
verification

ISO 26262

ML decision gate
Partial spec

Dataset requirements

Fault-tolerance patterns

Model class documentation
Dataset collection,
augmentation, and
verification

Model selection

Feature selection

Training procedure
Validation and
testing

Model verification



LAVA: Learned & Assured
Vehicle Autonomy
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Safety Argument Decomposition
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Perception Planning & 
control

ADS

Sensing ActuationWorld model



Safety Argument Decomposition
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Perception Planning & 
control

Guaranteed
perception
performance

ODD
assumptions

Guaranteed
planning &
control
performance

ADS

Sensing ActuationWorld model

Actuator + ODD
Assumptions

The following slides are based on Krzysztof Czarnecki and Rick Salay.
Towards a Framework to Manage Perceptual Uncertainty for Safe Automated Driving.
In WAISE, Västerås, Sweden, 2018
https://uwaterloo.ca/wise-lab/publications/towards-framework-manage-perceptual-uncertainty-safe



Sample Scenario-Dependent
Perception-Performance
Safety-Requirement Spec
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Detect pedestrians on the roadway
within range of 10 m and with maximum perception-reaction delay of 0.5 s
with missed detection probability of 10-9 or less
with localization uncertainty of ± 0.5 m or better
within ODD conditions

Detection range

Stopping sight distance Stopping
buffer



Guide to the Expression of 
Uncertainty in Measurement (GUM)

• True accuracy 
unknowable
– Accuracy in ML wrt. test 

set only
• Must estimate 

uncertainty

51



Perception Triangle (Instance-Level)

52

Perception

Real-world situation

Sensory
channel

Camera
image,
radar
dataPerception

algorithm
Pedestrian
speed = 0.1
activity =

walking

Pedestrian
speed = 0
activity =

standing

…

Set of credible states
(uncertain)

Accuracy

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)



Perceptual Triangle
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Real-world situations

Concept

Semantics

Sensory
data

Sensory
channel

Data
interpretation

Perception

Sensory
channel

Perception

Real-world situation

Pedestrian
speed = 0
activity =

standing

True state
(unknowable)

Perception
algorithm

Camera
image,
radar
data

Pedestrian
speed = 0.1
activity =

walking

Pedestrian
speed = 0
activity =

standing

…

Set of credible states
(uncertain)

Accuracy

Instance-level Domain-level (generic)



Perceptual Triangle When Using 
Supervised ML
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Factors Influencing Uncertainty
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F1: Conceptual Uncertainty
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F1: Conceptual Uncertainty
Pedestrian or Cyclist?

57



F1: Conceptual Uncertainty

• Assessed by expert review or labeling 
disagreement

• Reduced by developing standard ontologies
– E.g., WISE Drive Ontology

58https://uwaterloo.ca/wise-lab/projects/wise-drive-requirements-analysis-framework-automated-driving



F2: Development Scenario Coverage
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F2: Development Scenario Coverage
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F2: Development Scenario Coverage

• Assessed with respect to ontologies and field 
validation targets
• Must include positive/negative and near-hit/near-miss examples

• Challenge: how much data is enough?

61



Active Learning

Data selection criteria
1. Uncertainty
2. Coverage & diversity
3. Collection & labeling cost
4. Risk profile

62



F2

F3: Scene Uncertainty

63

Concept

Development
situations and

scenarios

Sensory
data

Sensory
channel

Partial
semantics
(examples)

Data
labeling

Concept

Operational
situations and

scenarios

Sensory
data

Sensory
channel

Resulting
perception

Inferred
state

Training
& testing 

Inference

Trained
ModelModel

class selection,
training & testing

Development Operation

F1

F3



F3: Scene Uncertainty
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F3: Scene Uncertainty

• Surrogate measures
– range, scale, occlusion level, atmospheric visibility, 

illumination, clutter and crowding level
• May compare test set accuracy and output 

confidence with these measures
• Also part of development data set coverage

65



Synthetic Dataset to Study
Scene Influence Factors
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Data Generation Pipeline
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Scene Influence Factors -> Accuracy
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F3F2

F4: Sensor Properties
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F4: Sensor Properties
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F4: Sensor Properties

• Mature engineering discipline
– Determining sensor properties to capture 

sufficient information
–Mode, range, resolution, sensitivity, placement, 

etc.
• However, interaction between ML algorithms 

and sensor properties must be assessed
– E.g., how effective is ML is ignoring sensor noise 

or artifacts?
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F3F2

F5: Label Uncertainty
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F5: Label Uncertainty
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Class: cyclist vs. pedestrian Bounding box placement uncertainty

3D bounding box placement is challenging



F5: Label Uncertainty
• Assessed by expert review and labeler 

disagreement
– Existing research on determining number of labelers 

in crowd sourcing
– E.g., may need as many as 6 independent votes

• Reduction measures
– Conceptual clarity (F1)
– Quality control

• Clear instructions, training, verification, etc.
• Bread and butter of labeling companies

76



F3F2

F6: Model Uncertainty
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F6: Model Uncertainty
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What model was learned in training?
What decisions will it make in operation? 



F6: Model Uncertainty

1. Explanation methods help validate features
2. Robustness measures help assess risk of 

misclassification
3. Bayesian deep learning can help assess 

model uncertainty

79



Deep Learning and Explanations
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Passenger car

The top 15 features (superpixels) used to classify corresponding input image
as a car by an Inception network trained on ImageNet

The explanation 
shows
that a tree 
contributed
to the classification
decision
(method: LIME)

(see LIME at https://github.com/marcotcr/lime)



Adversarial Stickers

81Evtimov et al.

Misclassified as speed signs



Robustness Measures

82CLEVER approach by IBM



Aleatoric and Epistemic Uncertainty

83Yarin Gal, et al., https://arxiv.org/abs/1703.04977 



Dropout
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Uncertainty Estimates
on Synthetic Dataset
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Occlusion and Depth ->
Uncertainty Estimates
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Rain, Clouds, Puddles ->
Uncertainty Estimates
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Uncertainty Estimation for
Object Detection

1. Model uncertainty 
using MC Dropout

2. Data uncertainty using 
heteroschedastic
regression

3. Confidence calibration

88

Phan, Salay, Czarnecki, Abdelzad, Denouden, Venekar.
Calibrating Uncertainties in Object Localization Task.
NIPS workshop. 2018, https://arxiv.org/abs/1811.11210 95% confidence band

Predicted mean box

Ground truth



F7: Operational Domain Uncertainty
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F7: Operational Domain Uncertainty
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Camera miscalibration

Fly splatters on LIDAR

New type of car shape

New pedestrian pose

F2 F3

F4

F4



F7: Operational Domain Uncertainty

• Assess situation novelty at operation time
– E.g., autoencoders, partial specs

• Assess impact of level of sensor miscalibration
on perceptual uncertainty

• Monitor sensor parameters and ODD

91



Sample Incorrect Detections
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score
IoU

missed



Autonomoose Architecture
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ML

no ML

Secondary path with no ML



Lidar Occupancy Grid –
Static Obstacle Detection
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no ML



“Plastic Bag” Problem
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Out-Of-Distribution (OOD) for 
Semantic Segmentation
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Evaluation of Five OOD Methods
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New OOD Method
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Factors Influencing Uncertainty
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F3



Hazard Analysis and Risk Assessment 
of Perceptual Failures

• Need Failure Mode Effects Analysis (FMEA) for 
perceptual components
– Must deal with uncertainty

• Uncertainty cannot be eliminated

– Must systematically identify all failure modes
• Perceptual equivalent of HAZOP

– Must assess the effects
• Incurred risk and progress cost 

• Idea: introduce P-FMEA – a family of FMEAs for 
different perception tasks
– C-FMEA for classification, R-FMEA for regression, OD-FMEA 

for object detection, etc.

100



C-FMEA – Key Ideas
• Dealing with uncertainty

– Abstract classes provide a 
more tractable 
representation of 
uncertainty than 
categorical distributions

• Systematic failure mode 
identification
– Confusion matrix
– Classification case

taxonomy
• Effect analysis

– Incurred risk and progress 
cost wrt. driving policy

101

Pedes-
trian

Cyclist Animal Vehicle Other

Vulnerable
Road User



Sample Class Hierarchy
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Any

Other
(Background)

Int
(Foreground)

Pedestrian Cyclist



Classification Cases
(Safety-Related Order)

103

Covert



Classification Cases
(Safety-Related Order)
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Covert

Pedestrian -> Pedestrian



Classification Cases
(Safety-Related Order)
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Covert

Pedestrian 
-> Int (Pedestrian or Cyclist)



Classification Cases
(Safety-Related Order)
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Covert

Pedestrian 
-> Any (Pedestrian or

Other (Road))



Classification Cases
(Safety-Related Order)
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Covert

Pedestrian 
->  Other (Road))



Classification Cases
(Safety-Related Order)
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Covert

Pedestrian -> Cyclist



Classification Cases
(Safety-Related Order)
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Covert

Other (Cow) -> Other



Classification Cases
(Safety-Related Order)
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Covert

Other (Cow)
-> Any (Other (Cow) or

Int(Person))



Classification Cases
(Safety-Related Order)
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Covert

Other (Statue)
-> Int (Pedestrian or

Cyclist)



Classification Cases
(Safety-Related Order)
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Covert

Other (Manequin)
-> Pedestrian



Classification Cases
(Safety-Related Order)

113

Covert



Case Study – Class Hierarchy
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Case Study – Perception Module
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Case Study – Driving Policy

116



Case Study – Policy Deviation Safety 
and Progress Assessment
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Case Study – Configuration Case 
Safety and Progress Assessment

118Confusion Matrix



How The Ideas Fit Together?
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Uncertainty
Misclassifications

And
Under-Classifications

Influence
Factors

Uncertainty
Management

C-FMEA



Part II Summary

1. Perceptual uncertainty is a key performance 
measure in safety requirements

2. Used perceptual triangle to identify seven 
influence factors for perceptual uncertainty 
when using supervised ML

3. FMEA for Perception Functions
4. Future: methods to control the influence 

factors and use them in safety arguments 

120



LAVA: Learned & Assured
Vehicle Autonomy
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Safety Argument Decomposition
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Perception Planning & 
control

ADS

Sensing ActuationWorld model



Autonomous Trap 101

123James Bridle



Driving Qualities
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Safety Comfort

Progress Energy efficiency



Multi-Objective
Reinforcement Learning

125
Li et al. Urban Driving with Multi-Objective Deep Reinforcement Learning. Under review, 2018
https://arxiv.org/abs/1811.08586

Videos: https://www.youtube.com/playlist?list=PLiZsfe-Hr4k9VPiX0tfoNoHHDUE2MDPuQ



Deep RL Challenges
• Environment model
• Rewards and specifications
• Learning is slow
– Should combine with imitation learning and MPC-

based maneuvers
• Safety
– Safety envelope

• Escape path & fallback path
– Analyzable policies
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Baseline RL Architecture for 
Automated Driving
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Paxton, et al. M. Combining neural networks and tree search for task and motion planning
in challenging environments. arXiv preprint arXiv:1703.07887, 2017



Road User Intension
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Will she cross the street?
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Will she cross the street?
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Traffic Data

131

Naturalistic driving

AV sensors & perception

Infrastructure mounted

Birds-eye view



Stanford University Experiment



WISE Lab Simulation Environment for 
AV Testing

• Scenario definition in GeoScenario
– Similar to Open Scenario

• Location-, time-, and attribute-based triggers
– Defined as a layer in Open Street Map

• Execution in UE4
– Bounding box simulation
– LIDAR simulation
– Support for HD map
– Collection of scoring metrics
– Integration with ROS
– Precise physics-based vehicle model
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GeoScenario Test Definition
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GeoScenario Test Definition
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Test Execution in UE4
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Test Execution in UE4
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Vehicle System Identification
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Vehicle Model in Maplesim
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14 DOF vehicle dynamics model
with Pacejka tires

Hybrid powertrain model
(incl. power management software)
https://uwspace.uwaterloo.ca/handle/10012/14094



Human Road User Models
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https://arxiv.org/abs/1903.01539

https://arxiv.org/abs/1903.01539


Summary
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LAVA: Learned & Assured
Vehicle Autonomy
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Perception ML-based
Planning

Assurance

Data coverage

Confidence
Novelty

Assurance

Environment model
Collision avoidance

Fail-Operational Architecture

Assurance

Automated Fallback
Weakly Supervised Recovery

Hazard Analysis and Risk Assessment
Safety Case

ROD & Health monitoring

Diversity

Fleet learning



DevOps for ADS Software
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What field data to collect?
Update assurance

Design of experiments & fleet learning
Shadow testing

Safety case evolution

Assurance

Incremental assurance


