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Motivation

» zXx-calculus is incomplete, even for single qubits; not
obvious how to complete it

» instead: look for fragments of the general calculus which
are complete

» approximate universality: small sets of operators suffice to
approximate arbitrary unitaries to any accuracy

» approximate completeness: completeness for such a set



Outline

Approximate completeness for single qubits



The single-qubit Clifford+T group

An approximately universal group, generated by:
» single-qubit Clifford group Cy = (S, H), where
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The zXx-calculus for the single-qubit Clifford+T group

Generated by ¢ 7/2 , H, and ¢ 7/4 —or ¢ 7/4 and é 7/2
» single-qubit: restrict diagrams to line graphs
» Clifford+T group: restrict phases to multiples of = /4
(Ignore global phases.)
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Single-qubit Clifford diagrams

Any single-qubit Clifford diagram can be written uniquely as
one of the following, with o, 8,7 € {0, 7/2, 7, —7/2}:
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Single-qubit Clifford diagrams

Any single-qubit Clifford diagram can be written uniquely as
one of the following, with o, 8,7 € {0, 7/2, 7, —7/2}:
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where a,b € {0,1} and 3,~ as above.



The normal form for single-qubit Clifford+T diagrams

Following [Matsumoto & Amano 2008], any single-qubit
Clifford+T diagram is either pure Clifford or it can be written as
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with n a non-negative integer and «, 3,7 € {0,7/2, 7, —m/2}.



Pushing phases down, part 1

Diagrams are rewritten into normal form by pushing phases
towards the bottom of the diagram as much as possible.

» canpush¢a and @ m pasto 7/4
» canpush@a and o m paste 7/2

» canpushem and ¢ m past|V]e {3 :;: ?:;24 }
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Pushing phases down, part 1

Diagrams are rewritten into normal form by pushing phases
towards the bottom of the diagram as much as possible.
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Pushing phases down, part 2
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Pushing phases down, part 2
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Pushing phases down, part 2
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Pushing phases down, part 2
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Pushing phases down, part 2
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Pushing phases down, part 2
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Pushing phases down, part 2

4
Have = ™/ , and
/4 dn

d

5 /2
i ~ v/ /2
I b S (d+en

dm



Pushing phases down, part 2
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Pushing phases down, part 2
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Rewriting diagrams into normal form, starting with a
Clifford diagram

The single-qubit Clifford+T group is generated by ¢ 7/4 and

¢ 7/2 so it suffices to check what happens when a pure
Clifford operator or a normal form diagram is composed with
one of these.

Now for any Clifford unitary ,

71'/2 . . O 77-/4 7 [4+a ila
Clifford, and = —- € £/ .
is pure Cli U {3 s ESM:



Rewriting diagrams into normal form, starting with a
normal form diagram
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Rewriting diagrams into normal form, starting with a
normal form diagram

For any [W]e {‘ ®-/2 I:;i } and [V,] e {I:;z ::f }

7r/2 _ _
ar
br

and
/4

V
o)

n

Case n = 0 is similar.



No normal form diagram represents the identity
operator

Can write any single-qubit density operator as xX + yY + zZ,
where x, ¥,z € R and X, Y, Z are the Pauli matrices.

Clifford unitaries act on the vectors (x, y, z) by permuting the
elements and adding minus signs; T sends

(X,y,2) —~ \1@ (x—y,x+y,2\@).



No normal form diagram represents the identity
operator

Can write any single-qubit density operator as xX + yY + zZ,
where x, ¥,z € R and X, Y, Z are the Pauli matrices.

Clifford unitaries act on the vectors (x, y, z) by permuting the
elements and adding minus signs; T sends

1

(X,y,Z) = ﬁ (X_yax"i'.yaZ\/é) .
States resulting from application of a normal form operator to
|0) will have vectors of the form

1
\/ﬁ (X1 + Xg\/ﬁ,}ﬁ +}/2\/§, Z1 + 22\/5)

where xq, Xo, Y1, Yo, 21, 2o € Z. By parity arguments, can show
none of them represent |0), thus no normal form operator is
equal to the identity.



The inverse of a normal form diagram has the same
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7r/2
We have m ? /4 and



The inverse of a normal form diagram has the same

number of 7 /4 phase shifts as the original
7r/2

We have m ? /4 and , SO

/2
/2



The inverse of a normal form diagram has the same

number of 7 /4 phase shifts as the original
W/2

We have m ? /4 and , SO

V] /2 T
/2 /2



The inverse of a normal form diagram has the same

number of 7 /4 phase shifts as the original
7r/2

We have m ? /4 and , SO

Val
5
= ==
/2 T an
+7/2
/2 /2



The inverse of a normal form diagram has the same

number of 7 /4 phase shifts as the original
7r/2

We have m ? /4 and , SO

Val
: Va
L= = = =
w2 en an
+m/2
/2 /2



The inverse of a normal form diagram has the same
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Normal forms are unique

Given two normal form diagrams that are not identical,
composing one diagram with the inverse of the other will yield a
non-trivial diagram.

» Assume diagrams are such that the topmost nodes differ
(in colour or phase, or both).

» Inverting a diagram does not change the number of 7 /4
phases.

» Distinguish cases to see that the resulting diagram never
collapses to the trivial one.
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Completeness for stabilizer diagrams



Stabilizer quantum mechanics

Stabilizer operations:
» preparation of qubits in state |0)
» Clifford unitaries, generated by
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» measurements in computational basis
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Stabilizer quantum mechanics

Stabilizer operations:
» preparation of qubits in state |0)
» Clifford unitaries, generated by

10 1 /1 A _
(3 0) H 6 ). e

» measurements in computational basis

ZX-calculus:
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where «,  are multiples of /2
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Graph states in the zXx-calculus

Definition
Let G be a finite simple undirected graph. The zX-calculus
diagram for the corresponding graph state consists of:

» for each node in G, a green node with one output, and
» for each edge in G, an edge with a Hadamard node on it.

E.g.
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Local complementations

The local Clifford group consists of all tensor products of the
single-qubit Clifford operators (S, H).
Theorem (Van den Nest et. al, 2004)

Any stabilizer state is local Clifford-equivalent to some graph
State.
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Stabilizer completeness proof (overview)

[Duncan & Perdrix, 2009] show that local complementations
can be derived from the rules of the zX-calculus.

Use this to show that the results from [Van den Nest et al.,
2004] hold in the zx-calculus:

» Any stabilizer zx-calculus diagram can be rewritten into a
graph state with local Clifford operators, e.g.

» There exists a terminating algorithm that, given two
stabilizer diagrams, will rewrite them to be identical if
possible.

See arXiv:1307.7025 for details.



Conclusions & Outlook

» zXx-calculus is not complete in general but fragments of it
are complete, e.g.
» line graphs where all phases are multiples of /4
(single-qubit Clifford+T group)
» diagrams where all phases are multiples of 7/2 (stabilizer
quantum mechanics)
» can these results be combined to multi-qubit Clifford+T
operators?

» can we introduce some notion of approximate equality in
the zx-calculus?
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» zXx-calculus is not complete in general but fragments of it
are complete, e.g.
» line graphs where all phases are multiples of /4
(single-qubit Clifford+T group)
» diagrams where all phases are multiples of 7/2 (stabilizer
quantum mechanics)
» can these results be combined to multi-qubit Clifford+T
operators?

» can we introduce some notion of approximate equality in
the zx-calculus?

Thank you!
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