
Relational Differential Dynamic Logic

Jérémy Dubut
National Institute of Informatics

Japanese-French Laboratory of Informatics

Methods and Tools for Distributed Hybrid Systems
Amsterdam, 26/08/19

Joint work with:

• from Tokyo: Ichiro Hasuo, Akihisa Yamada, David Sprunger,  

and Shin-ya Katsumata

• from France: Juraj Kolčák

Initiated by discussions with Kenji Kamijo, Yoshiyuki Shinya,  
and Takamasa Suetomi from Mazda Motor Corporation

Sources:

• J. Kolčák, I. Hasuo, J. Dubut, S. Katsumata, D. Sprunger,  

A. Yamada, Relational Differential Dynamic Logic. Preprint  
arXiv:1903.00153.

• some implementation on GitHub

Collaborations

Basic example: simplified ISO26262

� ·v = 0

� ·v = a > 0

In which cases will the vehicle crash hard?

Monotonicity property?

� ·v = a > 0

� ·v = a > 0

When � which vehicle crash harder?a < a

Elementary proof

Consider the following easy dynamics:
� �
� �

·x = v ·x = v
·v = a ·v = a

Elementary proof

Consider the following easy dynamics:
� �
� �

Solving the equations:
� �

� �

·x = v ·x = v
·v = a ·v = a

v = a . t + v0 v = a . t + v0

x =
a
2

. t2 + v0 . t x =
a
2

. t2 + v0 . t

Elementary proof

Consider the following easy dynamics:
� �
� �

Solving the equations:
� �

� �

The time at which the vehicles reach the position � is:

� �

·x = v ·x = v
·v = a ·v = a

v = a . t + v0 v = a . t + v0

x =
a
2

. t2 + v0 . t x =
a
2

. t2 + v0 . t

x

t(x) =
v2

0 + 2ax − v0

a
t(x) =

v2
0 + 2ax − v0

a

Elementary proof

Consider the following easy dynamics:
� �
� �

Solving the equations:
� �

� �

The time at which the vehicles reach the position � is:

� �

The speed at position � is:

� �

·x = v ·x = v
·v = a ·v = a

v = a . t + v0 v = a . t + v0

x =
a
2

. t2 + v0 . t x =
a
2

. t2 + v0 . t

x

t(x) =
v2

0 + 2ax − v0

a
t(x) =

v2
0 + 2ax − v0

a

x
v(x) = v2

0 + 2ax v(x) = v2
0 + 2ax

Elementary proof

If � and  
� then
�  

and the blue car 
crashes harder!

a ≤ a
v0 ≤ v0
v(x) ≤ v(x)

Consider the following easy dynamics:
� �
� �

Solving the equations:
� �

� �

The time at which the vehicles reach the position � is:

� �

The speed at position � is:

� �

·x = v ·x = v
·v = a ·v = a

v = a . t + v0 v = a . t + v0

x =
a
2

. t2 + v0 . t x =
a
2

. t2 + v0 . t

x

t(x) =
v2

0 + 2ax − v0

a
t(x) =

v2
0 + 2ax − v0

a

x
v(x) = v2

0 + 2ax v(x) = v2
0 + 2ax

Elementary proof

If � and  
� then
�  

and the blue car 
crashes harder!

a ≤ a
v0 ≤ v0
v(x) ≤ v(x)

Consider the following easy dynamics:
� �
� �

Solving the equations:
� �

� �

The time at which the vehicles reach the position � is:

� �

The speed at position � is:

� �

·x = v ·x = v
·v = a ·v = a

v = a . t + v0 v = a . t + v0

x =
a
2

. t2 + v0 . t x =
a
2

. t2 + v0 . t

x

t(x) =
v2

0 + 2ax − v0

a
t(x) =

v2
0 + 2ax − v0

a

x
v(x) = v2

0 + 2ax v(x) = v2
0 + 2ax

Differential dynamic logic in a nutshell

• A Hoare-triples-style syntax to formalise properties of  
hybrid system

• A sequent calculus to implement proofs of those properties

• A tool: KeYmaeraX

Ref: A. Platzer’s group http://symbolaris.com

 �

� : sets of first order formulae of real arithmetic

� : hybrid program

�

Γ ⊢ [α] P
Γ, P
α

α ::= ?P ∣ α; α ∣ ·x = f(x) & Q ∣ α⋆ ∣ x := e ∣ …

http://symbolaris.com

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P

It is enough to find an invariant such that:

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P

It is enough to find an invariant such that:
• holds initially

a

It is enough to find an invariant which:
• holds initially
• implies the post-condition

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P

a

It is enough to find an invariant which:
• holds initially
• implies the post-condition
• is an invariant

Invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α] P
(Inv)

To prove the statement �Γ ⊢ [α] P

Loop invariants

�
Γ ⊢ Inv Inv ⊢ [α] Inv Inv ⊢ P

Γ ⊢ [α⋆] P
(LI)

Differential invariants?

�

�

Assume that � . We want something to ensure:

�  

It is enough to require that � is constant along the dynamics, that is, if � is a solution
of � , then � is constant, that is, its derivative is zero.

�

So it is enough that the function � to be zero along the dynamics.

·x = e & Q ≃ (?Q; x := x + dt . e)⋆; ?Q

Γ, Q ⊢ Inv Inv, Q ⊢ Inv(x ← x + dt . e) Inv ⊢ P
Γ ⊢ [·x = e & Q]P

(dtI)

P = Inv ≡ f = 0
f(ω) = 0 ⇒ f(ω + dt . e(ω)) = 0

f ψ
·x = e K : t ↦ f(ψ(t))

·K(t) = ∑
x∈x

∂f
∂x

(ψ(t)) . ·ψ(t) = ∑
x∈x

∂f
∂x

(ψ(t)) . ex(ψ(t))

ℒe f = ∑
x∈x

∂f
∂x

. ex

Differential invariants

�
Γ, Q ⊢ f = 0 Γ ⊢ [·x = e & Q] ℒe f = 0

Γ ⊢ [·x = e & Q] f = 0
(DI)

Monotonicity property?

� ·v = a > 0

� ·v = a > 0

When � which vehicle crash harder?a < a

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 1

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 1

!
!  

!

·x = v
·v = a

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 2System 1

!
!  

!

·x = v
·v = a

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 2System 1

!
!  

!

·x = v
·v = a

!
!  

!

·x = v
·v = a

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 1

!
!  

!

·x = v
·v = a

System 2

!
!  

!

·x = v
·v = a

Exit
condition

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

Exit
conditionSystem 1

!
!  

!

·x = v
·v = a

System 2

!
!  

!

·x = v
·v = a

!?x = x

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 1

!
!  

!

·x = v
·v = a

System 2

!
!  

!

·x = v
·v = a

Exit
condition

!?x = x

Conclusion

Relational formulae

�[{·x = f(x) & Q}; {·x = f(x) & Q}; ?g(x) = g(x)] B

System 1

!
!  

!

·x = v
·v = a

System 2

!
!  

!

·x = v
·v = a

Conclusion

!v ≤ v

Exit
condition

!?x = x

Relational invariant

�

�

�

�

Γ, Q, Q ⊢ Inv Inv ⊢ [δ; δ; ?E] Inv Inv, E ⊢ B

Γ ⊢ [δ; δ; ?E] B
(RI)

δ ≡ ·x = f(x) & Q

δ ≡ ·x = f(x) & Q

E ≡ g(x) = g(x)

Relational invariant, for ISO26262

We know that:

� �

So:

�

And then:
�

is a relational invariant.

v(x) = v2
0 + 2ax v(x) = v2

0 + 2ax

v(x)2 − v2
0

2a
= x =

v(x)2 − v2
0

2a

R ≡ a(v2 − v2
0) = a(v2 − v2

0)

Relational invariant, for ISO26262

We know that:

� �

So:

�

And then:
�

is a relational invariant.

That is, one has to prove the following statements:
• �

• �

• �

v(x) = v2
0 + 2ax v(x) = v2

0 + 2ax

v(x)2 − v2
0

2a
= x =

v(x)2 − v2
0

2a

R ≡ a(v2 − v2
0) = a(v2 − v2

0)

a ≤ a, v ≥ v0, v ≥ v0, R ⊢ v ≥ v
v = v0, v = v0 ⊢ R
R ⊢ [{·x = v, ·v = a}; {·x = v, ·v = a}; ?x = x] R

The invariant implies
the property
(easy proof)

We know that:

� �

So:

�

And then:
�

is a relational invariant.

That is, one has to prove the following statements:
• �

• �

• �

v(x) = v2
0 + 2ax v(x) = v2

0 + 2ax

v(x)2 − v2
0

2a
= x =

v(x)2 − v2
0

2a

R ≡ a(v2 − v2
0) = a(v2 − v2

0)

a ≤ a, v ≥ v0, v ≥ v0, R ⊢ v ≥ v
v = v0, v = v0 ⊢ R
R ⊢ [{·x = v, ·v = a}; {·x = v, ·v = a}; ?x = x] R

Relational invariant, for ISO26262

The invariant holds
initially

(easy proof)

We know that:

� �

So:

�

And then:
�

is a relational invariant.

That is, one has to prove the following statements:
• �

• �

• �

v(x) = v2
0 + 2ax v(x) = v2

0 + 2ax

v(x)2 − v2
0

2a
= x =

v(x)2 − v2
0

2a

R ≡ a(v2 − v2
0) = a(v2 − v2

0)

a ≤ a, v ≥ v0, v ≥ v0, R ⊢ v ≥ v
v = v0, v = v0 ⊢ R
R ⊢ [{·x = v, ·v = a}; {·x = v, ·v = a}; ?x = x] R

Relational invariant, for ISO26262

The invariant is  
preserved by the

dynamics
(easy proof?)

Problems to tackle

We want a method that:

• does not require the solutions of the differential equations 
in any way

• transforms the two dynamics into one unique, so that we  
can use known methods from differential invariants.

Two systems into one?

What we have now:

• one system on �

• one system on �

that take different times to arrive at a particular position.

What we want:

• one system on �

such that the positions are synchronized, that is, at all time � :

�

x, v
x, v

x, v, x, v
t

x(t) = x(t)

Reparametrisation of dynamics

Crucial idea: reparametrise the time of �

Time stretch function: derivable function � with

�

Reparamatrised dynamics: let � be a differential equation.

It reparametrisation by � is � .

x, v

k : ℝ ⟶ ℝ·k > 0

·x = f(x)
k ·x = ·k(t) . f(x)

! is a solution of ! iff
! is a solution of ! .

x ·x = f(x)
x ∘ k ·x = ·k(t) . f(x)

Is it OK?

Fix some initial condition ! . Then
! .

x0
{x(t) ∣ x sol. of ·x = f(x) at x0} = {x(t) ∣ x sol. of ·x = ·k(t) . f(x) at x0}

Why is it OK then?

� we do not care about « at time � , the vehicle is at position � with  
speed � »

� we care about « at position � , the vehicle has speed � »

→ t x
v

→ x v

Fix � and note � the solution of � at

� , � the solution of � at � .

We have a time stretch function � such that for every �

�

given by:

 

�

v0, v0 (ψ
x
, ψ

v
) ·x = v, ·v = a

x = 0, v = v0 (ψx, ψv)
·x = v, ·v = a x = 0, v = v0

k : ℝ ⟶ ℝ x
k(t(x)) = t(x)

k(t) =
at2 + 2v0at + v2

0 − v0

a

Which reparametrisation to choose?

Which reparametrisation to choose?

Fix � and note � the solution of � at

� , � the solution of � at � .

We have a time stretch function � such that for every �

�

So we want to look at:

�

But we have:

�

Then:

�  

So we want to look at:

�  

v0, v0 (ψ
x
, ψ

v
) ·x = v, ·v = a

x = 0, v = v0 (ψx, ψv)
·x = v, ·v = a x = 0, v = v0

k : ℝ ⟶ ℝ x
k(t(x)) = t(x)

·x = v, ·v = a, ·x = ·k(t) . v, ·v = ·k(t) . a

ψx(k(t)) = ψ
x
(t)

·k(t) . ψv(k(t)) = ψ
v
(t)

·x = v, ·v = a, ·x =
v
v

. v, ·v =
v
v

. a

How to generalize to relational formulae?

In general, from

�

and

�

under the exit condition

�

we consider:

�  

·x = f(x)

·x = f(x)

g(x) = g(x)

·x = f(x), ·x =
ℒf g

ℒf g
. f(x)

Synchronisation rule

�

�

�

�

�

Γ, Q, Q ⊢ E Γ ⊢ [δ] ℒf g > 0 Γ ⊢ [δ] ℒf g > 0 Γ ⊢ [δ] B

Γ ⊢ [δ; δ; ?E] B
(Syn)

δ ≡ ·x = f(x) & Q

δ ≡ ·x = f(x) & Q

E ≡ g(x) = g(x)

δ ≡ ·x = f(x), ·x =
ℒf g

ℒf g
. f(x) & Q ∧ Q

We know that:

� �

So:

�

And then:
�

is a relational invariant.

That is, one has to prove the following statements:
• �

• �

• �

v(x) = v2
0 + 2ax v(x) = v2

0 + 2ax

v(x)2 − v2
0

2a
= x =

v(x)2 − v2
0

2a

R ≡ a(v2 − v2
0) = a(v2 − v2

0)

a ≤ a, v ≥ v0, v ≥ v0, R ⊢ v ≥ v
v = v0, v = v0 ⊢ R
R ⊢ [{·x = v, ·v = a}; {·x = v, ·v = a}; ?x = x] R

Relational invariant, for ISO26262

The invariant is  
preserved by the

dynamics
(easy proof?)

Relational invariant, for ISO26262

Let’s prove the following statement with the (Syn) rule:

�

with � , that is:

• � (easy with differential invariant)

• � (easy with differential invariant)

• �

using differential invariant rule:

�

R ⊢ [{·x = v, ·v = a}; {·x = v, ·v = a}; ?x = x] R

R ≡ a(v2 − v2
0) = a(v2 − v2

0)

v > 0, a ≥ 0 ⊢ [·x = v, ·v = a] v > 0

v > 0, a ≥ 0 ⊢ [·x = v, ·v = a] v > 0

R ⊢ [{·x = v, ·v = a, ·x =
v
v

. v, ·v =
v
v

. a}] R

R ⊢ [{·x = v, ·v = a, ·x =
v
v

. v, ·v =
v
v

. a}] 2ava = 2av
v
v

a

Summary

Guideline:

• start with two independent systems and compare them under some
conditions

• synchronize them by reparametrising one of them using the (Syn) rule

• use usual invariant techniques from dL

Case studies:

• monotonicity properties

• abstraction

