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Different Uncertainty Trade-Offs

Uncertainty Relation: Limitation due to complementarity of
observables

Always: X (X ) and Z (Z) complementary observables ([ X, Z] #
X Xylrex and Z < {Z,},e; POVM's

Heisenberg ‘27
Kennard ‘27 : &

= Preparation Uncertainty Roberteon 27
There exists no preparation in which X and Z are both predetermined.

=" Measurement Uncertainty

Joint Measurability: There exists no observable which jointly measures X and Z.
Measurement-Disturbance: An attempt to measure X generally disturbs Z.
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Preparation Uncertainty

Robertson: AXAZ > %l <Y, [XZ]y > |

= Variances depends on eigenvalues of X and Z
= Constant vanishes for certain states
. ‘ 1/2
Massen & Uffink ‘88: H(X), + H(Z), = —log max||Xx/
X,Z

= how does quantum information affect
uncertainty

Berta et al. 2010: H(X|B), + H(Z|B), = —log max||X}c/ZZZ/2|| + H(A|B)
X,Z

\\'

Application in Quantum Information Science
Entropies have statistical meaning!
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Measurement Uncertainty (incomplete!)

= Constructions of joint position and momentum operators (e.g., von
Neumann, Holevo, Werner, Busch,...): Positive Formulation!

= Noise operator approach to determine inaccuracy (e.g., Arthur &

Kelly, Appleby, Ozawa,...) e(Z, A1) = (U @ O)|(Z — A2U (% @ B))1/2

= Inspired by classical measurement theory (not always operational!)

Previous formulation suffer often from drawbacks:

= operationally not entirely clear

= Depend also on the eigenvalues, not only on POVM’s

= maturity as in preparation uncertainty relations not yet achieved
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Goal

A measurement-disturbance relation that

= has a clear and operationally motivated setup which is state-
dependent (-> applications)

= uses faithful and operational error measures (they vanish if no
deviation

= uses entropic measures which have statistical interpretation in
information theory (-> applications)
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Outlook

1) Introduction to Measurement Uncertainty
2) Our New Measurement-Disturbance Relation
3) Extension to Quantum Memories

4) Applications (Qubits and Position-Momentum)
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Measurement Uncertainty

1) Joint Measurability
There exists no joint observable

of X and Z with marginals being X and Z:
= Measurement Errors of X" w.r.t. X and
Z’ w.r.t Z are in trade-off
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Connection between joint measurability and
measurement-disturbance

A subsequent measurement is a joint measurement:

—> A trade-off for joint measurability implies one for error-
disturbance

But only if we are interested in the potential of the channel to
perform an accurate X measurement!
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Recent Advances in State-independent Joint
Measurement Relations

1) Bush, Lathi, Werner, prL 111, 160405 (2013):

= Position-Momentum Observables for worst-case calibration errors
(testing Q" with infinitely localized position states)
= Generalization to qubits

2) Buscemi, Hall, Ozawa, Wilde, pPrL 112, 050401 (2014)
= Entropic error measures motivated via an information theoretic task

3) Renes & Scholz, arxiv:1402.6711 (2014)
= CP-Norm between channels

Interpretation as measurement-disturbance relations:

Any channel that extracts information about X-eigenstates must disturb
the Z-eigenstates!
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State-dependent Error Measures for Joint-
Measurability Problem

Ozawa’s Relation, Physics Letters A 320, 367 (2004

For any fixed state p

| Bo(X)Dy(Z) + By(X)AZ + Dy(Z)AX > Cx.z(10)).
/ \ \ [ (3)

A\ L
(Cx.z(9) = 3IWIX, Z)IY)!
Error Disturbance \j

Initial Uncertainties

Insight: Initial uncertainty is crucial!
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State-dependent Error Measures for Joint-
Measurability Problem

Operational Error and Disturbance:

Error/Disturbance has to be detectable on the level of the outcome
distributions (i.e. the probabilities)

Faithful Error and Disturbance:

= Error: E(X,X’;p) = O iff probabibility distribution
of X is same as for X’

= Disturbance: D(Z,Z’; p) = 0 iff probabibility
distribution of Z is same as for Z’

Problem for state-dependent trade-off relation (korzekwa, Jennings and
Rudolph, Phys. Rev. A 89, 052108 (2014)):

If error and disturbance are faithful no trade-off can hold!
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State-dependent Measurement-Disturbance

Operational Disturbance:

statistical distance between Z
and Z¢

2 Possible Measurement Errors:

1) can one infer X from M?
(retrodictive error*)

2) can one infer X€ from M?
(predictive error®*)

*Appleby, International Journal of Theoretical Physics, 37, 5, 1491 (1998)
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State-dependent Measurement-Disturbance
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2 Possible
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Outlook

1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation
3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-
Momentum)
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2) Setup for our Measurement-Disturbance
Relation

Setup

Operational Quantities:

“Py(z) = tr(pZ,)

. PZg(Z) =tr (E(p)Z,)

“Q%y = tr (E(p)M,, ® X,) (joint probability of M and X¢ )
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Faithful Disturbance Measure

Distance between P£(2) and P;(z) quantified with relative entropy

D(ps.Z,€) == D(P||F5).

* D(Pz||Pf) = 2Pz(2)log(P£(2)/P5 (2))
“ Operational statistical meaning in hypothesis testing

= faithful
Side Remark: our result holds for arbitrary Renyi relative entropy

E.g., D1(P;||P§) = log F(P,, P)  (F=Fidelity)
2
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Faithful Predictive Error

Entropy of X given M:

‘ E(pS,X, 8) = HmaX(X|M)Q5

= Q%) = joint probability distr. of M and X¢
* Hyax(X|M) ,¢: conditional max-entropy of X ¢ given M (1/2-Renyi
entropy)

) Hmax(XlM)Qg = lOme QI(\g/I(m) eXp(Hl/Z (Q)%M)
“ Faithful

“ One-shot entropy related to the amount of data which one has to be
supplied in order to reconstruct X from M
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Measurement-Disturbance Trade-off

Result: For any channel & :

‘ D(pS:Zag) + E(pSaXag) 2 logl/c_ H(Z)P‘

© ¢ =max,; ||vVXVZ,||% (state independent)

“H(Z)p = =YP;(2)logP,(z) , the von Neumann
entropy of the initial Z distribution
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Lower Bound Must Depend on Initial
Uncertainty

D(ps,Z,E) + E(ps, X, E) = logl/c

Example: Q-bit system with Pauli X and Z observables

and € a perfect X instrument

1) Initial stat;:: Z-eigenstate
o3 4
N _a i
S0

No predictive Error _

H(Z) =0

ouequnisiqg a81eq
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Lower Bound Must Depend on Initial
Uncertainty

D(ps,Z,E) + E(ps, X, E) = logl/c

Example: Q-bit system with Pauli X and Z observables
and € a perfect X instrument

é 'ﬂ—-o* . »
- ”
Jo

No predictive Error _

H(Z) =0

ouequnisiqg a81eq
dueqJnisig oON

No predictive Error
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Proof of the Relation (without QM memory)

| D(pSaZag) + E(pSaX:g) > logl/c— H(Z)P‘

D(ps,Z,€) = D(P||PE)..  E(ps:X,€) = Hunax(X|M)qe |

Ingredient 1:

Preparation Uncertainty applied to ng*:
Hupin(Z) pe + Hupax (X|M)ge > log1/c
Hpin(Z) pe = —logmax, Pg(z)

Ingredient 2:
Bound of min entropy of P¢ by the distance betw. P and P¢:

D(Pg||P§) + H(Z)p = = ) Pz(2)log P5(2)

> — Py(z)log max P%(z
*M. Tomamichel and R. Renner, PRL 106,110506 (2011) - ; 7(2) log z 2(2)
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Outlook

1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation
3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-
Momentum)
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3) Extension to Quantum Memory

System initially correlated to a quantum system R:

- Interaction also
disturbs the correlation
to R!

Quantum Memory

Then:

‘ D(pSRa Z'.r 8) + E(pSaXv 8) 2 lﬂg 1/(3 _ H(ZIR)P

“ D(psr,Z,E) = D(pzr||p%R) = distance between p5 and PSR
“ H(Z|R) = H(ZR) — H(R) , the conditional von Neumann entropy
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Extension to Quantum Memory (example)

1
=— (|00 > +|[11 >
PsRr \/E(l | )

Then...

" pg is maximally mixed

= no trade-off if R is not taken into account (H(Z) = log1/c)

= If you can check correlation between Z and R -> disturbance (H(Z|R)
=0 )

= Non-trivial relation

‘ D(pSRaZ'.rg) + E(pSaX'.rg) > lﬂg I/C
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Qubit Example and Tightness

Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012):

ps=U+rm)/2 v & :
s +—H 1 H—— [2—
g >—D—{D)—m [
i S
|p >=1cos6/2|0>+sin0/2]|1 > 00

(B)

= 6 = 0: perfect X Measurement

" 8 =1/2: identity channel

= Perfect tight for pure input
state and all measurement
strength
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Qubit Example and Tightness

Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012):

|p >=cos8/2|0 > +sin0/2|1 >
Including Quantum Memory (if ps is not pure):
If psp is purification of ps :

Perfectly tight for all r and 6

(Even classical memory is enough)
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Extension to Position-Momentum
Measurements

Original setup considered by Heisenberg
Observables P and Q with [Q,P] = —i

Same measurement disturbance holds if entropies are
changed to differential entropies:

D(psgr,P, &) + e(ps,Q,E) > log2rh — h(P|R),

e(ps, Q&) = hpmax(Q|M) ;¢ (differential quantum conditional max-
entropy™)

h(P|R) = the differential quantum conditional von Neumann entropy*

* Berta, Christandle,FF, Scholz,Tomamichel, arXiv:1308.4527
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Application to Coarse-Grained Position
Measurement

What is the momentum disturbance if a coarse grained
position measurement with a binning 64 has been
performed?

Applying our relation we obtain:
04 dp=11/2
dP — (Zh(P)p) ZD(pSJP'(g)

41T

— dp depends on the initial P distribution
— if initial momentum is approximately sharp, then disturbance is larger
- interplay between measurement and preparation uncertainty
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Conclusion and Outlook

* Presented a trade-off between disturbance and predictability of two
complementary observables

= Operational disturbance and error measures with interpretation in
information theory

= Tight for recent experiments

= Applies to position and momentum operators

= Application to quantum information theory (e.g., cryptography)?

= State-independent predictive error?
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Thank you for your attention!
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