Bisimilarity of diagrams RAMiCS 2020

Jérémy Dubut

National Institute of Informatics, Tokyo, Japan Japanese-French Laboratory for Informatics, IRL 3527, Tokyo, Japan

Bisimilarity via open morphisms

Computing systems in the language of category theory

Mainly, two types:

- coalgebraic approach [Rutten, Jacobs, ...]
- lifting approach [Winskel, Joyal, Nielsen, ...]

Example : TS I - category of TS

Fix an alphabet Σ .

Transition system :

A **TS** $T = (Q, i, \Delta)$ on Σ is the following data:

- a set Q (of states);
- a initial state $i \in Q$;
- a set of transitions $\Delta \subseteq Q \times \Sigma \times Q$.

Morphism of TS :

A morphism of TS $f : T_1 = (Q_1, i_1, \Delta_1) \longrightarrow T_2 = (Q_2, i_2, \Delta_2)$ is a function $f : Q_1 \longrightarrow Q_2$ such that $f(i_1) = i_2$ and for every $(p, a, q) \in \Delta_1$, $(f(p), a, f(q)) \in \Delta_2$.

$$\mathsf{FS}(\Sigma)$$
 = category of TS on Σ and morphisms of TS

Example : TS II - relational bisimulations

Bisimulations [Park]:

A **bisimulation** between $T_1 = (Q_1, i_1, \Delta_1)$ and $T_2 = (Q_2, i_2, \Delta_2)$ is a relation $R \subseteq Q_1 \times Q_2$ such that:

- (i) $(i_1, i_2) \in R;$
- (ii) if $(q_1, q_2) \in R$ and $(q_1, a, q'_1) \in \Delta_1$ then there is $q'_2 \in Q_2$ such that $(q_2, a, q'_2) \in \Delta_2$ and $(q'_1, q'_2) \in R$;
- (iii) if $(q_1, q_2) \in R$ and $(q_2, a, q'_2) \in \Delta_2$ then there is $q'_1 \in Q_1$ such that $(q_1, a, q'_1) \in \Delta_1$ and $(q'_1, q'_2) \in R$.

Example : TS III - morphisms and (bi)simulations

$$Graph(f) = \{(q, f(q)) \mid q \in Q\}$$

Graph(f) is always a simulation. But bisimilarity \neq similarity in both directions.

What are the morphisms whose graph is a bisimulation ?

Example : TS III - morphisms and (bi)simulations

$$Graph(f) = \{(q, f(q)) \mid q \in Q\}$$

Graph(f) is always a simulation. But bisimilarity \neq similarity in both directions.

What are the morphisms whose graph is a bisimulation ?

- the morphisms of coalgebras.
- the morphisms that lift transitions. 🗸

Example : TS IV - lifting properties and open morphisms *f* has the **right lifting property** with respect to *g* iff

A morphism of TS is **open [Joyal, Nielsen, Winskel]** if it has the right lifting property with respect to every **branch extension**:

Observation:

Two systems are bisimilar iff there is a span of open morphisms between them.

...but not an open map

Categorical models

Categorical models:

A categorical model is a category \mathcal{M} with a subcategory \mathcal{P} which have a common initial object *I*.

- $\mathcal{M} = category \text{ of systems } (Ex : TS(\Sigma));$
- $\mathcal{P} =$ sub-category of **paths** (Ex : sub-category of branches);
- unique morphism $I \longrightarrow X =$ initial state of X (Ex : I = *).

Other examples : 1-safe Petri nets + event structures, event structures/transition systems with independence + pomsets, HDA + paths, presheaves models, ...

Bisimilarity as spans of open morphisms

P-bisimilarity [J., N., W.]:

We say that a morphism $f : X \longrightarrow Y$ of \mathcal{M} is (\mathcal{P} -)open if it has the right lifting property w.r.t. \mathcal{P} .

We then say that two objects X and Y of \mathcal{M} are \mathcal{P} -**bisimilar** iff there exists a span $f : Z \longrightarrow X$ and $g : Z \longrightarrow Y$ where f and g are \mathcal{P} -open.

Ex: strong history-preserving bisimilarity of ES/TSI, ... Typically, bisimilarity defined by relation on runs.

Path bisimulations

Example : TS V - from states to runs

A bisimulation R between T_1 and T_2 induces a relation R_n between n-branches of T_1 and n-branches of T_2 by:

$$R_n = \{(f_1 : B \longrightarrow T_1, f_2 : B \longrightarrow T_2) \mid \forall i \in [n], (f_1(i), f_2(i)) \in R\}$$

Properties:

-
$$(\iota_{T_1}, \iota_{T_2}) \in R_0$$
 by (i);

- by (ii), if $(f_1, f_2) \in R_n$ and if $(f_1(n), a, q_1) \in \Delta_1$ then there is $q_2 \in Q_2$ such that $(f_2(n), a, q_2) \in \Delta_2$ and $(f'_1, f'_2) \in R_{n+1}$ where $f'_i(j) = f_i(j)$ if $j \leq n, q_i$ otherwise;
- symmetrically with (iii);
- if $(f_1, f_2) \in R_{n+1}$ then $(f'_1, f'_2) \in R_n$ where f'_i is the restriction of f_i to [n].

Fact:

Bisimilarity is equivalent to the existence of such a relation between branches.

Relational bisimilarities in categorical models

Let *R* be a set of elements of the form $X \xleftarrow{f} P \xrightarrow{g} Y$ with *P* object of *P*. Here are some properties that *R* may satisfy:

- (a) $X \xleftarrow{\iota_X} I \xrightarrow{\iota_Y} Y$ belongs to R;
- (b) if $X \xleftarrow{f} P \xrightarrow{g} Y$ belongs to R then for every morphism $p : P \longrightarrow Q$ in \mathcal{P} and every $f' : Q \longrightarrow X$ such that $f' \circ p = f$ then there exists

 $g': Q \longrightarrow Y \text{ such that } g' \circ p = g \text{ and } X \xleftarrow{f'} Q \xrightarrow{g'} Y \text{ belongs to } R;$

(c) symmetrically;

(d) if $X \xleftarrow{f} P \xrightarrow{g} Y$ belongs to R and if we have a morphism $p: Q \longrightarrow P \in \mathcal{P}$ then $X \xleftarrow{f \circ p} Q \xrightarrow{g \circ p} Y$ belongs to R.

(Strong) path bisimulation [J., N., W.]

When R satisfies (a-c) (resp. (a-d)), we say that it is a **path-bisimulation** (resp. **strong path-bisimulation**).

Jérémy Dubut (NII & JFLI)

Facts

To make real sense, \mathcal{P} is needed to be small. In this case:

• \mathcal{P} -bisimilarity \Rightarrow strong path-bisimilarity \Rightarrow path-bisimilarity **[J., N., W.]**.

• In many cases, \mathcal{P} -bisimilarity is equivalent to strong path-bisimilarity. There is a general framework (\mathcal{P} -accessible categories) where it is the case **[D., Goubault, Goubault]**.

• A Hennessy-Milner-like theorem holds for both (strong) path-bisimilarities [J., N., W.].

Bisimilarity of diagrams, via open maps

Category of diagrams

A **diagram** in a category \mathcal{A} is a functor F from any small category \mathcal{C} to \mathcal{A}

My view:

- C = category of runs,
- $\mathcal{A} = \text{category of values (ex: words)},$
- F = describe the data of each run and how those data evolve (ex: labelling).

A morphism of diagrams from $F : \mathcal{C} \longrightarrow \mathcal{A}$ to $G : \mathcal{D} \longrightarrow \mathcal{A}$ is a pair (Φ, σ) of:

- a functor $\Phi : \mathcal{C} \longrightarrow \mathcal{D}$,
- a natural isomorphism $\sigma: F \Longrightarrow G \circ \Phi$.

We note **Diag**(\mathcal{A}) this category.

Where is it from?

Where is it from?

Example : TS VI - from TS to diagrams

T a TS on Σ .

• C_T = poset of runs, with the prefix order,

• $\mathcal{A} = \text{poset } \Sigma^*$, with the prefix order,

• F_T = maps a run on its labelling.

From small categorical model to diagrams

 ${\mathcal M}$ a categorical model, with a small subcategory ${\mathcal P}$ X object of ${\mathcal M}$.

• $C_X = P \downarrow X$, whose objects are morphisms in M from an object of P to X,

• $\mathcal{A} = \mathcal{P}$,

• F_X = projection on the domain of the morphism.

Remarks:

- This defines a functor Π from \mathcal{M} to **Diag**(\mathcal{P}).
- When \mathcal{M} is cocomplete, the colimit functor Γ from **Diag**(\mathcal{P}) to \mathcal{M} is the left adjoint of Π and $\Gamma \circ \Pi$ is the unfolding.
- The counit $\epsilon_X : \Gamma \circ \Pi(X) \longrightarrow X$ is an open morphisms in many cases.

Lifting properties and open morphisms (in Diag(A)) f has the right lifting property with respect to g iff

A morphism of diagrams is **open** if it has the right lifting property with respect to every **branch extension** $(n \ge 0)$:

$$\begin{array}{cccc} A_{1} & \stackrel{f_{1}}{\longrightarrow} & A_{2} & \cdots & A_{n-1} & \stackrel{f_{n}}{\longrightarrow} & A_{n} \\ & & & & & \\ id & & & id & & & id \\ & & & & & id & & \\ A_{1} & \stackrel{}{\longrightarrow} & A_{2} & \cdots & A_{n-1} & \stackrel{}{\longrightarrow} & A_{n} & \stackrel{}{\longrightarrow} & A_{n+1} & \cdots & A_{n+p-1} & \stackrel{}{\longrightarrow} & A_{n+p} \end{array}$$

Definition:

Two diagrams are bisimilar iff there is a span of open morphisms between them.

Open maps of systems vs. open maps of diagrams

Remember the adjunction:

$$\begin{array}{c} \Gamma : \mathbf{Diag}(\mathcal{P}) \longrightarrow \mathcal{M} \\ & \perp \\ \Pi : \mathcal{M} \longrightarrow \mathbf{Diag}(\mathcal{P}) \end{array}$$

Proposition [D.]:

If $f : X \longrightarrow Y$ is an open morphism of systems, then $\Pi(f) : \Pi(X) \longrightarrow \Pi(Y)$ is an open morphism of diagrams. In particular, if X and Y are bisimilar, then $\Pi(X)$ and $\Pi(X)$ are bisimilar.

The converse is not true in general.

For example, that is not true in general that if $\Pi(X) \xleftarrow{\Phi} Z \xrightarrow{\Psi} \Pi(Y)$ is a span of open morphisms then $\Gamma \circ \Pi(X) \xleftarrow{\Gamma(\Phi)} \Gamma(Z) \xrightarrow{\Gamma(\Psi)} \Gamma \circ \Pi(Y)$ is a span of open morphisms.

Bisimilarity of diagrams, via bisimulations

Bisimulation of diagrams

Bisimulation between $F : \mathcal{C} \longrightarrow \mathcal{A}$ and $G : \mathcal{D} \longrightarrow \mathcal{A}$ = set *R* of triples (c, η, d) such that :

- c is an object of C,
- *d* is an object of \mathcal{D} ,
- $\eta: F(c) \longrightarrow G(d)$ is an isomorphism of \mathcal{A}

satisfying :

• for every object c of C, there exists d and η such that $(c, \eta, d) \in R$

•

and symmetrically

Jérémy Dubut (NII & JFLI)

Bisimilarity and bisimulations

Theorem [D.]:

Two diagrams are bisimilar if and only if there is a bisimulation between them.

Proof sketch:

$$\Rightarrow \text{ Given a span } F \xleftarrow{(\Phi,\sigma)} (H : \mathcal{E} \longrightarrow \mathcal{A}) \xrightarrow{(\Psi,\tau)} G \text{ of open maps:} \\ \{(\Phi(e), \tau_e \circ \sigma_e^{-1}, \Psi(e)) \mid e \in Ob(\mathcal{E})\} \\ \Leftarrow \text{ Given a bisimulation } R, \text{ construct a diagram } H: \\ \bullet \text{ whose domain is } R, \\ \bullet \text{ which maps } (c, \eta, d) \text{ to } F(c). \\ \text{ The projections from } H \text{ to } F \text{ and } G \text{ are open.} \end{cases}$$

A word on (un)decidability

Bisimulation = relation + isomorphisms

In a finite case: guess the relation \Rightarrow problem of isomorphisms in \mathcal{A} .

For example, in a vector spaces, we are left with this problem: **Data:** a set of equations in matrices of the X.A = B.Y**Question:** are there invertible matrices X, Y, ... that satisfy the equations ?

A word on (un)decidability

Bisimulation = relation + isomorphisms

In a finite case: guess the relation \Rightarrow problem of isomorphisms in \mathcal{A} .

For example, in a vector spaces, we are left with this problem: **Data:** a set of equations in matrices of the X.A = B.Y**Question:** are there invertible matrices X, Y, ... that satisfy the equations ?

A word on (un)decidability

Bisimulation = relation + isomorphisms

In a finite case: guess the relation \Rightarrow problem of isomorphisms in $\mathcal{A}.$

For example, in a vector spaces, we are left with this problem: **Data:** a set of equations in matrices of the X.A = B.Y**Question:** are there invertible matrices X, Y, ... that satisfy the equations ?

Proposition [D.]:

In a finite case, bisimilarity is:

- decidable if \mathcal{A} is finite or **FinSet**,
 - a finite number of possible solutions
- undecidable if \mathcal{A} = category of finitely presented groups + group morphisms,
 - isomorphism is undecidable
- decidable if A = category of finite dimensional real (rational) vector spaces,
 can be reduced to polynomial equations in reals
- open if $\mathcal{A} = category$ of Abelian groups of finite type.

Bisimulations of systems vs. bisimulations of diagrams

Remember the adjunction, again:

$$\begin{array}{c} \Gamma : \mathsf{Diag}(\mathcal{P}) \longrightarrow \mathcal{M} \\ & \bot \\ \Pi : \mathcal{M} \longrightarrow \mathsf{Diag}(\mathcal{P}) \end{array}$$

Proposition [D.]:

Bisimulations of diagrams between $\Pi(X)$ and $\Pi(Y)$ are precisely path-bisimulations between X and Y.

Corollary:

 $\Pi(X)$ and $\Pi(Y)$ are bisimilar iff X and Y are path-bisimilar.

Remarks:

- This explains why open in systems \neq open in diagrams.
- For transition systems, this implies that two systems are bisimilar iff the diagrams are bisimilar.

What about strong path-bisimulations ? What is missing ? Being able to reverse paths.

Solution: just add reverse of paths !

Given a category C, define \overline{C} as the category generated by $C \cup C^{op}$, i.e.:

• objects are those of C,

 $\bullet\,$ morphisms are zigzags of morphisms of ${\cal C}$

A functor $F : \mathcal{C} \longrightarrow \mathcal{A}$ induces a functor $\overline{F} : \overline{\mathcal{C}} \longrightarrow \overline{\mathcal{A}}$ and this extends to a functor $\Delta : \text{Diag}(\mathcal{A}) \longrightarrow \text{Diag}(\overline{\mathcal{A}})$.

Instead of looking at $\Pi(X)$, we look at $\Delta \circ \Pi(X)$.

Bisimulations of systems vs. bisimulations of diagrams II

We still have a adjunction:

$$egin{array}{ll} \Gamma': \mathbf{Diag}(\overline{\mathcal{P}}) \longrightarrow \mathcal{M} \ & oldsymbol{ar{L}} \ & \Delta \circ \Pi: \mathcal{M} \longrightarrow \mathbf{Diag}(\overline{\mathcal{P}}) \end{array}$$

Proposition [D.]:

Bisimulations of diagrams between $\Delta \circ \Pi(X)$ and $\Delta \circ \Pi(Y)$ are precisely strong path-bisimulations between X and Y.

Corollary:

 $\Delta \circ \Pi(X)$ and $\Delta \circ \Pi(Y)$ are bisimilar iff X and Y are strong path-bisimilar.

Remarks:

- In many cases, $\Delta \circ \Pi(X)$ and $\Delta \circ \Pi(Y)$ are bisimilar iff X and Y are \mathcal{P} -bisimilar.
- $\bullet\,$ In the $\mathcal P\text{-accessible}$ case, Γ' maps open maps to open maps.

Conclusion

Conclusion

We have a theory of bisimilarity of diagrams:

- defined using open maps,
- equivalent characterization using bisimulations,
- decidability is essentially a problem of isomorphism in the category of values,
- models (strong) path-bisimilarities,
- useful in directed algebraic topology (not too much in this talk),
- admits a Hennessy-Milner-like theorem (not in this talk).

What is left (inter alia):

- open morphisms acts like trivial fibrations. Can we make that explicit ?
- (un)decidability in the case of Abelian groups.
- relation between our decision procedure to usual ones.