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Uncertainty Relation: Limitation due to complementarity of 
observables

Always: X (𝕏 ) and Z (ℤ) complementary observables ( 𝑋, 𝑍 ≠ 0)

X ↔ {𝕏𝑥}𝑥∈𝑋 and   Z ↔ {ℤ𝑧}𝑧∈𝑍 POVM’s

Preparation Uncertainty 
There exists no preparation in which X and Z are both predetermined. 

Measurement Uncertainty 
Joint Measurability: There exists no observable which jointly measures X and Z.

Measurement-Disturbance: An attempt to measure X generally disturbs Z.

Different Uncertainty Trade-Offs
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Heisenberg ‘27
Kennard ‘27

Robertson ‘27



Preparation Uncertainty 
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Robertson: Δ𝕏Δℤ ≥
1

2
| < 𝜓, 𝕏, ℤ 𝜓 > |

Massen & Uffink ‘88: 𝐻 𝑋 𝜌 + 𝐻 𝑍 𝜌 ≥ −log max
𝑥,𝑧

‖𝕏𝑥
1/2

ℤ𝑧
1/2

‖

 Variances depends on eigenvalues of X and Z
 Constant vanishes for certain states

 how does quantum information affect 
uncertainty 

Berta et al. 2010: 𝐻 𝑋|𝐵 𝜌 + 𝐻 𝑍|𝐵 𝜌 ≥ −log max
𝑥,𝑧

‖𝕏𝑥
1/2

ℤ𝑧
1/2

‖ + 𝐻(𝐴|𝐵)

Application in Quantum Information Science
Entropies have statistical meaning! 



 Constructions of joint position and momentum operators (e.g., von 
Neumann, Holevo, Werner, Busch,…): Positive Formulation!   

 Noise operator approach to determine inaccuracy (e.g., Arthur & 
Kelly, Appleby, Ozawa,…)

 Inspired by classical measurement theory (not always operational!)

Previous formulation suffer often from drawbacks: 

 operationally not entirely clear

 Depend also on the eigenvalues, not only on POVM’s 

 maturity as in preparation uncertainty relations not yet achieved

Measurement Uncertainty (incomplete!) 
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A measurement-disturbance relation that

 has a clear and operationally motivated setup which is state-
dependent (-> applications) 

 uses faithful and operational error measures (they vanish if no 
deviation 

 uses entropic measures which have statistical interpretation in 
information theory (-> applications)

Goal
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1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation

3) Extension to Quantum Memories

4) Applications (Qubits and Position-Momentum)

Outlook
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1) Joint Measurability 
There exists no joint observable 

of X and Z with marginals being X and Z:

 Measurement Errors of X’ w.r.t. X and 

Z’ w.r.t Z are in trade-off

Measurement Uncertainty
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2) Measurement-Disturbance 
An attempt to measure X will 

disturb a subsequent Z measurement:

 The error about X is in trade-off with 

the disturbance in Z

Measurement Uncertainty
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A subsequent measurement is a joint measurement:

→ A trade-off for joint measurability implies one for error-
disturbance 

But only if we are interested in the potential of the channel to 
perform an accurate X measurement! 

Connection between joint measurability and 
measurement-disturbance
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1) Bush, Lathi, Werner, PRL 111, 160405 (2013): 

 Position-Momentum Observables for worst-case calibration errors 
(testing Q’ with infinitely localized position states)

 Generalization to qubits

2) Buscemi, Hall, Ozawa, Wilde, PRL 112, 050401 (2014) 

 Entropic error measures motivated via an information theoretic task 

3) Renes & Scholz, arXiv:1402.6711 (2014)

 CP-Norm between channels

Interpretation as measurement-disturbance relations:

Any channel that extracts information about X-eigenstates must disturb 
the Z-eigenstates! 

Recent Advances in State-independent Joint 
Measurement Relations 
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Ozawa’s Relation, Physics Letters A 320, 367 (2004):

Insight: Initial uncertainty is crucial! 

State-dependent Error Measures for Joint-
Measurability Problem 
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For any fixed state ρ

Error Disturbance

Initial Uncertainties



Operational Error and Disturbance:

Error/Disturbance has to be detectable on the level of the outcome 
distributions (i.e. the probabilities) 

Faithful Error and Disturbance: 

 Error: E(X,X’;ρ) = 0 iff probabibility distribution 

of X is same as for X’

 Disturbance: D(Z,Z’; ρ) = 0 iff probabibility

distribution of Z is same as for Z’

Problem for state-dependent trade-off relation (Korzekwa, Jennings and 

Rudolph, Phys. Rev. A 89, 052108 (2014)): 

If error and disturbance are faithful no trade-off can hold! 

State-dependent Error Measures for Joint-
Measurability Problem 
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State-dependent Measurement-Disturbance 
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Operational Disturbance:

statistical distance between Z 
and 𝑍ℰ

2 Possible Measurement Errors: 

1) can one infer X from M? 
(retrodictive error*)

2) can one infer 𝑋ℰ from M? 
(predictive error*)

*Appleby, International Journal of Theoretical Physics, 37, 5, 1491 (1998)
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State-dependent Measurement-Disturbance 
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Operational Disturbance:

statistical distance between Z 
and 𝑍ℰ

2 Possible Mperational Errors: 

1) can one infer X from M? 
(retrodictive error*)

2) can one infer 𝑋ℰ from M? 
(predictive error*)

*Appleby, International Journal of Theoretical Physics, 37, 5, 1491 (1998)



State-dependent Measurement-Disturbance 
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Operational Disturbance:

statistical distance between Z 
and 𝑍ℰ

2 Possible Merational Errors: 

1) can one infer X from M? 
(retrodictive error*)

2) can one infer 𝑋ℰ from M? 
(predictive error*/residual

*Appleby, International Journal of Theoretical Physics, 37, 5, 1491 (1998)



1) Introduction to Measurement Uncertainty

2) Our New Measurement-Disturbance Relation

3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-
Momentum)

Outlook
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Setup

Operational Quantities: 

𝑃𝑍 𝑧 = tr(𝜌ℤ𝑧)

𝑃𝑍
ℰ 𝑧 = tr (ℰ(𝜌)ℤ𝑧)

𝑄𝑋𝑀
ℰ = tr ℰ 𝜌 𝕄𝑚 ⊗𝕏𝑥 ( joint probability of M and 𝑋ℰ )

2) Setup for our Measurement-Disturbance 
Relation

FF,ENTROPIC MEASUREMENT-DISTURBANCE RELATIONS09/06/2014



Distance between 𝑃𝑍
ℰ 𝑧 and 𝑃𝑍 𝑧 quantified with relative entropy

 𝐷(𝑃𝑍| 𝑃𝑍
ℰ = ∑𝑃𝑍 𝑧 log(𝑃𝑍(𝑧)/𝑃𝑍

ℰ(𝑧))

 Operational statistical meaning in hypothesis testing

 faithful

Side Remark: our result holds for arbitrary Renyi relative entropy 

E.g., 𝐷1

2

(𝑃𝑍| 𝑃𝑍
ℰ = log 𝐹(𝑃𝑍, 𝑃𝑍

ℰ)      (F=Fidelity)

Faithful Disturbance Measure
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Entropy of X given M: 

 𝑄𝑋𝑀
ℰ = joint probability distr. of M and 𝑋ℰ

 𝐻max 𝑋 𝑀 𝑄ℰ : conditional max-entropy of 𝑋ℰ given M (1/2-Renyi 
entropy)

 𝐻max 𝑋 𝑀 𝑄ℰ = log∑𝑚𝑄𝑀
ℰ 𝑚 exp(𝐻1/2 (𝑄𝑋|𝑀

ℰ )

 Faithful 

 One-shot entropy related to the amount of data which one has to be 
supplied in order to reconstruct X from M

Faithful Predictive Error
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Result: For any channel ℰ :

 (state independent)

 𝐻 𝑍 𝑃 = −∑𝑃𝑍 𝑧 log𝑃𝑍(𝑧) , the von Neumann 

entropy of the initial Z distribution

Measurement-Disturbance Trade-off
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Example: Q-bit system with Pauli X and Z observables

and ℰ a perfect X instrument

Lower Bound Must Depend on Initial 
Uncertainty
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𝐻 𝑍 =0

No predictive Error

Large
 D

istu
rb

an
ce



Example: Q-bit system with Pauli X and Z observables

and ℰ a perfect X instrument

Lower Bound Must Depend on Initial 
Uncertainty
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𝐻 𝑍 =0 𝐻 𝑍 =
log1/c

No predictive Error

Large
 D

istu
rb

an
ce No predictive Error

N
o

 D
istu

rb
an

ce



Ingredient 1: 

Preparation Uncertainty applied to 𝜌𝑆𝑀
ℰ *:

Ingredient 2: 

Bound of min entropy of 𝑃ℰ by the distance betw. P and 𝑃ℰ: 

Proof of the Relation (without QM memory)
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*M. Tomamichel and R. Renner, PRL 106,110506 (2011)
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3) Extension to Quantum Memories

4) Applications (Qubits and Positoin-
Momentum)

Outlook
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System initially correlated to a quantum system R:

Then: 

 = distance between 𝜌𝑍𝑅 and 𝜌𝑍𝑅
ℰ

 H(Z|R) = H(ZR) – H(R) , the conditional von Neumann entropy

3) Extension to Quantum Memory
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Quantum Memory

→ Interaction also 
disturbs the correlation 
to R! 



𝜌𝑆𝑅 =
1

2
(|00 > +|11 >)

Then…

 𝜌𝑆 is maximally mixed 

 no trade-off if R is not taken into account (H(Z) = log1/c )

 If you can check correlation between Z and R -> disturbance (H(Z|R) 
= 0 )

 Non-trivial relation

Extension to Quantum Memory (example)
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Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012): 

 θ = 0: perfect X Measurement

 θ = π/2: identity channel

 Perfect tight for pure input 

state and all measurement

strength 

Qubit Example and Tightness
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Weak Pauli X measurement (Phys. Rev. Lett. 109, 100404, 2012): 

Including Quantum Memory (if 𝜌𝑆 is not pure):

If 𝜌𝑆𝑅 is purification of  𝜌𝑆 : 

Perfectly tight for all r and 𝜃

(Even classical memory is enough)

Qubit Example and Tightness
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Original setup considered by Heisenberg 

Observables ℙ and ℚ with ℚ,ℙ = −𝑖

Same measurement disturbance holds if entropies are 
changed to differential entropies: 

 𝑒 𝜌𝑆, ℚ, ℰ ≔ ℎmax 𝑄 𝑀 𝜌ℰ (differential quantum conditional max-
entropy*)

 ℎ(𝑃|𝑅) = the differential quantum conditional von Neumann entropy*

Extension to Position-Momentum 
Measurements
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* Berta, Christandle,FF, Scholz,Tomamichel, arXiv:1308.4527



What is the momentum disturbance if a coarse grained 
position measurement with a binning δq has been 
performed? 

Applying our relation we obtain:

𝛅𝐪 𝐝𝐏≥ ℏ/𝟐

 dP =
2h P ρ

4π
2D ρS,ℙ,ℰ

→ dP depends on the initial P distribution 

→ if initial momentum is approximately sharp, then disturbance is larger

→ interplay between measurement and preparation uncertainty

Application to Coarse-Grained Position 
Measurement

FF,ENTROPIC MEASUREMENT-DISTURBANCE RELATIONS09/06/2014



 Presented a trade-off between disturbance and predictability of two 
complementary observables 

 Operational disturbance and error measures with interpretation in 
information theory

 Tight for recent experiments 

 Applies to position and momentum operators

 Application to quantum information theory (e.g., cryptography)? 

 State-independent predictive error?

Conclusion and Outlook
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Thank you for your attention!

arXiv:1311.7637
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