COMPLETENESS OF HARDY NON-LOCALITY: CONSEQUENCES & APPLICATIONS

Shane Mansfield

QPL 2014

Overview

Theorem*

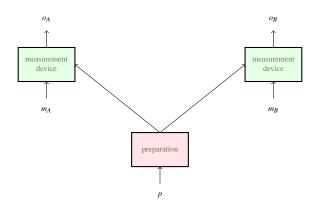
For all (2, k, 2) and (2, 2, l) scenarios,

Hardy non-locality ← Logical non-locality

Consequences & Applications

- 1. Hardy subsumes other paradoxes
- 2. Complexity results for logical non-locality
- 3. Bell states are anomalous
- 4. Hardy non-locality can be realised with certainty

Non-locality



Bell-CHSH Inequality:

$$|E(m_A, m_B) + E(m_A, m_B') + E(m_A', m_B) - E(m_A', m_B')| \le 2$$

Logical Non-locality

A more intuitive approach to non-locality

- Probabilities → Truth values (possibilities)
- Inequalities → Logical deductions

Logical
$$NL > NL$$

Examples:

- Hardy, GHZ, KS, etc.
- Hardy's argument is considered to be the simplest

Hardy's Non-locality Paradox

1	1		
	+	G	W
1			0
		0	
0			
			1 0

- Outcome (\uparrow, \uparrow) is possible
- If A measures spin and B measures colour, or vice versa, the outcomes (↑, W) or (W,↑) are never obtained
- When spin ↑ is recorded, the other subsystem must have colour G
- Since (\uparrow,\uparrow) is possible, then (G,G) must be possible
- Contradiction!

Generalisations of Hardy Non-locality

Measurements have up to l outcomes

	o'_1	 o_l'	$o_1 \cdots o_{m_2}$	$o_{m_2+1}\cdots o_l$
o_1'	1			0 0
:				
o_l'				
o_1			0 0	
:			: ·. :	
o_{m_1}			0 0	
o_{m_1+1}	0			
:	:			
o_l	0			

Generalisations of Hardy Non-locality

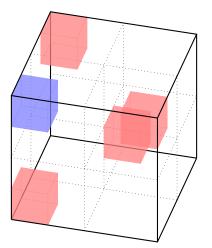
k measurement settings per party

1	0		
	0	·	
0			
	·		

Generalisations of Hardy Non-locality

n > 2 parties

Figure : The n = 3 Hardy paradox. Blue \leftrightarrow truth value '1', red \leftrightarrow '0'



Completeness of Hardy Non-locality

Hardy non-locality can be defined for all (n, k, l) scenarios.

- *n* parties
- k measurement settings per party
- 1 outcomes to each measurement

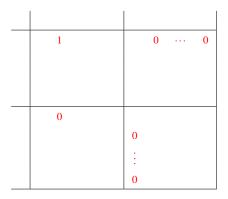
Theorem*

For all (2, k, 2) and (2, 2, l) scenarios,

Hardy non-locality ← Logical non-locality

*		*		0		0
	٠.	:			٠.	:
		*				0
0	•••	0				
	٠.	:	0			
		0	:	•		
			0		0	

1		*		0		0
	٠.	:			٠.	:
		*				0
0	• • •	0				
	٠.	:	0			
		0	:	٠.		
			0		0	



1		0	 0
	0		
	:		
	0		
0			

Complexity of Logical Non-locality

Hardy non-locality \iff Logical non-locality

So, in relevant scenarios, one has only to search for Hardy paradoxes

Proposition

Polynomial algorithms can be given for deciding logical non-locality in (2,2,l) and (2,k,2) scenarios.

Bell States are Anomalous

Are all entangled states logically non-local?

Logically Non-local

- Hardy: all *non-maximally* entangled 2-qubit states
- Abramsky, Constantin & Ying: all entangled *n*-qubit states
- GHZ, Cabello: Many maximally entangled n > 2 qubit states

Exception!

• Bell States (maximally entangled 2-qubit states)

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
, etc.

Need only consider

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
, etc.

• Projective measurements necessarily lead to (2, k, 2) scenarios

Claim

For any observables $\{A_1, A_2, B_3, B_4\}$ there is no Hardy paradox

Claim

For any observables $\{A_1, A_2, B_3, B_4\}$ there is no Hardy paradox

State:

$$\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right), \text{ etc.}$$

Observables:

$$\{A_1, A_2, B_3, B_4\}$$

Eigenvectors:

$$\begin{split} |0_i\rangle &= \cos\frac{\theta_i}{2} \, |0\rangle + e^{i\phi_i} \sin\frac{\theta_i}{2} \\ |1_i\rangle &= \sin\frac{\theta_i}{2} \, |0\rangle + e^{-i\phi_i} \cos\frac{\theta_i}{2} \end{split}$$

Outcome probabilities:

$$\left\langle 0_{j}0_{k}|\psi\right\rangle =\frac{1}{\sqrt{2}}\left(\cos\frac{\theta_{j}}{2}\cos\frac{\theta_{k}}{2}+e^{-i\left(\phi_{j}+\phi_{k}\right)}\sin\frac{\theta_{j}}{2}\sin\frac{\theta_{k}}{2}\right)$$

$$\left\langle 0_{j}1_{k}|\psi\right\rangle =\frac{1}{\sqrt{2}}\left(\cos\frac{\theta_{j}}{2}\sin\frac{\theta_{k}}{2}+e^{-i\left(\phi_{j}-\phi_{k}\right)}\sin\frac{\theta_{j}}{2}\cos\frac{\theta_{k}}{2}\right)$$

$$\langle 1_j 0_k | \psi \rangle = \frac{1}{\sqrt{2}} \left(\sin \frac{\theta_j}{2} \cos \frac{\theta_k}{2} + e^{i \left(\phi_j - \phi_k \right)} \sin \frac{\theta_j}{2} \cos \frac{\theta_k}{2} \right)$$

$$\left\langle 1_{j} 1_{k} | \psi \right\rangle = \frac{1}{\sqrt{2}} \left(\sin \frac{\theta_{j}}{2} \sin \frac{\theta_{k}}{2} + e^{i \left(\phi_{j} + \phi_{k} \right)} \cos \frac{\theta_{j}}{2} \cos \frac{\theta_{k}}{2} \right)$$

Claim

For any observables $\{A_1, A_2, B_3, B_4\}$ there is no Hardy paradox

State:

$$\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right), \text{ etc.}$$

Observables:

$$\{A_1, A_2, B_3, B_4\}$$

Outcome probabilities:

Eigenvectors:

$$p(01 | AB) = p(10 | AB)$$

 $p(00 | AB) = p(11 | AB)$

$$\begin{split} |0_i\rangle &= \cos\frac{\theta_i}{2} |0\rangle + e^{i\phi_i} \sin\frac{\theta_i}{2} \\ |1_i\rangle &= \sin\frac{\theta_i}{2} |0\rangle + e^{-i\phi_i} \cos\frac{\theta_i}{2} \end{split}$$

Claim

For any observables $\{A_1, A_2, B_3, B_4\}$ there is no Hardy paradox

 $Symmetries + No\text{-signalling} + Hardy\ Paradox:$

1/2	0	1/2	0
0	1/2	0	1/2
1/2	0	1-9/2	9/2
 0	1/2	9/2	1-q/ ₂

Outcome probabilities:

$$p(01\mid AB) = p(10\mid AB)$$

$$p(00\mid AB) = p(11\mid AB)$$

$$0 < q \le 1$$

Claim

For any observables $\{A_1, A_2, B_3, B_4\}$ there is no Hardy paradox

Symmetries + No-signalling + Hardy Paradox:

1/2	0	1/2	0
0	1/2	0	1/2
1/2	0	1-9/2	9/2
0	1/2	9/2	1-q/ ₂

Outcome probabilities:

$$p(01 | AB) = p(10 | AB)$$

$$p(00\mid AB) = p(11\mid AB)$$

Observables:

$$A_1 = A_2 = B_3 = B_4 = \pm X$$

$$0 < q \le 1$$

$$q = 0$$
: Local $q = 1$: PR box

Claim

For any observables $\{A_1, A_2, B_3, B_4\}$ there is no Hardy paradox

Symmetries + No-signalling + Hardy Paradox:

Outcome probabilities:

$$p(01 \mid AB) = p(10 \mid AB)$$

$$p(00 | AB) = p(11 | AB)$$

Observables:

$$A_1 = A_2 = B_3 = B_4 = \pm X$$

$$0 < q \le 1$$

$$\Rightarrow a = 0$$

q = 0: Local q = 1: PR box

Contradiction!

The Paradoxical Probability

	Bob				
		†	\downarrow	G	W
	\uparrow	0.09			0
Alice	\downarrow				
	G			0	
	W	0			

- An *almost* probability free non-locality proof
- Experimental motivations for maximising this probability
- Considered a measure of the quality of Hardy non-locality

Model	Probability
Hardy	$\frac{5\sqrt{5}-11}{2} \approx 0.09$
Hardy Ladder $(k \to \infty)$	0.5
Ghosh et al. (tripartite)	0.125
Choudhary (non-quantum, NS)	0.5
Chen et al. $(l \to \infty)$	≈ 0.4

• Recall: Chen et al. sum paradoxical probabilities

*		*		0		0
	· 14.	:			٠.	:
		*				0
0	• • • •	0				
	٠.	:	0			
		0	:	٠.		
			0		0	

- Recall: Chen et al. sum paradoxical probabilities
- If we allow this, we can achieve Hardy non-locality *with certainty*!

Example: the PR box

1	0	1	0
0	1	0	1
1	0	0	1
0	1	1	0

- Recall: Chen et al. sum paradoxical probabilities
- If we allow this, we can achieve Hardy non-locality *with certainty*!

Example: the PR box

1	0	1	0
0	1	0	1
1	0	0	1
0	1	1	0

- Recall: Chen et al. sum paradoxical probabilities
- If we allow this, we can achieve Hardy non-locality *with certainty*!

Example: the PR box

1	0	1	0
0	1	0	1
1	0	0	1
0	1	1	0

Hardy Non-locality With Certainty

The GHZ model: Local X & Y measurements on

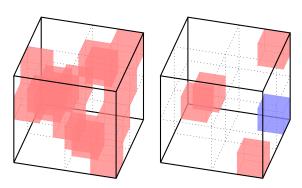
$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

					100			
X X X X Y Y Y X X Y Y X	1	0	0	1	0	1	1	0
X Y Y	0	1	1	0	1	0	0	1
Y X X	0	1	1	0	1	0	0	1
Y Y X	0	1	1	0	1	0	0	1

Hardy Non-locality With Certainty

The GHZ model: Local X & Y measurements on

$$|GHZ\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$



Hardy Non-locality With Certainty

Model	Probability
Hardy	$\frac{5\sqrt{5}-11}{2} \approx 0.09$
Hardy Ladder $(k \to \infty)$	0.5
Ghosh et al. (tripartite)	0.125
Choudhary (non-quantum, NS)	0.5
Chen et al. $(l \to \infty)$	≈ 0.4
PR box (non-quantum, NS)	1
GHZ	1

Conclusion

Theorem*

For all (2, k, 2) and (2, 2, l) scenarios,

Hardy non-locality ← Logical non-locality

Consequences & Applications

- 1. Hardy subsumes other paradoxes
- 2. Complexity results for logical non-locality
- 3. Bell states are anomalous (not logically non-local)
- 4. Hardy non-locality can be realised with certainty