Observational equivalence using scheduler for quantum processes

<u>K. Yasuda</u> / T. Kubota / Y. Kakutani

Dept. of Computer Science University of Tokyo

Outline

- 1. Introduction
- 2. Quantum process calculus qCCS
- 3. Open bisimulation on qCCS
- 4. Our equivalence relation
 - » Observational equivalence
 - » Scheduler / Strategy
- 5. Conclusion

Introduction

Introduction | Quantum process calculi

Quantum communication protocols

- Quantum key distribution: BB84, B92, ...
- Quantum bit commitment
- Quantum oblivious transfer

Quantum process calculi

- » To analyze/verify quantum processes formally
- » QPAlg, CQP, qCCS, ...

Introduction | Formal verification

Formal verification of quantum protocols

Equivalence between processes

- (Weak) bisimulation
- Barbed congruence

Introduction | Motivation

Not bisimilar but intuitively equivalent processes

Example:

- Sends $|0\rangle$ or $|1\rangle$ with the same prob.
- Sends $|+\rangle$ or $|-\rangle$ with the same prob.
- » The same density matrix expresses these qubits: $\frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| = \frac{1}{2}|+\rangle\langle +| + \frac{1}{2}|-\rangle\langle -|$
- » Used in Shor & Preskill's security proof of BB84 [SP'00]

Not bisimilar but intuitively equivalent processes

Example: [KKKKS'12]

• Measures a qubit $|+\rangle\langle+|$ and ...

- Applies \mathcal{E} to a qubit $|+\rangle\langle+|$ and ...
 - » $\mathcal{E}(\rho) = |0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

$$|+\rangle\langle+| \longrightarrow \frac{1}{2}|0\rangle\langle0| + \frac{1}{2}|1\rangle\langle1|$$

Introduction | Motivation

To define more intuitive equivalence

qCCS [FDY'12]

Existing notions of equivalence:

- (Weak) bisimulation [FDY'12]
- (Weak) open bisimulation [DF'12]
- Reduction barbed congruence [DF'12]

Quantum process calculus qCCS

Quantum process calculus qCCS | Syntax

Quantum processes (classical constructs)

P,Q	::=	\mathbf{nil}

- c?x.P Receive classical data
- *c*!*e*.*P* Send classical data
- P+Q Nondeterministic choice
 - $P \mid\mid Q$ Parallel composition
- if b then P

Quantum process calculus qCCS | Syntax

Quantum processes (quantum constructs)

${ t c}?q.P$	Receive qubit	
c!q.P	Send qubit	
$\mathcal{E}[ilde{q}].P$	Applying super-operator	
$M[\tilde{q};x].P$	Measurement	

11

State of a process: *configuration* $C = \langle P, \rho \rangle$

- » *P* : quantum process
- » ρ : quantum state (density operator)

Operational semantics: labeled transition system Labels:

- c? v / c! v : receive/send data v using c
- c? q / c! q : receive/send **qubit** q using c
- τ:

internal transition (cannot be observed)

Example:

 $\left\langle \mathcal{CNOT}[q,r].c!r.P,\left|+\right\rangle\left\langle+\right|_{q}\otimes\left|0\right\rangle\left\langle0\right|_{r}\otimes\rho_{E}\right\rangle$

Example:

$$\left\langle \mathcal{CNOT}[q,r].\mathsf{c}!r.P, \left|+\right\rangle \left\langle +\right|_{q} \otimes \left|0\right\rangle \left\langle 0\right|_{r} \otimes \rho_{E} \right\rangle$$
$$\xrightarrow{\tau} \left\langle \mathsf{c}!r.P, \left|\Phi\right\rangle \left\langle \Phi\right|_{qr} \otimes \rho_{E} \right\rangle$$

Example:

$$\left\langle \mathcal{CNOT}[q,r].\mathsf{c}!r.P, |+\rangle \left\langle +\right|_{q} \otimes |0\rangle \left\langle 0\right|_{r} \otimes \rho_{E} \right\rangle$$

$$\xrightarrow{\tau} \left\langle \mathsf{c}!r.P, |\Phi\rangle \left\langle \Phi\right|_{qr} \otimes \rho_{E} \right\rangle$$

$$\xrightarrow{\mathsf{c}!r} \left\langle P, |\Phi\rangle \left\langle \Phi\right|_{qr} \otimes \rho_{E} \right\rangle$$

Example:

$$\left\langle M[q;x].A(x),\left|+\right\rangle\left\langle+\right|_{q}\otimes\rho_{E}\right\rangle\underbrace{\tau}_{1/2}\left\langle A(0),\left|0\right\rangle\left\langle0\right|_{q}\otimes\rho_{E}\right\rangle }_{1/2}\right\rangle$$

Probabilistic transition

Open bisimulation on qCCS

Open bisimulation on qCCS | Definition

 \mathcal{R} is a (weak) open bisimulation if $\langle P, \rho \rangle \mathcal{R} \langle Q, \sigma \rangle \Longrightarrow$

• *P* and *Q* hold the same quantum variables

» qv(P) = qv(Q)

• Their environment (states associated with the qubits that *P* and *Q* do not hold) are the same

» $\operatorname{tr}_{qv(P)}(\rho) = \operatorname{tr}_{qv(Q)}(\sigma)$

- For any super-operator *E* acting on the environment, whenever ⟨P, *E*(ρ)⟩ → μ there is some ν s.t. ⟨Q, *E*(σ)⟩ ⇒ ν
- (Symmetric condition) Adding/removing τ transitions
- \approx_o : largest open bisimulation

Open bisimulation on qCCS | Example

Intuitively equivalent processes [KKKKS'12]

• Measures a qubit $|+\rangle\langle+|$ and ...

- Applies \mathcal{E} to a qubit $|+\rangle\langle+|$ and ...
 - » $\mathcal{E}(\rho) = |0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

$$|+\rangle\langle+| \longrightarrow \frac{1}{2}|0\rangle\langle0| + \frac{1}{2}|1\rangle\langle1|$$

Open bisimulation on qCCS | Example

Intuitively equivalent processes

$$\left\langle M[q;x]\left(c!0+d!0\right)\left|+\right\rangle\left\langle+\right|_{q}\otimes\rho_{E}\right\rangle$$

$$\left\langle \mathcal{E}[q] \left(c!0 + d!0 \right), \left| + \right\rangle \left\langle + \right|_{q} \otimes \rho_{E} \right\rangle$$

» *M*: projective measurement $\{|0\rangle, |1\rangle\}$

» \mathcal{E} : super-operator $\mathcal{E}(\rho) = |0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

Not open bisimilar

Our equivalence relation

Our equivalence relation | Informal definition

When are two processes *equivalent*?

They are observed the same by any attackers

- » Observable actions = Receiving/sending data
- » Attackers = Processes

They <u>use the same channels</u> with the same prob. whenever they <u>run parallel with any other process</u>

Our equivalence relation | Related notions

- Barbed congruence
 - » Defined in qCCS [DF'12]
 - » Coincides with \approx_o [DF'12]
- Testing equivalence
 - » Not defined in quantum process calculi

Our equivalence relation | Informal definition

When are two processes *equivalent*?

They are observed the same by any attackers

- » Observable actions = Receiving/sending data
- » Attackers = Processes

They <u>use the same channels</u> with the same **prob.** whenever they <u>run parallel with any other process</u>

Our equivalence relation | Solving nondeterminism

Processes have **nondeterministic** transitions

$$\begin{array}{c|c} \langle a!0 \mid \mid a?x.b!0 \mid \mid a?x.c!0, \rho \rangle \\ & \downarrow \tau & \downarrow \tau \\ \langle \mathbf{nil} \mid \mid b!0 \mid \mid a?x.c!0, \rho \rangle & \langle \mathbf{nil} \mid \mid a?x.b!0 \mid \mid c!0, \rho \rangle \\ & \downarrow b!0 & \downarrow c!0 \end{array}$$

Probabilities of using each channel?

Our equivalence relation | Solving nondeterminism

Schedulers solve nondeterminism Scheduler F: configuration \rightarrow next transition

$$\begin{array}{c|c} \langle a!0 \mid | a?x.b!0 \mid | a?x.c!0, \rho \rangle \\ \downarrow \tau & \downarrow \tau \\ \langle \mathbf{nil} \mid | b!0 \mid | a?x.c!0, \rho \rangle & \langle \mathbf{nil} \mid | a?x.b!0 \mid | c!0, \rho \rangle \\ \downarrow b!0 & \downarrow c!0 \\ \downarrow F & \downarrow c!0 \end{array}$$

Our equivalence relation | Informal definition

When are two processes *equivalent*?

They are observed the same by any attackers

- » Observable actions = Receiving/sending data
- » Attackers = Processes

They <u>use the same channels</u> with the same prob. whenever they <u>run parallel with any other process</u>

Observational equivalence | Definition

 $\langle P, \rho \rangle, \langle Q, \sigma \rangle$ are observationally equivalent $(\langle P, \rho \rangle \approx_{oe} \langle Q, \sigma \rangle)$ if

- *P* and *Q* hold the same quantum variables
- Their **Attacker** nt are the same
- For any process *R* and scheduler *F*, there exists a scheduler *F*' s.t. for any channel *c*, if (*P*||*R*, *ρ*) uses *c* w.p. *p* according to *F*, then (*Q*||*R*, *σ*) also uses *c* w.p. *p* according to *F*'
- (Symmetric condition)

Observational equivalence | Sketch

Run parallel with any process R

Observational equivalence | Example

Not bisimilar but intuitively equivalent processes

$$\left\langle M[q;x].(c!0+d!0), \left|+\right\rangle \left\langle +\right|_q \otimes \rho_E \right\rangle$$

$$\left\langle \mathcal{E}[q].(c!0+d!0), \left|+\right\rangle \left\langle +\right|_{q}\otimes \rho_{E}\right\rangle$$

» *M*: projective measurement $\{|0\rangle, |1\rangle\}$

» \mathcal{E} : super-operator $\mathcal{E}(\rho) = |0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

Not observationally equivalent

Observational equivalence | Example

Schedulers can choose **different** transitions after measurement

Processes are the same

 \Rightarrow Schedulers should choose the same transitions

Observational equivalence | Strategy

Strategies: schedulers with this limitation Strategy F: configuration \rightarrow next transition

Observational equivalence | Strategy

 $\langle P, \rho \rangle, \langle Q, \sigma \rangle$ are observationally equivalent with strategies $(\langle P, \rho \rangle \approx_{oe}^{st} \langle Q, \sigma \rangle)$ if

- *P* and *Q* hold the same quantum variables
- Their environment are the same
- For any process *R* and strategy *F*, there exists a strategy *F*' s.t. for any channel *c*, if (*P*||*R*, *ρ*) uses *c* w.p. *p* according to *F*, then (*Q*||*R*, *σ*) also uses *c* w.p. *p* according to *F*'
- (Symmetric condition)

Observational equivalence | Example

Not bisimilar but intuitively equivalent processes

$$\left\langle M[q;x].(c!0+d!0), \left|+\right\rangle \left\langle +\right|_q \otimes \rho_E \right\rangle$$

$$\left\langle \mathcal{E}[q].(c!0+d!0), \left|+\right\rangle \left\langle +\right|_{q} \otimes \rho_{E} \right\rangle$$

» *M*: projective measurement $\{|0\rangle, |1\rangle\}$

» \mathcal{E} : super-operator $\mathcal{E}(\rho) = |0\rangle\langle 0|\rho|0\rangle\langle 0| + |1\rangle\langle 1|\rho|1\rangle\langle 1|$

Not observationally equivalent

Observationally equivalent with strategies

Observational equivalence | Comparing with others

Relation among $\approx_o, \approx_{oe}, \approx_{oe}^{st}$? $\approx_o \subseteq \approx_{oe} \subseteq \approx_{oe}^{st}$?

Observational equivalence | Comparing with others

Conclusion | Summary

- Introduce qCCS and open bisimulation \approx_o
- Define observational equivalence
 - » With schedulers: \approx_{oe}
 - » With strategies: \approx_{oe}^{st}
- Show motivating examples are \approx_{oe}^{st}
- Show $\approx_o, \approx_{oe}, \approx_{oe}^{st}$ are incomparable

Conclusion | Future work

- Formalize our "intuition"
 - » Is observational equivalence really "intuitive"?

Conclusion | Future work

- Check congruence property
 - » Congruence for parallel compositions holds: $P \approx_{oe}^{st} Q \Longrightarrow P ||R \approx_{oe}^{st} Q||R$
 - » Does congruence for other constructs hold?

Conclusion

- » Summary
 - Define observational equivalence
 - With schedulers \approx_{oe}
 - With strategies \approx_{oe}^{st}
 - Show motivating examples are \approx_{oe}^{st}
 - Show \approx_o , \approx_{oe} , \approx_{oe}^{st} are incomparable
- » Future work
 - Formalize our "intuition"
 - Check congruence property