Methods and Tools for Distributed Hybrid Systems
Amsterdam, 26/08/19

Jerémy Dubut
National Institute of Informatics
Japanese-French Laboratory of Informatics

NIl ©




Collaborations

Joint work with:

e from Tokyo: Ichiro Hasuo, Akihisa Yamada, David Sprunger,
and Shin-ya Katsumata

e from France: Juraj Kol¢ak

Initiated by discussions with Kenji Kamijo, Yoshiyuki Shinya,
and Takamasa Suetomi from Mazda Motor Corporation

Sources:

e J. KolCak, |. Hasuo, J. Dubut, S. Katsumata, D. Sprunger,
A. Yamada, Relational Differential Dynamic Logic. Preprint
arXiv:1903.00153.

e some implementation on GitHub



Basic example: ssmplified 15026262

In which cases will the vehicle crash hard?



Momnotonicity property?

When a < a which vehicle crash harder?



Elementary proof

Consider the following easy dynamics:
=y '

i -~

<l|- <
|

Q<




Elementary proof

Consider the following easy dynamics:

X=y X=79
v=a “ v=a
Solving the equations:
v=a.t+y, vV=a.f+vy,
g 5 __a 5
X=—.1"1TV,.1 X=—.1"1tVy.1
- 2 0= 2



Elementary proof

Consider the following easy dynamics:

X=Y X=V
v=a $aindy. v=a
Solving the equations:
v=a.t+y, vV=a.r+v,
a , _a 5,
X=—.I"1tY,.1 X=—.1"FVy.1
2 - 2
The time at which the vehicles reach the position x is:
\/1% +2ax — v, ) \/ Vi + 2ax — v,
1(x) = Hx) =

a a



Elementary proof

Consider the following easy dynamics:
=y '

P =

Solving the equations:

- == =0
a , _ o a 5,

X=—.1"%+v,.1 X=—.1"1tVy.1
-2 0 TV 2

The time at which the vehicles reach the position x is:

\/1% +2ax -y, ) \/ Vo + 2ax — v,

1(x) = f(x) = -
! a =

The speed at position x is:

v(x) = \/ V2 +2ax V(x) = \/ Vs + 2ax




Elementary proof

Consider the following easy dynamics:
=y '

Py =

Solving the equations:

lfa <aand |

P v(x) <v(x)
} and the blue car
,, crahs rder! _.

The time at which the vehicles reach the position x is:

\/1% +2ax — v, \/ Vi + 2ax — v,

1(x) = f(x) = —
a a

The speed at position x is:

v(x) = \/ V2 +2ax V(x) = \/ Vs + 2ax




Elementary proof

Consider the following easy dynamics:

lfa <aand |

} and the blue car
I crashes harder! }

\/1% +2ax — v, \/ Vi + 2ax — v,

1(x) = 1(x) = —
a a

The speed at position x is:

v(x) = \/ V2 +2ax V(x) = \/ Vs + 2ax




Differential dynamac logic in a nutshell

* A Hoare-triples-style syntax to formalise properties of
hybrid system

* A sequent calculus to implement proofs of those properties

A tool: KeYmaeraX

Ref: A. Platzer’s group http://symbolaris.com

I'Flal P
I, P: sets of first order formulae of real arithmetic
a: hybrid program
a:=7P|aalx=fx)&Q|a*|x:=¢€] ...


http://symbolaris.com

Invariants

I'FInv Invk |allnv InvE P
I'FlalP

(Inv)



Invariants

I'FInv Invk |allnv InvE P
I'FlalP

(Inv)

To prove the statement] - [a] P



Invariants

It is enough to find an invariant such that:

I'FInv Invk |allnv InvE P
I'FlalP

(Inv)

To prove the statement] - [a] P



Invariants

It is enough to find an invariant such that:
$» ¢ holds initially

Invk [a¢]Inv InvE P
I'+la]P

(Inv)

To prove the statement] - [a] P



Invariants

It is enough to find an invariant which:
e holds initially
 implies the post-condition

Inv - [a] Inv
I'+la]P

To prove the statement] - [a] P



Invariants

It is enough to find an invariant which:

e holds initially
 implies the post-condition
e IS an invariant

To prove the statement] - [a] P



Loop mmvariants

I'FInv InvF[a]l]lnv InvFE P
'+ [a*]P

(L)



Differential invariants?

x=e& (0 =~ (?Q;x:=x+dt.e)*;?Q

[LOFInv Inv,OFInv(x < x+dt.e) Invk P
I'HF[x=e & QO]P

(dtl)

Assume that P = Inv = f = 0. We want something to ensure:

fw)=0=f(w+dt.e(w)) =0

It is enough to require that fis constant along the dynamics, that is, if i is a solution
of x = e, then K : t — f(y(?)) is constant, that is, its derivative is zero.

: 0 0
K=Y a—i(w(t)) =y a—i(w(t» e (w(D)

xeX xeX

0
So it is enough that the function Lg [ = Z d_f . e, to be zero along the dynamics.
X

xeX



Differential invariants

[LOFf=0 T'HF[x=e& Q]Zef=0
I'Fx=e&Q]f=0

(D)



Momnotonicity property?

When a < a which vehicle crash harder?



Relational formulae

[{x =f(0) & 0}; {x = f(%) & 0}; 78(x) = §X)] B



Relational formulae

& 0): (x = J(x) & 0): 28(x) = g B




Relational formulae

[{x =

0); (% = (%) & D}; 28(x) = gR)] B




Relational formulae




Relational formulae

28(0) = Z(X)1 B




Relational formulae

j Exit ,
't condition




Relational formulae

[{x =

j Exit ,
't condition




Relational formulae

 system2  Jj B I conclusion |

{ condition i



Relational formulae

Tk = /) & O} 0))fs = zx)

{1 . {1 Conclusion §
{ condition I\




Relational invariant

F,g,@l—lnv InvI—[_5;5;?E]Inv Inv,. £+ B

I

1l
| >
1

X = f(x) & O

(X) & Q
) = &(X)

N > >
n

| o X|

o

i

-~ [5,5; 7E] B

(RD)



Relational invariant, for 1SO26262

We know that:

V(@) = [y} + 2ax P = /7 + 2ax
So: ,
v(x) —vg . P(x)* — V3
2a 2a
And then:

R D —
R = a(y?2—vy) = a(v- — V)
Is a relational invariant.



Relational invariant, for 1SO26262

We know that:

V(@) = [y} + 2ax $() = /7 + 2ax
So: ,
v(x) —vg e P(X)* — V;
2a 2a
And then:

I D —
R = a(y?2 —y?) = a( —v)
Is a relational invariant.

' The invariant implies ~.
: the property ,.'.
(easy proof)  j




Relational invariant, for 1SO26262

We know that:

V(@) = [y} + 2ax $() = /7 + 2ax
So: ,
v(x) —vg e P(X)* — V;
2a 2a
And then:

I D —
R = a(y?2 —y?) = a( —v)
Is a relational invariant.

v The invariant holds '.
' initially “'_
(easy proof)




Relational invariant, for 1SO26262

We know that:

v(x) = \/ vi+ 2ax V(x) = \/ Ve + 2ax
So: ,
v(x) —vg L P(X)* — V;
2a 2a
And then:

R = a(y? —1?) = a(v* — v}
Is a relational invariant.

That is, one has to prove the following statements:

The invariant is
preserved by the

dynamics s
| (easy proof?)




Problems to tackle

We want a method that:

» does not require the solutions of the differential equations
iIn any way

e transforms the two dynamics into one unique, so that we
can use known methods from differential invariants.



Two systems into one?

What we have now:
* OnesystemonJx,V

e one systemonx,V
that take different times to arrive at a particular position.

What we want:
e onesystemonx, Vv, X,V
such that the positions are synchronized, that is, at all time :

x(1) = x(¢)



Reparametrisation of dynamacs

Crucial idea: reparametrise the time of X, v

Time stretch function: derivable function k : R — R with

k>0

Reparamatrised dynamics: let x = f(x) be a differential equation.
It reparametrisation by k is x = k(¢) . f(x).




Is it OK?

Why is it OK then?

— we do not care about « at time ¢, the vehicle is at position x with
speed v »

— we care about « at position X, the vehicle has speed v »



Whaich reparametrisation to choose?

Fix v, Vo and note (y , i ) the solution of X = v,V = a at
—X —V

x=0,vy=y, W,y thesolutionof x =V, vy =aatx = 0,7 = ¥,

We have a time stretch function k : R — R such that for every x

k(2(x)) = 1(x)

given by:

\/ at* + 2y at + Vi —

k(t) =

a



Whaich reparametrisation to choose?

Fix v, Vo and note (y , i ) the solution of X = v,V = a at
—X —V

x=0,vy=y, W,y thesolutionof x =V, vy =aatx = 0,7 = ¥,

We have a time stretch function k : R — R such that for every x

k(2(x)) = 1(x)

So we want to look at:

But we have:

k(1) = (1
Then: .
k(). 7,(k(D) = v (1)

So we want to look at:



How to generalize to relational formulae?

In general, from

x = f(x)
and )
X = f(X)
under the exit condition
8(x) = g(X)
we consider:
| . Zr8
X =f(x),x =——.f(X)

l gfg



Synchronisation rule

[LQ.OFE TH[§1%g>0 TH[8]1ZLg>0 T'F[5]B

'+ [6;6;,?E]B (Syn)
o=x=fx) &0
S=x=fX) & Q
E=gx) =3g(x)
Zr 8

|
[
1%
I
(%
=
|
Il

) .7 TO&LQAD



Relational invariant, for 1SO26262

We know that:

v(x) = \/ vi+ 2ax V(x) = \/ Ve + 2ax
So: ,
v(x) —vg L P(X)* — V;
2a 2a
And then:

R = a(y? —1?) = a(v* — v}
Is a relational invariant.

That is, one has to prove the following statements:

The invariant is
preserved by the

dynamics s
| (easy proof?)




Relational invariant, for 1SO26262

Let’s prove the following statement with the (Syn) rule:

with R = a(y2 — v?) = a(v* — V), that is:



Summary

Guideline:

o start with two independent systems and compare them under some
conditions

e synchronize them by reparametrising one of them using the (Syn) rule

e use usual invariant techniques from dL

Case studies:
* monotonicity properties

e abstraction



