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Nash equilibria for decision making  
of autonomous vehicles
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Decision making?

Ego vehicle

Other vehicles
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Decision making?

Step 1: Observation

Car here 
Position x,y 
Velocity v 

Acceleration a 
…
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Decision making?
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Position x,y 
Velocity v 
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Decision making?

Step 1: Observation


Step 2: Computation
Considering  
the current  
situation,  

what is my best 
action?
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Decision making?

Step 1: Observation


Step 2: Computation


Step 3: Actuation 

Throttle = … 

Angle of the 
wheel = …
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Decision making?

Step 1: Observation


Step 2: Computation


Step 3: Actuation 

Considering  
the current  
situation,  

what is my best 
action?
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Two main methods

Considering  
the current  
situation,  

what is my best 
action?

Two main methods:


• Learning methods


• Game theoretic methods
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Two main methods

Considering  
the current  
situation,  

what is my best 
action?

Two main methods:


• Learning methods


• Game theoretic methods

Li et al., “Game Theoretic Modeling of Vehicle Interactions at  
Unsignalized Intersections and Application to Autonomous Vehicle  
Control” IEEE-ACC2018.


Tian et al., “Adaptive Game-Theoretic Decision Making for  
Autonomous Vehicle Control at Roundabouts” IEEE-CDC2018.
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Which scenarii?
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Haha

Which scenarii?

Haha

Fixed intersection-like road situations
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Haha

Haha

Which scenarii?
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Autonomous vehicles « playing » with each other  
or with others types of vehicles



Jérémy Dubut (NII & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)

Haha

Haha
Haha

HahaHaha

Haha
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Their paths are fixed 
NextStepi : conf * a ⟶ conf
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Best move?

The ego vehicle must choose its acceleration in such a way that:

• it follows its path,

• it optimises its time in the intersection,

• it does not collide with other vehicles,

• it respects the law,

• …


Since we have several things to optimise, we have to think about  
trade-off.
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Cost function

 
with 

Costi(conf1, …, confn) = αi . Costi
velo + βi . Costi

safe
αi + βi = 1
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Cost function

 
with 

Costi(conf1, …, confn) = αi . Costi
velo + βi . Costi

safe
αi + βi = 1

The cost of a situation (either observed or predicted)

The lower, the better.
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Cost function

 
with 

Costi(conf1, …, confn) = αi . Costi
velo + βi . Costi

safe
αi + βi = 1

Configurations of the vehicle  given by:

• Their positions (cartesian, polar coordinates)

• Their velocities

• Their situations in the intersection (entering, inside, exiting)

1,…, n
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Cost function

 
with 

Costi(conf1, …, confn) = αi . Costi
velo + βi . Costi

safe
αi + βi = 1

A cost function that describes how close to the limit velocity the vehicle is.

The lower, the closer.
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Cost function

 
with 

Costi(conf1, …, confn) = αi . Costi
velo + βi . Costi

safe
αi + βi = 1

A cost function that describes how safe the vehicle is

Roughly speaking: how closed to the other vehicle it is


The lower, the safer.
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Cost function

 
with 

Costi(conf1, …, confn) = αi . Costi
velo + βi . Costi

safe
αi + βi = 1

Coefficient that describes how much the vehicle cares about the optimising  
its velocity compared to its safety.


Roughly speaking: its an “aggressiveness” coefficient
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Receding horizon cost

 

with:




HCosti(conf1, …, confn, (ai
j,s)1≤ j≤n,0≤s≤h) =

h

∑
s=0

δh . Costi(conf1,s, …, confn,s)

confj,0 = confj

confj,s+1 = NextStepi
j(confj,s, ai

j,s)
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Receding horizon cost

 

with:




HCosti(conf1, …, confn, (ai
j,s)1≤ j≤n,0≤s≤h) =

h

∑
s=0

δh . Costi(conf1,s, …, confn,s)

confj,0 = confj

confj,s+1 = NextStepi
j(confj,s, ai

j,s)

Accumulated cost of the all upcoming situations when the initial situation is 
 

and if the vehicle  predicts the accelerations of all vehicles are given by 

 

and that the vehicle  follows the path given by 


conf1, …, confn
i

(ai
j,s)1≤ j≤n,0≤s≤h

j
NextStepi

j
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Best global move = Nash equilibrium

A game:

• A set of players  

• Ex: the vehicles


• Each player  has a set of possible moves  
• Ex: an acceleration profile  

• Each player has a cost function it wants to minimise, of type:




• Ex: the accumulated costs


What does it mean for the players to conjunctly optimise their cost? 
 best possible response: a move  for every player such that for any  

other move :




Nash equilibrium

P = {1,…, n}

i Γi
(as)0≤s≤h

Hi : Γ1 × … × Γn → ℝ

⇒ mi
m′�i

Hi(m1, …, mn) ≤ Hi(m1, …, m′�i, …, mn)
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Priority order and backward induction

How to enforce the existence of a Nash equilibrium and compute it? 

Idea: order the players, the smallest one chooses first, the second smallest  
chooses second, …


Assume: a total order  on 

Ex:  if  is more aggressive than , or if the law tells that  has priority over 


Do backward induction:

⪯ P
i ⪯ j i j i j
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Decision making procedure
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Decision making procedure

Initialization phase

Restrict the set of vehicles  
you are considering 

Observe their current  
configuration

Guess their path

Guess their  
cost function

Initialise the order 
of the vehicles 
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Decision making procedure

Initialization phase

Initialize the order 
of the vehicles 

Order the vehicles using the right-of-way:

• Vehicles already in the intersection have 

more priority.

• Vehicles on your left-hand-side have  

more priority.

• …
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Decision making procedure

Main loop

Compute the best responses 
from your guesses

Your best response is  
your new control input 

Compute your guess of  
the next configurations

Observe the real  
next configurations

In case your guesses 
are far from reality, 

make some updates
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Decision making procedure

Main loop

In case your guesses 
are far from reality, 

make some updates

Compute the order that fit the situation 
the most:

• For every possible order, compute:




• Then compute the corresponding  

predicted configuration:




• Choose  whose predictions are the  
closest to the observation .

(aj,s) = nash_equilibrium(HCostj, ⪯ ) .

̂X j( ⪯ ) = NextStepj(Xj, aj,0) .
⪯

Xj
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Dealing with deadlocks

A dead-lock: a situation where all the vehicles are waiting for others  
to take a decision.


In our case: symmetric situations where  
every vehicles are stopped at the  
entrance of the intersection.


How to solve it?

 theoretically insolvable with deterministic systems

 add probabilities: when a deadlock is detected, take a decision with 

some probability

⇒
⇒
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Behavior of  the adversaries

Right of way

Fitting

ego/angelic
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Behavior of  the adversaries

I have priority

I do not care

Demonic
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I have priority

Intermediate

Fitting

Behavior of  the adversaries
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Irrational

Behavior of  the adversaries
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Simulation results

Unsignalized intersection

1: four angelic 
2: three angelic + one demonic 
3: four intermediate 
4: three intermediate + one irrational

Roundabout
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Simulation results
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Simulation results
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Future work

• Having a baseline experiment with human drivers? 


• Going to Bayesian games?


• Using learning methods?


• Proving some guarantees?
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Reachability analysis for  
stochastic systems
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Reachability analysis?
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Reachability analysis?

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)
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Reachability analysis?

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)

Compute a zone where the car is  
guaranteed to be in  timeΔt

?
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One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

?
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One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Over-approximate the initial zone

with polytopes, zonotopes, …

?
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One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

?

Linearize the system

X(Δt) = X0 + f(X0) ⋅ Δt + Errors
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One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Linearize the system

X(Δt) = X0 + f(X0) ⋅ Δt + Errors

The Errors can be bounded 
using Lagrange remainders

?
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?

One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Linearize the system

X(Δt) = X0 + f(X0) ⋅ Δt + Errors

Compute an over-approximation 
of the reachable zone
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One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)+Random

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Linearize the system

X(Δt) = X0 + f(X0) ⋅ Δt + Errors

What about if the  
system is stochastic?

?
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One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)+Random

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Linearize the system

X(Δt) = X0 + f(X0) ⋅ Δt+BiggerErrors

What about if the  
system is stochastic?

If bounded

?
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One state-of-the-art’s method

Assume your car is in this zone 
and its dynamics is given by
·X = f(X)+Random

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles  
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Linearize the system

X(Δt) = X0 + f(X0) ⋅ Δt+BiggerErrors

?

What about if the  
system is stochastic?

If bounded
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Reachability analysis, for stochastic systems

Assume the initial position follows 
this distribution (given by moments) 

and the dynamics is given by
·X = f(X)
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Reachability analysis, for stochastic systems

Assume the initial position follows 
this distribution (given by moments) 

and the dynamics is given by
·X = f(X)

Estimate the distribution after  time 
(estimate the moments)

Δt
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Discrete-time polynomial system

States are given by vectors:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)
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x(0) = x0
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Discrete-time polynomial system

vector in ℝn



Jérémy Dubut (NII & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)

States are given by vectors:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

Discrete-time polynomial system

vector in ℝn matrixn × n

vector in ℝn
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States are given by vectors:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

Discrete-time polynomial system

vector in ℝnd
 matrixn × nd

vector in ℝn

-th Kronecker

power of  

d
x(t)
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Discrete-time polynomial system

States are given by vectors:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

Usual assumption: the s do not depend on  
nor on 

Fi(t) t
x0



Jérémy Dubut (NII & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)

Example, a bicycle model










·x(t) = v(t) ⋅ cos(ψ(t) + β)

·y(t) = v(t) ⋅ sin(ψ(t) + β)

·ψ(t) =
v(t)
ℓ

⋅ sin β

·v(t) = a(t)

Kong et al., “Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design”, IEEE-IV 2015.
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Example, a bicycle model
















·x(t) = v(t) ⋅ c(t)

·y(t) = v(t) ⋅ s(t)

·ψ(t) =
v(t)
ℓ

⋅ sin β

·v(t) = a(t)

·c(t) = −
s(t) ⋅ v(t) ⋅ sin β

ℓ

·s(t) =
c(t) ⋅ v(t) ⋅ sin β

ℓ
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Example, a bicycle model
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Example, a bicycle model
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Discrete-time polynomial stochastic system

States are given by vectors of random variables:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ Ω → ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)
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States are given by vectors of random variables:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ Ω → ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

Discrete-time polynomial stochastic system

vector of random 
variables
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States are given by vectors of random variables:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ Ω → ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

Discrete-time polynomial stochastic system

random vector
 random


matrix
n × n

random vector
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States are given by vectors of random variables:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ Ω → ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

Discrete-time polynomial stochastic system

random vector
 random 

matrix
n × nd

random vector
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Discrete-time polynomial stochastic system

States are given by vectors of random variables:


 


satisfying an equation of the form:





x(0), x(1), …, x(t), x(t + 1), … ∈ Ω → ℝn

x(0) = x0
x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

Usual assumption: the s do not depend on  
(  and  are independent for ) 
(  and  are identically distributed)  

nor on  
(  and  are independent)

Fi(t) t
Fi(t) Fj(s) t ≠ s
Fi(t) Fi(s)

x0
x0 Fi(t)
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Carleman linearization

Main idea: transform a finite-dimensional polynomial system into a 
infinite-dimensional linear system 




Computing the Kronecker products:





where  is computed from the . Using:





we obtain the following infinite-dimensional linear system:





where  is computed from the 

x(t + 1) = F0(t) + F1(t) ⋅ x(t) + … + Fd(t) ⋅ x[d](t)

x[ j](t + 1) =
jd

∑
k=0

Aj,k(t) ⋅ x[k](t)

Aj,k(t) Fi(t)

y(t) = [1 x(t) x[2](t) … ]

y(t + 1) = A(t) ⋅ y(t)

A(t) Fi(t) .
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Moment equations

The -th moments of  are given by .


Equations between the moments:


 


using the assumptions:


 


and  is independent of . We then obtain:


 


where  is computed from the moments of the .

j x(t) 𝔼(x[ j](t))

𝔼(x[ j](t + 1)) =
jd

∑
k=0

𝔼(Aj,k(t) ⋅ x[k](t))

𝔼(x[ j](t + 1)) =
jd

∑
k=0

𝔼(Aj,k(t)) ⋅ 𝔼(x[k](t))

𝔼(Aj,k(t)) t

𝔼(y(t + 1)) = E ⋅ 𝔼(y(t))

E Fi(t)
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Truncated system

M. Forest, A. Pouly, “Explicit error bounds for Carleman linearization”,  
arXiv:1711.02552, 2017.

Fix , and define  the restriction of  to the  raws and columns.


Our estimation of the N-th first moments of  is given by the following 

system:


 




That is,  is an approximation of .


Furthermore, we have efficient ways of computing bounds of the errors.

N EN E
N

∑
k=0

nk

x(t)

ỹ(0) = [1 𝔼(x0) … 𝔼(x[N]
0 )]

ỹ(t + 1) = EN ⋅ ỹ(t)

ỹ(t) [1 𝔼(x(t)) … 𝔼(x[N](t))]
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Online computation for autonomous cars

Measured 
position

Current 
moments

Approximations 
of the future 

moments

given by the model 
of disturbances of 

the sensors

computed with 
the truncated 

Carleman  
linearization

modify the  
driving behavior

Conclusion: online cost very small, no need to compute !E(N, N )
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Tail probability analysis

What can we do with the estimated future moments and the bounds on errors? 

Proving a Chebyshev-like inequality: 

Proposition: 
We can compute a bound of 


 

where  is our estimation of the first moment of  
using:

• our estimation of the second moment of ,

• the bounds on the errors of those estimations.

Furthermore, all those values can be computed efficiently.

ℙ(∥x(t) − x̃1(t)∥ ≥ α)
x̃1(t) x(t)

x(t)
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Numerical results, for the bicycle model
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Online computation vs. Monte Carlo
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Future work

• Develop the tail probability analysis


• Reconstruction of the distribution from the moments


• Improving the computation by using the symmetries in the  
Kronecker powers



