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Gel'fand duality and quantum theory

m Gel'fand duality establishes an equivalence between (geometry)
compact, Hausdorff topological spaces and (algebra)
commutativeunital C*-algebras

m Physically, it is the duality between pure classical state spaces
and algebras of observables

m Goal: Find the geometric dual for noncommutatiVealgebras,
i.e. those used in quantum theory
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NC geometry and the NC dictionary

m The ‘geometry’ of noncommutativ@*-algebras have been
indirectly studied for decades by mathematicians via algebra

Geometry Algebra
continuous redunction self-adjoinbperator
closedset closeddeal
compact unital
metricspace separable
Borelmeasure positiveunctional
cartesiarproduct tensoproduct
vector undle finite, projectivenodule
Riemannian spimanifold spectrafriple
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Conceptual commutative diagram

Commutative
(Classical)

Noncommutative
(Quantum)

Geometry
(States)

Topological
spaces

Fo—

Algebra
(Observables)

lim

Commutative
C*-algebras

Noncommutative
C*-algebras
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Spatial diagrams

m Replace “topological space” with “diagram of topological
spaces” as a generalized notion of spectrum (I-B)
m Functorially associate to a unit@l-algebrad a contravariant
functor whose codomain is compact, Hausdorff spaces
m Consider the subcatego8f.A):
Objects contexts ofA (commutative, unital
sub-C*-algebras/ cC A)
Arrows inner automorphisms ofl restricted to a context
(oulv : V — W whereg|, is conjugation by a
unitaryu € A and¢(V) C W)
m The diagranG(.A) is the spectrum functor composed with the
inclusion functor ofS(.A): contextual state spaces
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Extending a topological functor

m Given a functofF : KHaus— C with (co)complete® we get an
extensiorF : uC* — C
Apply F to the diagranG(A)
Take the (co)limitF(A) = lim F o G(A)
m Intuitively: like decomposing a noncommutative space into its
guotient spaces, applying the functéto the ones which are
genuine topological spaces, and pasting together the results
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K-theory, topological to noncommutative

m We tried this withK-theory, a significant topological
cohomology theory based on vector bundles which has a
well-studied noncommutative geometric generalization

m OperatoiK-theory is defined in terms of finite, projective
modules overd and is a classifying invariant @*-algebras

m Itis open whetheK ~ Ky on the nose

Theorem
Kinite © K =~ Ko =~ Kg o X
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Conjecture: open sets to ideals

Suppose- : KHaus— Lat s the functor assigning to a topological
space its topological lattice, i.e. closed sets under containment, and tc
a continuous function the lattice homomorphism of direct image

Conjecture (QPL 2013)

7 : uC* — Lat is the functor assigning to a*€algebra its lattice of
closed, two-sided ideals
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Motivation

m The lattice of closed, 2-sided ideals.dfis the same as the
hull-kernel/Jacobson/Zariski topological latticeRrim(.A) the
primary ideal space oft

m The points ofPrim(.A) are the kernels of irreducible
x-representations ol

m The primary ideal space and Gel'fand spectrum coincide in the
commutative case
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Motivation

m The primary ideal space is@-algebraic version of the
spectrum functoBpe¢R)

m For a commutative ring, the spectrum oRis the prime ideals of
Rtogether with the Zariski topology
m In algebraic geometry, one give€pecR) a structure sheaf and
studiesR by studying this locally ringed space
m Spealation: CanG be considered an enrich€xf-algebraic
version ofSpe@ The basis for introducing sheaf-theoretic
techniques into NCG?
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Motivation

Theorem (Dauns—Hoffman '68)

Let.A be a unital C-algebra. Thend is a C(Prim(.A))-module in the
following sense: for each @ A and f € C(Prim(A), there is an
element fac C(Prim(.A)) such that fa= f(P)a mod P for all

P € Prim(A)



[
[

Partial ideals

Definition
A partial ideal of A is a choice of idealy} from each context \= A
such that whenever \¢ V/, the ideal {, can be recovered fronyl as

lv =y NV



[
[

Partial ideals

Definition
A partial ideal of A is a choice of idealy} from each context \= A
such that whenever \¢ V/, the ideal {, can be recovered fronyl as

lv =y NV

m Every (total) ideal C A gives rise to a partial idealy =1 NV



[
[

Partial ideals

Definition
A partial ideal of A is a choice of idealy} from each context \= A
such that whenever \¢ V/, the ideal {, can be recovered fronyl as

lv=IlynNV

m Every (total) ideal C A gives rise to a partial idealy =1 NV

m The elements of the latticg(.A) are simply partial ideals which
are fixed by unitary rotation
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Conjecture: total ideals from partial ideals

Conjecture (QPL 2013)

A partial ideal of a C-algebra.A arises from a total ideal if and only
if it is fixed by any unitary rotation

Proof strategy: Consider first the enveloping von Neumann algebra
A** of A where ideals are generated by projections. There is a close
link between contexts/ideals gf** and contexts/ideals oA.
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Theorem: total ideals from partial ideals

Conjecture (QPL 2013)

A partial ideal of a C-algebra.A arises from a total ideal if and only
if it is fixed by any unitary rotation

Theorem (—, Soares Barbosa)

A partial ideal of a von Neumann algebré arises from a total ideal
if and only if it is fixed by any unitary rotation



Summary

= Introduced a context-indexed diagram of spaBéd) associated
to a C*-algebrad as a proposed geometric dual object

m Showed that this leads to automatic generalizations of
topological concepts to algebraic ones which seems to agree with
the canonical noncommutative geometric generalizations

m This justifies regarding(.A) as a generalization of Gel'fand
spectrum

m Accounting for contextuality appears to be effective in providing
a structural explanation for the unreasonable effectiveness of
geometric tools in the study of noncommutative algebras
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