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Motivation

I ZX-calculus is incomplete, even for single qubits; not
obvious how to complete it

I instead: look for fragments of the general calculus which
are complete

I approximate universality: small sets of operators suffice to
approximate arbitrary unitaries to any accuracy

I approximate completeness: completeness for such a set
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The single-qubit Clifford+T group

An approximately universal group, generated by:
I single-qubit Clifford group C1 = 〈S,H〉, where

S =

(
1 0
0 i

)
π/2

H =
1√
2

(
1 1
1 −1

)
H

I T gate

T =

(
1 0
0 eiπ/4

)
π/4



The ZX-calculus for the single-qubit Clifford+T group

Generated by π/2 , H , and π/4 —or π/4 and π/2
I single-qubit: restrict diagrams to line graphs
I Clifford+T group: restrict phases to multiples of π/4

(Ignore global phases.)

Rules:

α

β
α + β=

α α=
H

H

π

α

−α
=

π

H π/2=

π/2

π/2

and 2nπ = for integer n
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Single-qubit Clifford diagrams

Any single-qubit Clifford diagram can be written uniquely as
one of the following, with α, β, γ ∈ {0, π/2, π,−π/2}:

α

β

π/2

±π/2
γ

and

or, equivalently, one of

aπ

β

bπ/2

±π/2
γ

and

where a,b ∈ {0,1} and β, γ as above.
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The normal form for single-qubit Clifford+T diagrams

Following [Matsumoto & Amano 2008], any single-qubit
Clifford+T diagram is either pure Clifford or it can be written as

W
Vn

V1

U

... where

W

Vk

U

∈

{

∈

{

∈

{

}
π/2

π/2

π/2

π/4 3π/4

π/2 π/2

}
}

π/4 + α

π/2

±π/2
π/4 + γ

β

for 1 ≤ k ≤ n

with n a non-negative integer and α, β, γ ∈ {0, π/2, π,−π/2}.



Pushing phases down, part 1

Diagrams are rewritten into normal form by pushing phases
towards the bottom of the diagram as much as possible.

I can push α and π past π/4

I can push α and π past π/2

I can push π and π past V ∈
{

π/2 π/2

π/4 3π/4
}

Write Clifford operators as

{
aπ

β

bπ/2

±π/2

γ

}
, then

π/4
C

=


or

bπ/2

aπ
γ

π/4

(−1)cπ/2


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Pushing phases down, part 2

Have
π/4

C
=

π/4
W

δ

dπ
, and

δ

dπ

π/2

=

 eπ
dπ

π/2

or
(−1)eπ/2
dπ

π/2



therefore

V
C =

V ′

dπ
eπ

W ,
U
C =

U ′
W , and

V
bπ
aπ

=
V ′

eπ
fπ

.
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Rewriting diagrams into normal form, starting with a
Clifford diagram

The single-qubit Clifford+T group is generated by π/4 and
π/2 so it suffices to check what happens when a pure

Clifford operator or a normal form diagram is composed with
one of these.

Now for any Clifford unitary C ,

C
π/2

is pure Clifford, and
C
π/4

U= ∈

{
π/2

±π/2
π/4+α

π/4+γ

3π/2

}
.



Rewriting diagrams into normal form, starting with a
normal form diagram

For any W ∈
{

π/2
π/2

π/2
}

and Vn ∈
{

π/2 π/2

π/4 3π/4
}

,

W
π/2

=

Vn

C
Vn

V ′n
W ′

=
aπ
bπ

and

W
π/4

=

Vn

{
C′ or

Vn+1

Vn

}

Case n = 0 is similar.
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No normal form diagram represents the identity
operator

Can write any single-qubit density operator as xX + yY + zZ ,
where x , y , z ∈ R and X ,Y ,Z are the Pauli matrices.
Clifford unitaries act on the vectors (x , y , z) by permuting the
elements and adding minus signs; T sends

(x , y , z) 7→ 1√
2

(
x − y , x + y , z

√
2
)
.

States resulting from application of a normal form operator to
|0〉 will have vectors of the form

1√
2m

(
x1 + x2

√
2, y1 + y2

√
2, z1 + z2

√
2
)

where x1, x2, y1, y2, z1, z2 ∈ Z. By parity arguments, can show
none of them represent |0〉, thus no normal form operator is
equal to the identity.
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The inverse of a normal form diagram has the same
number of π/4 phase shifts as the original

We have
C
π/4

=U† and V
π/2

=V †
π/2

, so

W †
V †n

V †1
U†

... =

V1

Vn

W †

...

C

π/2

π/2

π/2

π/2

π/4

=

V1

Vn

W †

...

C

π

π

π/2

V0

V2

=

V ′0

V ′n

W †

...

aπ
±π/2

W ′

=

V ′0

V ′n−1

U ′

...

W ′
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Normal forms are unique

Given two normal form diagrams that are not identical,
composing one diagram with the inverse of the other will yield a
non-trivial diagram.

I Assume diagrams are such that the topmost nodes differ
(in colour or phase, or both).

I Inverting a diagram does not change the number of π/4
phases.

I Distinguish cases to see that the resulting diagram never
collapses to the trivial one.
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Stabilizer quantum mechanics

Stabilizer operations:
I preparation of qubits in state |0〉
I Clifford unitaries, generated by

S =

(
1 0
0 i

)
, H =

1√
2

(
1 1
1 −1

)
, ΛX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


I measurements in computational basis

ZX-calculus:
. . .

α
. . .

. . .

β
. . .

H

where α, β are multiples of π/2
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Graph states in the ZX-calculus

Definition
Let G be a finite simple undirected graph. The ZX-calculus
diagram for the corresponding graph state consists of:

I for each node in G, a green node with one output, and
I for each edge in G, an edge with a Hadamard node on it.

E.g.
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Local complementations

The local Clifford group consists of all tensor products of the
single-qubit Clifford operators 〈S,H〉.

Theorem (Van den Nest et. al, 2004)
Any stabilizer state is local Clifford-equivalent to some graph
state.

Theorem (Van den Nest et. al, 2004)
Two graph states are local Clifford-equivalent if and only if they
are related by a sequence of local complementations.
A local complementation about a vertex v inverts the subgraph
generated by the neighbourhood of v : e.g.

1

2 3

4

3−→
1

2 3

4

2−→
1

2 3

4
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Stabilizer completeness proof (overview)

[Duncan & Perdrix, 2009] show that local complementations
can be derived from the rules of the ZX-calculus.
Use this to show that the results from [Van den Nest et al.,
2004] hold in the ZX-calculus:

I Any stabilizer ZX-calculus diagram can be rewritten into a
graph state with local Clifford operators, e.g.

H

H

H

H

π/2−π/2−π/2

H

πH

I There exists a terminating algorithm that, given two
stabilizer diagrams, will rewrite them to be identical if
possible.

See arXiv:1307.7025 for details.



Conclusions & Outlook

I ZX-calculus is not complete in general but fragments of it
are complete, e.g.

I line graphs where all phases are multiples of π/4
(single-qubit Clifford+T group)

I diagrams where all phases are multiples of π/2 (stabilizer
quantum mechanics)

I can these results be combined to multi-qubit Clifford+T
operators?

I can we introduce some notion of approximate equality in
the ZX-calculus?

Thank you!
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