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Basic example: simplified ISO26262

� ·v = 0

� ·v = a > 0

In which cases will the vehicle crash hard?



Monotonicity property?

� ·v = a > 0

� ·v = a > 0

When �  which vehicle crash harder?a < a



Elementary proof

Consider the following easy dynamics: 
�                                                �  
�                                                �  

·x = v ·x = v
·v = a ·v = a
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Elementary proof

If �  and  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�  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Differential dynamic logic in a nutshell

• A Hoare-triples-style syntax to formalise properties of  
hybrid system


• A sequent calculus to implement proofs of those properties

• A tool: KeYmaeraX


Ref: A. Platzer’s group http://symbolaris.com


 � 

� : sets of first order formulae of real arithmetic

� : hybrid program


�

Γ ⊢ [α] P
Γ, P
α

α ::= ?P ∣ α; α ∣ ·x = f(x) & Q ∣ α⋆ ∣ x := e ∣ …

http://symbolaris.com


Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)
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Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P
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a

It is enough to find an invariant which: 
• holds initially 
• implies the post-condition

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P



a

It is enough to find an invariant which: 
• holds initially 
• implies the post-condition 
• is an invariant

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P



Loop invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α⋆] P
(LI)



Differential invariants?

� 


� 


Assume that � . We want something to ensure:

�  

It is enough to require that �  is constant along the dynamics, that is, if �  is a solution 
of � , then �  is constant, that is, its derivative is zero.


� 


So it is enough that the function �  to be zero along the dynamics.

·x = e & Q ≃ (?Q; x := x + dt . e)⋆; ?Q

Γ, Q ⊢ Inv Inv, Q ⊢ Inv(x ← x + dt . e) Inv ⊢ P
Γ ⊢ [ ·x = e & Q]P

(dtI)

P = Inv ≡ f = 0
f(ω) = 0 ⇒ f(ω + dt . e(ω)) = 0

f ψ
·x = e K : t ↦ f(ψ(t))

·K(t) = ∑
x∈x

∂f
∂x

(ψ(t)) . ·ψ(t) = ∑
x∈x

∂f
∂x

(ψ(t)) . ex(ψ(t))

ℒe f = ∑
x∈x

∂f
∂x

. ex



Differential invariants

�
Γ, Q ⊢ f = 0 Γ ⊢ [ ·x = e & Q] ℒe f = 0

Γ ⊢ [ ·x = e & Q] f = 0
(DI)



Monotonicity property?

� ·v = a > 0

� ·v = a > 0

When �  which vehicle crash harder?a < a



Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B
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Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 1

!  
!  

!  

·x = v
·v = a

System 2

!  
!  

!  

·x = v
·v = a

Conclusion

!v ≤ v

Exit 
condition

!?x = x



Relational invariant

�  

�  

�  

�

Γ, Q, Q ⊢ Inv Inv ⊢ [δ; δ; ?E] Inv Inv, E ⊢ B

Γ ⊢ [δ; δ; ?E] B
(RI)

δ ≡ ·x = f(x) & Q

δ ≡ ·x = f(x) & Q

E ≡ g(x) = g(x)



Relational invariant, for ISO26262

We know that: 

�                    �  

So: 

�  

And then: 
�  

is a relational invariant. 

v(x) = v2
0 + 2ax v(x) = v2

0 + 2ax

v(x)2 − v2
0

2a
= x =

v(x)2 − v2
0

2a

R ≡ a(v2 − v2
0) = a(v2 − v2

0)
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(easy proof)
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a ≤ a, v ≥ v0, v ≥ v0, R ⊢ v ≥ v
v = v0, v = v0 ⊢ R
R ⊢ [{·x = v, ·v = a}; {·x = v, ·v = a}; ?x = x] R

Relational invariant, for ISO26262

The invariant holds 
initially 

(easy proof)
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Relational invariant, for ISO26262

The invariant is  
preserved by the 

dynamics 
(easy proof?)



Problems to tackle

We want a method that:


• does not require the solutions of the differential equations 
in any way


• transforms the two dynamics into one unique, so that we  
can use known methods from differential invariants.



Two systems into one?

What we have now:

• one system on � 

• one system on � 

that take different times to arrive at a particular position.


What we want:

• one system on � 

such that the positions are synchronized, that is, at all time � :


�

x, v
x, v

x, v, x, v
t

x(t) = x(t)



Reparametrisation of  dynamics

Crucial idea: reparametrise the time of � 


Time stretch function: derivable function �  with

� 


Reparamatrised dynamics: let �  be a differential equation.

It reparametrisation by �  is � .

x, v

k : ℝ ⟶ ℝ·k > 0

·x = f(x)
k ·x = ·k(t) . f(x)

!  is a solution of !  iff 
!  is a solution of ! .

x ·x = f(x)
x ∘ k ·x = ·k(t) . f(x)



Is it OK?

Fix some initial condition ! . Then 
! .

x0
{x(t) ∣ x sol. of  ·x = f(x) at x0} = {x(t) ∣ x sol. of  ·x = ·k(t) . f(x) at x0}

Why is it OK then?


�  we do not care about « at time � , the vehicle is at position �  with  
speed �  »


�  we care about « at position � , the vehicle has speed �  »

→ t x
v

→ x v



Fix �  and note �  the solution of �  at 

� , �  the solution of �  at � .


We have a time stretch function �  such that for every �             

� 


given by:

 

�

v0, v0 (ψ
x
, ψ

v
) ·x = v, ·v = a

x = 0, v = v0 (ψx, ψv)
·x = v, ·v = a x = 0, v = v0

k : ℝ ⟶ ℝ x
k( t(x)) = t(x)

k(t) =
at2 + 2v0at + v2

0 − v0

a

Which reparametrisation to choose?



Which reparametrisation to choose?

Fix �  and note �  the solution of �  at 

� , �  the solution of �  at � .


We have a time stretch function �  such that for every �             

� 


So we want to look at:

� 


But we have:

� 


Then:

�  

So we want to look at:

�  

v0, v0 (ψ
x
, ψ

v
) ·x = v, ·v = a

x = 0, v = v0 (ψx, ψv)
·x = v, ·v = a x = 0, v = v0

k : ℝ ⟶ ℝ x
k( t(x)) = t(x)

·x = v, ·v = a, ·x = ·k(t) . v, ·v = ·k(t) . a

ψx(k(t)) = ψ
x
(t)

·k(t) . ψv(k(t)) = ψ
v
(t)

·x = v, ·v = a, ·x =
v
v

. v, ·v =
v
v

. a



How to generalize to relational formulae?

In general, from 

�  


and 

�  


under the exit condition

� 


we consider:


�  

·x = f(x)

·x = f(x)

g(x) = g(x)

·x = f(x), ·x =
ℒf g

ℒf g
. f(x)



Synchronisation rule

�  

�  

�  

�  

�

Γ, Q, Q ⊢ E Γ ⊢ [δ] ℒf g > 0 Γ ⊢ [δ] ℒf g > 0 Γ ⊢ [δ] B

Γ ⊢ [δ; δ; ?E] B
(Syn)

δ ≡ ·x = f(x) & Q

δ ≡ ·x = f(x) & Q

E ≡ g(x) = g(x)

δ ≡ ·x = f(x), ·x =
ℒf g

ℒf g
. f(x) & Q ∧ Q



We know that: 
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= x =
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preserved by the 

dynamics 
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Relational invariant, for ISO26262

Let’s prove the following statement with the (Syn) rule:


�  

with � , that is:


• �    (easy with differential invariant)


• �    (easy with differential invariant)


• � 


using differential invariant rule:


�

R ⊢ [{·x = v, ·v = a}; {·x = v, ·v = a}; ?x = x] R

R ≡ a(v2 − v2
0) = a(v2 − v2

0)

v > 0, a ≥ 0 ⊢ [ ·x = v, ·v = a] v > 0

v > 0, a ≥ 0 ⊢ [ ·x = v, ·v = a] v > 0

R ⊢ [{·x = v, ·v = a, ·x =
v
v

. v, ·v =
v
v

. a}] R

R ⊢ [{·x = v, ·v = a, ·x =
v
v

. v, ·v =
v
v

. a}] 2ava = 2av
v
v

a



Summary

Guideline:


• start with two independent systems and compare them under some 
conditions


• synchronize them by reparametrising one of them using the (Syn) rule


• use usual invariant techniques from dL


Case studies:


• monotonicity properties


• abstraction


