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2-categories and their graphical language

0-cells Regions Classical information
1-cells Lines Quantum systems
2-cells Vertices Quantum dynamics
Horizontal composition
Vertical composition

The standard example is 2Hilb:

I 0-cells given by natural numbers

I 1-cells given by matrices of finite-dimensional Hilbert spaces

I 2-cells given by matrices of linear maps
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Quantum systems interacting with their environment

Let (A, , ) and (B, , ) be classical structures in C.
A dagger C -D-bimodule is a morphism M satisfying:

M

=
M

M

A

M

B

B
M

BM
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AM M

M

M=

M

M

A

M

A

MB

B

M†
M=

M

A bimodule homomorphism is a morphism f ∈ C, such that

M′

M

M
=

fM′

M′

M

f
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The 2(−) construction
How can we construct the 2-category 2(C) from C?

I 0-cells: classical structures in C
I 1-cells: bimodules of classical structures in C
I 2-cells: module homomorphisms in C

In representation theory: The orbifold completion of a monoidal category

Some properties of 2(−) are:

I 2(C) is a 2-category.
I 2(−) preserves the dagger.
I If C is compact, so is 2(C): 1-cells have ambidextrous duals.
I If C has dagger biproducts, so do all hom-categories of 2(C).
I The subcategory of scalars of 2(C) corresponds to C.
I 2(FHilb) is isomorphic to the category 2Hilb.

For proofs see LW (2013), Masters’s thesis, ’Categorical Models for Quantum

Computing’.
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Horizontal composition in 2(−)

Horizontal composition is defined by the following coequaliser in C:

M ⊗ N M ⊗B N
π

M ⊗ B ⊗ N
MB ⊗ idN

idM⊗ BN

f

M N

f
=

K

M

N M

N

A

BM NB

C

K

Can we find this module explicitly? Yes!
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Horizontal composition in terms of dagger splittings
Any such f factorizes through M N:

f

M N

f
=

K

M

N M

N

A B

M N

C

K

M

K

f

A

=

NM

M
B

A

M

B

A

M

M

N

K

f

M

=

Theorem
Finding the dagger coequaliser is equivalent to finding a dagger
splitting of the following morphism:

N

M

M
B

CA

M

N

N
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2(CP∗(−))
We would like to understand the 2-category ’?’

FHilb CP∗(FHilb)

2(FHilb) ?

CP∗(−)

2(−)

CP∗(−)

2(−)

This is not obvious!

I This required a classification of classical structures in
CP∗(FHilb).

I There is a correspondence between special dagger Frobenius
algebras on classical structures in FHilb and finite groupoids.

I CP∗(FHilb) does not have all coequalisers.
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Modelling POVM’s
The following subcategory of 2(CP∗(FHilb)) is a sufficient model
for modelling communication protocols:

I 0-cells: natural numbers

I 1-cells: matrices of dagger Frobenius algebras

I 2-cells: matrices of completely positive maps

Measurements are defined as counit-preserving 2-cells of type:

µ

Theorem
Measurements on algebras Cn are exactly stochastic maps.
Measurements on algebras B(H) are exactly POVMs.
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Modelling POVM’s

Proof.
The counit preserving condition gives us µ

Cn

=

 †⇔

 µ†

Cn
=



So we have the following equalities of positive elements:

n∑
i=1

µ†i =
µ†

Cn
=

I On Cn this corresponds to a stochastic map

I On B(Cn) this corresponds to a POVM
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Classical encryption and quantum teleportation

Quantum teleportation and classical encryption are solutions to the
following equation with µ a measurement and ν unitary 2-cell:

µ

ν =

This equation corresponds to:

I quantum teleportation, if the input is a matrix algebra

I classical encryption, if the input is a classical structure
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A unified security proof

When the output is destroyed, all information is lost:

µ

ν
= ⇒ µ =

I We apply the trace map on both sides of the equation

I On the left-hand-side: ν is a family invertible completely
positive maps, which are trace preserving.

So this give a unified security proof
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Overview

The results:

I A categorical generalisation of 2Hilb, based on modules:
The construction 2(−), which preserves daggers, compactness,
biproducts, such that the scalars of 2(C) correspond to C.

I Horizontal composition in 2(C) is given by dagger splittings.

I First steps in understanding 2(CP∗(FHilb)).

I 2(FHilb) contains a subcategory of classical structures,
matrices of special dagger Frobenius algebras, and matrices of
completely positive morphisms.

I Unified description of teleportation and classical encryption.

I Security proof of teleportation and classical encryption.

Thank you!
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