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Gel’fand duality and quantum theory

Gel’fand duality and quantum theory

Gel’fand duality establishes an equivalence between (geometry)
compact, Hausdorff topological spaces and (algebra)
commutative, unitalC∗-algebras

Physically, it is the duality between pure classical state spaces
and algebras of observables

Goal: Find the geometric dual for noncommutativeC∗-algebras,
i.e. those used in quantum theory
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Spatial diagrams and Extensions

NC geometry and the NC dictionary

NC geometry and the NC dictionary

The ‘geometry’ of noncommutativeC∗-algebras have been
indirectly studied for decades by mathematicians via algebra

Geometry Algebra
continuous realfunction self-adjointoperator

closedset closedideal
compact unital

metricspace separable
Borelmeasure positivefunctional

cartesianproduct tensorproduct
vector bundle finite, projectivemodule

Riemannian spinmanifold spectraltriple
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NC geometry and the NC dictionary

Conceptual commutative diagram
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Contextual state spaces

Spatial diagrams

Replace “topological space” with “diagram of topological
spaces” as a generalized notion of spectrum (I-B)

Functorially associate to a unitalC∗-algebraA a contravariant
functor whose codomain is compact, Hausdorff spaces

Consider the subcategoryS(A):

Objects contexts ofA (commutative, unital
sub-C∗-algebrasV ⊂ A)

Arrows inner automorphisms ofA restricted to a context
(φu|V : V → W whereφ|u is conjugation by a
unitaryu ∈ A andφ(V) ⊂ W)

The diagramG(A) is the spectrum functor composed with the
inclusion functor ofS(A): contextual state spaces
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Contextual state spaces

Spatial diagrams:M2(C)

∙ ∙ ∙ ∙ ∙ ∙
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Extending a topological functor

Given a functorF : KHaus→ C with (co)completeC we get an
extensioñF : uC∗ → C

1 Apply F to the diagramG(A)
2 Take the (co)limit:F̃(A) = lim F ◦ G(A)

Intuitively: like decomposing a noncommutative space into its
quotient spaces, applying the functorF to the ones which are
genuine topological spaces, and pasting together the results
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K-theory, topological to noncommutative

K-theory, topological to noncommutative

We tried this withK-theory, a significant topological
cohomology theory based on vector bundles which has a
well-studied noncommutative geometric generalization

OperatorK-theory is defined in terms of finite, projective
modules overA and is a classifying invariant ofC∗-algebras

It is open whether̃K ' K0 on the nose

Theorem

K̃finite ◦ K ' K0 ' K0 ◦ K
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Main conjecture

Conjecture: open sets to ideals

Supposeτ : KHaus→ Lat is the functor assigning to a topological
space its topological lattice, i.e. closed sets under containment, and to
a continuous function the lattice homomorphism of direct image

Conjecture (QPL 2013)

τ̃ : uC∗ → Lat is the functor assigning to a C∗-algebra its lattice of
closed, two-sided ideals
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Open sets to ideals

Motivation

Motivation

The lattice of closed, 2-sided ideals ofA is the same as the
hull-kernel/Jacobson/Zariski topological lattice ofPrim(A) the
primary ideal space ofA

The points ofPrim(A) are the kernels of irreducible
∗-representations ofA

The primary ideal space and Gel’fand spectrum coincide in the
commutative case
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Motivation

The primary ideal space is aC∗-algebraic version of the
spectrum functorSpec(R)

For a commutative ringR, the spectrum ofR is the prime ideals of
R together with the Zariski topology
In algebraic geometry, one givesSpec(R) a structure sheaf and
studiesRby studying this locally ringed space

Speculation: CanG be considered an enrichedC∗-algebraic
version ofSpec? The basis for introducing sheaf-theoretic
techniques into NCG?
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Motivation

Motivation

Theorem (Dauns–Hoffman ’68)

LetA be a unital C∗-algebra. ThenA is a C(Prim(A))-module in the
following sense: for each a∈ A and f ∈ C(Prim(A), there is an
element fa∈ C(Prim(A)) such that fa≡ f (P)a mod P for all
P ∈ Prim(A)
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Proof of von Neumann algebra case

Partial ideals

Definition

A partial ideal ofA is a choice of ideal IV from each context V⊂ A
such that whenever V⊂ V′, the ideal IV can be recovered from IV′ as
IV = IV′ ∩ V

Every (total) idealI ⊂ A gives rise to a partial ideal:IV = I ∩ V

The elements of the latticẽτ(A) are simply partial ideals which
are fixed by unitary rotation
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Open sets to ideals

Proof of von Neumann algebra case

Conjecture: total ideals from partial ideals

Conjecture (QPL 2013)

A partial ideal of a C∗-algebraA arises from a total ideal if and only
if it is fixed by any unitary rotation

Proof strategy: Consider first the enveloping von Neumann algebra
A∗∗ of A where ideals are generated by projections. There is a close
link between contexts/ideals ofA∗∗ and contexts/ideals ofA.
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Proof of von Neumann algebra case

Theorem: total ideals from partial ideals

Conjecture (QPL 2013)

A partial ideal of a C∗-algebraA arises from a total ideal if and only
if it is fixed by any unitary rotation

Theorem (–, Soares Barbosa)

A partial ideal of a von Neumann algebraA arises from a total ideal
if and only if it is fixed by any unitary rotation
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Conclusions

Summary

Introduced a context-indexed diagram of spacesG(A) associated
to a C*-algebraA as a proposed geometric dual object

Showed that this leads to automatic generalizations of
topological concepts to algebraic ones which seems to agree with
the canonical noncommutative geometric generalizations

This justifies regardingG(A) as a generalization of Gel’fand
spectrum

Accounting for contextuality appears to be effective in providing
a structural explanation for the unreasonable effectiveness of
geometric tools in the study of noncommutative algebras
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