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Abstract The LLL basis reduction algorithm was the first polynomial-time algo-
rithm to compute a reduced basis of a given lattice, and hence also a short vector
in the lattice. It approximates an NP-hard problem where the approximation qual-
ity solely depends on the dimension of the lattice, but not the lattice itself. The
algorithm has applications in number theory, computer algebra and cryptography.

In this paper, we provide an implementation of the LLL algorithm. Both its
soundness and its polynomial running-time have been verified using Isabelle/HOL.
Our implementation is nearly as fast as an implementation in a commercial computer
algebra system, and its efficiency can be further increased by connecting it with fast
untrusted lattice reduction algorithms and certifying their output.

We additionally integrate one application of LLL, namely a verified factorization
algorithm for univariate integer polynomials which runs in polynomial time.
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1 Introduction

The LLL basis reduction algorithm by Lenstra, Lenstra and Lovász [17] is a remark-
able algorithm with numerous applications. There even exists a 500-page book solely
about the LLL algorithm [21], describing applications in number theory and cryptog-
raphy, as well as the best known deterministic algorithm for factoring polynomials,
which is used in many of today’s computer algebra systems. One immediate appli-
cation of the LLL algorithm is to compute an approximate solution to the following
problem:

Shortest Vector Problem (SVP): Given a linearly independent set of m
vectors, f0, . . . , fm−1 ∈ Zn, which form a basis of the corresponding lattice (the
set of vectors that can be written as linear combinations of the fi, with integer
coefficients), compute a non-zero lattice vector that has the smallest-possible norm.

A quick example showing that the problem can have quite non-trivial solutions
is as follows (we will return to this example later).

Example 1 Consider f0 = (1, 1 894 885 908, 0), f1 = (0, 1, 1 894 885 908), and f2 =
(0, 0, 2 147 483 648). The lattice of f0, f1, f2 has a shortest vector (−3, 17, 4), which
can be written as the linear combination −3f0 + 5684 657 741f1 − 5 015 999 938f2.

In fact, finding an exact solution of SVP is NP-hard in general [20]. Nevertheless,
the LLL algorithm takes any basis of a lattice L as input and outputs in polynomial-
time a basis of L which is reduced w.r.t. α, which implies, that the first of the output
vectors is at most α

m−1
2 times larger than a shortest non-zero vector in the lattice.

The parameter α > 4
3 also determines the running time.

In this paper we provide the first mechanized soundness proof of the LLL algo-
rithm: the functional correctness is formulated as a theorem in the proof assistant
Isabelle/HOL [24]. Since Isabelle code can be exported to other programming lan-
guages and then run on actual data, our work results in a verified implementation
of the LLL algorithm. Having verified implementations of algorithms is important
not mainly because the correctness of the algorithms themselves might be in doubt,
but because such implementations can be composed into large reliable programs, of
which every part has been formally proved to work as intended.

The proof of soundness consists of two phases: First, we prove that an abstract
version of the algorithm, one that is inefficient in practice, is sound. Next, we refine
the abstract version to obtain an optimized algorithm, and show that the output of
the two versions coincides. Thus, we rely on the more easily provable soundness of
the inefficient implementation, to derive the soundness of the optimized one.

We additionally provide a formal proof of a polynomial bound on the running-
time of the algorithm: we first show a polynomial bound on the number of arithmetic
operations, and then prove that the bit-representations of all numbers during the
execution are polynomial in the size of the input.

We also include a formalization of an alternative approach to the reliable com-
putation of reduced bases: getting a reduced basis using a fast external (unverified)
tool, and then certifying the result using a verified checker. This approach, which we
call the certified approach, runs 10x faster than the fully verified algorithm, and is
even faster than Mathematica.
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In addition to the LLL algorithm, we also verify one application, namely a
polynomial-time algorithm for factoring univariate integer polynomials, that is: fac-
torization into the content and a product of irreducible integer polynomials. It reuses
most parts of the formalization of the Berlekamp–Zassenhaus factorization algo-
rithm [7], where the main difference is that the exponential-time algorithm in the
reconstruction phase is replaced by a polynomial-time procedure based on the LLL
algorithm.

The whole formalization is based mainly on definitions and proofs from two books
on computer algebra: [29, Chapter 16] and [21]. Thanks to this formalization effort,
we were able to find a serious (but fixable) flaw in the factorization algorithm for
polynomials as it is presented in [29].

Our formalization is available in the archive of formal proofs (AFP) [2, 9]. All
definitions and lemmas found in this paper are also links which lead to an HTML
version of the corresponding Isabelle theory file.

Related work. This work combines two conference papers [3, 8] in a revised and
consistent manner. We have expanded the factorization part by providing more de-
tails about the bug detected in [29], the required modifications to fix it, as well as
some optimizations. Moreover, the formalization of the certified approach is new,
and new experiments comparing the performance of the verified algorithm, Math-
ematica, the certified approach, and a dedicated floating-point implementation are
also provided.

We briefly discuss how the present work ties in with other related projects. As
examples of verified software we mention a solver for linear recurrences by Eberl [10]
and CeTA [6, 26], a tool for checking untrusted termination proofs and complexity
proofs. Both tools require computations with algebraic numbers. Although verified
implementations of algebraic numbers are already available both in Coq [4] and
in Isabelle/HOL [16, 18], there is still room for improvement: since the algebraic
number computations heavily rely upon polynomial factorization, the verification
of a fast factorization algorithm would greatly improve the performance of these
implementations. A natural choice would then be van Hoeij’s algorithm [28], which
is currently the fastest deterministic polynomial factorization algorithm. Since this
algorithm uses LLL basis reduction as a subroutine, a future verified version of it
can make full use of our verified, efficient LLL implementation.

Structure of the work. The remaining sections are organized as follows: Section 2
contains the preliminaries. We present the main ideas and algorithms for Gram–
Schmidt orthogonalization, short vectors and LLL basis reduction in Section 3. The
formalization and verification of these algorithms is discussed in Section 4. In Sec-
tion 5 we discuss the details of an efficient implementation of the algorithms based on
integer arithmetic. In Section 6 we illustrate the formal proof of the polynomial-time
complexity of our implementation of the LLL algorithm. Section 7 explains how to
invoke external lattice reduction algorithms and certify their result. In Section 8 we
present experimental results, relating various verified and unverified implementations
of lattice reduction algorithms. We present our verified polynomial-time algorithm
for factoring integer polynomials in Section 9, and describe the flaw in the textbook.
Finally, we conclude in Section 10.
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2 Preliminaries

We assume some basic knowledge of linear algebra, but recall some notions and no-
tations. The inner product of two real vectors v = (c0, . . . , cn) and w = (d0, . . . , dn)
is v • w =

∑n
i=0 cidi. Two real vectors are orthogonal if their inner product is zero.

The Euclidean norm of a real vector v is ||v|| =
√
v • v. A linear combination of vec-

tors v0, . . . , vm is
∑m

i=0 civi with c0, . . . , cm ∈ R, and we say it is an integer linear
combination if c0, . . . , cm ∈ Z. A set of vectors is linearly independent if no element
is a linear combination of the others. The span of a set of vectors is the vector space
formed of all linear combinations of vectors from the set. If {v0, . . . , vm−1} is linearly
independent, the spanned space has dimension m and {v0, . . . , vm−1} is a basis of
it. The lattice generated by linearly independent vectors v0, . . . , vm−1 ∈ Zn is the
set of linear combinations of v0, . . . , vm−1 with integer coefficients.

Throughout this paper we only consider univariate polynomials. The degree of a
polynomial f(x) =

∑n
i=0 cix

i with cn ̸= 0 is degree f = n, the leading coefficient is
lc f = cn, the content is the GCD of coefficients {c0, . . . , cn}, and the norm ||f || is
the norm of its corresponding coefficient vector, i.e., ||(c0, . . . , cn)||. A polynomial is
primitive if its content is 1.

If f = f0 · . . . · fm, then each fi is a factor of f , and is a proper factor if f is
not a factor of fi. Units are the factors of 1, i.e., ±1 in integer polynomials, and
non-zero constants in field polynomials. By a factorization of a polynomial f we
mean a decomposition f = c · f0 · . . . · fm into the content c and irreducible factors
f0, . . . , fm; here irreducibility means that each fi is not a unit and admits only units
as proper factors.

Our tool of choice for the formalization of proofs is Isabelle/HOL. Throughout
the paper we simply write ‘Isabelle’ to refer to Isabelle/HOL. We assume familiarity
with it, and refer the reader to [23] for a quick introduction. We also briefly review
some Isabelle notation, in order to make most of the Isabelle code in the paper
accessible to readers familiar only with standard mathematical notation.

All terms in Isabelle must have a well-defined type, specified with a double-colon:
term :: type. Type variables have a ′ sign before the identifier. The type of a function
with domain A and range B is specified as A ⇒ B. Each of the base types nat, int,
and rat corresponds to N, Z, and Q, respectively. Access to an element of a vector,
list, or array is denoted, respectively, by $, !, !!. For example, if fs is of type int vec
list, the type of lists of vectors of integers, then fs ! i $ j denotes the j-th component
of the i-th vector in the list. In the text, however, we will often use more convenient
mathematical notations instead of Isabelle’s notations. For example, we write fi
rather than fs ! i. The syntax for function application in Isabelle is func arg1 arg2 ...;
terms are separated by white spaces, and func can be either the name of a function
or a lambda expression. Some terms that we index with subscripts in the in-text
mathematical notation are defined as functions in the Isabelle code (for example
µi,j stands for µ i j). Isabelle keywords are written in bold font, and comments are
embraced in (* ... *).

At some points, we use locales [1] to ease the development of the formal proofs.
Locales are detached proof contexts with fixed sets of parameters and assumptions,
which can be later reused in other contexts by means of so-called interpretations.
The context keyword is used to set a block of commands, delimited by begin and
end, as part of an existing locale. It can also be used to declare anonymous proof
contexts. Locales can be seen as permanent contexts.
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3 The LLL Basis Reduction Algorithm

In this section we give a brief overview of the LLL Basis Reduction Algorithm and
the formalization of some of its main components in Isabelle/HOL.

3.1 Gram–Schmidt Orthogonalization and Short Vectors

The Gram–Schmidt orthogonalization (GSO) procedure takes a list of linearly inde-
pendent vectors f0, . . . , fm−1 from Rn or Qn as input, and returns an orthogonal
basis g0, . . . , gm−1 for the space that is spanned by the input vectors. The vectors
g0, . . . , gm−1 are then referred to as GSO vectors. To be more precise, the GSO is
defined by mutual recursion as:

gi := fi −
∑
j<i

µi,jgj µi,j :=


1 if i = j

0 if j > i
fi•gj

||gj ||2 if j < i

(1)

An intuition for these definitions is that if we remove from some fi the part that
is contained in the subspace spanned by {f0, . . . , fi−1}, then what remains (the
vector gi) must be orthogonal to that subspace. The µi,j are the coordinates of fi
w.r.t. the basis {g0, . . . , gm−1} (thus µi,j = 0 for j > i, since then gj ⊥ fi).

The GSO vectors have an important property that is relevant for the LLL algo-
rithm, namely they are short in the following sense: for every non-zero integer vector
v in the lattice generated by f0, . . . , fm−1, there is some gi such that ||gi|| ≤ ||v||.
Moreover, g0 = f0 is an element in the lattice. Hence, if g0 is a short vector in
comparison to the other GSO vectors, then g0 is a short lattice vector.

The importance of the above property of the Gram-Schmidt orthogonalization
motivates the definition of a reduced basis, which requires that the GSO vectors be
nearly sorted by their norm.

Definition 1 Let α ≥ 1. We say that a basis f0, . . . , fm−1 is reduced w.r.t. α, if
the GSO vectors satisfy ||gi−1||2 ≤ α||gi||2 for all 1 < i < m and moreover |µi,j | ≤ 1

2
holds for all j < i < m.

The requirement on the µi,j implies that the f -vectors are nearly orthogonal. (If
|µi,j | = 0 for all j < i < m, then the f -vectors are pairwise orthogonal.)

The connection between a reduced basis and short vectors can now be seen easily:
If f0, . . . , fm−1 is reduced, then for any non-zero lattice vector v we have

||f0||2 = ||g0||2 ≤ αm−1 min{||gi||2 | 0 ≤ i < m} ≤ αm−1||v||2, (2)

and thus, ||f0|| ≤ α
m−1

2 ||v|| shows that f0 is a short vector which is at most α
m−1

2

longer than the shortest vectors in the lattice.
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Example 2 Consider the vectors f0, f1, f2 of Example 1. The corresponding GSO
vectors are

g0 = (1, 1894885908, 0)

g1 =

(
−1894885908

3590592604336984465
,

1

3590592604336984465
, 1894885908

)
g2 =

(
7710738904443408018070044672

12892355250319448667906759645314351761
,

−4069236502255632384

12892355250319448667906759645314351761
,

2147483648

12892355250319448667906759645314351761

)
.

This basis is not reduced for any reasonable α, since the norms ||g0|| ≈ 2 · 109 ≈ ||g1||
and ||g2|| ≈ 6 · 10−10 show that g2 is far shorter than g0 and g1.
Example 3 Consider the vectors f0 = (−3, 17, 4), f1 = (−8480,−811,−2908) and
f2 = (1290, 3351,−13268). The corresponding GSO vectors are

g0 = (−3, 17, 4)

g1 =

(
−2662657

314
,
−255011

314
,
−456598

157

)
g2 =

(
99196564668416

25441719249
,
91577292685312

25441719249
,
−314806070411264

25441719249

)
.

This basis is reduced for every α ≥ 1, since the norms ||g0|| ≈ 18, ||g1|| ≈ 9001 and
||g2|| ≈ 13463 are sorted and |µi,j | ≤ 1

2 is satisfied for every j < i < 3.

In a previous formalization [27] of the Gram–Schmidt orthogonalization proce-
dure, the µ-values are computed implicitly. Since for the LLL algorithm we need the
µ-values explicitly, we implement a new version of GSO. Here the dimension n and
the input basis fs are fixed as locale parameters. The fs are given here as rational
vectors, but the implementation is parametric in the type of field.
locale gram_schmidt_fs =

fixes n :: nat and fs :: rat vec list
begin
fun gso :: nat ⇒ rat vec and µ :: nat ⇒ nat ⇒ rat where

gso i = fs ! i + sumlist (map (λ j. − µ i j · gso j) [0 .. <i])
| µ i j = (if j < i then (fs ! i • gso j) / ∥gso j∥2 else if i = j then 1 else 0)
It is easy to see that these Isabelle functions compute the g-vectors and µ-values
precisely according to their defining equation (1).

Based on this new formal definition of GSO with explicit µ-values, it is now easy
to formally define a reduced basis. Here, we define a more general notion, which only
requires that the first k vectors form a reduced basis.
definition reduced α k =

((∀ i. i + 1 < k −→ ||gso i||2 ≤ α · ||gso (i + 1)||2) ∧
(∀ i j. i < k −→ j < i −→ |µ i j| ≤ 1/2))

end (* of locale gram_schmidt_fs *)

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#def:gso
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#def:reduced
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3.2 LLL Basis Reduction

The LLL algorithm modifies the input f0, . . . , fm−1 ∈ Zn until the corresponding
GSO is reduced w.r.t. α, while preserving the generated lattice. The approximation
factor α can be chosen arbitrarily as long as α > 4

3 .1
In this section, we present a simple implementation of the algorithm given as

pseudo-code in Algorithm 1, which mainly corresponds to the LLL algorithm in a
textbook [29, Chapters 16.2–16.3] (the textbook fixes α = 2 and m = n). Here, ⌊x⌉ =
⌊x+ 1

2⌋ is the integer nearest to x. Note that whenever µi,j or gi are referred to in
the pseudo-code, their values are computed (as described in the previous subsection)
for the current values of f0, . . . , fm−1.

Algorithm 1: The LLL basis reduction algorithm, verified version
Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn and α > 4

3
Output: A basis for the same lattice as f0, . . . , fm−1, that is reduced w.r.t. α

1 i := 0
2 while i < m do
3 for j = i− 1 downto 0 do
4 fi := fi − ⌊µi,j⌉ · fj // Make (new) µi,j's small.
5 if i > 0 ∧ ||gi−1||2 > α · ||gi||2 then // If the g-vectors are not nearly sorted
6 (i, fi−1, fi) := (i− 1, fi, fi−1) // swap the two corresponding f-vectors.

else
7 i := i+ 1

8 return f0, . . . , fm−1

Example 4 On input f0, f1, f2 from Example 1, with α = 3
2 , the LLL algorithm

computes the reduced basis given in Example 3.

We briefly explain the ideas underpinning Algorithm 1: Lines 3–4 work towards
satisfying the second requirement for the basis to be reduced (see Definition 1),
namely that the µi,j values be small. This is done by “shaving off”, from each fi,
the part that overlaps with some part of an fj (with j < i). This ensures that when
the GSO is computed for this new basis, a (norm-wise) significant part of each fi
does not lie in the subspace spanned by the fj with j < i (as those parts have
already been removed in line 4). When a violation of the first requirement for being
a reduced basis is detected in line 5, the algorithm attempts to rectify this by per-
forming a swap of the corresponding f -vectors in the next line. Thus, the algorithm
continually attempts to fix the basis in such a way that it satisfies both requirements
for being reduced, but the fact that it always succeeds, and in polynomial-time, is
not obvious at all. For a more detailed explanation of the algorithm itself, we refer
to the textbooks [21, 29].

In order to formalize the main parts of Algorithm 1, we first encode it in several
functions, which we list and explain below. We are using a locale that fixes the
approximation factor α, the dimensions n and m, and the basis fsinit of the initial
(input) lattice.

1 Choosing α = 4
3

is also permitted, but then the polynomial running time is not guaranteed.
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locale LLL =

fixes n :: nat and m :: nat and fs_init :: int vec list and α :: rat
locale LLL_with_assms = LLL +

assumes length fs_init = m and α ≥ 4/3 and ...
begin
definition basis_reduction_step (i, fs) = ... (* implementation of lines 3−7 *)
function basis_reduction_main (i, fs) = (if i < m ∧ (* invariant is satisfied
*)

then basis_reduction_main (basis_reduction_step (i, fs))
else fs)

definition reduce_basis = basis_reduction_main (0, fs_init)
end (* of locale LLL_with_assms *)

The following are some remarks regarding the above code fragments:
– The body of the while-loop (lines 3–7) is modeled by the function basis_reduction_

step, whose details we omit here, but can be seen in the formalization.
– We remark that the actual Isabelle sources also contain an optimization that

makes it possible to skip the execution of lines 3–4 in some cases when it can be
determined that the µ-values are already small. This optimization is explained
in more detail in Section 5.

– The while-loop itself (line 2) is modeled as the function basis_reduction_main.
The termination of the function will be proved later. Here, it is essential that
invalid inputs do not cause nontermination: bad choices of α are prohibited by
locale assumptions, and invalid inputs of fs result in immediate termination by
checking an invariant in every iteration of the loop.

– Finally, the full algorithm is implemented as the function reduce_basis, which
starts the loop and then returns the final integer basis f0, . . . , fm−1.

In this section we only looked at how the algorithms were specified in Isabelle. In
the next section we discuss the formal proofs of their soundness.

4 Soundness of the LLL Basis Reduction Algorithm

4.1 Gram–Schmidt Orthogonalization and Short Vectors

As mentioned in the previous section, the GSO procedure itself has already been
formalized in Isabelle as a function called gram_schmidt, in way of proving the ex-
istence of Jordan normal forms [27]. That formalization uses an explicit carrier set
to enforce that all vectors are of the same dimension. For the current formalization
task, the use of a carrier-based vector and matrix library is necessary: encoding di-
mensions via types [15] is not expressive enough for our application; for instance for
a given square matrix of dimension n we need to multiply the determinants of all
submatrices that only consider the first i rows and columns for all 1 ≤ i ≤ n.

Below, we summarize the main result that is formally proved about gram_schmidt
[27]. For the following code, we open a context assuming common conditions for
invoking the Gram–Schmidt procedure, namely that fs is a list of linearly independent
vectors, and that gs is the GSO of fs. Here, we also introduce our notion of linear

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#def:basis_reduction_step
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#def:basis_reduction_main
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#def:reduce_basis
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independence for lists of vectors, based on an definition of linear independence for
sets from an AFP-entry of H. Lee about vector spaces.

definition lin_indpt_list n fs =

(set fs ⊆ carrier_vec n ∧ distinct fs ∧ lin_indpt (set fs))

context gram_schmidt_fs begin (* existing context that fixes fs and n *)
context fixes gs m (* now additionally gs and m are fixed *)

assumes lin_indpt_list n fs and length fs = m and gram_schmidt n fs = gs
begin
lemma gram_schmidt:

shows span (set fs) = span (set gs) and orthogonal gs and length gs = m

Unfortunately, lemma gram_schmidt does not suffice for verifying the LLL algo-
rithm, since it works basically as a black box. By contrast, we need to know how the
GSO vectors are computed, that the connection between fs and gs can be expressed
via a product of matrices, and we need the recursive equations to compute gs and
the µ-values. In order to reuse the existing results on gram_schmidt, we first show
that both definitions are equivalent.

lemma gs = map gso [0..<m]

The connection between the f -vectors, g-vectors and the µ-values is expressed
by the matrix identity f0

...
fm−1

 =

 µ0,0 . . . µ0,m−1

...
. . .

...
µm−1,0 . . . µm−1,m−1

 ·

 g0
...

gm−1

 (3)

by interpreting the fi’s and gi’s as row vectors.
While there is no conceptual problem in proving the matrix identity (3), there are

some conversions of types required. For instance, in lemma gram_schmidt, gs is a list
of vectors; in (1), g is a recursively defined function from natural numbers to vectors;
and in (3), the list of gi’s is seen as a matrix. Consequently, the formalized statement
of (3) contains conversions such as mat and mat_of_rows, which convert a function
and a list of vectors, respectively, into a matrix. In any case, the overhead is small
and very workable; only a few lines of easy conversions are added when required. An
alternative approach could be to do everything at the level of matrices [13].

lemma mat_of_rows n fs = mat m m (λ(i, j). µ fs i j) · mat_of_rows n gs

As mentioned in Section 3.1, our main use of GSO with regards to the LLL
algorithm is that the norm of the shortest GSO vector is a lower bound on the
norms of all lattice vectors. While proving this fact requires only a relatively short
proof on paper, in the formalization we had to expand the condensed paper-proof
into 170 lines of more detailed Isabelle source, plus several auxiliary lemmas. For
instance, on paper one easily multiplies two sums ((

∑
. . .) ·

∑
. . . =

∑
. . .) and

directly omits quadratically many neutral elements by referring to orthogonality,
whereas we first had to prove this auxiliary fact in 34 lines.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#def:lin_indpt_list
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/Jordan_Normal_Form/Gram_Schmidt.html#lem:gram_schmidt_result
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:main_connect
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:matrix_equality
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lemma gram_schmidt_short_vector: assumes v ∈ lattice_of fs \ {0}
shows ∃ i < m. ||gso i||2 ≤ ||v||2

With the help of this result it is straight-forward to formalize the reasoning in
(2) to obtain the result that the first vector of a reduced basis is a short vector in
the lattice.

lemma reduced_short_vector: assumes reduced α m
and α ≥ 1

and v ∈ lattice_of fs \{0}
shows ||fs ! 0||2 ≤ αm−1 · ||v||2

end (* of context that fixes m and gs *)

Finally, we mention the formalization of a key ingredient in reasoning about the
LLL algorithm: orthogonal projections. We say w ∈ Rn is a projection of v ∈ Rn

into the orthogonal complement of S ⊆ Rn, or just w is an oc-projection of v and S,
if v − w is in the span of S and w is orthogonal to every element of S:

definition is_oc_projection w S v =

(w ∈ carrier_vec n ∧ v − w ∈ span S ∧ (∀u ∈ S. w • u = 0))
end (* of locale gram_schmidt_fs *)

Returning to the GSO procedure, we prove that gj is the unique oc-projection
of fj and {f0, . . . , fj−1}. Hence, gj is uniquely determined in terms of fj and the
span of {f0, . . . , fj−1}. Put differently, we obtain the same gj even if we modify
some of the first j input vectors of the GSO: only the span of these vectors must be
preserved. This result is in particular important for proving that only gi−1 and gi
can change in Line 6 of Algorithm 1, since for any other gj , neither fj nor the set
{f0, . . . , fj−1} is changed by a swap of fi−1 and fi.

4.2 LLL Basis Reduction

In this subsection we give an overview of the formal proof that Algorithm 1 termi-
nates on valid inputs, with an output that has the desired properties.

In order to prove the correctness of the algorithm, we define an invariant, which
is simply a set of conditions that the current state must satisfy throughout the entire
execution of the algorithm. For example, we require that the lattice generated by
the original input vectors f0, . . . , fm−1 be maintained throughout the execution of
the algorithm. Intuitively this is obvious, since the basis is only changed in lines 4
and 6, and swapping two basis vectors or adding a multiple of one basis vector to
another will not change the resulting lattice. Nevertheless, the formalization of these
facts required 170 lines of Isabelle code.

In the following Isabelle statements we write reducedfs i as a short form of gram_
schmidt_fs.reduced n fs α i, i.e., the Isabelle expression for the predicate reduced
w.r.t. α, considering the first i vectors, within the locale gram_schmidt_fs with an
n-dimensional basis fs. Similarly, we write µfs and gsofs when we are referring to the
µ-values and the GSO vectors corresponding to the basis fs.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:gram_schmidt_short_vector
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:weakly_reduced_imp_short_vector
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#def:is_oc_projection
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context LLL_with_assms begin
definition LLL_invariant i fs = (

lin_indpt_list n fs ∧
lattice_of fs = lattice_of fs_init ∧
length fs = m ∧ reducedfs i ∧ i ≤ m)

The key correctness property of the LLL algorithm is then given by the following
lemma, which states that the invariant is preserved in the while-loop of Algorithm 1
(i and fs in the definition above refer to the variables with the same name in the main
loop of the algorithm). Specifically, the lemma states that if the current state (the
current pair (i, fs)), prior to the execution of an instruction, satisfies the invariant,
then so does the resulting state after the instruction. It also states a decrease in
a measure, which will be defined below, to indicate how far the algorithm is from
completing the computation – this is used to prove that the algorithm terminates.

lemma basis_reduction_step: assumes LLL_invariant i fs
and i < m
and basis_reduction_step (i, fs) = (i′, fs′)

shows LLL_invariant i′ fs′ and LLL_measure i′ fs′ < LLL_measure i fs

Using Lemma basis_reduction_step, one can prove the following crucial properties
of the LLL algorithm.

1. The resulting basis is reduced and spans the same lattice as the initial basis.

lemma reduce_basis: assumes reduce_basis = fs
shows lattice_of fs = lattice_of fs_init and reducedfs m

2. The algorithm terminates, since the LLL_measure is decreasing in each iteration.
3. The number of loop iterations is bounded by LLL_measure i fs when invok-

ing the algorithm on inputs i and fs. Therefore, reduce_basis requires at most
LLL_measure 0 fs_init many iterations.

Both the fact that the algorithm terminates and the fact that the invariant is main-
tained throughout its execution, are non-trivial to prove, as both proofs require
equations that determine how the GSO will change through the modification of
f0, . . . , fm−1 in lines 4 and 6. Specifically, we formally prove that the GSO remains
unchanged in lines 3–4, that a swap of fi−1 and fi will at most change gi−1 and
gi, and we provide an explicit formula for calculating the new values of gi−1 and gi
after a swap. In these proofs we require the recursive definition of the GSO as well
as the characterization via oc-projections.

In the remainder of this section, we provide details on the termination argument.
The measure that is used for proving termination is defined below using Gramian
determinants, a generalization of determinants which also works for non-square ma-
trices. The definition of the measure is also the point where the condition α > 4

3
becomes important: it ensures that the base 4α

4+α of the logarithm is strictly greater
than 1.2

2 4α
4+α

= 1 for α = 4
3

and in that case one has to drop the logarithm from the measure.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#def:LLL_invariant
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#lem:basis_reduction_step
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#lem:reduce_basis
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definition Gramian_determinant :: int vec list ⇒ nat ⇒ int where
Gramian_determinant fs k = (let M = mat_of_rows n (take k fs) in det (M · MT))

definition D fs = (
∏

k < m. Gramian_determinant fs k)
definition LLL_measure i fs = max 0 (2 · ⌊ log ( 4·α

4+α ) (D fs)⌋ + m − i )

In the definition, the matrix M is the k× n submatrix of fs corresponding to the
first k elements of fs. Note that the measure is defined in terms of the variables i and
fs. However, for lines 3–4 we only proved that i and the GSO remain unchanged.
Hence the following lemma is important: it implies that the measure can also be
defined purely from i and the GSO of fs, and that the measure will be positive.

lemma Gramian_determinant: assumes LLL_invariant i fs and k ≤ m
shows Gramian_determinant fs k = (

∏
j<k. ||gsofs j||2)

and Gramian_determinant fs k > 0
end (* of locale LLL_with_assms *)

Having defined a suitable measure, we sketch the termination proof: The value of
the Gramian determinant for parameter k ̸= i stays identical when swapping fi and
fi−1, since it just corresponds to an exchange of two rows, which will not modify the
absolute value of the determinant. The Gramian determinant for parameter k = i can
be shown to decrease, by using the first statement of lemma Gramian_determinant,
the explicit formula for the new value of gi−1, the condition ||gi−1||2 > α · ||gi||2, and
the fact that |µi,i−1| ≤ 1

2 .

5 An Efficient Implementation of the LLL Basis Reduction Algorithm

In the previous section we described the formalization of the LLL algorithm, which
can already serve as a verified implementation of the algorithm. For the performance
of the executable code obtained from the formalization, however, implementation-
specific choices, such as how numbers should be represented, can have a huge impact.
For example, working with rational numbers, represented as pairs of integers, incurs
a huge performance penalty due to the need to perform a gcd computation after each
operation, in order to reduce the resulting fraction and prevent a blow-up in the size
of the denominators. To make this more concrete, one of our earlier implementations,
based on rational number arithmetic, spent over 80% of the running time on gcd
computations.

These considerations motivate us to opt for a version of the LLL algorithm that
avoids the use of rationals, instead using only integers. One obstacle is that both
the GSO vectors and the µ-matrix usually consist of non-integral rational numbers.
This is where Gramian determinants come into play once again.

For brevity of notation, we henceforth denote Gramian_determinant fs k by dk or
d k, unless we wish to emphasize that dk is defined as a determinant. Here, for d we
often omit the implicit parameter fs if it is clear from the context. We also adopt
the convention that d0 = 1.

The most important fact for the integer implementation is given by the following
lemma. It states that although the µ-values themselves will not be integers in general,
multiplying each of them by an appropriate Gramian determinant will always result
in an integer.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#def:Gramian_determinant
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#def:D
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#def:LLL_measure
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#lem:Gramian_determinant
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lemma d_mu_Ints: assumes j ≤ i and i < m shows d (j + 1) · µ i j ∈ Z

Based on this fact we derive a LLL implementation which only tracks the values
of µ̃, where µ̃i,j := dj+1µi,j (in the Isabelle source code, µ̃ is called dµ). We formally
prove that the µ̃ values can be calculated using only integer arithmetic, and that it
suffices to keep track of only these values in the LLL algorithm.

5.1 Gram–Schmidt Orthogonalization

In order to obtain a full integer-only implementation of the LLL algorithm, we also
require such an implementation of the Gram–Schmidt orthogonalization. For this,
we mainly follow [12], where a GSO-algorithm using only operations in an abstract
integral domain is given. We implemented this algorithm for the integers and proved
the main soundness results following [12].

Algorithm 2: GSO computation (adapted from [12]) – for µ̃-values only
Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn

Output: µ̃ where µ̃i,j = dj+1µi,j

1 for i = 0, . . . ,m− 1 do
2 µ̃i,0 := fi • f0
3 for j = 1, . . . , i do
4 σ := µ̃i,0µ̃j,0

5 for l = 1, . . . , j − 1 do
6 σ := (µ̃l,lσ + µ̃i,lµ̃j,l) div µ̃l−1,l−1

7 µ̃i,j := µ̃j−1,j−1(fi • fj)− σ

8 return µ̃

The correctness of Algorithm 2 hinges on two properties: that the calculated µ̃i,j

are equal to dj+1µi,j , and that it is sound to use integer division div in line 6 of the
algorithm (in other words, that the intermediate values computed at every step of
the algorithm are integers). We prove these two statements in Isabelle by starting
out with a more abstract version of the algorithm, which we then refine to the one
above. Specifically, we first define the relevant quantities as follows:

definition µ̃ :: nat ⇒ nat ⇒ rat where µ̃ i j = d (i + 1) · µ i j
fun σ :: nat ⇒ nat ⇒ nat ⇒ rat where
σ 0 i j = 0

| σ (l + 1) i j = (d (l + 1) · σ l i j + µ̃ i l · µ̃ j l) / d l

Here µ̃ is not computed recursively, and σ l i j represents the value of σ at the
beginning of the l-th iteration of the innermost loop, i.e., σ 1 i j is the value of σ
after executing line 4. We remark that the type of (the range of) µ̃ and of σ is rat,
rather than int; this is why we can use general division for fields (/) in the above
function definition, rather than integer division (div). The advantage of letting µ̃
and σ return rational numbers is that we can proceed to prove all of the equations
and lemmas from [12] while focusing only on the underlying mathematics, without
having to worry about non-exact division. For example, from the definition above
we can easily show the following characterization.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_2.html#lem:d_mu_Ints
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#def:mu_prime
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#def:sigma
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lemma σ: assumes l ≤ m shows σ l i j = d l · (
∑

k < l. µ i k · µ j k · ||gs ! j||2)

This lemma is needed to prove one of the two statements that are crucial for the
correctness of the algorithm, namely that the computation of µ̃ in lines 2 and 7 is
correct (recall the identities d0 = 1 and dj = µ̃j−1,j−1 for j > 0).

lemma µ̃: assumes j ≤ i and i < m shows µ̃ i j = d j · (fs ! i • fs ! j) − σ j i j

To prove that the above quantities are integers, we first show digi ∈ Zn. For
this, we prove that gi can be written as a sum involving only the f vectors, namely,
that gi = fi −

∑
j<i µi,jgj = fi −

∑
j<i κi,jfj . Two sets of vectors f0, . . . , fi−1 and

g0, . . . , gi−1 span by construction the same space and both are linearly independent.
The κi,j are therefore simply the coordinates of

∑
j<i µi,jgj in the basis f0, . . . , fi−1.

Now, since the f vectors are integer-valued, it suffices to show that diκi,j ∈ Z, in
order to get digi ∈ Zn. To prove the former, observe that each gi is orthogonal to
every fl with l < i and therefore 0 = fl • gi = fl • fi −

∑
j<i κi,j(fl • fj). Thus, the

κi,j form a solution to a system of linear equations: f0 • f0 . . . f0 • fi−1

...
. . .

...
fi−1 • f0 . . . fi−1 • fi−1


︸ ︷︷ ︸

=A=Gramian_matrix fs i

·

 κi,0

...
κi,i−1


︸ ︷︷ ︸

=L

=

 f0 • fi
...

fi−1 • fi


︸ ︷︷ ︸

=b

The coefficient matrix A on the left-hand side where Ai,j = fi • fj is exactly the
Gramian matrix of fs and i. By an application of Cramer’s lemma,3 we deduce:

d i · κ i j = det A · L $ j
= det (replace_col A (A · L) j)
= det (replace_col A b j)

The matrix replace_col A b j, which is obtained from A by replacing its j-th
column by b, contains only inner products of the f vectors as entries and these are
integers. Then the determinant is also an integer and diκi,j ∈ Z.

Since µi,j =
fi•gj

||gj ||2 and dj+1

dj
= ||gj ||2, the theorem d_mu_Ints from the introduc-

tion of this section, stating that µ̃i,j = dj+1µi,j ∈ Z, is easily deduced from the fact
that digi ∈ Zn.

In our formalization we generalized the above proof so that we are also able to
show that dl(fi −

∑
j<l µi,jgj) is integer-valued (note that the sum only goes up to

l, not i). This generalization is necessary to prove that all σ values are integers.

lemma σ_integer: assumes l ≤ j and j ≤ i and i < m shows σ l i j ∈ Z

Having proved the desired properties of the abstract version of Algorithm 2, we
make the connection with an actual implementation on integers that computes the
values of µ̃ recursively using integer division.

3 Cramer’s lemma (also known as Cramer’s rule) states that, given a system of linear equa-
tions Ax = b, the solution can be computed via the equality detA · xj = detAj , where Aj is
the matrix obtained from A by replacing the j-th column with the vector b.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:sigma
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:mu_prime
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:sigma_integer
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fun σZ :: nat ⇒ nat ⇒ nat ⇒ int and µ̃Z :: nat ⇒ nat ⇒ int where
σZ 0 i j = µ̃Z i 0 · µ̃Z j 0

| σZ (l + 1) i j = (µ̃Z (l + 1) (l + 1) · σZ l i j
+ µ̃Z i (l + 1) · µ̃Z j (l + 1)) div µ̃Z l l

| µ̃Z i j = (if j = 0 then fs ! i • fs ! j
else µ̃Z (j − 1) (j − 1) · (fs ! i • fs ! j) − σZ (j − 1) i j)

Note that these functions only use integer arithmetic and therefore return a value
of type int. We then show that the new functions are equal to the ones defined
previously. Here, of_int is a function that converts a number of type int into the
corresponding number of type rat. For notational convenience, the indices of σZ are
shifted by one with respect to the indices of σ.

lemma σZ_µ̃: l < j =⇒ j ≤ i =⇒ i < m =⇒ of_int (σZ l i j) = σ (l + 1) i j
i < m =⇒ j ≤ i =⇒ of_int (µ̃Z i j) = µ̃ i j

We then replace the repeated calls of µ̃Z by saving already computed values in
an array for fast access. Furthermore, we rewrite σZ in a tail-recursive form, which
completes the integer implementation of the algorithm for computing µ̃.

Note that Algorithm 2 so far only computes the µ̃-matrix. For completeness, we
also formalize and verify an algorithm that computes the integer-valued multiples
g̃i = digi of the GSO-vectors. Again, we first define the algorithm using rational
numbers, then prove that all intermediate values are in fact integers, and finally
refine the algorithm to an optimized and executable version that solely uses integer
operations. A pseudo-code description is provided in the appendix as Algorithm 3.

5.2 LLL Basis Reduction

We can now describe the formalization of an integer-only implementation of the
LLL algorithm. For the version of the algorithm described in Section 3, we assumed
that the GSO vectors and µ-values are recomputed whenever the integer vectors
f are changed. This made it easier to formalize the soundness proof, but as an
implementation it would result in a severe computational overhead. Here we therefore
assume that the algorithm keeps track of the required values and updates them
whenever f is changed. This requires an extension of the soundness proof, since we
now need to show that each change made to a value is consistent with what we would
get if it were recomputed for the current value of f .

The version of the algorithm described in this section only stores f , the µ̃-matrix,
and the d-values, which, by lemma d_mu_Ints, are all integer values or integer vec-
tors [25]. This integer representation will be the basis for our verified integer imple-
mentation of the LLL algorithm. To prove its soundness, we proceed similarly as for
the GSO procedure: First we provide an implementation which still operates on ra-
tional numbers and uses field-division, then we use lemma d_mu_Ints to implement
and prove the soundness of an equivalent but efficient algorithm which only operates
on integers.

The main additional difficulty in the soundness proof of the reduction algorithm
is that we are now required to explicitly state and prove the effect of each compu-
tation that results in a value update. We illustrate this problem with lemma basis_

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#def:sigma_s
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Gram_Schmidt_Int.html#lem:sigma_s
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reduction_step (Section 4.2). The statement of this lemma only speaks about the ef-
fect, w.r.t. the invariant, of executing one while-loop iteration of Algorithm 1, but it
does not provide results on how to update the µ̃-values and the d-values. In order to
prove such facts, we added several computation lemmas of the following form, which
precisely specify how the values of interest are updated when performing a swap of
fi and fi−1, or when performing an update fi := fi − c · fj . The newly computed
values of d and µ are marked with a ′ sign after the identifier.

lemma basis_reduction_add_row_main: assumes...
and fs′ = fs [i := fs ! i − c · fs ! j] (* operation on f *)
and j < i and i < m

shows k ≤ m =⇒ d′ k = d k (* no change in d−values *)
and i0 < m =⇒ j0 < m =⇒ µ′ i0 j0 = (* change of µ *)

(if i0 = i ∧ j0 ≤ j then µ i0 j0 − c · µ j j0 else µ i0 j0)
and ... (* further updates *)

The computation lemma allows us to implement this part of the algorithm for
various representations, i.e., the full lemma contains local updates for f , g, µ, and d.
Moreover, the lemma has actually been used to prove the soundness of the abstract
algorithm: the precise description of the µ-values allows us to easily establish the
invariant in step 4 of Algorithm 1: if c = ⌊µi,j⌉, then the new µi,j-value will be
small afterwards and only the µi,j0 -entries with j0 ≤ j can change.

Whereas the computation lemmas such as the one above mainly speak about
rational numbers and vectors, we further derive similar computation lemmas for the
integer values µ̃ and d, in such a way that the new values can be calculated based
solely on the previous integer values of f , µ̃, and d. At this point, we also replace field
divisions by integer divisions; the corresponding soundness proofs heavily rely upon
Lemma d_mu_Ints. As an example, the computation lemma for the swap operation
of fk−1 and fk provides the following equality for d, and a more complex one for the
update of µ̃.4

d′ i = (if i = k then (d (k + 1) · d (k − 1) + (µ̃ k (k − 1))2) div d k else d i)

After having proved all the updates for µ̃ and d when changing f , we implemented
all the other expressions in Algorithm 1, e.g., ⌊µi,j⌉, based on these integer values.

Finally, we plug everything together to obtain an efficient executable LLL al-
gorithm – LLL_Impl.reduce_basis – that uses solely integer operations. It has the
same structure as Algorithm 1 and therefore we are able to prove that the integer
algorithm is a valid implementation of Algorithm 1, only the internal computations
being different. The following lemma resides in the locale LLL_with_assms, but LLL_
Impl.reduce_basis takes the locale parameters α and fs_init as explicit arguments,
since we define it outside the locale as required by Isabelle’s code-generator [14].

lemma reduce_basis_impl: LLL_Impl.reduce_basis α fs_init = reduce_basis

We also explain here the optimization of the algorithm, that was mentioned in
Section 3.2: Whenever the variable i is decreased in one iteration of the main loop,
the next loop iteration does not invoke lines 3–4 of Algorithm 1. Recall that these
lines have the purpose of obtaining small µi,j-values. However, when decreasing i,

4 The updates for µ̃i,j consider 5 different cases depending on the relations between i, j, k.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#lem:basis_reduction_add_row_main
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Impl.html#lem:d_swap
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Impl.html#lem:reduce_basis
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the µi,j-values are already small. This can be deduced from the invariant of the
previous iteration in combination with the computation lemmas for a swap.

In the appendix, Algorithm 5 shows a pseudo-code of LLL_Impl.reduce_basis.

6 Complexity of the LLL Basis Reduction Algorithm

In this section we describe the formal proof of the polynomial-time complexity of
our verified LLL implementation. This proof consists of two parts: showing that the
number of arithmetic operations performed during the execution of the algorithm is
bounded by a polynomial in the size of the input, and showing that the numbers on
which the algorithm operates throughout its execution have a polynomially-bounded
(bit-)size. These statements together give the desired complexity bound.

6.1 Bounds on the Numbers in the LLL Algorithm

The computational cost of each of the basic arithmetic operations on integers (+, −,
×, ÷) is obviously upper-bounded by a polynomial in the size of the largest operand.
We are therefore interested in bounding the sizes of the various intermediate values
that are computed throughout the execution of the algorithm. This is not a trivial
task as already apparent in Examples 1 and 2, where we see that even the initial
GSO computation can produce large numbers.

Our task is to formally derive bounds on fi, µ̃i,j , dk and gi, as well as on the
auxiliary values computed by Algorithm 2. Although the implementation of Algo-
rithm 2 computes neither gi nor g̃i throughout its execution, the proof of an upper
bound on µ̃i,j uses an upper bound on gi.

Whereas the bounds for gi will be valid throughout the whole execution of the
algorithm, the bounds for the fi depend on whether we are inside or outside the
for-loop in lines 3–4 of Algorithm 1.

To formally verify bounds on the above values, we first define a stronger LLL-
invariant which includes the conditions f_bound outside fs and g_bound fs and prove
that it is indeed satisfied throughout the execution of the algorithm. Here, we define
N as the maximum squared norm of the initial f -vectors.

definition f_bound outside k fs = (∀ i < m. ||fs ! i||2 ≤
(if outside ∨ k ̸= i then N · m else 4m−1 · Nm · m2))

definition g_bound fs = (∀ i < m. ||gsofs i||2 ≤ N)

definition LLL_bound_invariant outside (i, fs) =
(LLL_invariant i fs ∧ f_bound outside i fs ∧ g_bound fs)

Note that LLL_bound_invariant does not enforce a bound on the µ̃i,j , since such
a bound can be derived from the bounds on f , g, and the Gramian determinants.

Based on the invariant, we first formally prove the bound |µi,j |2 ≤ dj · ||fi||2 by
closely following the proof from [29, Chapter 16]. It uses Cauchy’s inequality, which
is a part of our vector library. The bound dk ≤ Nk on the Gramian determinant can
be directly derived from the Lemma Gramian_determinant and g_bound gs.

The previous two bounds clearly give an upper-bound on µ̃i,j = dj+1µi,j in
terms of N . Bounds on the intermediate values of σ in Algorithm 2 are obtained

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Number_Bounds.html#def:f_bound
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL.html#def:g_bound
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Number_Bounds.html#def:LLL_bound_invariant
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via lemma σ in Section 5.1. Finally, we show that all integer values x during the
computing stay polynomial in n, m, and M , where M is the maximal absolute value
within the initial f -vectors, satisfying N ≤ M2 · n.

lemma combined_size_bound_integer: assumes ... (* x is intermediate value
*)

shows log 2 |x| ≤ (6 + 6 · m) · log 2 (M · n) + log 2 m + m

6.2 A Formally Verified Bound on the Number of Arithmetic Operations

In this subsection we give an overview of the formal proof that our LLL implemen-
tation not only terminates on valid inputs, but does so after executing a number of
arithmetic operations that is bounded by a polynomial in the size of the input.

The first step towards reasoning about the complexity is to extend the algorithm
by annotating and collecting costs. In our cost model, we only count the number
of arithmetic operations. To integrate this model formally, we use a lightweight ap-
proach that is similar to [11, 22]. It has the advantage of being easy to integrate
on top of our formalization obtained so far, hence we did not try to incorporate
alternative ways to track costs, e.g., via type systems [19].

– We use a type ′a cost = ′a × nat to represent a result of type ′a in combination
with a cost for computing the result.

– For every Isabelle function f :: ′a ⇒ ′b that is used to define the LLL algorithm, we
define a corresponding extended function f_cost :: ′a ⇒ ′b cost. These extended
functions use pattern matching to access the costs of sub-algorithms, and then
return a pair where all costs are summed up.

– In order to state correctness, we define two selectors cost :: ′a cost ⇒ nat and
result :: ’a cost ⇒ ’a. Then soundness of f_cost is split into two properties. The
first one states that the result is correct: result (f_cost x) = f x, and the second one
provides a cost bound cost (f_cost x) ≤ . . .. We usually prove both statements
within one inductive proof, where the reasoning for correct results is usually
automatic.

We illustrate our approach using an example: dmu_array_row_main_cost corre-
sponds to lines 3–7 of Algorithm 2.

function dmu_array_row_main_cost where
dmu_array_row_main_cost fi i dmus j = (let . . .

(σ, c1) = sigma_cost . . . (* c1: cost of computing σ *)

dmu_ij = djj · (fi • fs !! (j+1)) − σ (* 2n + 2 arith. operations *)

dmus′ = iarray_update dmus i j dmu_ij (* array update, no cost *)

(res, c2) = dmu_array_row_main_cost fi i dmus′ (j + 1) (* c2: recur. costs *)

c3 = 2 · n + 2 (* c3: local costs of function *)

in (res, c1 + c2 + c3)) (* sum up costs *)

The function dmu_array_row_main_cost is a typical example of cost-annotated
function and works as follows: One part invokes sub-algorithms or makes a recursive
call and extracts the cost by pattern matching on pairs (c1 and c2), the other part

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Number_Bounds.html#lem:combined_size_bound_integer
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Complexity.html#def:dmu_array_row_main_cost
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does some local operations and manually annotates the costs for them (c3). Finally,
the pair of the computed result and the total cost is returned. For all cost functions
we prove that result is the value returned by the corresponding function.

To formally prove an upper bound on the cumulative cost of a run of the entire
algorithm, we use the fact that LLL_measure was defined as the logarithm of a
product of Gramian determinants, together with the bound dk ≤ Nk ≤ (Mn)2k ≤
(Mn)2m from the previous subsection (where M was the maximum absolute value
in the input vectors). This easily gives the desired polynomial bound:

lemma reduce_basis_cost_M: assumes Lg ≥ ⌈ log (4 · α / (4 + α)) (M · n) ⌉
shows cost (reduce_basis_cost fs) ≤ 98 · m3 · n · Lg

7 Certifying Reduced Bases

In the previous sections we have seen a verified algorithm for computing a reduced
basis of an arbitrary input lattice. The results of this development are twofold: first,
one obtains a verified executable implementation of a lattice reduction algorithm;
second, one can formally verify properties about lattice reductions, e.g., that a re-
duced basis always exists, that it can be computed in polynomial time, etc.. If one
is only interested in the former property, namely having an implementation which
never produces wrong results, there is also the alternative approach of certification.

The general idea behind certification is to combine a fast (but unverified) external
algorithm EA, with a verified checker VC . The workflow is as follows. One invokes
algorithm EA in order to obtain a result in combination with a certificate. This
certificate must contain enough auxiliary information so that VC can check whether
the result is indeed a correct result for the given input.

In this section we will now instantiate the general certification idea for the case
of lattice reduction. The input is as before, i.e., a linearly independent list of basis
vectors (represented as a matrix F whose rows are the vectors) and an approximation
factor α. For the fast algorithm we can in principle use any external tool for lattice
reduction. However, just computing a reduced basis R does not suffice. For instance,
it is not enough to return the reduced basis of Example 3 for Example 1, since one
needs to ensure that both bases span the same lattice. Hence, we need a certificate
that allows us to efficiently check that the lattice of the input I is identical to that
of the result R. To that end, we require that the external tool provides as certificate
C two integer matrices U and V such that

F = U ×R and R = V × F, (4)

and indeed, current LLL implementations can already provide these certificates.
Obviously, condition (4) can be efficiently checked, given the four matrices F , R,

U , and V . Moreover, we formally prove that whenever (4) is valid, F and R span the
same lattice, and furthermore, whenever F represents a list of linearly independent
vectors, so does R. It remains to have a certifier to check whether R is indeed
reduced w.r.t. α, cf. Definition 1. In principle, this can be done easily and efficiently
via Algorithm 2: the algorithm computes in particular all di-values, from which one
can immediately compute the norms of the GSO. However, our actual certifier just
invokes the full verified lattice reduction algorithm on R and α to obtain the final
result. This makes the connection between the certifier and the external algorithm

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Complexity.html#lem:reduce_basis_cost_M
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less brittle and in particular, allows the use of different approximation factors. If EA
internally5 uses a better approximation factor than α, then in the LLL invocation
during certification, only the GSO will be computed, and then it is checked that all
µ-values are small and that the norms of gi are nearly sorted. In this case, no swaps
in line 6 of Algorithm 1 will occur. If EA uses a smaller approximation factor than
α, then EA simply does more work than required, certification is unaffected. More
importantly, the case where EA uses a larger approximation factor than α is also
permitted: in this case, the basis returned by EA will be further reduced w.r.t. α as
needed by the verified algorithm.

The actual implementation in Isabelle looks as follows.6 Here, external_lll_solver
is an unspecified Isabelle constant, which can be implemented arbitrarily in the
generated code; only the type is fixed. Code.abort is a constant that is translated
into an error message in the generated code and ignores its second argument.

definition reduce_basis_external α fs = (case external_lll_solver α fs of
(rs, us, vs) ⇒ if (fs = us · rs ∧ rs = vs · fs)

then LLL_Impl.reduce_basis α rs
else Code.abort ”error message” (λ _. LLL_Impl.reduce_basis α fs))

lemma reduce_basis_external: assumes reduce_basis_external α fs = gs
shows lattice_of fs = lattice_of gs and reduced α gs

Note that the else-branch of reduce_basis_external is logically equivalent to re-
duce_basis α fs. This is the reason why the soundness lemma for reduce_basis_
external can be proven, even when the external solver produces a wrong result.

Overall, the certification approach for basis reduction looks quite attractive. As
we will see in the next section, it is faster than the fully verified implementation, and
has the same soundness property, cf. lemma reduce_basis in Section 4.2. Still, reduce_
basis_external should be used with great care, since one important aspect is typically
lost when using an external tool for basis reduction: the Isabelle function reduce_
basis_external does not necessarily behave like a mathematical function anymore:
invoking the function twice on the same input might deliver different results, if the
external tool is randomized or parallelized.

8 Experiments on LLL Basis Reduction

We formalized the LLL lattice reduction algorithm in a way that allows us to use
Isabelle’s code generator [14] and, hence, to compare our verified implementation to
other implementations in terms of efficiency. We tested five different configurations.

– verified: In this configuration we run our fully verified implementation of the
LLL algorithm. Here, we fix α = 3

2 , we map Isabelle’s integer operations onto
the unbounded integer operations of the target language Haskell, and we compile
the code with ghc version 8.2.1 using the -O2 parameter.

5 Whether one can specify the approximation factor at all, depends on the interface of the
external lattice reduction algorithm.

6 For the sake of readability, we omit some necessary conversions between lists and vectors
as well as some checks on matrix-dimensions.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Certification.html#def:reduce_basis_external
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/LLL_Certification.html#lem:reduce_basis_external
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– Mathematica: In this configuration we invoke the LatticeReduce procedure
of Mathematica version 11.3 [30]. The documentation does not specify the value
of α, but mentions that Storjohann’s variant [25] of the LLL basis reduction
algorithm is implemented. The (polynomial) complexity of this variant is one
degree lower than that of our algorithm.

– fplll: Here we are using fplll version 5.2.1 to reduce lattices. It implements
floating-point variants of the LLL algorithm, and we run it with α = 3

2 .
– fplll+certificate: This is the same as fplll, except that fplll is configured in such

a way that a certificate according to Section 7 will be computed (the matrices U
and V form the certificate that is returned together with R).

– certified: This configuration is the certification approach of Section 7. We invoke
reduce_basis_external in the same way as in the verified configuration, where
fplll+certificate is used as an external tool.

We tested all configurations on example lattices arising from random polynomial
factorization problems. Here, the parameter n specifies the size of the input lattices
in three ways: it is the number of input vectors, the dimension of each input vector,
and the number of digits of the coefficients of the input vectors. Hence, the input
size is cubic in n.

We tested values of n between 5 and 100. All experiments were run on an iMacPro
with a 3.2 GHz Intel Xeon W running macOS 10.14.3 and the results are illustrated
in Figure 1 and Table 1. In Figure 1, all verified results are indicated by solid marks,
and all configurations where the results are not verified are indicated with blank
marks. Both the generated code and our experimental data are available at the
following website.

https://doi.org/10.5281/zenodo.2636366
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Table 1: Execution time of LLL implementations

configuration total time (in s)
verified 6 006.4
Mathematica 962.0
certified 600.4
fplll+certificate 547.6
fplll 61.9

Although the verified configuration is the slowest one, it takes 6 006 seconds
in total on these examples, which is a big improvement over the previous verified
implementation [8], which requires 2.6 million seconds in total. Moreover, the certi-
fied configuration based on fplll is even faster than Mathematica, and additionally
provides results that are formally verified to be correct.

It is interesting to observe the overhead of certification. One can see that check-
ing the certificate is really fast, since there is only 10 % difference in the runtime
between fplll+certificate and certified. Here, the fast implementation of the GSO
algorithm is essential. However, producing the certificate induces quite some over-
head, cf. the difference between fplll+certificate and fplll. Finally, the experiments
also clearly illustrate that our verified algorithm cannot compete against floating-
point implementations of the LLL algorithm.

To summarize, in addition to having the advantage of delivering provably correct
results, both our verified and our certified implementation are usable in practice,
in contrast to our previous verified implementation. Besides efficiency, it is worth
mentioning that we did not find bugs in fplll’s or Mathematica’s implementation:
each certificate of fplll+certificate has been accepted and the short vectors that
are generated by fplll have always been as short as our verified ones. Moreover, the
norms of the short vectors produced by Mathematica are similar to our verified ones,
differing by a factor of at most 2.

9 Polynomial Factorization via Short Vectors

In this section we formalize one of the important applications of the LLL algorithm:
polynomial-time algorithms for polynomial factorization. In Section 9.1 we first de-
scribe the key idea on how the LLL algorithm helps to factor integer polynomials,
following the textbook [29, Chapters 16.4–16.5]. Section 9.2 presents the formal-
ization of some necessary results. In combination with our previous work [7], this
is sufficient for obtaining a polynomial-time algorithm to factor arbitrary integer
polynomials, whose formalization is presented in Section 9.3. When attempting to
directly verify the factorization algorithm in the above-mentioned textbook (Algo-
rithm 16.22 in [29]), it turned out that the original algorithm has a flaw that made
the algorithm return incorrect results on certain inputs. The details and a corrected
version are provided in Section 9.4.
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9.1 Short Vectors for Polynomial Factorization

The common structure of a modern factorization algorithm for square-free primitive
polynomials in Z[x] is as follows:

1. A prime p and exponent l are chosen depending on the input polynomial f .
2. A factorization of f over Zp[x] is computed.
3. Hensel lifting is performed to lift the factorization to Zpl [x].
4. The factorization f =

∏
i fi ∈ Z[x] is reconstructed where each fi corresponds

to the product of one or more factors of f in Zpl [x].

In a previous work [7], we formalized the Berlekamp–Zassenhaus algorithm, which
follows the structure presented above, where step 4 runs in exponential time. The
use of the LLL algorithm allows us to derive a polynomial-time algorithm for the
reconstruction phase.7 In order to reconstruct the factors in Z[x] of a polynomial f ,
by steps 1–3 we compute a modular factorization of f into several monic factors ui:
f ≡ lc f ·

∏
i ui modulo m where m = pl is some prime power given in step 1.

The intuitive idea underlying why lattices and short vectors can be used to factor
polynomials follows. We want to determine a non-trivial factor h of f which shares
a common modular factor u, i.e., both h and f are divided by u modulo pl. This
means that h belongs to a certain lattice. The condition that h is a factor of f means
that the coefficients of h are relatively small. So, we must look for a small element
(a short vector) in that lattice, which can be done by means of the LLL algorithm.
This allows us to determine h.

More concretely, the key is the following lemma.

Lemma 1 ([29, Lemma 16.20]) Let f, g, u be non-constant integer polynomials.
Let u be monic. If u divides f modulo m, u divides g modulo m, and ||f ||degree g ·
||g||degree f < m, then h = gcd f g is non-constant.

Let f be a polynomial of degree n. Let u be any degree-d factor of f modulo m.
Now assume that f is reducible, so that f = f1 · f2, where w.l.o.g. we may assume
that u divides f1 modulo m and that 0 < degree f1 < n. Let Lu,k be the lattice
of all polynomials of degree below d + k which are divisible by u modulo m. As
degree f1 < n, clearly f1 ∈ Lu,n−d.

In order to instantiate Lemma 1, it now suffices to take g as the polynomial
corresponding to any short vector in Lu,n−d: u divides g modulo m by definition of
Lu,n−d and moreover degree g < n. The short vector requirement provides an upper
bound to satisfy the assumption ||f1||degree g · ||g||degree f1 < m.

||g|| ≤ 2(n−1)/2 · ||f1|| ≤ 2(n−1)/2 · 2n−1||f || = 23(n−1)/2||f || (5)

||f1||degree g·||g||degree f1 ≤ (2n−1||f ||)n−1 · (23(n−1)/2||f ||)n−1 (6)

= ||f ||2(n−1) · 25(n−1)2/2

The first inequality in (5) is the short vector approximation (f1 ∈ Lu,n−d). The
second inequality in (5) is Mignotte’s factor bound (f1 is a factor of f). Mignotte’s
factor bound and (5) are used in (6) as approximations of ||f1|| and ||g||, respectively.
Hence, if l is chosen such that m = pl > ||f ||2(n−1) ·25(n−1)2/2, then all preconditions

7 We did not formally prove the complexity bound for either of the factorization algorithms.
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of Lemma 1 are satisfied, and h1 := gcd f1 g is a non-constant factor of f . Since f1
divides f , also h := gcd f g is a non-constant factor of f . Moreover, the degree of h
is strictly less than n, and so h is a proper factor of f .

9.2 Formalization of the Key Results

Here we present the formalization of two items that are essential for relating lattices
and factors of polynomials: Lemma 1 and the lattice Lu,k.

To prove Lemma 1, we partially follow the textbook, although we do the final
reasoning by means of some properties of resultants which were already proved in
the previous development of algebraic numbers [16]. We also formalize Hadamard’s
inequality, which states that for any square matrix A having rows vi we have
|det A| ≤

∏
||vi||. Essentially, the proof of Lemma 1 consists of showing that the

resultant of f and g is 0, and then deduce degree (gcd f g) > 0. We omit the de-
tailed proof; a formalized version can be found in the sources.

To define the lattice Lu,k for a degree-d polynomial u and integer k, we give a
basis v0, . . . , vk+d−1 of the lattice Lu,k such that each vi is the (k+ d)-dimensional
vector corresponding to polynomial u(x)·xi if i < k, and to the monomial m·xk+d−i

if k ≤ i < k + d.
We define the basis in Isabelle/HOL as factorization_lattice u k m as follows:

definition factorization_lattice u k m = (let d = degree u in
map (λi. vec_of_poly_n (u · monom 1 i) (d + k)) [k >..0] @
map (λi. vec_of_poly_n (monom m i) (d + k)) [d >..0])

Here, [a>..b] denotes the list of natural numbers descending from a − 1 to b (with
a > b), monom a b denotes the monomial axb, and vec_of_poly_n p n is a function
that transforms a polynomial p into a vector of dimension n with coefficients in
the reverse order and completing with zeroes if necessary. We use it to identify an
integer polynomial f of degree < n with its coefficient vector in Zn. We also define
its inverse operation, which transforms a vector into a polynomial, as poly_of_vec.

To visualize the definition, for u(x) =
∑d

i=0 uix
i we have

vT0
...

vTk−1

vTk
...

vTk+d−1


=



ud ud−1 · · · u0

. . . . . . . . .
ud ud−1 · · · u0

m
. . .

m


=: S (7)

and factorization_lattice (x+1894 885 908) 2 231 is precisely the basis (f0, f1, f2) of
Example 1.

There are some important facts that we must prove about factorization_lattice.

– factorization_lattice u k m is a list of linearly independent vectors, as required
for applying the LLL algorithm in order to find a short vector in Lu,k.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Factorization/LLL_Factorization_Impl.html#def:factorization_lattice
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– Lu,k characterizes the polynomials which have u as a factor modulo m:

g ∈ {poly_of_vec v | v ∈ Lu,k} ⇐⇒ degree g < k+ d and u divides g modulo m

That is, any polynomial that satisfies the right-hand side can be transformed into
a vector that can be expressed as an integer linear combination of the vectors
of factorization_lattice. Similarly, any vector in the lattice Lu,k can be expressed
as an integer linear combination of factorization_lattice and corresponds to a
polynomial of degree less than k + d that is divisible by u modulo m.

The first property is a consequence of the obvious fact that the matrix S in (7)
is upper triangular, and that its diagonal entries are non-zero if both u and m are
non-zero. Thus, the vectors in factorization_lattice u k m are linearly independent.

Next, we look at the second property. For one direction, we see the matrix S as (a
generalization of) the Sylvester matrix of the polynomial u and constant polynomial
m. Then we generalize an existing formalization about Sylvester matrices as follows:

lemma sylvester_sub_poly: assumes degree u ≤ d and degree q ≤ k
and c ∈ carrier_vec (k+d)

shows poly_of_vec ((sylvester_mat_sub d k u q)T ·v c) =
poly_of_vec (vec_first c k) · u + poly_of_vec (vec_last c d) · q

We instantiate q by the constant polynomial m. So for every c ∈ Zk+d we get

poly_of_vec (STc) = r · u+m · s ≡ ru modulo m

for some polynomials r and s. As every g ∈ Lu,k is represented as STc for some
integer coefficient vector c ∈ Zk+d, we conclude that every g ∈ Lu,k is divisible by
u modulo m. The other direction requires the use of division with remainder by the
monic polynomial u. Although we closely follow the textbook, the actual formaliza-
tion of these reasonings requires some more tedious work, namely the connection
between the matrix-times-vector multiplication of Matrix.thy (denoted by ·v in the
formalization) and linear combinations (lincomb) of HOL-Algebra.

9.3 A Verified Factorization Algorithm

Once the key results, namely Lemma 1 and properties about the lattice Lu,k, are
proved, we implement an algorithm for the reconstruction of factors within a context
that fixes p and l. The simplified definition looks as follows.

function LLL_reconstruction f us =

(let u = choose_u us; (* pick any element of us *)
g = LLL_short_polynomial (degree f) u;
f2 = gcd f g (* candidate factor *)

in if degree f2 = 0 then [f] (* f is irreducible *)
else let f1 = f div f2; (* f = f1 * f2 *)

(us1, us2) = partition (λ ui. poly_mod.dvdm p ui f1) us
in LLL_reconstruction f1 us1 @ LLL_reconstruction f2 us2)

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Basis_Reduction/Missing_Lemmas.html#lem:sylvester_sub_poly
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Factorization/LLL_Factorization_Impl.html#def:LLL_reconstruction
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LLL_reconstruction is a recursive function which receives two parameters: the
polynomial f that has to be factored, and the list us of modular factors of the
polynomial f . LLL_short_polynomial computes a short vector (and transforms it
into a polynomial) in the lattice generated by a basis for Lu,k and suitable k, that
is, factorization_lattice u (degree f − degree u). We collect the elements of us that
divide f1 modulo p into the list us1, and the rest into us2. LLL_reconstruction returns
the list of irreducible factors of f . Termination follows from the fact that the degree
decreases, that is, in each step the degree of both f1 and f2 is strictly less than the
degree of f .

In order to formally verify the correctness of the reconstruction algorithm for a
polynomial F we use the following invariants for each invocation of LLL_reconstruction
f us, where f is an intermediate non-constant factor of F . Here some properties are
formulated solely via F , so they are trivially invariant, and then corresponding prop-
erties are derived locally for f by using that f is a factor of F .

1. f divides F
2. lc f ·

∏
us is the unique modular factorization of f modulo pl

3. lc F and p are coprime, and F is square-free in Zp[x]

4. pl is sufficiently large: ||F||2(N−1)25(N−1)2/2 < pl where N = degree F

Concerning complexity, it is easy to see that if a polynomial splits into i factors,
then LLL_reconstruction invokes the short vector computation i+(i−1) times: i−1
invocations are used to split the polynomial into the i irreducible factors, and for
each of these factors one invocation is required to finally detect irreducibility.

Finally, we combine the new reconstruction algorithm with existing results pre-
sented in the Berlekamp–Zassenhaus development to get a polynomial-time factor-
ization algorithm for square-free and primitive polynomials.

lemma LLL_factorization_primitive: assumes LLL_factorization f = gs
and square_free f and primitive f and degree f ̸= 0

shows f = prod_list gs and ∀g ∈ set gs. irreducible g

We further combine this algorithm with a pre-processing algorithm also from
our earlier work [7]. This pre-processing splits a polynomial f into c · f1

1 · . . . · fk
k

where c is the content of f which is not further factored (see Section 2). Each fi is
primitive and square-free, and will then be passed to LLL_factorization. The combined
algorithm factors arbitrary univariate integer polynomials into its content and a list
of irreducible polynomials.

The Berlekamp–Zassenhaus algorithm has worst-case exponential complexity,
e.g., exhibited on Swinnerton–Dyer polynomials. Still it is a practical algorithm,
since it has polynomial average complexity [5], and this average complexity is smaller
than the complexity of the LLL-based algorithm, cf. [29, Ch. 15 and 16]. Therefore,
it is no surprise that our verified Berlekamp–Zassenhaus algorithm [7] significantly
outperforms the verified LLL-based factorization algorithm on random polynomials,
as it factors, within one minute, polynomials that the LLL-based algorithm fails to
factor within any reasonable amount of time.

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Factorization/LLL_Factorization.html#lem:LLL_factorization_primitive
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9.4 The Factorization Algorithm in the Textbook Modern Computer Algebra

In the previous section we have chosen the lattice Lu,k for k = n − d, in order to
find a polynomial h that is a proper factor of f . This has the disadvantage that h is
not necessarily irreducible. By contrast, Algorithm 16.22 from the textbook tries to
directly find irreducible factors by iteratively searching for factors w.r.t. the lattices
Lu,k for increasing k from 1 up to n− d.

Algorithm 16.22: A (buggy) polynomial factorization via short vectors
Input: A square-free primitive polynomial f ∈ Z[x] of degree n ≥ 1 with lc f > 0
Output: The set of irreducible factors fi ∈ Z[x] of f

1 b := lc f , B := (n+ 1)1/22n||f ||∞
2 repeat

choose a prime number p = 2, 3, 5, . . .
until p ∤ b and f mod p is square-free in Zp[x]

l := ⌈logp (2n
2/2B2n)⌉

3 factor f in Zp[x] to obtain f ≡ bh1 · . . . · hr (mod p).
4 compute the factorization f ≡ bu1 · . . . · ur (mod pl), where ui ≡ hi (mod p).
5 T := {1, . . . , r}, G := {}, f∗ := f
6 while T ̸= {} do
7 choose u among {ui : i ∈ T} of maximal degree, d := degree u, n∗ := degree f∗

8 for k = 1, . . . , n∗ − d do
9 compute a short vector g in the lattice Lu,k. Denote the corresponding

polynomial also by g
10 determine the set S ⊆ T of indices i for which hi divides g modulo p

11 compute h∗ ∈ Z[x] satisfying h∗ ≡ b
∏

i∈T−S ui (mod pl)

12 if ||pp(g)||1||pp(h∗)||1 ≤ B then
T := T − S, G := G ∪ {pp(g)}, f∗ := pp(h∗), b := lc f∗

break the inner loop and goto 6
13 G := G ∪ {f∗}
14 return G

The max-norm of a polynomial f(x) =
∑n

i=0 cix
i is defined to be ||f ||∞ =

max{|c0|, . . . , |cn|}, the 1-norm is ||f ||1 =
∑n

i=0 |ci| and pp(f) is the primitive part
of f , i.e., the quotient of the polynomial f by its content.

Let us note that Algorithm 16.22 also follows the common structure of a modern
factorization algorithm; indeed, the reconstruction phase corresponds to steps 5-13.
Once again, the idea behind this reconstruction phase is to find irreducible factors via
Lemma 1 and short vectors in the lattice Lu,k. However, this part of the algorithm
(concretely, the inner loop presented at step 8) can return erroneous calculations,
and some modifications are required to make it sound.

The textbook proposes the following invariants to the reconstruction phase:

– f∗ ≡ b
∏

i∈T ui (mod pl),
– b = lc f∗,
– f = ±f∗ ∏

g∈G g, and
– each polynomial in G is irreducible.

While the arguments given in the textbook and the provided invariants all look
reasonable, the attempt to formalize them in Isabelle runs into obstacles when one
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tries to prove that the content of the polynomial g in step 9 is not divisible by the
chosen prime p. In fact, this is not necessarily true.

The first problem occurs if the content of g is divisible by p. Consider f1 =
x12 + x10 + x8 + x5 + x4 + 1 and f2 = x. When trying to factor f = f1 · f2,
then p = 2 is chosen, and in step 9 the short vector computation is invoked for a
modular factor u of degree 9 where Lu,4 contains f1. Since f1 itself is a shortest
vector, g = p · f1 is a short vector: the approximation quality permits any vector of
Lu,4 of norm at most αdegree f1/2 · ||f1|| = 64 · ||f1||. For this valid choice of g, the
result of Algorithm 16.22 will be the non-factorization f = f1 · 1.

The authors of the textbook agreed that this problem can occur. The flaw itself
is easily fixed by modifying step 10 to

10’ determine the set S ⊆ T of indices i for which hi divides pp(g) modulo p.

A potential second problem revealed by our formalization work, is that if g is divis-
ible not only by p but also by pl, Algorithm 16.22 will still return a wrong result
(even with step 10 modified). Therefore, we modify the condition in step 12 of the
factorization algorithm and additionally demand |lc g| < pl, and then prove that the
resulting algorithm is sound. Unlike the first problem, we did not establish whether
or not this second problem can actually occur.

Regarding to the implementation, apart from the required modifications to make
Algorithm 16.22 sound, we also integrate some changes and optimizations:

– We improve the bound B at step 1 with respect to the one used in the textbook.
– We test a necessary criterion whether a factor of degree d+ k is possible, before

performing any short vector computations in step 9. This is done by computing
all possible degrees of products of the modular factors

∏
i∈I ui.

– We dynamically adjust the modulus to compute short vectors in smaller lattices:
Directly before step 9 we compute a new bound B′ and a new exponent l′ de-
pending on the current polynomial f∗ and the degree d+ k, instead of using the
ones computed in steps 1-2, which depend on the input polynomial f and its
degree n. This means that the new exponent l′ can be smaller than l (otherwise,
we follow the computations with l), and the short vector computation of step 9
will perform operations in a lattice with smaller values.

– We check divisibility instead of norm-inequality in step 12. To be more precise,
we test pp(g) | f ∧ |lc g| < pl instead of the condition in step 12. If this new
condition holds, then h∗ is not computed as in step 11, but directly as the result
of dividing f by pp(g).

The interested reader can explore the implementation and the soundness proof
of the modified algorithm in the file Factorization_Algorithm_16_22.thy of our
AFP entry [9]. The file Modern_Computer_Algebra_Problem.thy in the same entry
shows some examples of erroneous outputs of the textbook algorithm. A pseudo-code
version of the fixed algorithm is detailed in the appendix as Algorithm 4.

10 Conclusion

We formalized an efficient version of the LLL algorithm for finding a basis consisting
of short, nearly orthogonal vectors of an integer lattice in Isabelle/HOL. In addition,
we provided a formal proof of its polynomial-time complexity. Our verified algorithm

http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Factorization/Factorization_Algorithm_16_22.html
http://cl-informatik.uibk.ac.at/isafor/experiments/lll/JAR/html_thys/AFP/LLL_Factorization/Modern_Computer_Algebra_Problem.html
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shows a remarkable performance. In order to improve the performance even further,
we also provided a certified approach: we developed a verified checker that uses a
fast untrusted lattice reduction algorithm based on floating-point arithmetic. This
approach is also formally proven correct, and runs even faster than Mathematica.

One of the most famous application of the LLL algorithm has also been for-
malized, namely a factorization algorithm for integer polynomials which runs in
polynomial time. The work is based on our previous formalization of the Berlekamp–
Zassenhaus factorization algorithm, where the exponential reconstruction phase is
replaced by the polynomial-time lattice-reduction algorithm.

The whole formalization consists of 14 811 lines of code, it took about 23 person
months to formalize approximately 24 pages of textbooks and research articles. The
de Bruijn factor is about 17, mainly due to the informal proofs presented in the text-
books. The set-based matrix- and vector-library has been essential for dealing with
matrices of varying sizes, but is cumbersome to use, because the proof automation in
the set-based setting in Isabelle/HOL is not as developed as for the type-based set-
ting, and its usage requires additional statements such as vectors being of the right
dimension. During the development we also extended six different AFP entries, e.g.,
we added Laplace’s expansion rule and Cramer’s rule for determinants over arbitrary
rings to the vector- and matrix-library.

As far as we know, this is the first formalization of the LLL algorithm and its
application to factor polynomials in any theorem prover. This formalization led us
to find and correct a major flaw in a textbook.

One way to further build on this work would be to formalize a fast polynomial
factorization algorithm that uses the LLL basis reduction algorithm as a subroutine,
such as van Hoeij’s algorithm [28], which would make full use of the efficiency of our
current implementation.
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A Algorithms

In the following verified algorithm for computing the GSO, divv is vector-by-scalar division on
integers. We proved that each invocation of the division is exact.

Algorithm 3: GSO computation (adapted from [12]) – g̃ vectors only
Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn

Output: g̃ where g̃i = digi
1 compute µ̃ by Algorithm 2
2 g̃0 := f0
3 for i = 1, . . . ,m− 1 do
4 τ := µ̃0,0fi − µ̃i,0f0
5 for l = 1, . . . , i do
6 τ := (µ̃l,lτ − µ̃i,lg̃l) divv µ̃l−1,l−1

7 g̃i := τ

8 return g̃

Algorithm 4 presents the fixed version of Algorithm 16.22, including the improvements
described in Section 9.4.

Algorithm 4: A polynomial factorization algorithm via short vectors, fixed
version

Input: A square-free primitive polynomial f ∈ Z[x] of degree n ≥ 1
Output: The set of irreducible factors fi ∈ Z[x] of f

1 b := lc f , B := ⌈
√

25n2 ||f ||2n⌉
2 repeat

choose a prime number p = 2, 3, 5, . . .
until p ∤ b and f mod p is square-free in Zp[x]

find l such that B < pl

3 factor f in Zp[x] to obtain f ≡ bh1 · . . . · hr (mod p).
4 compute the factorization f ≡ bu1 · . . . · ur (mod pl), where ui ≡ hi (mod p).
5 T := {1, . . . , r}, G := {}, f∗ := f
6 while T ̸= {} do
7 choose u among {ui : i ∈ T} of maximal degree, d := degree u, n∗ := degree f∗

8 Û := {ui : i ∈ T} − {u}
9 Compute the list of all possible degrees of products of the modular factors∏

û∈Û û and denote it by Deg

10 for k = 1, . . . , n∗ − d do
11 if k − 1 ∈ Deg then

j := d+ k, B′ := ⌈
√

25j2 ||f∗||4j⌉, find l′ such that B′ < pl
′ , l := min l′ l

12 compute a short vector g in the lattice Lu,k. Denote the corresponding
polynomial also by g

13 determine the set S ⊆ T of indices i for which hi divides pp(g) modulo p

14 if |lc g| < pl and pp(g) | f then
T := T − S, G := G ∪ {pp(g)}, f∗ := f div pp(g), b := lc f∗

break the inner loop and goto 6
15 G := G ∪ {f∗}
16 return G
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Algorithm 5 shows the verified integer implementation of the LLL algorithm. The line
numbers are chosen in such a way that they correspond to the line numbers in the LLL imple-
mentation provided in Algorithm 1. Most of the remaining code is executed in order to keep
the values of d and µ̃ up-to-date. Our functional implementation of the algorithm differs in
one aspect from the pseudo-code, namely the update of µ̃ between lines 5 and 6 is done by
constructing a completely new µ̃-matrix in our code. The problem is that we are restricted to
immutable data structures and cannot update the µ̃-matrix in place. Hence, our implementa-
tion of the swap-step requires quadratically many operations, whereas an implementation with
mutable arrays only needs linearly many operations for a swap.

Algorithm 5: The LLL algorithm, verified integer version
Input: A list of linearly independent vectors f0, . . . , fm−1 ∈ Zn and α > 4

3
Output: A basis for the same lattice as f0, . . . , fm−1, that is reduced w.r.t. α

1 (i, upw) := (0,True)
compute µ̃ by Algorithm 2
d0 := 1
for i′ = 0, . . . ,m− 1 do

di′+1 := µ̃i′,i′

(num, denom) := (numerator of α, denominator of α)
2 while i < m do

if upw then
3 for j = i− 1 downto 0 do

c := (2 · µ̃i,j + dj+1) div (2 · dj+1)
if c ̸= 0 then

4 fi := fi − c · fj
µ̃i,j := µ̃i,j − c · dj+1

for j′ = 0, . . . , j − 1 do
µ̃i,j′ := µ̃i,j′ − c · µ̃j,j′

5 if i > 0 ∧ d2i · denom > di−1 · di+1 · num then
for j = 0, . . . , i− 2 do

(µ̃i−1,j , µ̃i,j) := (µ̃i,j , µ̃i−1,j)
for i′ = i+ 1, . . . ,m− 1 do

a := (µ̃i,i−1 · µ̃i′,i−1 + µ̃i′,i · di−1) div di
b := (di+1 · µ̃i′,i−1 − µ̃i,i−1 · µ̃i′,i) div di
(µ̃i′,i−1, µ̃i′,i) := (a, b)

di := (di+1 · di−1 + µ̃2
i,i−1) div di

6 (i, fi−1, fi, upw) := (i− 1, fi, fi−1,False)

else
7 (i, upw) := (i+ 1,True)

8 return f0, . . . , fm−1
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