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Introduction

2-categories allow us to reason about quantum measurements in a more
elegant way and with fewer equations

Graphical calculus:

0-cells Regions Classical information
1-cells Lines Quantum systems
2-cells Vertices Quantum dynamics
Horizontal composition
Vertical composition
Tensor product

Semantics given by the symmetric monoidal 2-category 2Hilb that has:

0-cells given by natural numbers

1-cells - matrices whose entries are finite-dimensional Hilbert spaces

2-cells given by matrices whose entries are linear maps
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Quantum key distribution via E91

Vertical 2-cell composition corresponds to temporal composition.
Horizontal 2-cell composition corresponds to spatial composition

alice bob

basis information
key information

By choosing a 2-category these diagrams are interpreted in, we choose the
theory of Physics to work in. Quantum theory is modelled by 2Hilb

.

This is the QKD equation
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Future directions:
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