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Nash equilibria for decision making
of autonomous vehicles
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Decision making?

= QOther vehicles

Ego vehicle
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Decision making?

Step 1: Observation

Car here
Position x,y

Velocity v
Acceleration a
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Decision making?

Step 1: Observation

Car here
Position x,y

Velocity v
Acceleration a
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Decision making?

Step 1: Observation

Considering .
the current | Step 2: Computation

situation,
what is my best
action?

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Decision making?

Step 1: Observation

UDGeiis S o | Step 2: Computation

Angle of the
wheel = ...

Step 3: Actuation
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Decision making?

Step 1: Observation

Considering
the current

Step 2: Computation

situation,
what is my best

action? Step 3: Actuation
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Two main methods

Two main methods:
« Learning methods

L « Game theoretic methods
Considering

the current

situation,
what is my best
action?
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Two main methods

Jérémy Dubut (NIl & JFLI)

Considering
the current

situation,
what is my best
action?

Two main methods:

« Learning methods

- Game theoretic methods]

Li et al., “Game Theoretic Modeling of Vehicle Interactions at
Unsignalized Intersections and Application to Autonomous Vehicle
Control” IEEE-ACC2018.

Tian et al., “Adaptive Game-Theoretic Decision Making for
Autonomous Vehicle Control at Roundabouts” IEEE-CDC2018.
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Which scenari?
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Which scenari?

I
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| Fixed intersection-like road situations
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Which scenari?
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Which scenari?
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Best move?

The ego vehicle must choose its acceleration in such a way that:
e it follows its path,
e |t optimises its time in the intersection,
e it does not collide with other vehicles,
* |t respects the law,

Since we have several things to optimise, we have to think about
trade-off.
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Cost function

l

; _ i
Cost'(conf|, ..., conf,) = q;. Cost ,,+ p; - Cost_

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Cost function

j The cost of a situation (either observed or predicted) }
| ~ The lower, the better. o
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Cost function

l l
a;.Cost |+ p;.Cost__.

{ Configurations of the vehicle 1,..., n given by:
¢ Their positions (cartesian, polar coordinates)
* Their velocities

{ ¢ Their situations in the intersection

e'ntering, inside, exiting

,
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Cost function

Cost'(conf, ..
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Cost function

Costi(confl, ...,conf,) = a;. COSti,el
with a; + . = 1

o

A cost function that describes how safe the vehicle is j
| Roughly speaking: how closed to the other vehicle it is {
| _ Thelowerthesafer. |
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Cost function

Cost'(confy, ..., conf,) =@. Costi,elo + p;. COSt;afe

ﬂi =1

Coefficient that describes how much the vehicle cares about the optimising |
| its velocity compared to its safety. |
_Roughly speaking: its an “aggressiveness” coefficient |
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Receding horizon cost

h
HCost'(conf, ..., conf, (aﬁ Ji< jgn,ogsgh) — 2 5" COSti(CO"fl,sa ..., confy, ;)
s=0

with:
conf; , = conf;

conf (| = NextStep]’:(confj,S, a; )
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Receding horizon cost

,_t‘(confl, ..., confy, (’ < jgn,ossh = 2 5" . Cost'(conf| , ..., conf, )
e et

with:
conf; , = conf;

] = NextStep’(con ' 5 a S)
7 Accumulated cost of the all upcoming situations when the initial situation

conf{, ..., conf,
and if the vehicle 1 predicts the accelerations of all vehicles are given by

( )1<]<n 0<s<h

and that the vehlcle] follows the path given by
NextStep}
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Best global move = Nash equilibrium

A game:
e Asetofplayers P={1,...,n}

e EXx:the vehicles
e Each player i has a set of possible moves I
e Ex: an acceleration profile (a,)<,</,
* Each player has a cost function it wants to minimise, of type:
H:I''x..XI' - R

e EX:the accumulated costs

What does it mean for the players to conjunctly optimise their cost?
= best possible response: a move m; for every player such that for any

other move m:
H(my,....m) < Hm,....m,....m)

1’ n

Nash equilibrium

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Priority order and backward induction

How to enforce the existence of a Nash equilibrium and compute it?

Idea: order the players, the smallest one chooses first, the second smallest
chooses second, ...

Assume: a total order < on P
Ex: 1 < jif [ is more aggressive than J, or if the law tells that i has priority over j

Do backward induction:

P1

P2

Hi(Ya Vp) < Hi(Yp,Ya)

Hy(Yar Ya) = H2(YVas Vb) H;(Yb)Ya) < Ha(Yp, Yb)

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Decision making procedure

Algorithm Decision making of the ego vehicle

1: t:=0;

2: N :=initial neighbors;
3: for all j € N do

4: X, = observe(y, t);

5: NextStep, := initial _path(j);

6: HCost; := initial cost(j);

7: end for;

8: =<:=initial order;

9: while I am still in the intersection do

10: (ajs)j.s == nash _equilibrium(HCost;, <);

11: return agg, o as control input;
12: t:=1t+ time step;

13: )?j = NextStepj (Xj, aj,());

14: X := observe(y, t);

15: if some X; are not close to X; then
16: for all j € N do

17: NextStep, := update_path(j);
18: HCost; := update cost(j);

19: end for;

20: <:= update order;

21: end if

22: N :=update neighbors;
23: end while

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving
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Decision making procedure

Algorithm Decision making of the ego vehicle
Fi—o0. s

: N := initial neighbors; s,

8. for all j € N do

X := observe(j, t); smmeemsmasmd

NextStep, := initial _path(j); =
HCost; := initial cost(j); m ‘

- end for;

¢ =:=initial order; ,_

10: (aj.s)j.s := nash_equilibbgm (HCost ;, X);

11: return a.e, o as control inpta

12: t := 1+ time step;

13: )?j = NextStepj (X] ajA());

14: X := observe(j,t);

15: if some )A(j are not close to X; then

16: for all j € N do

17: NextStep, := update_path(j);

18: HCost; := update cost(j);

19: end for;

20: <:= update order;

21: end if

22: N :=update neighbors;

23: end while

¥ 1 Initialization phase }

N Restrict the set of vehicles |
"|__Youare considering |

. | Observe their current
' configuration |

Al Guess their path|

4| Guess their |
i cost function |

™ Initialise the order '
: _Vo»fthe vehicles
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Decision making procedure

Algorithm Decision making of the ego vehicle
Ft:=0; | o
: [NV := initial neighbors;

23:

: end for;
¢ = := initial order; """

for all j € N do
X, = observe(y, t);

NextStep, := initial _path(j);
HCost; := initial cost(j);

SR T O RS do

(ajs)j.s == nash _equilibrium(HCost;, <);

return agg, o as control input;
t:= 1+ time step;
)?j = NextStepj (XJ aj.());
X := observe(y, t);
if some X ; are not close to X; then
for all j € N do
NextStep, := update_path(j);
HCost; := update cost(j);
end for:
< := update order;
end if
N :=update neighbors;
end while

Jérémy Dubut (NIl & JFLI)

Control Theory for Autonomous Driving

¥ 1 Initialization phase }

.| Initialize the order |
{ of the vehicles |

Order the vehicles using the right-of-way:

 Vehicles already in the intersection have
more priority.

* Vehicles on your left-hand-side have
more priority.

Kyoto University (11/12/19)



Decision making procedure

Algorithm Decision making of the ego vehicle
t:=0;
N :=initial neighbors;

for all j € N do
X, := observe(j, t); ‘ Compute the best responses
NextStep, := initial _path(j); o~ -3 ; from your guesses
HCost; := initial cost(j); ya — e

end for:

Y 4 .| Your best response is |
- 7'} your new control input |

= ~— 1111191 Orcoel”
£ while I am still in the intersection do L4

b: (aj,s)j,s := nash_equilibrium(HCost;, <)»*§
‘ return aeg, o as CONtrol INPUL; mwememsseseeg e e A A A ek A
b t:=1+ time_step; | »  Compute your guess of ;
B XJ = NextStepJ(X aj 0) pomepemmmmmss———Y P |

"1 the next configurations |
Xl- = observe 7, s e e

/if some X; are notclose to'Xu then ™

' for all j € N do }
NextStep, := update_path(j); ‘
HCost; := update cost(j);

end for:

: < := update order;

L end if

\ N = update nelghbors )

.} Observe the real |
Inext configurations

| In case your guesses |
" { are far from reality, |
| make some updates |
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Decision making procedure

Algorithm Decision making of the ego vehicle

P

o

DA
.o

N I\
e oS, o
. .o

Jérémy Dubut (NIl & JFLI)

v &

t:=0;
N :=initial neighbors;
for all j € N do

X, = observe(y, t);
NextStep, := initial _path(j);
HCost; := initial cost(j);

end for:

. "
P— ) NY * .4
- Ry R L) g g Sl g ~ — S -

#* while I am still in the intersection do )
(aj,s)j,s := nash_equilibrium(HCost;, <); §

return a.e, o as control input;
t := 1+ time step;
)?j = NextStepj (Xj, ajA());
X, := observe(j,1);
if some X ; are not close to X; then/
for all j € N do V4
NextStep, := update_ pah(j);
HCost; := update cog#(7);
end for; /
<:= update order; ¢
end if
N :=update neighbors;

Control Theory for Autonomous Driving

| In case your guesses |
wi are far from reality, |
‘| make some updates |

Compute the order that fit the situation
the most:
* For every possible order, compute:

(aj,s) = nash_equilibrium(HCost;, <).

- Then compute the corresponding
predicted configuration:

X(=2)= NextStepj(Xj, dio) -
« Choose < whose predictions are the
closest to the observation X]

Kyoto University (11/12/19)



Dealing with deadlocks

A dead-lock: a situation where all the vehicles are waiting for others
to take a decision.

In our case: symmetric situations where
every vehicles are stopped at the
entrance of the intersection.

How to solve it?
= theoretically insolvable with deterministic systems

= add probabilities: when a deadlock is detected, take a decision with
some probability

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Behavior of the adversaries

Algorithm Decision making
L =0 | ego/angelic
2: N :=initial neighbors;
3: for all j € N do

4 X, = observe(y, 1);

5 NextStep; := initial _path(j);

6: HCost; := initial cost(j);

7: end for;

8: =<:=Iinitial order; > R|ght of way
9: while I am still in the intersection do

10: (ajs)j.s == nash _equilibrium(HCost;, <);

11: return aey, o as control input;

12: t :=t+ time step;
13: Xj S— NextStepj (Xj, (lj.());
14: X := observe(y, t);

15: if some X, are not close to X; then

16: for all j € N do

17: NextStep, := update_ path(j);

18: HCost; := update cost(j);

19: end for;

20: < := update order; > F|tt|ng
21: end if

22: N :=update neighbors;
23: end while

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Behavior of the adversaries

Algorithm Decision making
L =0 | Demonic
2: N :=initial neighbors;
3: for all j € N do

4 X, = observe(y, 1);

5 NextStep; := initial _path(j);

6: HCost; := initial cost(j);

7: end for;

8: <:=initial order; » | have priority
9: while I am still in the intersection do

10: (ajs)j.s == nash _equilibrium(HCost;, <);

11: return aey, o as control input;

12: t :=t+ time step;
13: Xj S— NextStepj (Xj, (lj.());
14: X := observe(y, t);

15: if some X, are not close to X; then

16: for all j € N do

17: NextStep, := update_ path(j);

18: HCost; := update cost(j);

19: end for;

20: < := update order; » | do not care
21: end if

22: N :=update neighbors;
23: end while

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Behavior of the adversaries

Algorithm Decision making

L t:=0; | Intermediate
2: N :=initial neighbors;

3: for all j € N do

4 X, = observe(y, 1);

5 NextStep; := initial _path(j);

6: HCost; := initial cost(j);

7: end for;

8: <:=initial order; » | have priority
9: while I am still in the intersection do

10: (ajs)j.s == nash _equilibrium(HCost;, <);

11: return aey, o as control input;

12: t :=t+ time step;
13: Xj S— NextStepj (Xj, (lj.());
14: X := observe(y, t);

15: if some X, are not close to X; then

16: for all j € N do

17: NextStep, := update_ path(j);

18: HCost; := update cost(j);

19: end for;

20: < := update order; > F|tt|ng
21: end if

22: N :=update neighbors;
23: end while

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Behavior of the adversaries

Algorithm Random decision making

1: while I am still in the intersection do

2 choose randomly an acceleration a Irrational
3: return a as control input;

4: end while

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Stmulation results

Roundabout Unsignalized intersection

Case Collision rate(%) Congestion rate(%) Avg. Total time steps
1 0 0 56.87 (5.687s)
Case | Collision rate(%) Min dist.(m) Avg. Total time(s) 2 0 0.2 53.98 (5.398s)
4 0 14.49 10.4 3 0 0 59.09 (5.9095)
> Y ).81 120 4 0.4 4.0 91.88 (9.988s)
6 0 8.94 13.3
7 0 300 144 I 0 05 55.43 (5.543s)
8 0 8.93 15.1 2 0 1.4 50.58 (5.058s)
3 0 94 55.81 (5.581s)
4 1.1 143 75.82 (7.582s)

1: four angelic

2: three angelic + one demonic

3: four intermediate

4: three intermediate + one irrational
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Stmulation results

The prediction of acceleration

40 -

The accleration value

——The real acceleration
----- The predicted acceleration

| | l | » | J
10 15 20 30 35

The time step

]
n
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Stmulation results

(b) 7 < time step < 15  (c) time step > 16

The actions of each vehicle
during a simulation instance

40 +
S 20
=
: RN
g (e : ..\.T /'}. :
8-20
2
é) ) ——Vehicle |
- = =Vehicle 2
.......... Vehicle 3
Lo T Vehicle 4
I | | | | | | |
0 5 10 15 20 25 30 35 40

The time step




Future work

e Having a baseline experiment with human drivers?

 Going to Bayesian games?

e Using learning methods?

 Proving some guarantees?
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Reachability analysis for
stochastic systems
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Reachability analysis’?
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Reachability analysis’?

Assume your car is in this zone
and its dynamics is given by
X = f(X)
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Reachability analysis’?

"""""""
‘‘‘‘‘‘‘‘‘
000000

-
L] .*
-----

Compute a zone where the car is
guaranteed to be in At time

Assume your car is in this zone
and its dynamics is given by
X = f(X)
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

e, sma
‘‘‘‘‘‘‘‘‘
000000

“
a »*
-----

Assume your car is in this zone
and its dynamics is given by
X = f(X)
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Over-approximate the initial zone
with polytopes, zonotopes, ...

e, sma
.........
000000

“
a »*
-----

Assume your car is in this zone
and its dynamics is given by
X = f(X)
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

---------
"""""""""
000000

-
L] .*
-----

Assume your car is in this zone
and its dynamics is given by
X = f(X)

Linearize the system
X(Ar) = X, + f(X,) - At + Errors
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.
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The Errors can be bounded
using Lagrange remainders

Assume your car is in this zone
and its dynamics is given by
X = f(X)

Linearize the system 4 _7
X(At) = X, + f(X,) - At HErrors)
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

Compute an over-approximation
of the reachable zone

N\

Linearize the system
X(Ar) = X, + f(X,) - At + Errors

Assume your car is in this zone
and its dynamics is given by
X = f(X)
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

What about if the
system is stochastic?

Assume your car is in this zone
and its dynamics is given by

X = f(X)+Random

Linearize the system
X(Ar) = X, + f(X,) - At + Errors
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

What about if the
system is stochastic?

Assume your car is in this zone
and its dynamics is given by

X = f(X)+Random

Linearize the system
e
X(Ar) = X, + f(X,) - At+BiggerErrors

If bounded
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One state-of-the-art’s method

M. Althoff, J. M. Dolan, “Online Verification of Automated Road Vehicles
Using Reachability Analysis”, IEEE Transactions on Robotics, 2014.

What about if the
system is stochastic?

Assume your car is in this zone
and its dynamics is given by

X = f(X)+Random

Linearize the system
e
X(Ar) = X, + f(X,) - At+BiggerErrors

If bounded
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Reachability analysis, for stochastic systems

Assume the initial position follows
this distribution (given by moments)
and the dynamics is given by

X = f(X)
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Reachability analysis, for stochastic systems

Estimate the distribution after Af time
(estimate the moments)

Assume the initial position follows
this distribution (given by moments)
and the dynamics is given by

X = f(X)

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Discrete-time polynomaual system

States are given by vectors:

x(0), x(1),....,x(0), x(t+1),... e R"

satisfying an equation of the form:

x(0) = x,
x(t+ 1) = Fy(t) + Fi(0) - x() + ... + F ) - x19(p)
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Discrete-time polynomaal system

States are given by vectors:

x(0), x(D), ....,x(0),x(t+1),... e R"

satisfying an equation of the form:

x(0) = x,
Fi(t) - x() + ... + F ) - x'9)

t vector in R" §
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Discrete-time polynomaal system

States are given by vectors:

x(0), x(D), ....,x(0),x(t+1),... e R"

satisfying an equation of the form:
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Discrete-time polynomaal system

States are given by vectors:

x(0), x(D), ....,x(0),x(t+1),... e R"

satisfying an equation of the form:

x(0) = x,

x(t+ 1) = Fy0) + F, ) - x(t) +, (z) [d](tz
wary  ]_th Kronecker
power of x(7)

I
I1T9
xrixrs

2
€I [ ] ol
€I = | T2X2
xrs3 xrors

I3l
Ir'3lo

tn X n® matrix §

r33
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Discrete-time polynomaual system

States are given by vectors:

x(0), x(1), ..., x(®),x(t+ 1),... e R"

satisfying an equation of the form:

x(0) = x,
x(t+ 1) =F, 0+ F,(®) - x(t) + ... + F,(0) - x!9()

Usual assumption: the /(¢)s do not depend on ¢
nor on X,
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Example, a bicycle model

X(1) = w(1) - cos(y (1) + f)

Aoy $(0) = v(1) - sin( () + )

ir(t) = i;) - sin

Y

=Y

v(t) = a(?)

Fig. 1: Kinematic Bicycle Model

Kong et al., “Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design”, IEEE-IV 2015.
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Example, a bicycle model

X(t) = v(t) - c(¢)
y(#) = (1) - ()

p(t) = L;) - sIn 3

Loy
y . v(t) = a(?)
. 5(1) - (1) - sin
X X Z/ﬂ
Fig. 1: Kinematic Bicycle Model c(®) - v(¥) - sin B
(1) = y
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Example, a bicycle model

bt +A)
v(t+ A)

Fig. 1: Kinematic Bicycle Model

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving

z(t+ A) = x(t) + Ac(t)v(t) + — (a(t)c(t) —

y(t +A) =y(t) + As(t)v(t) + —- (a(t)s(t) 4 Ay .

2
+A——=sin 3 + A7@sin,@

v(t) + Aa(t)

ot + A) = oft) — AV sn B A

c(t)v(t) sin 8

c(t)v?(t) sin® N a(t)s(t) sin ,8>

s(t+A)=s(t)+ A

Kyoto University (11/12/19)



Example, a bicycle model

V(t+A) =(t) +
Y v(t+ A) =v(t) +
c(t+A)=c(t) -

Fig. 1: Kinematic Bicycle Model

— 0 — 1
0 0
a(t) sin 3 0

_ Fi(t) =

Fo(t) = 2 1

0(1) Aa(t) 0
0 0
. 0 B

Jérémy Dubut (NIl & JFLI)

oS O OO = O

y(t+ A) =y(t) + As(t)v(t) + —

Control Theory for Autonomous Driving

2 ]
A2 (a(t)c(z‘) ~s(t)v (Z) smﬂ)
2 204
A2 (a(t)s(t) N c(t)v (;) smﬁ)
@ nps+ —% sin 3
Aa(t)
s(t)v(t)sinfg A2 [ c(t)v?(t) sin® B N a(t)s(t)sin 3
14 2 (2 14
t)sin N A2 _s(t)vQ(t) sin? 3 N a(t)c(t) sin 3
é 2 (2 14
AZa(t) ]
0 0 5 20
0 0 0 Aal)
1 As;n 3 0 0
0 1 0 0
A“a(t)sin g
s o _Mewms
0 0 2¢ 1 _

Kyoto University (11/12/19)



Discrete-time polynomual stochastic system

States are given by vectors of random variables:
x(0),x(1),....x(0),x(t+1),... e Q - R”

satisfying an equation of the form:

x(0) = x,
x(t+ 1) = Fy(t) + Fi(0) - x() + ... + F ) - x19(p)
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Discrete-time polynomual stochastic system

States are given by vectors of random variables:
x(0),x(1), ..., x(0),x(t+ 1),... € Q - R"

satisfying an equation of the form:

x(0) = x,
Fi(t) - x() + ... + F ) - x'9)

{ vector of random
' variables
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Discrete-time polynomual stochastic system

States are given by vectors of random variables:
x(0),x(1),....x(0),x(t+1),... e Q - R”

satisfying an equation of the form:

{ n X n random } s e
! ‘ { random vector {

matrix |

{ random vector §
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Discrete-time polynomual stochastic system

States are given by vectors of random variables:
x(0),x(1),....x(0),x(t+1),... e Q - R”

satisfying an equation of the form:

x(0) = x & .
X(t+ 1) = Fo(t) + Fy (1) - x(0) + .44 d(r) [d](tz

i n X n? random }

matrix !
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Discrete-time polynomual stochastic system

States are given by vectors of random variables:
x(0),x(1), ..., x(0),x(t+ 1),... € Q - R"

satisfying an equation of the form:

x(0) = x,
x(t+ 1) = Fy(t) + Fi(0) - x() + ... + F ) - x19(p)

Usual assumption: the F(#)s do not depend on ¢
(F(r) and F(s) are independent for 7 # )
(F(¢) and F(s) are identically distributed)

nor on X,
(xo and F(¢) are independent)
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Carleman linearization

Main idea: transform a finite-dimensional polynomial system into a
Infinite-dimensional linear system

x(t+ 1) = Fy(t) + Fi(0) - x() + ... + F ) - x19(p)
Computing the Kronecker products
x4+ 1) = Z () - x9(r)
where A. k(t) is computed from the F(t) Using:

yo =11 xt) x%@ ... ]

we obtain the following infinite-dimensional linear system:

y+ 1) =A@) - y(@)
where A(?) is computed from the F(?) .

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Moment equations

The j-th moments of x(¢) are given by E(x1(¢)).

Equations between the moments:

[E(x[ﬂ<r+1>>—2[E< A0 - xM()

using the assumptions:
E(e(t + 1)) = 2 E(A;(0)) - E¥(2)

and E(A k(t)) is mdependent of £. We then obtaln

(EG(+ 1) = E-EG0)

where E is computed fromth momentsof theF(t).

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Truncated system

M. Forest, A. Pouly, “Explicit error bounds for Carleman linearization”,
arXiv:1711.02552, 2017.

N
Fix IV, and define £y the restriction of E to the n* raws and columns.
k=0

Our estimation of the N-th first moments of x(#) is given by the following

system:
yO)=[1 E(x) ... E&YD]
Y+ 1) =Ey-y®
That is, Y(¢) is an approximation of [1 E(x(¢)) ... E@&™M(@)].

Furthermore, we have efficient ways of computing bounds of the errors.

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Online computation for autonomous cars

§ Approximations
E of the future
moments

computed with

the truncated
Carleman

linearization

modify the
driving behavior /

given by the model
of disturbances of
the sensors

Conclusion: online cost very small, no need to compute E(N, N)!

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



Tail probability analysis

What can we do with the estimated future moments and the bounds on errors?

Proving a Chebyshev-like inequality:




Numenrical results, for the bicycle model

20 - t " Nr=8
1 —4— Nr=5
* —— Nr=4
1’ ~+— Nr=3
15 1
| —a— Nr=2
; —>~ Monte Carlo
o 10
5-.
0—
-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5
Px

Fig. 6. First moment approximation in vehicle dynamics.
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Fig. 7. Distance to the mean of the empirical distribution.
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Online computation vs. Monte Carlo

Method Monte Carlo Moment propagation
num. samples N
Parameters |—5 10" | 41664 256
Time (us) | 2.9e10° | 3.4e10° | 11 | 14 | 30 | 93

Jérémy Dubut (NIl & JFLI)
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Future work

* Develop the tail probability analysis

e Reconstruction of the distribution from the moments

* Improving the computation by using the symmetries in the
Kronecker powers

Jérémy Dubut (NIl & JFLI) Control Theory for Autonomous Driving Kyoto University (11/12/19)



