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Overview

Theorem™
For all (2,k,2) and (2,2,/) scenarios,

‘Hardy non-locality <= Logical non-locality

Consequences & Applications

1. Hardy subsumes other paradoxes
2. Complexity results for logical non-locality
3. Bell states are anomalous

4. Hardy non-locality can be realised with certainty

*S Mansfield, T Fritz - Foundations of Physics, 2012
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Bell-CHSH Inequality:

‘ E(mA>mB) +E(mA7m£9) +E(m,,47m3) _E(m,,47m;?)| <2



Logical Non-locality

A more intuitive approach to non-locality

* Probabilities — Truth values (possibilities)

* Inequalities — Logical deductions

Logical NL > NL
Examples:

* Hardy, GHZ, KS, etc.

* Hardy’s argument is considered to be the simplest



Hardy’s Non-locality Paradox

* Outcome (T,7) is possible

* If A measures spin and B
measures colour, or vice
T+ G W versa, the outcomes (1, W) or
(W,7) are never obtained

Bob

* When spin 1 is recorded, the
other subsystem must have
colour G

* Since (1,1) is possible, then

0 (G, G) must be possible

* Contradiction!

Alice




Generalisations of Hardy Non-locality

Measurements have up to / outcomes
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Generalisations of Hardy Non-locality

k measurement settings per party




Generalisations of Hardy Non-locality
n > 2 parties

Figure : The n = 3 Hardy paradox. Blue <> truth value ‘1’, red <+ ‘0’




Completeness of Hardy Non-locality

Hardy non-locality can be defined for all (n,k,[) scenarios.

* n parties
* k measurement settings per party

* [ outcomes to each measurement

Theorem*
For all (2,k,2) and (2,2,]) scenarios,

‘Hardy non-locality <= Logical non-locality

*S Mansfield, T Fritz - Foundations of Physics, 2012



Hardy Subsumes Other Paradoxes

The Chen et al. paradox* occurs if at least one starred entry is
non-zero. Relevant entries are either above or below the diagonal.

Ed * O 0
* 0
0 - 0
0
0
0 0

*JL Chen, A Cabello, ZP Xu, HY Su, C Wu, LC Kwek - Physical Review A, 2013
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Complexity of Logical Non-locality

Hardy non-locality <= Logical non-locality

So, in relevant scenarios, one has only to search for Hardy paradoxes

Proposition

Polynomial algorithms can be given for deciding logical non-locality
in (2,2,1) and (2,k,2) scenarios.



Bell States are Anomalous

Are all entangled states logically non-local?

Logically Non-local

* Hardy: all non-maximally entangled 2-qubit states

* Abramsky, Constantin & Ying: all entangled n-qubit states

* GHZ, Cabello: Many maximally entangled n > 2 qubit states
Exception!

* Bell States (maximally entangled 2-qubit states)

7(]00>+|11>), etc.



Bell States Are Anomalous: Proof (Sketch)

* Need only consider

1
7 (l00) +11)), etc.

* Projective measurements necessarily lead to (2,k,2) scenarios

Claim
For any observables {A,A2, B3, B4} there is no Hardy paradox



Bell States Are Anomalous: Proof (Sketch)

Claim

For any observables {A|,A;, B3, B4} there is no Hardy paradox

State:
— (|00) +|11)), etc.

f

Observables:
{A1,A2,B3,B4}

Eigenvectors:
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Bell States Are Anomalous: Proof (Sketch)

Claim
For any observables {A|,A;, B3, B4} there is no Hardy paradox

State: .
7 (|00) +|11)), etc.

Observables: L
Outcome probabilities:
{A1.42,B3,B4}

| (01| AB) = p(10| AB)

Eigenvectors: p(00|AB) =p(11|AB)
6; io: . 6

|0;) = cos ?’ |0) + €™ sin ?l

6 ) o
|1;) = sin 5’ |0) + ¢~ cos 3’



Bell States Are Anomalous: Proof (Sketch)

Claim
For any observables {A,A;, B3, B4} there is no Hardy paradox

Symmetries + No-signalling + Hardy Paradox:

Outcome probabilities:

Y 0 95 92

O A p(01| AB) =p(10| AB)
p(00 | AB) = p(11| AB)

0<g<1



Bell States Are Anomalous: Proof (Sketch)

Claim
For any observables {A,A;, B3, B4} there is no Hardy paradox

Symmetries + No-signalling + Hardy Paradox:

Outcome probabilities:

0o 0 v p(01 | AB) = p(10| AB)
p(00| AB) =p(11| AB)

Y 0 9 92
0 2 9 95

Observables:
Ay =Ay =By =By =+X

0<g<1



Bell States Are Anomalous: Proof (Sketch)

Claim
For any observables {A,A;, B3, B4} there is no Hardy paradox

Symmetries + No-signalling + Hardy Paradox:
Outcome probabilities:

p(01]AB) =p(10| AB)
p(00| AB) = p(11| AB)

Y 0 9 92

0 s 92 573 Observables:

Ap=Ay =By =By = +X

0<g<1

Contradiction!



The Paradoxical Probability

Bob * An almost probability free
t L | G W non-locality proof
11 0.09 0 * Experimental motivations for
Alice | maximising this probability
G 0 * Considered a measure of the
w | o quality of Hardy non-locality
Model | Probability
Hardy 5\/527*11 ~0.09
Hardy Ladder (k — oo) 0.5
Ghosh et al. (tripartite) 0.125
Choudhary (non-quantum, NS) 0.5

Chen et al. (I — ) ~04



Probability Free Hardy Non-locality?

* Recall: Chen et al. sum paradoxical probabilities

* * 0 0
* 0
0 - 0
0
0
0 - 0




Probability Free Hardy Non-locality?

* Recall: Chen et al. sum paradoxical probabilities
* If we allow this, we can achieve Hardy non-locality with

certainty!

Example: the PR box

1 0|1 O
0 1,0 1
1 010 1
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Probability Free Hardy Non-locality?

* Recall: Chen et al. sum paradoxical probabilities
* If we allow this, we can achieve Hardy non-locality with

certainty!

Example: the PR box

1 0|1 O
0 1]0 1
1 00 1




Hardy Non-locality With Certainty

The GHZ model: Local X & Y measurements on

1

|GHZ) = v

(1000) +[111))
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1 0 0 1 0 1 1
0 1 1 0 1 0
0 1 1 0 1 0
0 0 0

0
0
1 1 1 0



Hardy Non-locality With Certainty

The GHZ model: Local X & Y measurements on

IGHZ) = —= (]000) + | 111))

25!




Hardy Non-locality With Certainty

Model Probability
Hardy 5\@%“ ~ 0.09
Hardy Ladder (k — o0) 0.5
Chen et al. ([ — o0) ~0.4
PR box (non-quantum, NS) 1
GHZ 1




Conclusion

Theorem™
For all (2,k,2) and (2,2,/) scenarios,

‘Hardy non-locality <= Logical non-locality

Consequences & Applications

1. Hardy subsumes other paradoxes
2. Complexity results for logical non-locality
3. Bell states are anomalous (not logically non-local)

4. Hardy non-locality can be realised with certainty

*S Mansfield, T Fritz - Foundations of Physics, 2012



