Relational Differential Dynamic Logic

Methods and Tools for Distributed Hybrid Systems Amsterdam, 26/08/19

Jérémy Dubut National Institute of Informatics Japanese-French Laboratory of Informatics

Collaborations

Joint work with:

- from Tokyo: Ichiro Hasuo, Akihisa Yamada, David Sprunger, and Shin-ya Katsumata
- from France: Juraj Kolčák

Initiated by discussions with Kenji Kamijo, Yoshiyuki Shinya, and Takamasa Suetomi from Mazda Motor Corporation

Sources:

- J. Kolčák, I. Hasuo, J. Dubut, S. Katsumata, D. Sprunger, A. Yamada, Relational Differential Dynamic Logic. Preprint arXiv:1903.00153.
- some implementation on GitHub

Basic example: simplified ISO26262

In which cases will the vehicle crash hard?

Monotonicity property?

When $\overline{a} < \underline{a}$ which vehicle crash harder?

Consider the following easy dynamics:

Consider the following easy dynamics:

Solving the equations:

$\underline{v} = \underline{a} \cdot \underline{t} + \underline{v}_0$	$\overline{v} = \overline{a} \cdot \overline{t} + \overline{v}_0$
$\underline{x} = \frac{\underline{a}}{2} \cdot \underline{t}^2 + \underline{v}_0 \cdot \underline{t}$	$\overline{x} = \frac{\overline{a}}{2} \cdot \overline{t}^2 + \overline{v}_0 \cdot \overline{t}$

Consider the following easy dynamics:

Solving the equations:

$$\underline{v} = \underline{a} \cdot \underline{t} + \underline{v}_0 \qquad \overline{v} = \overline{a} \cdot \overline{t} + \overline{v}_0$$
$$\underline{x} = \frac{\underline{a}}{2} \cdot \underline{t}^2 + \underline{v}_0 \cdot \underline{t} \qquad \overline{x} = \frac{\overline{a}}{2} \cdot \overline{t}^2 + \overline{v}_0 \cdot \overline{t}$$

The time at which the vehicles reach the position *x* is:

$$\underline{t}(x) = \frac{\sqrt{\underline{v}_0^2 + 2\underline{a}x - \underline{v}_0}}{\underline{a}} \qquad \overline{t}(x) = \frac{\sqrt{\overline{v}_0^2 + 2\overline{a}x - \overline{v}_0}}{\overline{a}}$$

Consider the following easy dynamics:

Solving the equations:

 $\underline{v} = \underline{a} \cdot \underline{t} + \underline{v}_0 \qquad \overline{v} = \overline{a} \cdot \overline{t} + \overline{v}_0$ $\underline{x} = \frac{\underline{a}}{2} \cdot \underline{t}^2 + \underline{v}_0 \cdot \underline{t} \qquad \overline{x} = \frac{\overline{a}}{2} \cdot \overline{t}^2 + \overline{v}_0 \cdot \overline{t}$

The time at which the vehicles reach the position *x* is:

$$\underline{t}(x) = \frac{\sqrt{\underline{v}_0^2 + 2\underline{a}x} - \underline{v}_0}{\underline{a}} \qquad \overline{t}(x) = \frac{\sqrt{\overline{v}_0^2 + 2\overline{a}x} - \overline{v}_0}{\overline{a}}$$

The speed at position *x* is:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x} \qquad \overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$$

Consider the following easy dynamics: $\dot{\overline{x}} = \overline{v}$ $\underline{\dot{x}} = \underline{v}$ $\dot{v} = a$ Solving the equations: $\overline{v} = \overline{a} \cdot \overline{t} + \overline{v}_0$ $\underline{v} = \underline{a} \cdot \underline{t} + \underline{v}_0$ $\overline{x} = \frac{\overline{a}}{2} \cdot \overline{t}^2 + \overline{v}_0 \cdot \overline{t} \qquad \qquad \begin{array}{ll} \text{If } \underline{a} \leq \overline{a} \text{ and} \\ \underline{v}_0 \leq \overline{v}_0 \text{ then} \end{array}$ $\underline{x} = \frac{\underline{a}}{2} \cdot \underline{t}^2 + \underline{v}_0 \cdot \underline{t}$ The time at which the vehicles reach the position x is: $\underline{t}(x) = \frac{\sqrt{\underline{v}_0^2 + 2\underline{a}x - \underline{v}_0}}{\overline{t}(x)} \qquad \overline{t}(x) = \frac{\sqrt{\overline{v}_0^2 + 2\overline{a}x - \overline{v}_0}}{-} \quad \text{crashes harder!}$

 $v(x) \leq \overline{v}(x)$ and the blue car

The speed at position *x* is:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x} \qquad \overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$$

The speed at position x is:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x}$$
 $\overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$

Differential dynamic logic in a nutshell

- A Hoare-triples-style syntax to formalise properties of hybrid system
- A sequent calculus to implement proofs of those properties
- A tool: KeYmaeraX

Ref: A. Platzer's group http://symbolaris.com

$$\Gamma \vdash [\alpha] P$$

 Γ, P : sets of first order formulae of real arithmetic α : hybrid program

$$\alpha ::= ?P \mid \alpha; \alpha \mid \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \& Q \mid \alpha^* \mid x := e \mid \dots$$

$$\frac{\Gamma \vdash \mathsf{Inv} \quad \mathsf{Inv} \vdash [\alpha] \, \mathsf{Inv} \quad \mathsf{Inv} \vdash P}{\Gamma \vdash [\alpha] \, P} (\mathsf{Inv})$$

$$\frac{\Gamma \vdash \mathsf{Inv} \quad \mathsf{Inv} \vdash [\alpha] \, \mathsf{Inv} \quad \mathsf{Inv} \vdash P}{\Gamma \vdash [\alpha] \, P} (\mathsf{Inv})$$

It is enough to find an invariant such that:

$$\frac{\Gamma \vdash \mathsf{Inv} \quad \mathsf{Inv} \vdash [\alpha] \, \mathsf{Inv} \quad \mathsf{Inv} \vdash P}{\Gamma \vdash [\alpha] \, P} (\mathsf{Inv})$$

Invariants

Invariants

Invariants

$\frac{\Gamma \vdash \mathsf{Inv} \quad \mathsf{Inv} \vdash [\alpha] \,\mathsf{Inv} \quad \mathsf{Inv} \vdash P}{\Gamma \vdash [\alpha^*] \, P} (\mathsf{LI})$

Differential invariants?

$$\dot{\mathbf{x}} = \mathbf{e} \& Q \simeq (?Q; \mathbf{x} := \mathbf{x} + dt. \mathbf{e})^*; ?Q$$

$$\frac{\Gamma, Q \vdash \mathsf{Inv} \quad \mathsf{Inv}, Q \vdash \mathsf{Inv}(\mathsf{x} \leftarrow \mathsf{x} + dt \, . \, \mathsf{e}) \quad \mathsf{Inv} \vdash P}{\Gamma \vdash [\dot{\mathsf{x}} = \mathsf{e} \& Q]P} \quad (\mathsf{dtl})$$

Assume that $P = Inv \equiv f = 0$. We want something to ensure: $f(\omega) = 0 \Rightarrow f(\omega + dt \cdot \mathbf{e}(\omega)) = 0$

It is enough to require that *f* is constant along the dynamics, that is, if ψ is a solution of $\dot{\mathbf{x}} = \mathbf{e}$, then $K : t \mapsto f(\psi(t))$ is constant, that is, its derivative is zero.

$$\dot{K}(t) = \sum_{x \in \mathbf{X}} \frac{\partial f}{\partial x}(\psi(t)) \cdot \dot{\psi}(t) = \sum_{x \in \mathbf{X}} \frac{\partial f}{\partial x}(\psi(t)) \cdot \mathbf{e}_x(\psi(t))$$

So it is enough that the function $\mathscr{L}_{\mathbf{e}} f = \sum_{x \in \mathbf{X}} \frac{\partial f}{\partial x}$. \mathbf{e}_x to be zero along the dynamics.

$\frac{\Gamma, Q \vdash f = 0 \quad \Gamma \vdash [\dot{\mathbf{x}} = \mathbf{e} \& Q] \mathscr{L}_{\mathbf{e}} f = 0}{\Gamma \vdash [\dot{\mathbf{x}} = \mathbf{e} \& Q] f = 0} (\mathbf{DI})$

Monotonicity property?

When $\overline{a} < \underline{a}$ which vehicle crash harder?

$$[\{\underline{\dot{\mathbf{x}}} = \underline{f}(\underline{\mathbf{x}}) \& \underline{Q}\}; \{\overline{\dot{\mathbf{x}}} = \overline{f}(\overline{\mathbf{x}}) \& \overline{Q}\}; \underline{g}(\underline{\mathbf{x}}) = \overline{g}(\overline{\mathbf{x}})]B$$

$$[\{\underline{\dot{\mathbf{x}}} = \underline{f}(\underline{\mathbf{x}}) \& \underline{Q}\}; \{\overline{\mathbf{x}} = \overline{f}(\overline{\mathbf{x}}) \& \overline{Q}\}; \underline{?g}(\underline{\mathbf{x}}) = \overline{g}(\overline{\mathbf{x}})]B$$
System 1

$\frac{\Gamma, \underline{Q}, \overline{Q} \vdash \mathsf{Inv} \quad \mathsf{Inv} \vdash [\underline{\delta}; \overline{\delta}; ?E] \,\mathsf{Inv} \quad \mathsf{Inv}, E \vdash B}{\Gamma \vdash [\underline{\delta}; \overline{\delta}; ?E] \,B}$ (**RI**)

$$\underline{\delta} \equiv \underline{\dot{\mathbf{x}}} = \underline{f}(\underline{\mathbf{x}}) \& \underline{Q}$$
$$\overline{\delta} \equiv \overline{\mathbf{x}} = \overline{f}(\overline{\mathbf{x}}) \& \overline{Q}$$
$$E \equiv \underline{g}(\underline{\mathbf{x}}) = \overline{g}(\overline{\mathbf{x}})$$

We know that:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x} \qquad \overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$$

So:

$$\frac{\underline{v}(x)^2 - \underline{v}_0^2}{2\underline{a}} = x = \frac{\overline{v}(x)^2 - \overline{v}_0^2}{2\overline{a}}$$

And then:

$$R \equiv \overline{a}(\underline{v}^2 - \underline{v}_0^2) = \underline{a}(\overline{v}^2 - \overline{v}_0^2)$$

is a relational invariant.

We know that:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x} \qquad \overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$$

So:

$$\frac{\underline{v}(x)^2 - \underline{v}_0^2}{2\underline{a}} = x = \frac{\overline{v}(x)^2 - \overline{v}_0^2}{2\overline{a}}$$

And then:

$$R \equiv \overline{a}(\underline{v}^2 - \underline{v}_0^2) = \underline{a}(\overline{v}^2 - \overline{v}_0^2)$$

is a relational invariant.

That is, one has to prove the following statements:

•
$$\underline{a} \leq \overline{a}, \underline{v} \geq \underline{v}_0, \overline{v} \geq \overline{v}_0, R \vdash \overline{v} \geq \underline{v}$$

•
$$\underline{v} = \underline{v}_0, \overline{v} = \overline{v}_0 \vdash R$$

•
$$R \vdash [\{\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}\}; \{\overline{\dot{x}} = \overline{v}, \overline{\dot{v}} = \overline{a}\}; \underline{x} = \overline{x}]R$$

The invariant implies the property (easy proof)

We know that:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x} \qquad \overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$$

So:

$$\frac{\underline{v}(x)^2 - \underline{v}_0^2}{2\underline{a}} = x = \frac{\overline{v}(x)^2 - \overline{v}_0^2}{2\overline{a}}$$

And then:

$$R \equiv \overline{a}(\underline{v}^2 - \underline{v}_0^2) = \underline{a}(\overline{v}^2 - \overline{v}_0^2)$$

is a relational invariant.

That is, one has to prove the following statements:

•
$$\underline{a} \leq \overline{a}, \underline{v} \geq \underline{v}_0, \overline{v} \geq \overline{v}_0, R \vdash \overline{v} \geq \underline{v}$$

• $\underline{v} = \underline{v}_0, \overline{v} = \overline{v}_0 \vdash R$
• $R \vdash [\{\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}\}; \{\overline{\dot{x}} = \overline{v}, \overline{\dot{v}} = \overline{a}\}; ?\underline{x} = \overline{x}]R$
The invariant holds initially (easy proof)

We know that:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x} \qquad \overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$$

So:

$$\frac{\underline{v}(x)^2 - \underline{v}_0^2}{2\underline{a}} = x = \frac{\overline{v}(x)^2 - \overline{v}_0^2}{2\overline{a}}$$

And then:

$$R \equiv \overline{a}(\underline{v}^2 - \underline{v}_0^2) = \underline{a}(\overline{v}^2 - \overline{v}_0^2)$$

is a relational invariant.

That is, one has to prove the following statements:

•
$$\underline{a} \leq \overline{a}, \underline{v} \geq \underline{v}_0, \overline{v} \geq \overline{v}_0, R \vdash \overline{v} \geq \underline{v}_0$$

•
$$\underline{v} = \underline{v}_0, \overline{v} = \overline{v}_0 \vdash R$$

• $R \vdash [\{\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}\}; \{\overline{\dot{x}} = \overline{v}, \overline{\dot{v}} = \overline{a}\}; ?\underline{x} = \overline{x}]R$

The invariant is preserved by the dynamics (easy proof?) We want a method that:

- does not require the solutions of the differential equations in any way
- transforms the two dynamics into one unique, so that we can use known methods from differential invariants.

What we have now:

- one system on $\underline{x}, \underline{v}$
- one system on $\overline{x}, \overline{v}$

that take different times to arrive at a particular position.

What we want:

• one system on $\underline{x}, \underline{v}, \overline{x}, \overline{v}$

such that the positions are synchronized, that is, at all time *t*:

$$\underline{x}(t) = \overline{x}(t)$$

<u>Crucial idea:</u> reparametrise the time of \overline{x} , \overline{v}

<u>**Time stretch function:**</u> derivable function $k : \mathbb{R} \longrightarrow \mathbb{R}$ with $\dot{k} > 0$

<u>**Reparamatrised dynamics:**</u> let $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ be a differential equation. It reparametrisation by k is $\dot{\mathbf{x}} = \dot{k}(t) \cdot \mathbf{f}(\mathbf{x})$.

> **x** is a solution of $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ iff **x** \circ k is a solution of $\dot{\mathbf{x}} = \dot{k}(t)$. $\mathbf{f}(\mathbf{x})$.

Fix some initial condition x_0 . Then $\{x(t) \mid x \text{ sol. of } \dot{x} = f(x) \text{ at } x_0\} = \{x(t) \mid x \text{ sol. of } \dot{x} = \dot{k}(t) \text{ , } f(x) \text{ at } x_0\}.$

Why is it OK then?

 \rightarrow we do not care about « at time *t*, the vehicle is at position *x* with speed *v* »

 \rightarrow we care about « at position *x*, the vehicle has speed *v* »

Which reparametrisation to choose?

Fix
$$\underline{v}_0$$
, \overline{v}_0 and note $(\underline{\psi}_x, \underline{\psi}_v)$ the solution of $\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}$ at $\underline{x} = 0, \underline{v} = \underline{v}_0$, $(\overline{\psi}_x, \overline{\psi}_v)$ the solution of $\overline{\dot{x}} = \overline{v}, \overline{\dot{v}} = \overline{a}$ at $\overline{x} = 0, \overline{v} = \overline{v}_0$.

We have a time stretch function $k : \mathbb{R} \longrightarrow \mathbb{R}$ such that for every x $k(\underline{t}(x)) = \overline{t}(x)$

given by:

$$k(t) = \frac{\sqrt{at^2 + 2\underline{v}_0}\overline{a}t + \overline{v}_0^2}{\overline{a}} - \overline{v}_0}{\overline{a}}$$

Which reparametrisation to choose?

Fix
$$\underline{v}_0$$
, \overline{v}_0 and note $(\underline{\psi}_x, \underline{\psi}_v)$ the solution of $\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}$ at $\underline{x} = 0, \underline{v} = \underline{v}_0$, $(\overline{\psi}_x, \overline{\psi}_v)$ the solution of $\overline{\dot{x}} = \overline{v}, \overline{\dot{v}} = \overline{a}$ at $\overline{x} = 0, \overline{v} = \overline{v}_0$.

We have a time stretch function $k : \mathbb{R} \longrightarrow \mathbb{R}$ such that for every x $k(\underline{t}(x)) = \overline{t}(x)$

So we want to look at:

$$\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}, \\ \\ \overline{\dot{x}} = \dot{k}(t) \cdot \overline{v}, \\ \\ \\ \overline{v} = \dot{k}(t) \cdot \overline{a}$$

But we have:

$$\overline{\psi}_x(k(t)) = \underline{\psi}_x(t)$$

Then:

$$\dot{k}(t) \cdot \overline{\psi}_{v}(k(t)) = \underline{\psi}_{v}(t)$$

So we want to look at:

$$\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}, \\ \\ \overline{\dot{x}} = \frac{\underline{v}}{\overline{v}} \cdot \overline{v}, \\ \\ \\ \overline{v} = \frac{\underline{v}}{\overline{v}} \cdot \overline{a}$$

In general, from

$$\underline{\dot{\mathbf{x}}} = \underline{f}(\underline{\mathbf{x}})$$

and

$$\dot{\overline{\mathbf{x}}} = \overline{f}(\overline{\mathbf{x}})$$

under the exit condition

$$\underline{g}(\underline{\mathbf{x}}) = \overline{g}(\overline{\mathbf{x}})$$

we consider:

$$\underline{\dot{\mathbf{x}}} = \underline{f}(\underline{\mathbf{x}}), \\ \mathbf{\bar{\overline{x}}} = \frac{\mathscr{L}_{\underline{f}} \ \underline{g}}{\mathscr{L}_{\overline{f}} \ \overline{g}} . \\ \overline{f}(\overline{\mathbf{x}})$$

$$\frac{\Gamma, \underline{Q}, \overline{Q} \vdash E \quad \Gamma \vdash [\underline{\delta}] \,\mathscr{L}_{\underline{f}} \,\underline{g} > 0 \quad \Gamma \vdash [\overline{\delta}] \,\mathscr{L}_{\overline{f}} \,\overline{g} > 0 \quad \Gamma \vdash [\delta] \,B}{\Gamma \vdash [\underline{\delta}; \overline{\delta}; ?E] B}$$
(Syn)

$$\underline{\delta} \equiv \underline{\dot{\mathbf{x}}} = \underline{f}(\underline{\mathbf{x}}) \& \underline{Q}$$

$$\overline{\delta} \equiv \overline{\dot{\mathbf{x}}} = \overline{f}(\overline{\mathbf{x}}) \& \overline{Q}$$

$$E \equiv \underline{g}(\underline{\mathbf{x}}) = \overline{g}(\overline{\mathbf{x}})$$

$$\overline{\delta} \equiv \underline{\dot{\mathbf{x}}} = \underline{f}(\underline{\mathbf{x}}), \quad \overline{\mathbf{x}} = \frac{\mathscr{L}_{\underline{f}} \ \underline{g}}{\mathscr{L}_{\overline{f}} \ \overline{g}} \cdot \overline{f}(\overline{\mathbf{x}}) \& \underline{Q} \land \overline{Q}$$

We know that:

$$\underline{v}(x) = \sqrt{\underline{v}_0^2 + 2\underline{a}x} \qquad \overline{v}(x) = \sqrt{\overline{v}_0^2 + 2\overline{a}x}$$

So:

$$\frac{\underline{v}(x)^2 - \underline{v}_0^2}{2\underline{a}} = x = \frac{\overline{v}(x)^2 - \overline{v}_0^2}{2\overline{a}}$$

And then:

$$R \equiv \overline{a}(\underline{v}^2 - \underline{v}_0^2) = \underline{a}(\overline{v}^2 - \overline{v}_0^2)$$

is a relational invariant.

That is, one has to prove the following statements:

•
$$\underline{a} \leq \overline{a}, \underline{v} \geq \underline{v}_0, \overline{v} \geq \overline{v}_0, R \vdash \overline{v} \geq \underline{v}_0$$

•
$$\underline{v} = \underline{v}_0, \overline{v} = \overline{v}_0 \vdash R$$

• $R \vdash [\{\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}\}; \{\overline{\dot{x}} = \overline{v}, \overline{\dot{v}} = \overline{a}\}; ?\underline{x} = \overline{x}]R$

The invariant is preserved by the dynamics (easy proof?)

Let's prove the following statement with the (Syn) rule:

$$R \vdash [\{\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}\}; \{\overline{\dot{x}} = \overline{v}, \overline{\dot{v}} = \overline{a}\}; \underline{x} = \overline{x}]R$$

with $R \equiv \overline{a}(\underline{v}^2 - \underline{v}_0^2) = \underline{a}(\overline{v}^2 - \overline{v}_0^2)$, that is:

- $\underline{v} > 0, \underline{a} \ge 0 \vdash [\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}] \underline{v} > 0$ (easy with differential invariant)
- $\overline{v} > 0, \overline{a} \ge 0 \vdash [\dot{\overline{x}} = \overline{v}, \dot{\overline{v}} = \overline{a}] \overline{v} > 0$ (easy with differential invariant)

•
$$R \vdash [\{\underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}, \overline{\dot{x}} = \frac{\underline{v}}{\overline{v}}, \overline{v}, \overline{\dot{v}} = \frac{\underline{v}}{\overline{v}}, \overline{a}\}]R$$

using differential invariant rule:

$$R \vdash \left[\{ \underline{\dot{x}} = \underline{v}, \underline{\dot{v}} = \underline{a}, \overline{\dot{x}} = \frac{\underline{v}}{\overline{v}} \cdot \overline{v}, \overline{\dot{v}} = \frac{\underline{v}}{\overline{v}} \cdot \overline{a} \} \right] 2\overline{a}\underline{v}\underline{a} = 2\underline{a}\overline{v}\frac{\underline{v}}{\overline{v}}\overline{a}$$

Guideline:

- start with two independent systems and compare them under some conditions
- synchronize them by reparametrising one of them using the (Syn) rule
- use usual invariant techniques from dL

Case studies:

- monotonicity properties
- abstraction