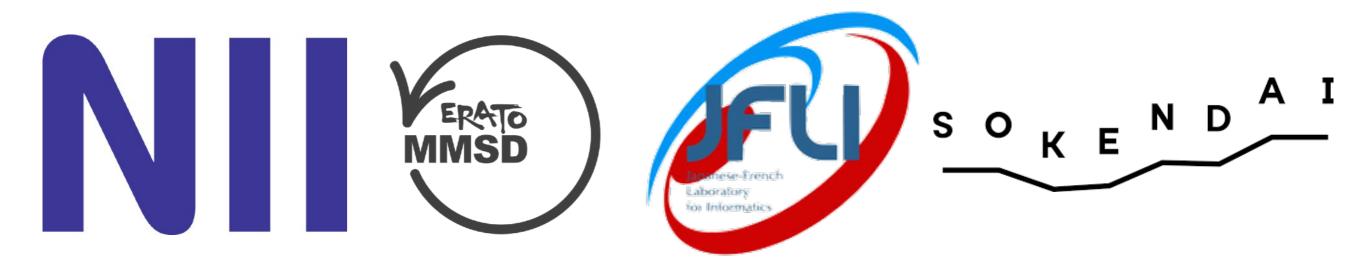
Deductive Verification Of Hybrid Systems

Lectures on Formal Methods for Cyber-Physical Systems SOKENDAI, 07/29/19

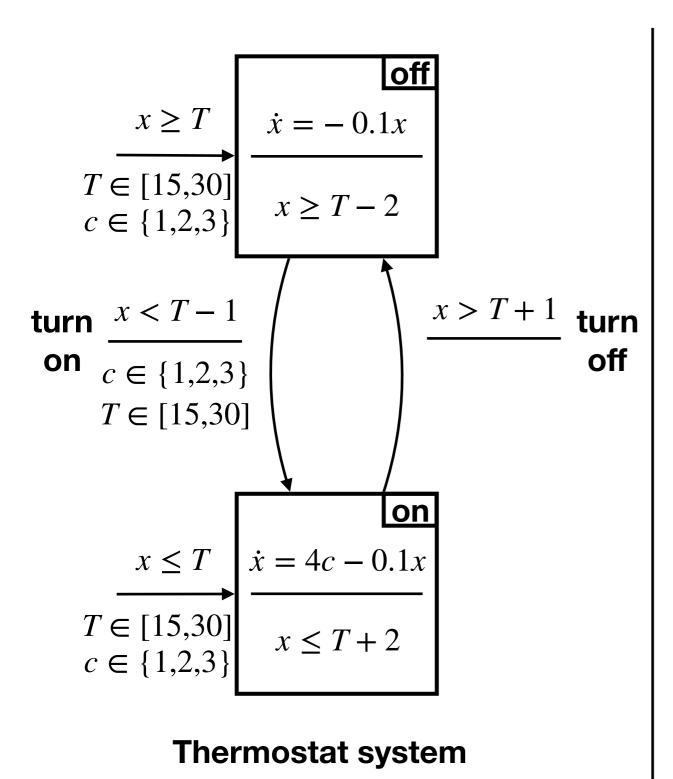
Jérémy Dubut National Institute of Informatics Japanese-French Laboratory of Informatics

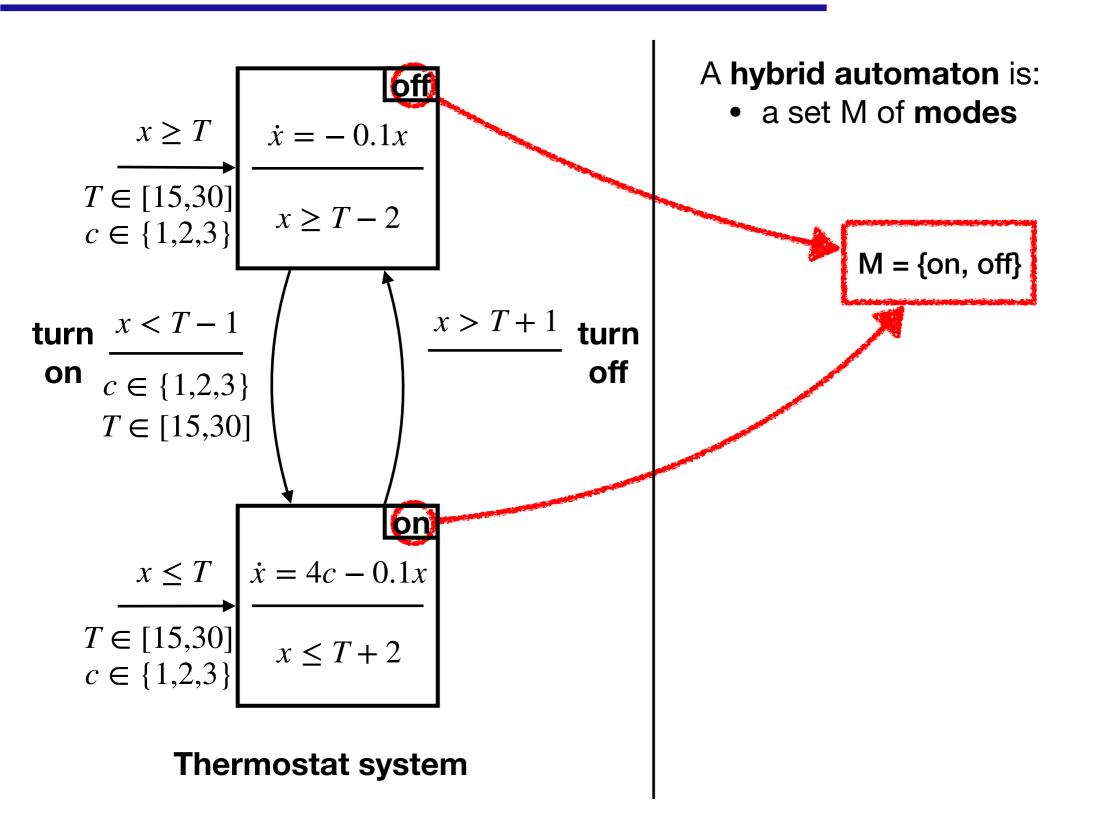


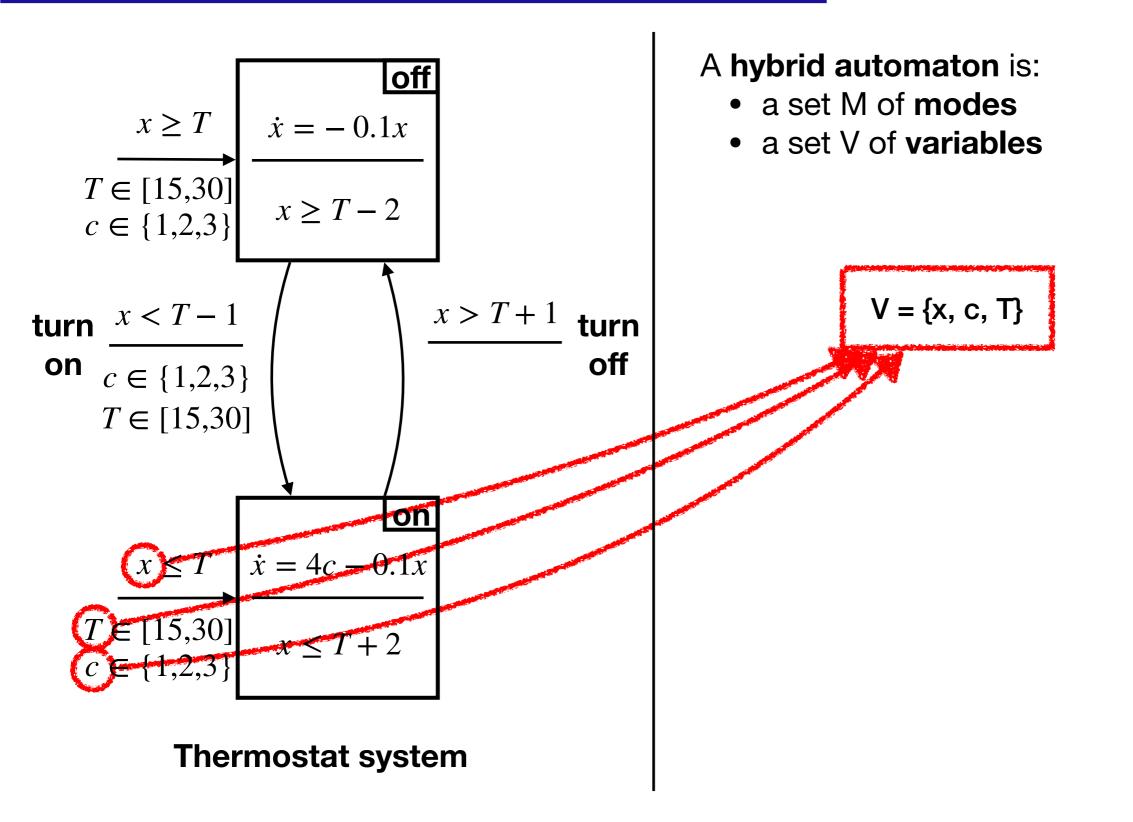
Objectives of this lecture

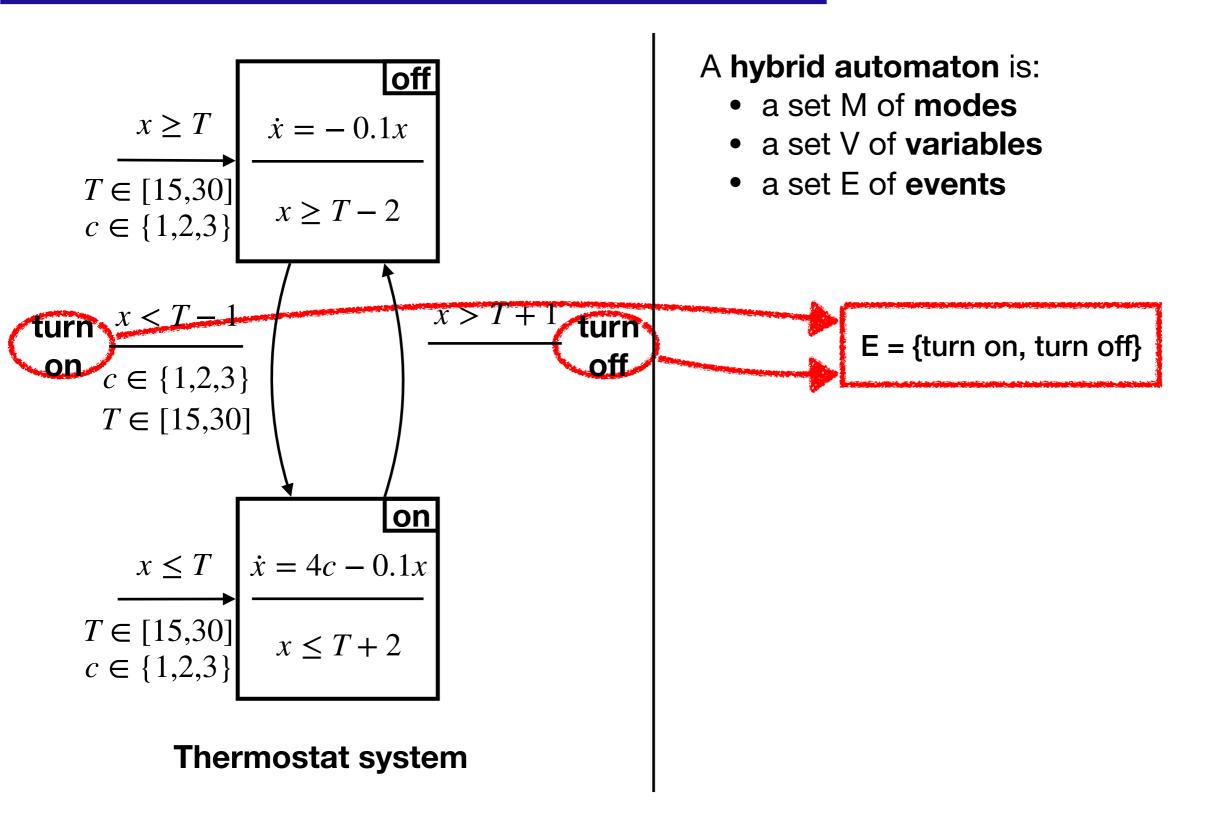
- Deductive system to prove invariants of hybrid systems
- Representability of HS (hybrid programs)
- Platzer's Differential Dynamic Logic
- Sequent calculus for this logic

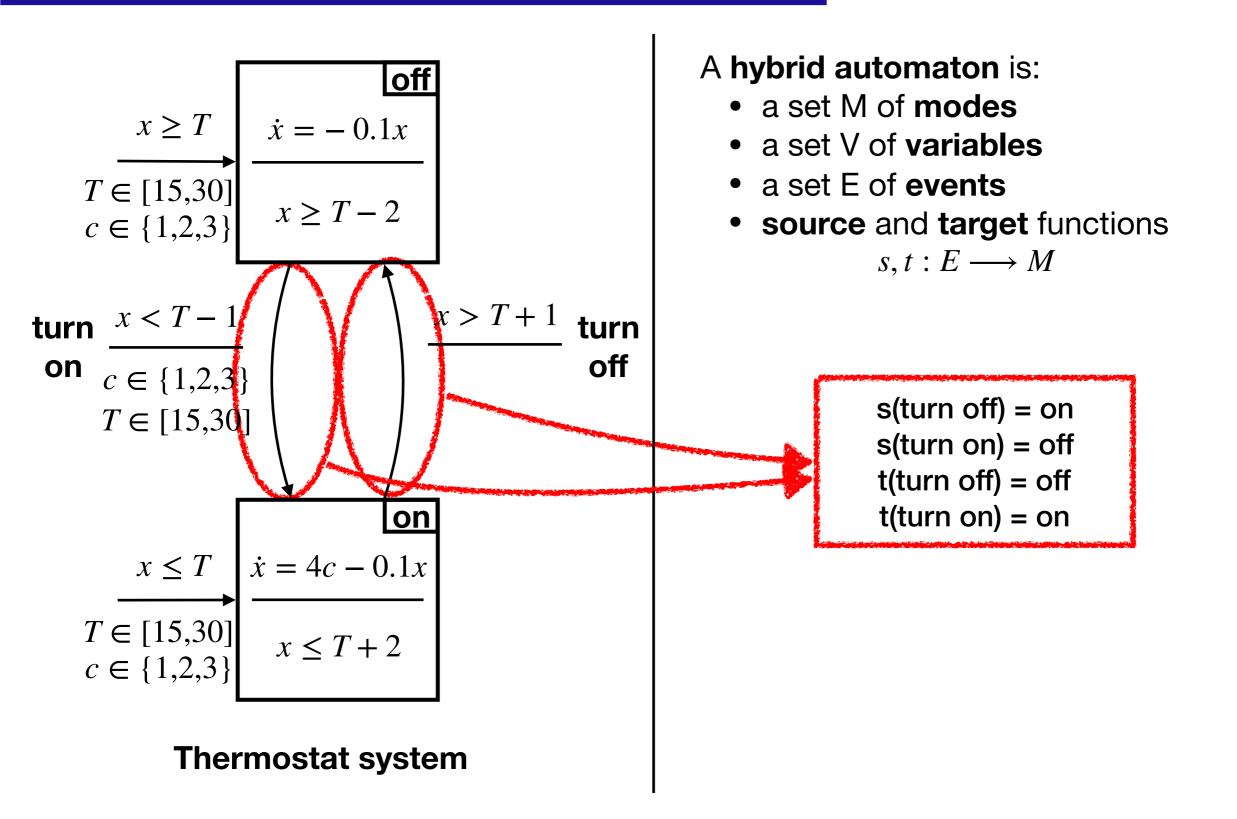
- T. A. Henzinger, The Theory of Hybrid Automata, Verification of Digital and Hybrid Systems, volume 170 of the NATO ASI Series, pp 265-292. Springer, 2000.
- A. Platzer's group. <u>http://symbolaris.com</u>
- A. Platzer, *Logical Foundations of Cyber-Physical Systems.* Springer, 2018.
- J. Kolčák, I. Hasuo, J. Dubut, S. Katsumata, D. Sprunger, A. Yamada, Relational Differential Dynamic Logic. Preprint arXiv:1903.00153.

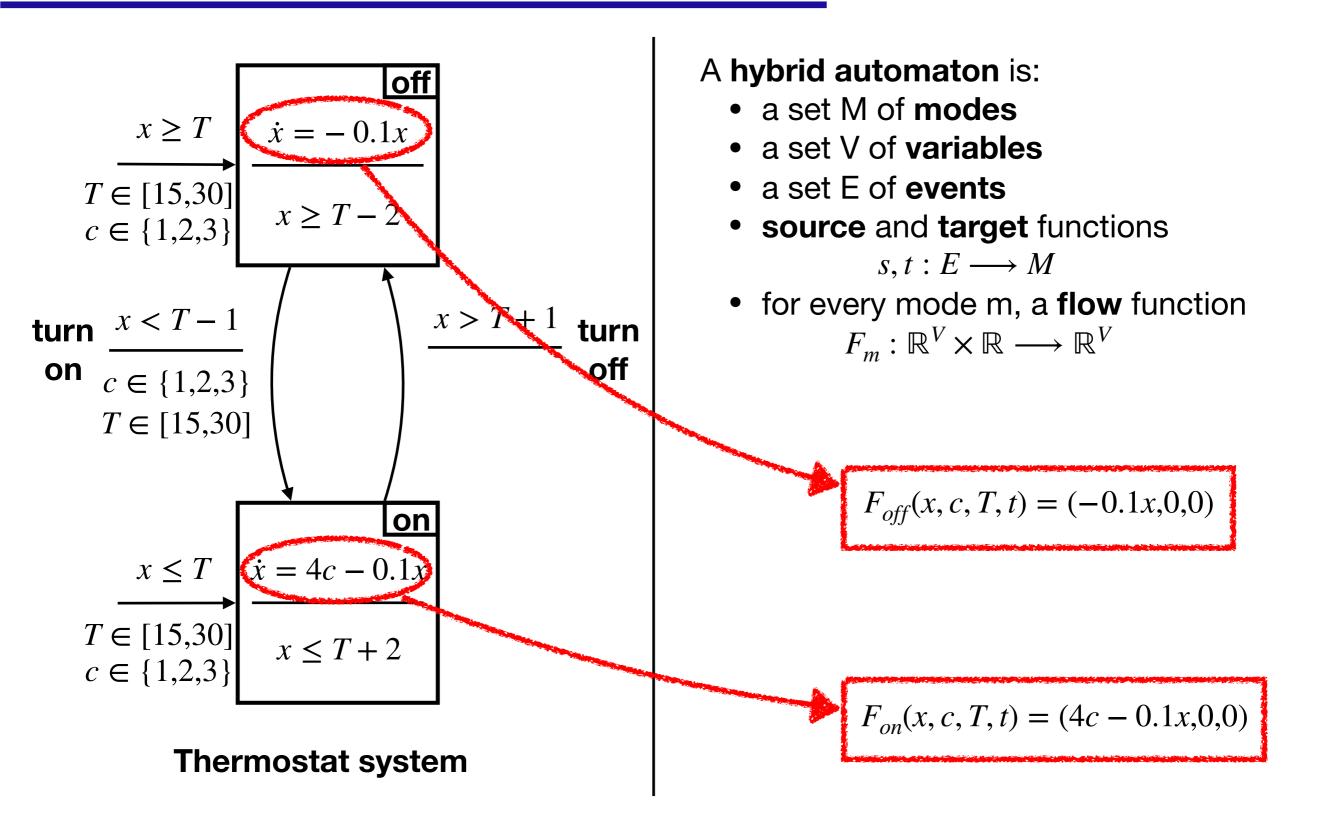


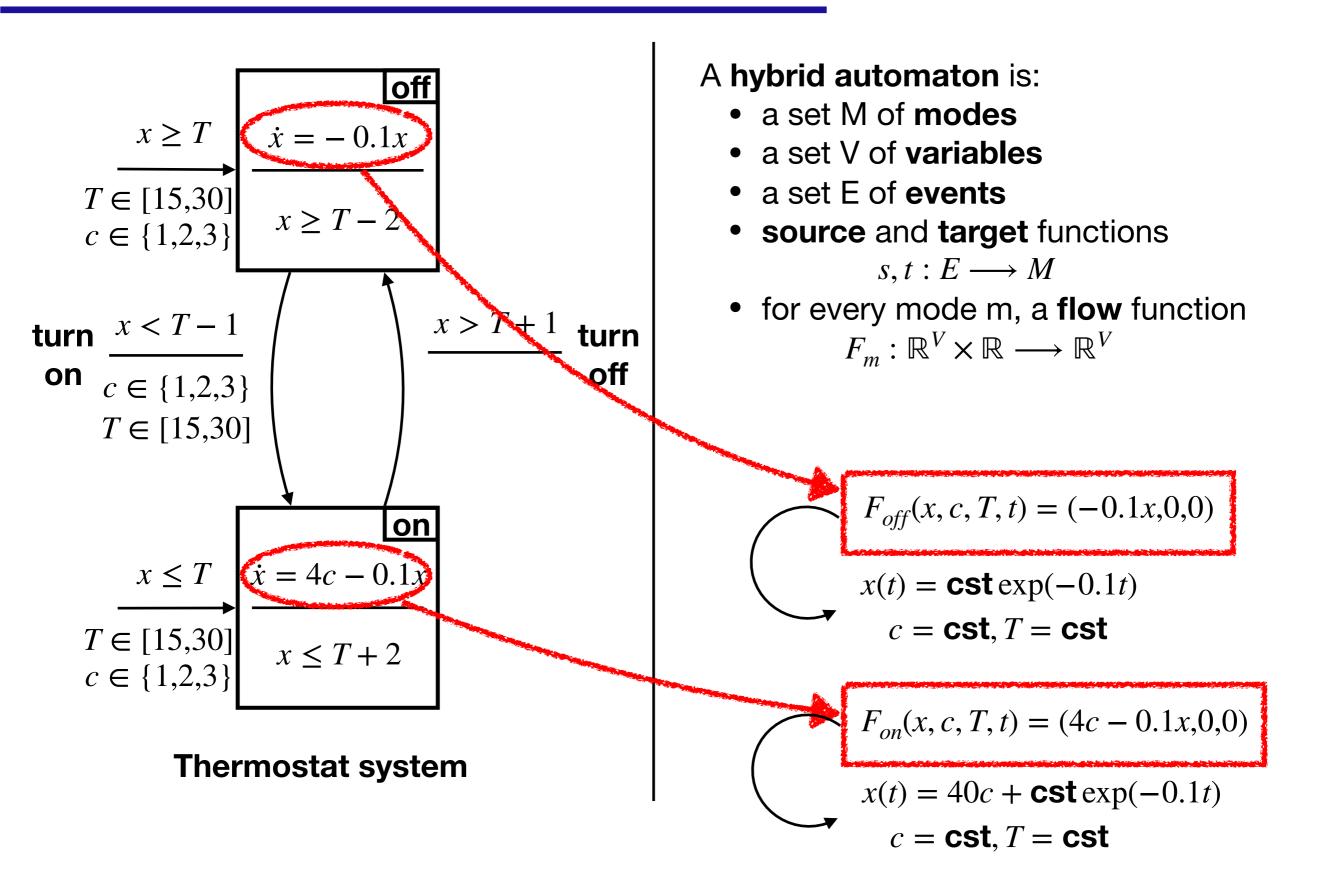


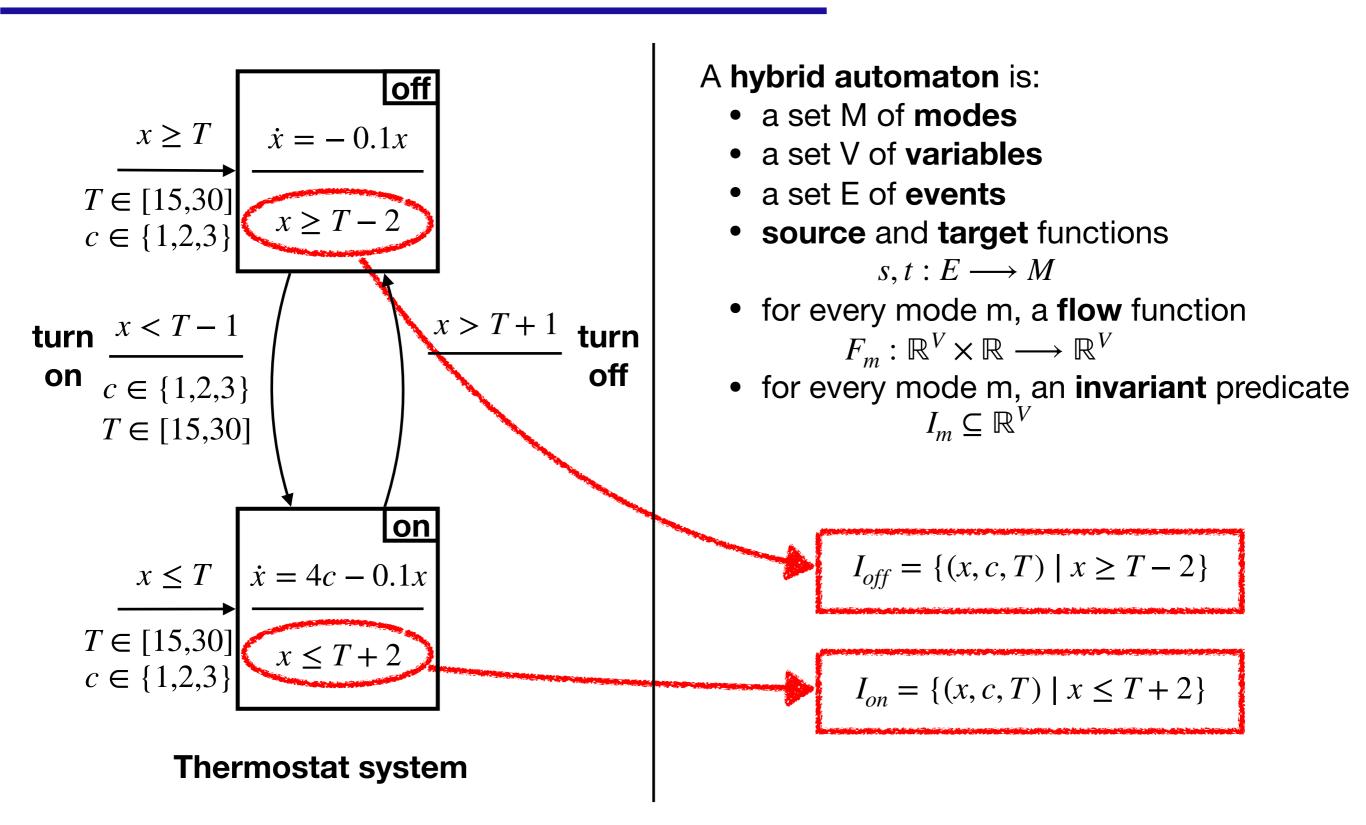


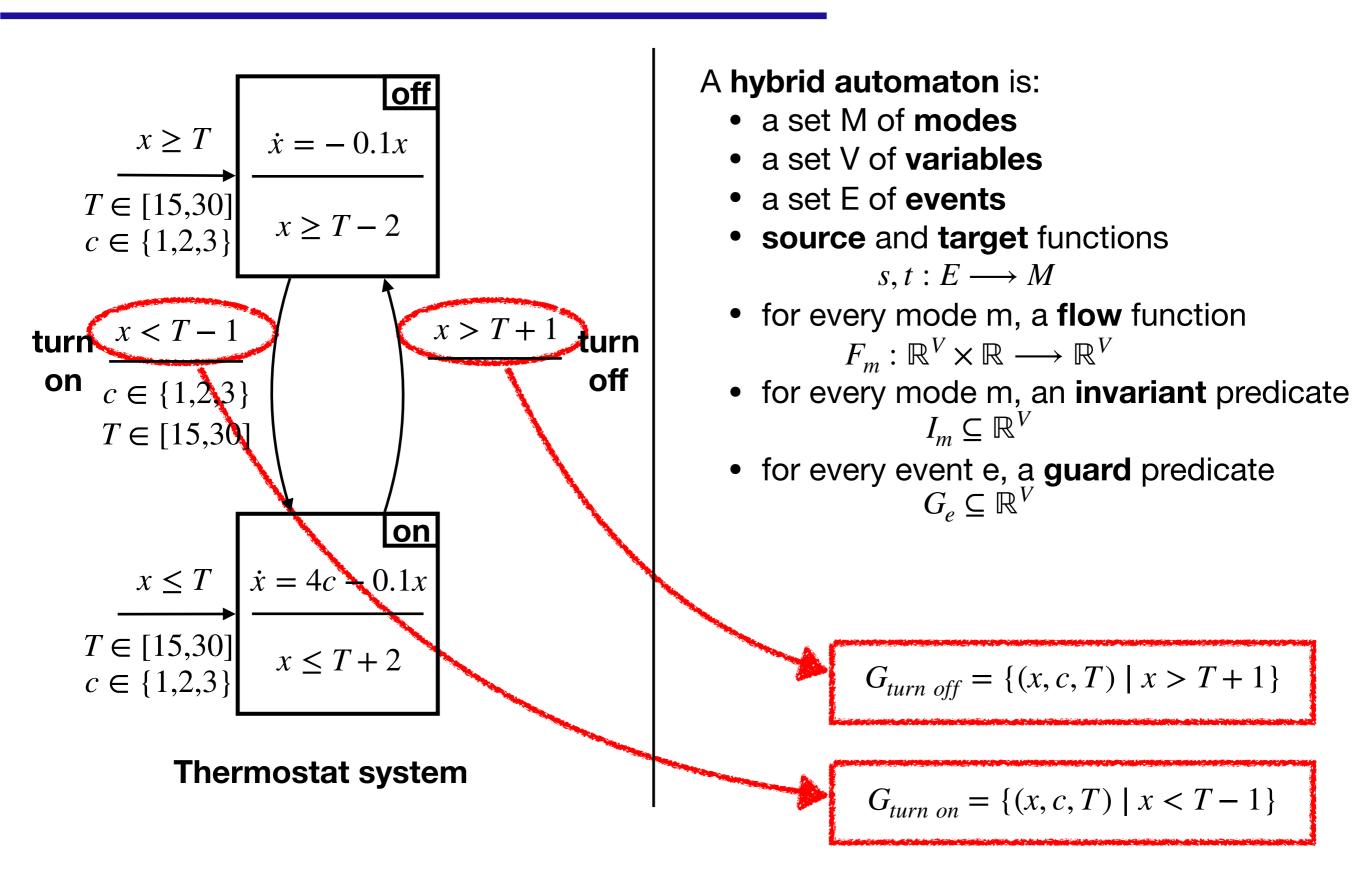


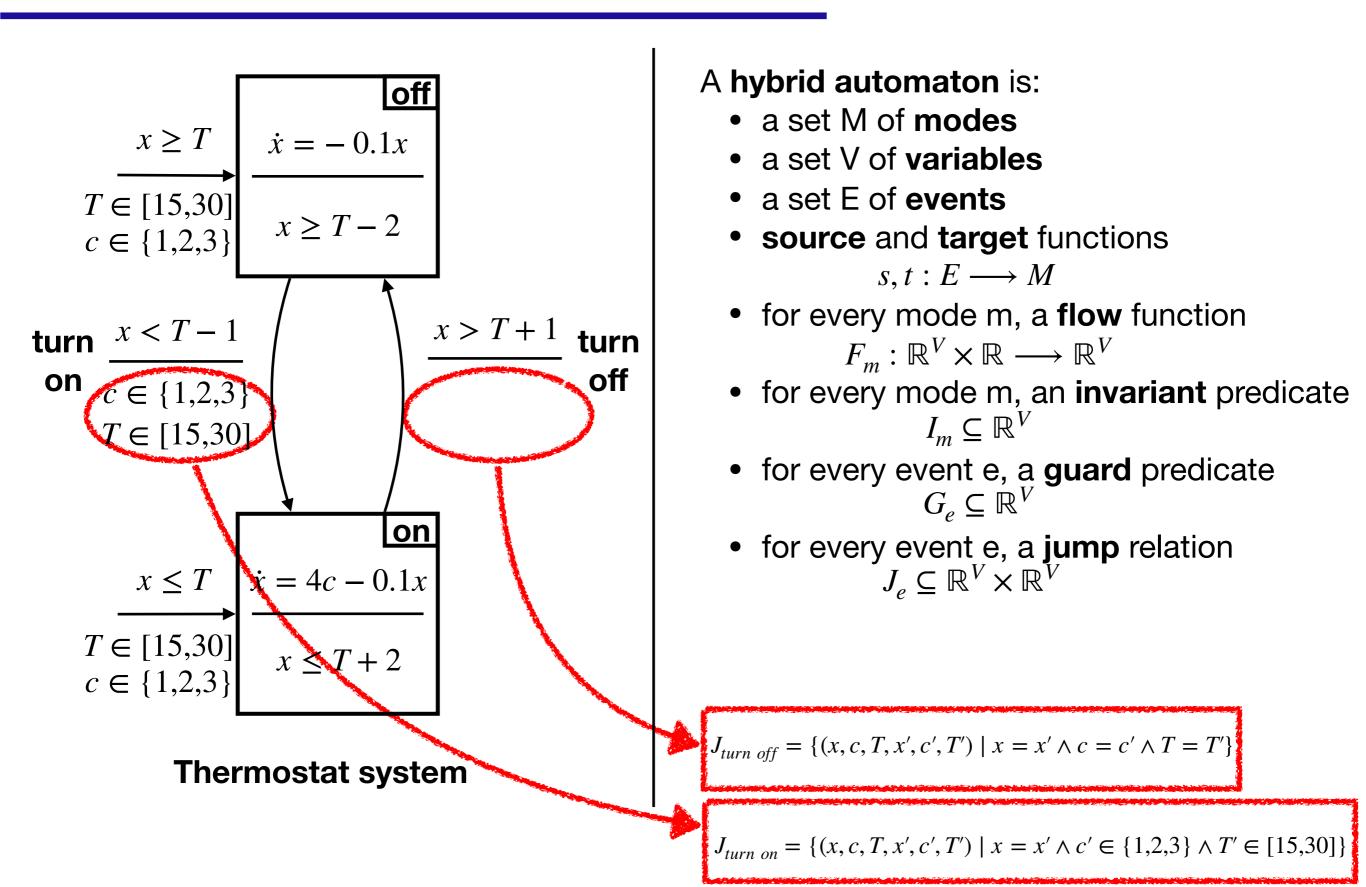


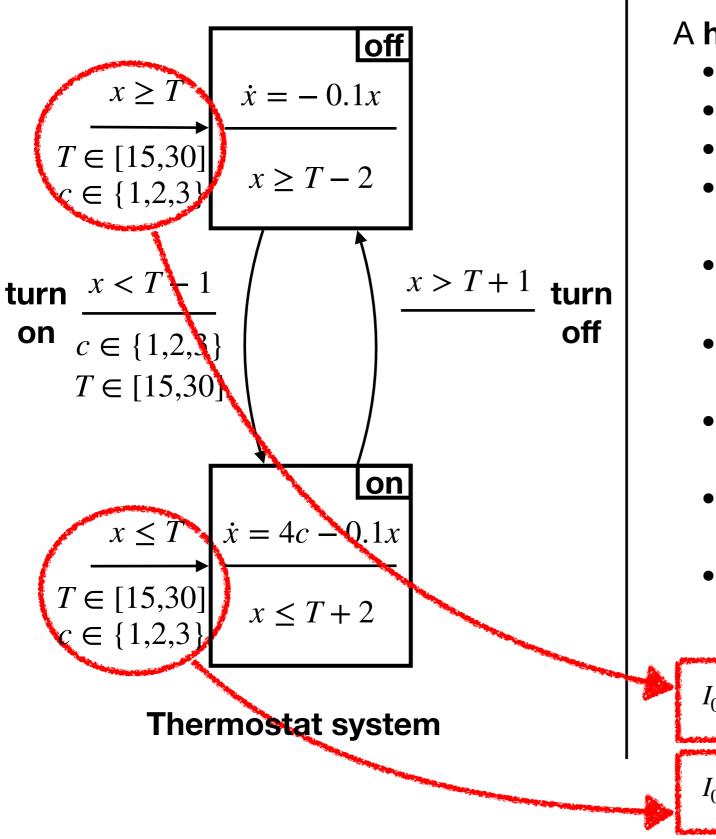












A hybrid automaton is:

- a set M of modes
- a set V of variables
- a set E of events
- **source** and **target** functions $s, t : E \longrightarrow M$
- for every mode m, a **flow** function $F_m : \mathbb{R}^V \times \mathbb{R} \longrightarrow \mathbb{R}^V$
- for every mode m, an **invariant** predicate $I_m \subseteq \mathbb{R}^V$
- for every event e, a **guard** predicate $G_e \subseteq \mathbb{R}^V$
- for every event e, a jump relation $J_e \subseteq \mathbb{R}^V \times \mathbb{R}^V$
- for every mode m, an **initial** predicate $I_{0,m} \subseteq \mathbb{R}^V$

 $I_{0,off} = \{(x, c, T) \mid x \ge T \land c \in \{1, 2, 3\} \land T \in [15, 30]\}$

 $I_{0,on} = \{(x,c,T) \mid x \leq T \land c \in \{1,2,3\} \land T \in [15,30]\}$

Goal: prove that the system is not going wrong

This means proving some properties on the set of <u>reachable configurations</u>

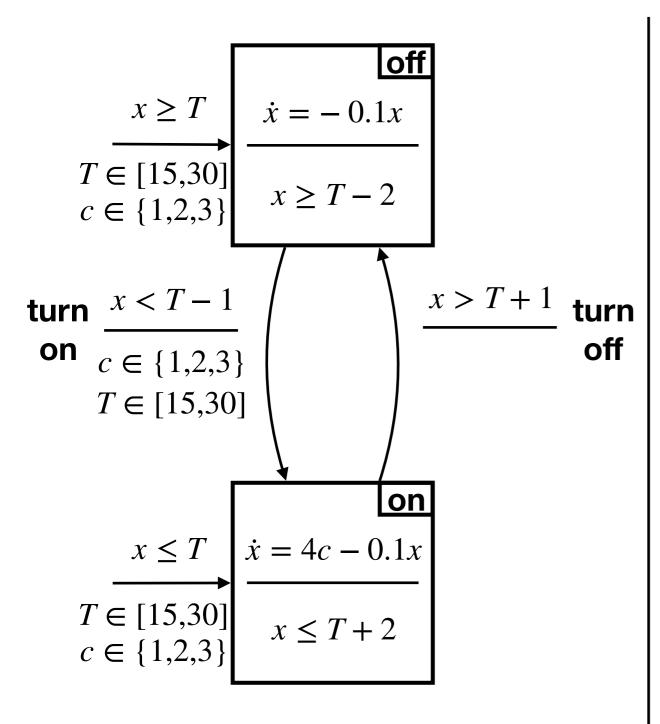
Configurations of a hybrid automaton

A configuration is an element of the form $(m, \omega) \in M \times \mathbb{R}^V$

An **initial configuration** is a configuration (m, ω) such that $\omega \in I_{0,m}$.

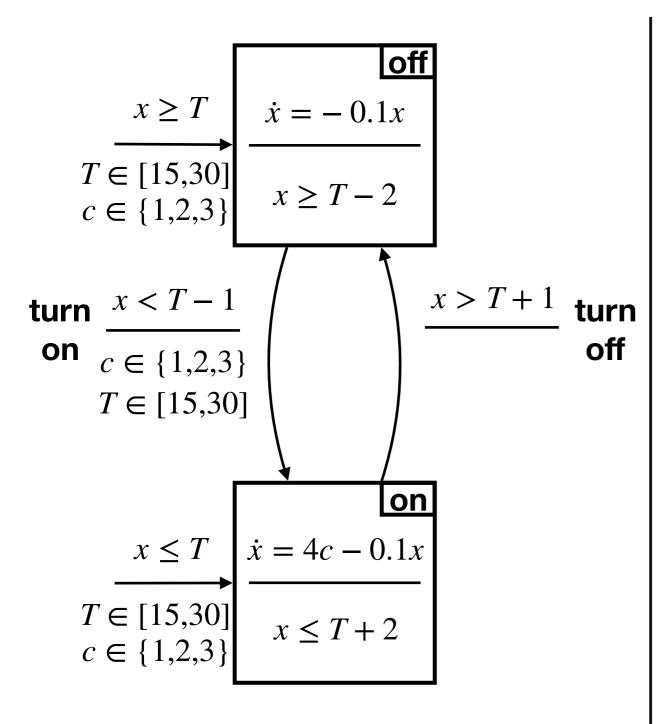
A valid configuration is a configuration (m, ω) such that $\omega \in I_m$.

- a set M of modes
- a set V of variables
- a set E of events
- **source** and **target** functions $s, t : E \longrightarrow M$
- for every mode m, a **flow** function $F_m : \mathbb{R}^V \times \mathbb{R} \longrightarrow \mathbb{R}^V$
- for every mode m, an **invariant** predicate $I_m \subseteq \mathbb{R}^V$
- for every event e, a **guard** predicate $G_e \subseteq \mathbb{R}^V$
- for every event e, a jump relation $J_e \subseteq \mathbb{R}^V \times \mathbb{R}^V$
- for every mode m, an **initial** predicate $I_{0,m} \subseteq \mathbb{R}^V$



Thermostat system

configuration (m, x, c, T)	initial	valid
(off ,18,1,20)		
(off ,17,2,20)		
(on ,17,2,20)		
(on ,21,1,20)		



Thermostat system

configuration (m, x, c, T)	initial	valid
(off ,18,1,20)	No	Yes
(off ,17,2,20)	No	No
(on ,17,2,20)	Yes	Yes
(on ,21,1,20)	No	Yes

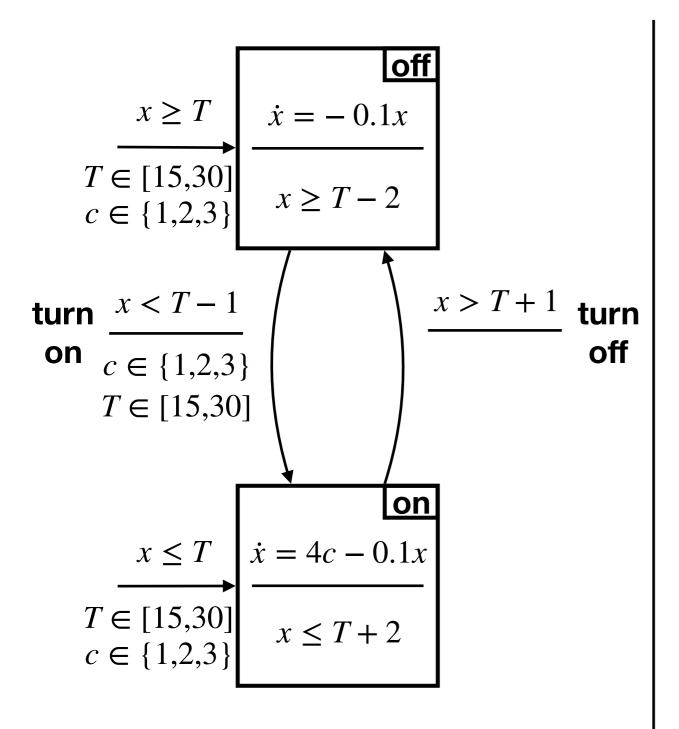
Discrete transitions of HA

Given two valid configurations (m_1, ω_1) and (m_2, ω_2) we have a **discrete transition**

 $(m_1, \omega_1) \longrightarrow_d (m_2, \omega_2)$ if there is an event $e \in E$ such that:

- $s(e) = m_1 \text{ and } t(e) = m_2$
- $\omega_1 \in G_e$
- $(\omega_1, \omega_2) \in J_e$

- a set M of modes
- a set V of variables
- a set E of events
- **source** and **target** functions $s, t : E \longrightarrow M$
- for every mode m, a **flow** function $F_m : \mathbb{R}^V \times \mathbb{R} \longrightarrow \mathbb{R}^V$
- for every mode m, an **invariant** predicate $I_m \subseteq \mathbb{R}^V$
- for every event e, a **guard** predicate $G_e \subseteq \mathbb{R}^V$
- for every event e, a jump relation $J_e \subseteq \mathbb{R}^V \times \mathbb{R}^V$
- for every mode m, an **initial** predicate $I_{0,m} \subseteq \mathbb{R}^V$



Thermostat system

$$(m, x, c, T) \longrightarrow_d (m', x', c', T')$$

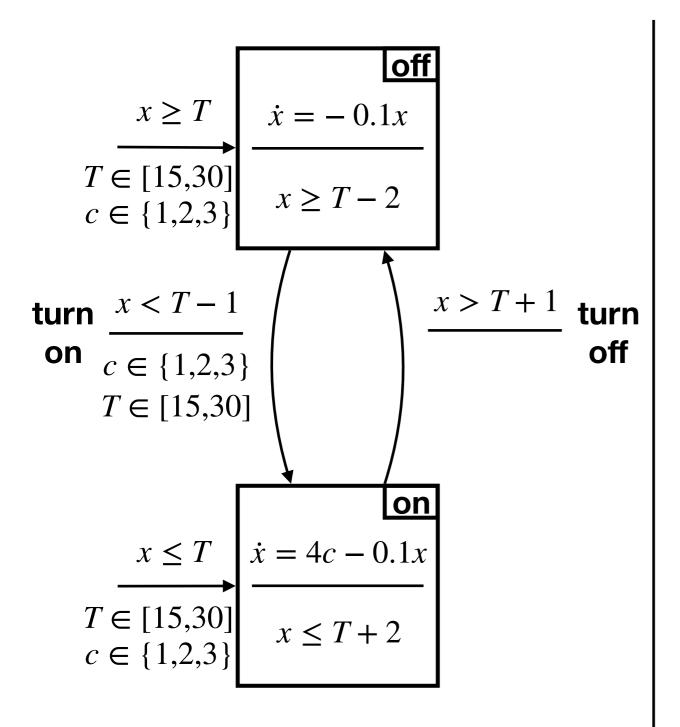
$$(off, 19, 1, 20.5) \longrightarrow_d (on, 19, 2, 21)$$
 ??

$$(off, 19, 1, 20) \longrightarrow_d (off, 19, 2, 21)$$
 ??

$$(off, 19, 1, 20) \longrightarrow_d (on, 20, 2, 21)$$
 ??

$$(off, 19, 1, 20) \longrightarrow_d (on, 19, 2, 16)$$
 ??

$$(off, 20, 1, 20) \longrightarrow_d (on, 20, 2, 21)$$
 ??



Thermostat system

$$(m, x, c, T) \longrightarrow_d (m', x', c', T')$$

$$(off, 19, 1, 20.5) \longrightarrow_d (on, 19, 2, 21)$$
 Yes

$$(off, 19, 1, 20) \longrightarrow_d (off, 19, 2, 21)$$
 No

$$(off, 19, 1, 20) \longrightarrow_d (on, 20, 2, 21)$$
 No

$$(off, 19, 1, 20) \longrightarrow_d (on, 19, 2, 16)$$
 No

$$(off, 20, 1, 20) \longrightarrow_d (on, 20, 2, 21)$$
 No

Continuous transitions of HA

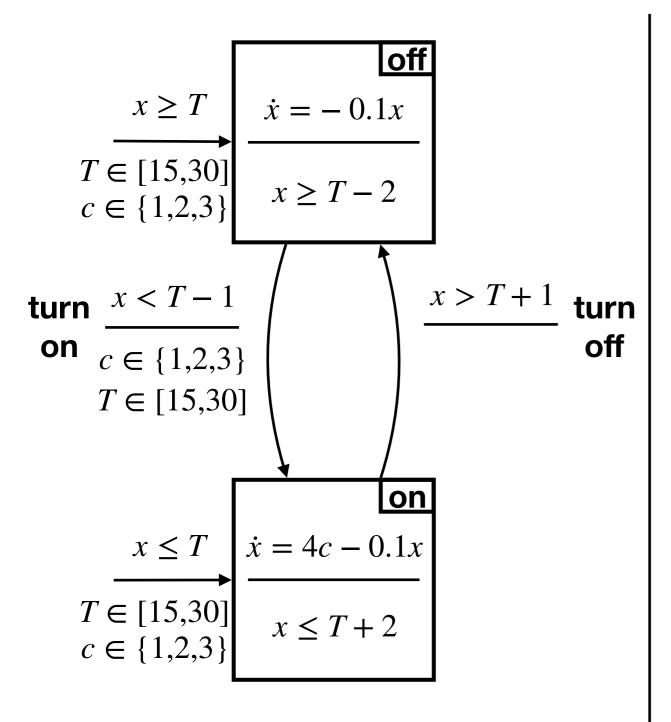
Given two valid configurations (m_1, ω_1) and (m_2, ω_2)

we have a **continuous transition**

 $(m_1, \omega_1) \longrightarrow_c (m_2, \omega_2)$ if the following holds:

- $m_1 = m_2$
- there is a continuous function $\Psi: [0,T] \longrightarrow \mathbb{R}^V \quad (T \ge 0)$ derivable on]0,T[such that:
 - ★ $\forall s \in]0,T[.\dot{\Psi}(s) = F_{m_1}(\Psi(s),s)$
 - $\star \Psi(0) = \omega_1 \text{ and } \Psi(T) = \omega_2$
 - ★ $\forall s \in [0,T]$. $\Psi(s) \in I_{m_1}$

- a set M of modes
- a set V of variables
- a set E of events
- **source** and **target** functions $s, t : E \longrightarrow M$
- for every mode m, a **flow** function $F_m : \mathbb{R}^V \times \mathbb{R} \longrightarrow \mathbb{R}^V$
- for every mode m, an **invariant** predicate $I_m \subseteq \mathbb{R}^V$
- for every event e, a **guard** predicate $G_e \subseteq \mathbb{R}^V$
- for every event e, a jump relation $J_e \subseteq \mathbb{R}^V \times \mathbb{R}^V$
- for every mode m, an **initial** predicate $I_{0,m} \subseteq \mathbb{R}^V$



Thermostat system

$$(m, x, c, T) \longrightarrow_{c} (m', x', c', T')$$

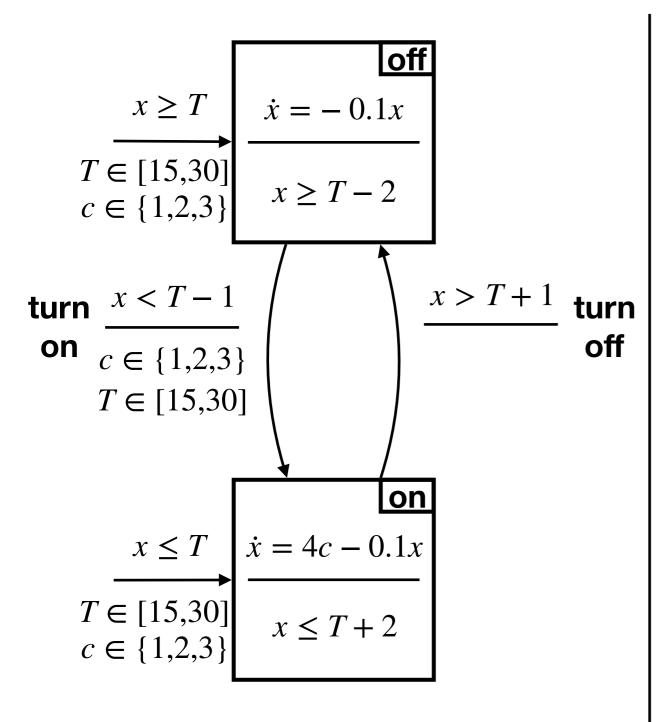
$$(off, 19, 1, 20) \longrightarrow_{c} (off, 18, 1, 20)$$
 ??

$$(off, 19, 1, 20) \longrightarrow_{c} (on, 18, 1, 20)$$
 ??

$$(off, 19, 1, 20) \longrightarrow_{c} (off, 19, 1, 20)$$
 ??

$$(off, 19, 1, 20) \longrightarrow_{c} (off, 18, 2, 23)$$
 ??

$$(off, 19, 1, 20) \longrightarrow_{c} (off, 20, 1, 20)$$
 ??



Thermostat system

$$(m, x, c, T) \longrightarrow_{c} (m', x', c', T')$$

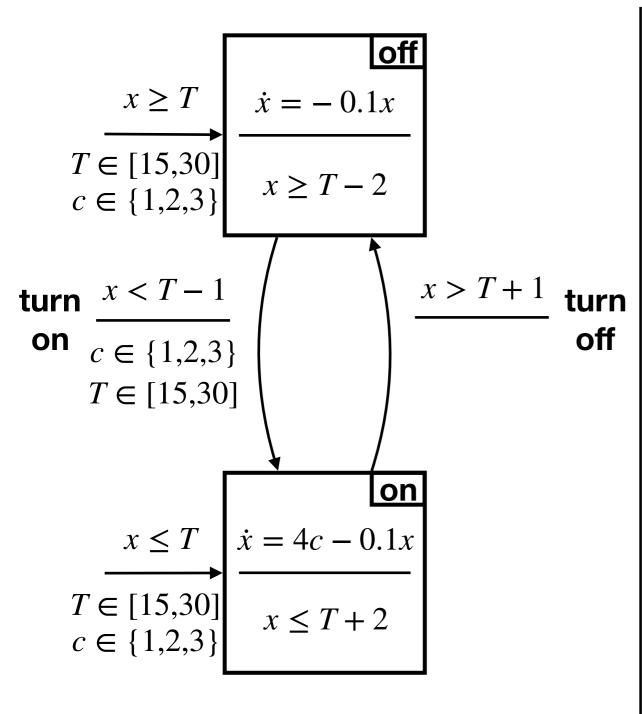
 $(off, 19, 1, 20) \longrightarrow_{c} (off, 18, 1, 20)$ Yes
 $(off, 19, 1, 20) \longrightarrow_{c} (off, 19, 1, 20)$ No
 $(off, 19, 1, 20) \longrightarrow_{c} (off, 19, 1, 20)$ Yes

$$(\mathbf{off}, 19, 1, 20) \longrightarrow_c (\mathbf{off}, 20, 1, 20)$$
 No

A configuration is **reachable** if there is a finite sequence of continuous and discrete transitions from a valid initial configuration, that is:

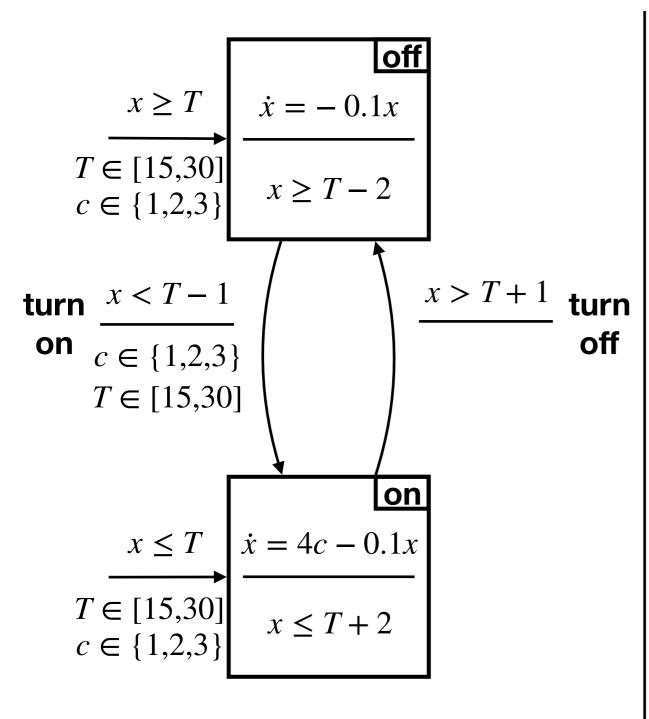
$$\begin{split} \textbf{Reach} &= \{(m, \omega) \mid \exists m_0 \, . \, \omega_0 \in I_{0, m_0} \cap I_{m_0} . \\ & (m_0, \omega_0) \; (\to_d \cup \to_c)^{\star} \; (m, \omega) \} \end{split}$$

- a set M of modes
- a set V of variables
- a set E of events
- **source** and **target** functions $s, t : E \longrightarrow M$
- for every mode m, a **flow** function $F_m : \mathbb{R}^V \times \mathbb{R} \longrightarrow \mathbb{R}^V$
- for every mode m, an **invariant** predicate $I_m \subseteq \mathbb{R}^V$
- for every event e, a **guard** predicate $G_e \subseteq \mathbb{R}^V$
- for every event e, a jump relation $J_e \subseteq \mathbb{R}^V \times \mathbb{R}^V$
- for every mode m, an **initial** predicate $I_{0,m} \subseteq \mathbb{R}^V$



Thermostat s	system
--------------	--------

configuration (m, x, c, T)	initial	valid	reachable
(off ,18,1,20)	No	Yes	
(off ,17,2,20)	No	No	
(on ,17,2,20)	Yes	Yes	
(on ,21,1,20)	No	Yes	



Thermostat system

configuration (m, x, c, T)	initial	valid	reachable
(off ,18,1,20)	No	Yes	Yes
(off ,17,2,20)	No	No	No
(on ,17,2,20)	Yes	Yes	Yes
(on ,21,1,20)	No	Yes	Yes

Actually, initial \Rightarrow valid = reachable

Representability of functions

In practice, we cannot use any function

$$F_m : \mathbb{R}^V \times \mathbb{R} \longrightarrow \mathbb{R}^V$$
 as we need a finite representation of it.

Here, we assume that F_m is given by polynomials on $V \sqcup \{t\}$.

Remark:

This is not much of a restriction, as many dynamics can be modelled by polynomial ones, by adding variables.

Examples:

$$\dot{x} = \frac{f(x,t)}{g(x,t)} \Rightarrow \text{ introduce } y = \frac{1}{g(x,t)} \Rightarrow \dot{x} = f(x,t) \cdot y, \\ \dot{y} = -y^2 \cdot \left(\frac{\partial g}{\partial x}(x,t) \cdot f(x,t) \cdot y + \frac{\partial g}{\partial t}(x,t)\right)$$

$$\dot{x} = \cos(x) \cdot f(x,t) \Rightarrow \text{ introduce } \begin{vmatrix} y = \cos(x) \\ z = \sin(x) \end{vmatrix} \Rightarrow \begin{vmatrix} \dot{x} = f(x,t) \cdot y \\ \dot{y} = -f(x,t) \cdot y \cdot z \\ \dot{z} = f(x,t) \cdot y^2 \end{vmatrix}$$

In practice, we cannot use any predicate

$$I_m, G_e, I_{0,m} \subseteq \mathbb{R}^V$$

 $J_{e} \subseteq \mathbb{R}^{V} \times \mathbb{R}^{V}$

or any relation

Here, we assume that there are given by first order formulae of real arithmetic. Concretely, we assume given a countable set *X* of variables containing $V \sqcup \widehat{V}$.

$$t, t' ::= X \mid \mathbb{Q} \mid t \cdot t' \mid t + t' \mid -t \mid t/t'$$

$$\phi, \phi' ::= t \le t' \mid \top \mid \phi \land \phi' \mid \neg \phi \mid \exists x \cdot \phi$$

Semantics:

Given ϕ whose free variables are $\mathbf{fv}(\phi)$ $[\phi] \in \mathbb{R}^{\mathbf{fv}(\phi)}$

Ex:
$$(r_x, r_y, r_z) \in []x + y \le z []$$
 iff $r_x + r_y \le r_z$

Interest:

Validity and satisfibility of first order real arithmetic are decidable.

For hybrid systems, we assume the existence of such formulae:

 $\phi_{I,m}, \phi_{G,e}, \phi_{I,0,m}$ whose free variables are V and

 $[\phi_{I,m}] = I_m, [\phi_{G,e}] = G_e, [\phi_{I,0,m}] = I_{0,m}$

 $\phi_{J,e}$ whose free variables are $V \sqcup \widehat{V}$ and $[\![\phi_{J,e}]\!] = J_e$

Loop invariants for HA

Remember:

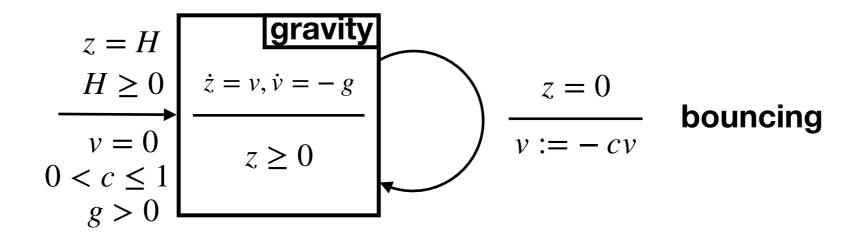
Reach =
$$(\rightarrow_d \cup \rightarrow_c)^* (\bigcup_{m \in M} I_{0,m} \cap I_m)$$

So to prove that every elements of **Reach** satisfies some property, we have to prove some sorts of *loop invariants*.

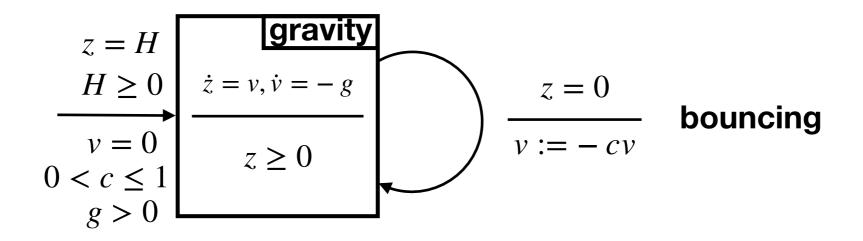
To prove **Reach** \subseteq **Prop**, you find **Inv** \subseteq **Prop** such that:

- $\forall m \in M, I_{0,m} \cap I_m \subseteq Inv$
- if $(m, \omega) \in \mathbf{Inv}$ and $(m, \omega) \to_d (m', \omega')$ then $(m', \omega') \in \mathbf{Inv}$
- if $(m, \omega) \in Inv$ and $(m, \omega) \rightarrow_c (m', \omega')$ then $(m', \omega') \in Inv$

We model a bouncing ball that we drop at height H without initial velocity.

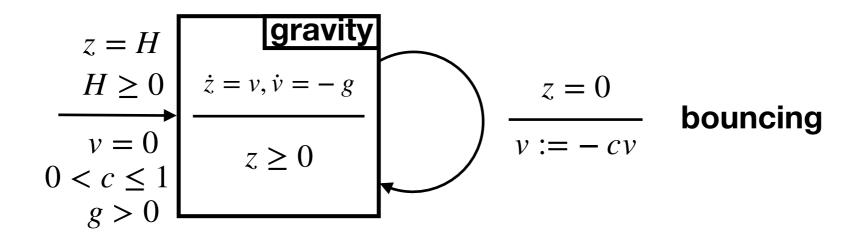


We want to prove that at every instant, the height of the ball is between 0 and H



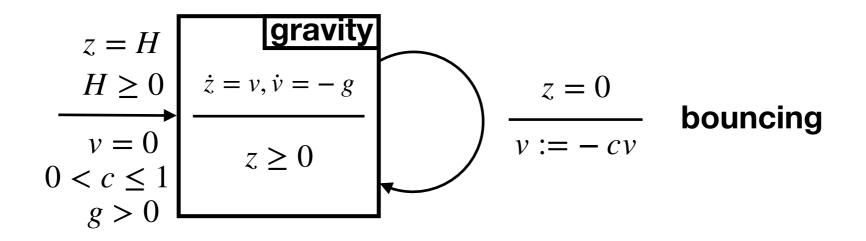
We want to prove that at every instant, the height of the ball is between 0 and H

We want $Prop = \{(z, v, H, c, g) \mid 0 \le z \le H\}.$ Can we use Inv = Prop?



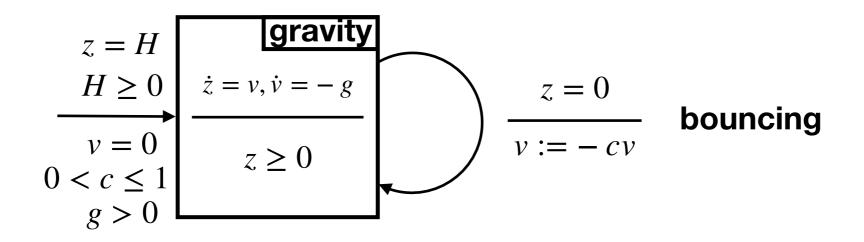
We want to prove that at every instant, the height of the ball is between 0 and H

We want $Prop = \{(z, v, H, c, g) \mid 0 \le z \le H\}.$ Can we use Inv = Prop? Initially, z = H and $H \ge 0$, so **OK**



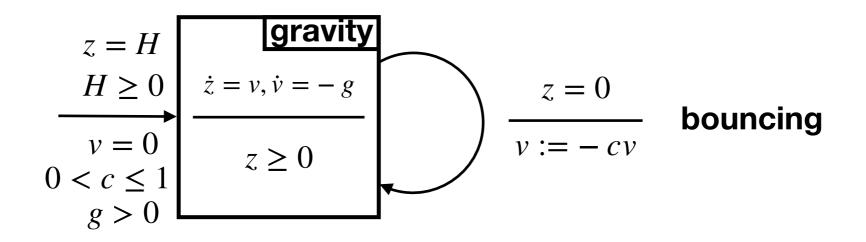
We want to prove that at every instant, the height of the ball is between 0 and H

We want $\operatorname{Prop} = \{(z, v, H, c, g) \mid 0 \le z \le H\}.$ Can we use $\operatorname{Inv} = \operatorname{Prop}$? Initially, z = H and $H \ge 0$, so OK If (gravity, $z, v, H, c, g) \rightarrow_d$ (gravity, z', v', H', c', g') then z = z' and H = H', so OK



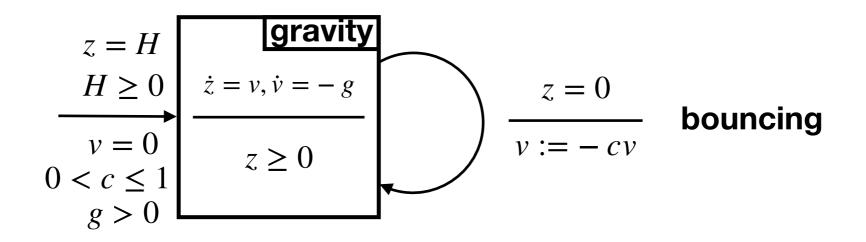
We want to prove that at every instant, the height of the ball is between 0 and H

We want $\operatorname{Prop} = \{(z, v, H, c, g) \mid 0 \le z \le H\}.$ Can we use $\operatorname{Inv} = \operatorname{Prop}$? Initially, z = H and $H \ge 0$, so OK If (gravity, $z, v, H, c, g) \rightarrow_d$ (gravity, z', v', H', c', g') then z = z' and H = H', so OK If (gravity, $z, v, H, c, g) \rightarrow_c$ (gravity, z', v', H', c', g') then, by $I_{\operatorname{gravity}}, z' \ge 0$.



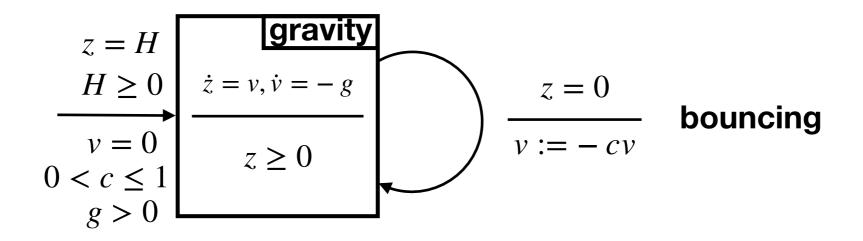
We want to prove that at every instant, the height of the ball is between 0 and H

We want $\operatorname{Prop} = \{(z, v, H, c, g) \mid 0 \le z \le H\}.$ Can we use $\operatorname{Inv} = \operatorname{Prop}$? Initially, z = H and $H \ge 0$, so OK If (gravity, $z, v, H, c, g) \rightarrow_d$ (gravity, z', v', H', c', g') then z = z' and H = H', so OK If (gravity, $z, v, H, c, g) \rightarrow_c$ (gravity, z', v', H', c', g') then, by $I_{\operatorname{gravity}}, z' \ge 0$. Assuming $0 \le z \le H$, can we prove $z' \le H'$?



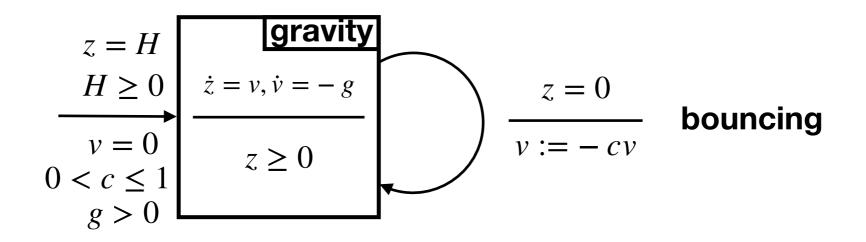
We want to prove that at every instant, the height of the ball is between 0 and H

We want $\operatorname{Prop} = \{(z, v, H, c, g) \mid 0 \le z \le H\}$. Can we use $\operatorname{Inv} = \operatorname{Prop}$? Initially, z = H and $H \ge 0$, so OK If (gravity, $z, v, H, c, g) \rightarrow_d$ (gravity, z', v', H', c', g') then z = z' and H = H', so OK If (gravity, $z, v, H, c, g) \rightarrow_c$ (gravity, z', v', H', c', g') then, by $I_{\operatorname{gravity}}, z' \ge 0$. Assuming $0 \le z \le H$, can we prove $z' \le H'$? No! Take v very large for example.



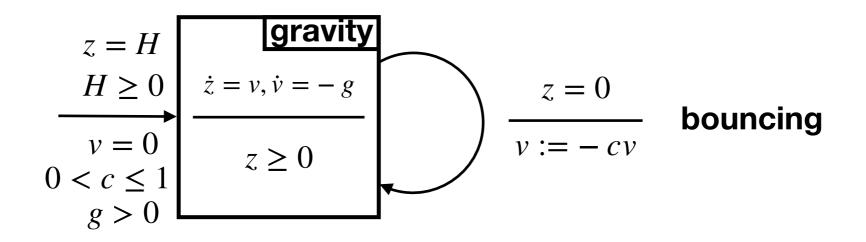
We want to prove that at every instant, the height of the ball is between 0 and H

We want **Prop** = { $(z, v, H, c, g) | 0 \le z \le H$ }. Spoiler: use **Inv** = { $(z, v, H, c, g) | z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$ } Initially, z = H and v = 0, so **OK**



We want to prove that at every instant, the height of the ball is between 0 and H

We want **Prop** = { $(z, v, H, c, g) | 0 \le z \le H$ }. Spoiler: use **Inv** = { $(z, v, H, c, g) | z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$ } Initially, z = H and v = 0, so **OK** If (**gravity**, $z, v, H, c, g) \rightarrow_d$ (**gravity**, z', v', H', c', g') and $(z, v, H, c, g) \in$ **Inv** then $2g'z' = 2gz \le 2gH - v^2 = 2g'H' - v^2 \le 2g'H' - c^2v^2 = 2g'H' - v'^2$, so **OK**



We want to prove that at every instant, the height of the ball is between 0 and H

We want **Prop** = { $(z, v, H, c, g) | 0 \le z \le H$ }. Spoiler: use **Inv** = { $(z, v, H, c, g) | z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$ } Initially, z = H and v = 0, so **OK** If (**gravity**, $z, v, H, c, g) \rightarrow_d$ (**gravity**, z', v', H', c', g') and $(z, v, H, c, g) \in$ **Inv** then $2g'z' = 2gz \le 2gH - v^2 = 2g'H' - v^2 \le 2g'H' - c^2v^2 = 2g'H' - v'^2$, so **OK** If (**gravity**, $z, v, H, c, g) \rightarrow_c$ (**gravity**, z', v', H', c', g'), then v' = -gt + v and $z' = -gt^2 + vt + z$ for some t. After computation: $2g'H' - 2g'z' - v'^2 = 2gH - 2gz - v^2 + g^2t^2$, so **OK**

Objective

- Formalize those kinds of arguments in a Hoare triple/sequent calculus style
- Issues:
 - We need a presentation of HA adapted to this style *Idea: use Reach* = $(\rightarrow_d \cup \rightarrow_c)^* (\bigcup_{m \in M} I_{0,m} \cap I_m)$
 - \rightarrow_d and \rightarrow_c are semantical objects, so we cannot use them
 - We cannot use closed forms of solutions of differential equations in proofs in general!

We assume given a countable set X of variables.

Hybrid Programs are given by the following grammar:

 $\alpha, \beta ::= ?\phi \qquad \text{wh}$ $|\mathbf{x} := \mathbf{e}$ $|\mathbf{\dot{x}} = \mathbf{e} \& \phi$ $|\alpha; \beta$ $|\alpha \cup \beta$ $|\alpha^{\star}$

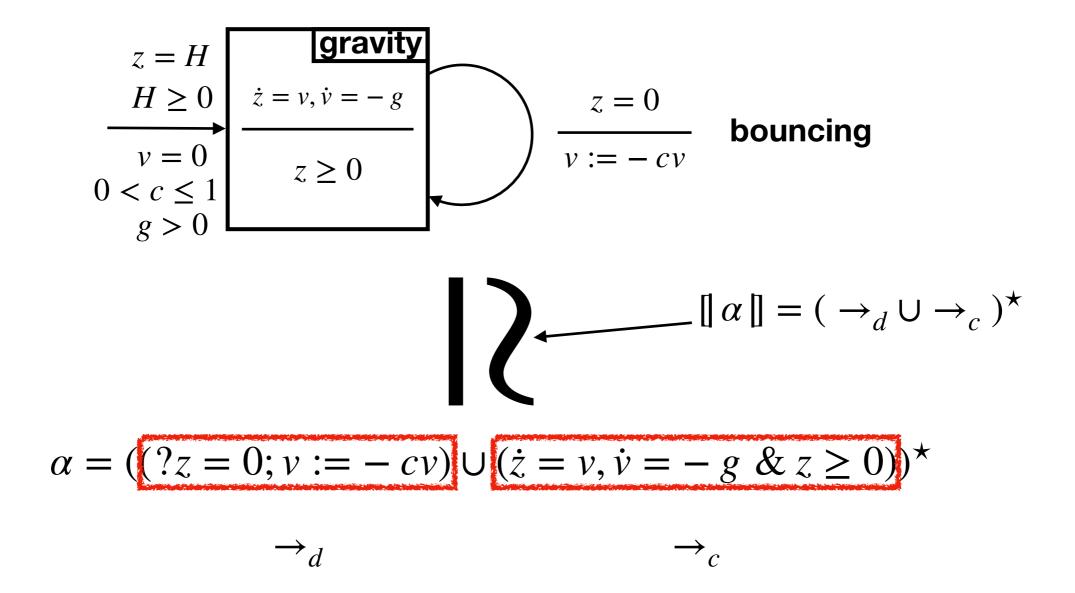
where ϕ is a first order formula of real arithmetic (conditional) where **x** (resp. **e**) is a vector of variables (resp. polynomials) (assignment) where **x** (resp. **e**) is a vector of variables (resp. polynomials) and ϕ is a first order formula of real arithmetic (dynamics) (sequential composition) (non-deterministic choice) (loop) $[\alpha] \subseteq \mathbb{R}^X \times \mathbb{R}^X$ is defined by induction:

- $[]?\phi [] = \{(\omega, \omega) \mid \omega \in []\phi []\}$
- $[\mathbf{x} := \mathbf{e}[] = \{(\omega, \omega') \mid \forall x \in \mathbf{x}, \omega'_x = e_x(\omega) \land \forall x \notin \mathbf{x}, \omega'_x = \omega_x\}$
- $(\omega, \omega') \in []\dot{\mathbf{x}} = \mathbf{e} \& \phi []$ iff there is a continuous function $\psi : [0,T] \to \mathbb{R}^{\mathbf{x}}$ such that:
 - $\omega = \omega(0)$ and $\omega' = \omega(T)$
 - ψ is derivable on]0,T[and for all $t \in]0,T[$, $\dot{\psi}(t) = e(\omega(t))$
 - for all $t \in [0,T], \omega(t) \in \llbracket \phi \rrbracket$
- $[\alpha; \beta] = \{(\omega, \omega'') \mid \exists \omega', (\omega, \omega') \in [\alpha] \land (\omega', \omega'') \in [\beta]\}$
- $[\alpha \cup \beta] = [\alpha \cup \alpha] \cup [\beta]$
- $[\alpha^{\star}] = \{(\omega, \omega') \mid \exists n \in \mathbb{N}, \omega_0, \dots, \omega_n, \omega = \omega_0 \land \omega' = \omega_n \land (\omega_i, \omega_{i+1}) \in [\alpha] \}$

• $\forall x \in \mathbf{x}, \omega(t)_x = \psi(t)_x$ • $\forall x \notin \mathbf{x}, \omega(t)_x = \omega_x$

From HA to HP, the example of the bouncing ball

We can describe the bouncing ball as a HP



From HA to HP, in general

A hybrid automaton is:

- a finite set M of modes
- a finite set V of variables
- a finite set E of events
- source and target functions

 $s, t: E \longrightarrow M$

• for every mode m, a **flow** function

 F_m polynomial on $V \sqcup \{t\}$

- for every mode m, an **invariant** predicate $\phi_{I,m}$ formula on V
- for every event e, a guard predicate

 $\phi_{G,e}$ formula on V

- for every event e, a **jump** relation $\phi_{J,e}$ formula on $V \sqcup \widehat{V}$
- for every mode m, an **initial** predicate $\phi_{I,0,m}$ formula on V

A hybrid automaton is:

- a finite set M of modes
- a finite set V of variables
- a finite set E of events
- source and target functions

 $s, t: E \longrightarrow M$

• for every mode m, a **flow** function

 F_m polynomial on $V \sqcup X$

- for every mode m, an **invariant** predicate ϕ_{Lm} formula on V
- for every event e, a guard predicate

 $\phi_{G,e}$ formula on V

- for every event e, a **jump** relation $\phi_{J,e}$ formula on $V \sqcup \widehat{V}$
- for every mode m, an **initial** predicate $\phi_{I,0,m}$ formula on V

A hybrid automaton is:

- a finite set M of modes
- a finite set V of variables
- a finite set E of events
- source and target functions

 $s, t: E \longrightarrow M$

• for every mode m, a **flow** function

 F_m polynomial on $V \sqcup \mathbb{M}$

• for every mode m, an **invariant** predicate

 $\phi_{I,m}$ formula on V

• for every event e, a guard predicate

 $\phi_{G,e}$ formula on V

• for every event e, a jump relation

 $\phi_{J,e}$ formula on $V \sqcup \widehat{V}$ of the form $\bigwedge_{x \in V} \widehat{x} = P_x$

where P_x is a polynomial on V

• for every mode m, an **initial** predicate

 $\phi_{I,0,m}$ formula on V

A hybrid automaton is:

- a finite set M of modes
- a finite set V of variables
- a finite set E of events
- source and target functions

 $s, t: E \longrightarrow M$

• for every mode m, a **flow** function

 F_m polynomial on $V \sqcup M$

• for every mode m, an **invariant** predicate

 $\phi_{I,m}$ formula on V

• for every event e, a **guard** predicate

 $\phi_{G,e}$ formula on V

• for every event e, a jump relation

 $\phi_{J,e}$ formula on $V \sqcup \widehat{V}$ of the form $\bigwedge \widehat{x} = P_x$

where P_x is a polynomial on V

 $x \in V$

• for every mode m, an **initial** predicate

 $\phi_{I,0,m}$ formula on V

Assume $V \subseteq X$, and **mode** $\in X \setminus V$ Assume $M \subseteq \mathbb{N}$.

A hybrid automaton is: a finite set M of modes Assume $M \subseteq \mathbb{N}$. • a finite set V of variables • a finite set E of events • source and target functions $s.t: E \longrightarrow M$ • for every mode m, a **flow** function ?mode = m; F_m polynomial on $V \sqcup \mathbb{M}$ $m \in M$ • for every mode m, an **invariant** predicate $?\phi_{G,e} \wedge \phi_{I,m};$ ϕ_{Im} formula on V $e \in E | s(e) = m$ • for every event e, a guard predicate $\phi_{G,e}$ formula on V • for every event e, a jump relation $\phi_{J,e}$ formula on $V \sqcup V$ of the form $\bigwedge \hat{x} = P_x$ $\left(\dot{V}=F_m \& \phi_{I_m}\right)\right)$ $x \in V$ where P_{γ} is a polynomial on V • for every mode m, an initial predicate ϕ_{I0m} formula on V

Assume $V \subseteq X$, and **mode** $\in X \setminus V$.

 $V := P_V;$

 $?\phi_{I,t(e)})$

mode := t(e);

A hybrid automaton is:

- a finite set M of modes
- a finite set V of variables
- a finite set E of events
- source and target functions

 $s, t: E \longrightarrow M$

• for every mode m, a **flow** function

 F_m polynomial on $V \sqcup \bigotimes$

- for every mode m, an **invariant** predicate ϕ_{Im} formula on V
- for every event e, a guard predicate

 $\phi_{G,e}$ formula on V

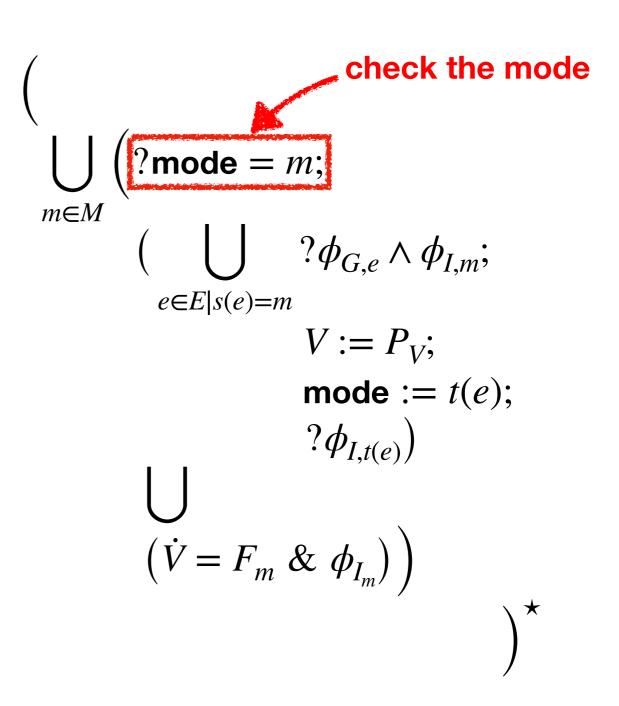
• for every event e, a jump relation

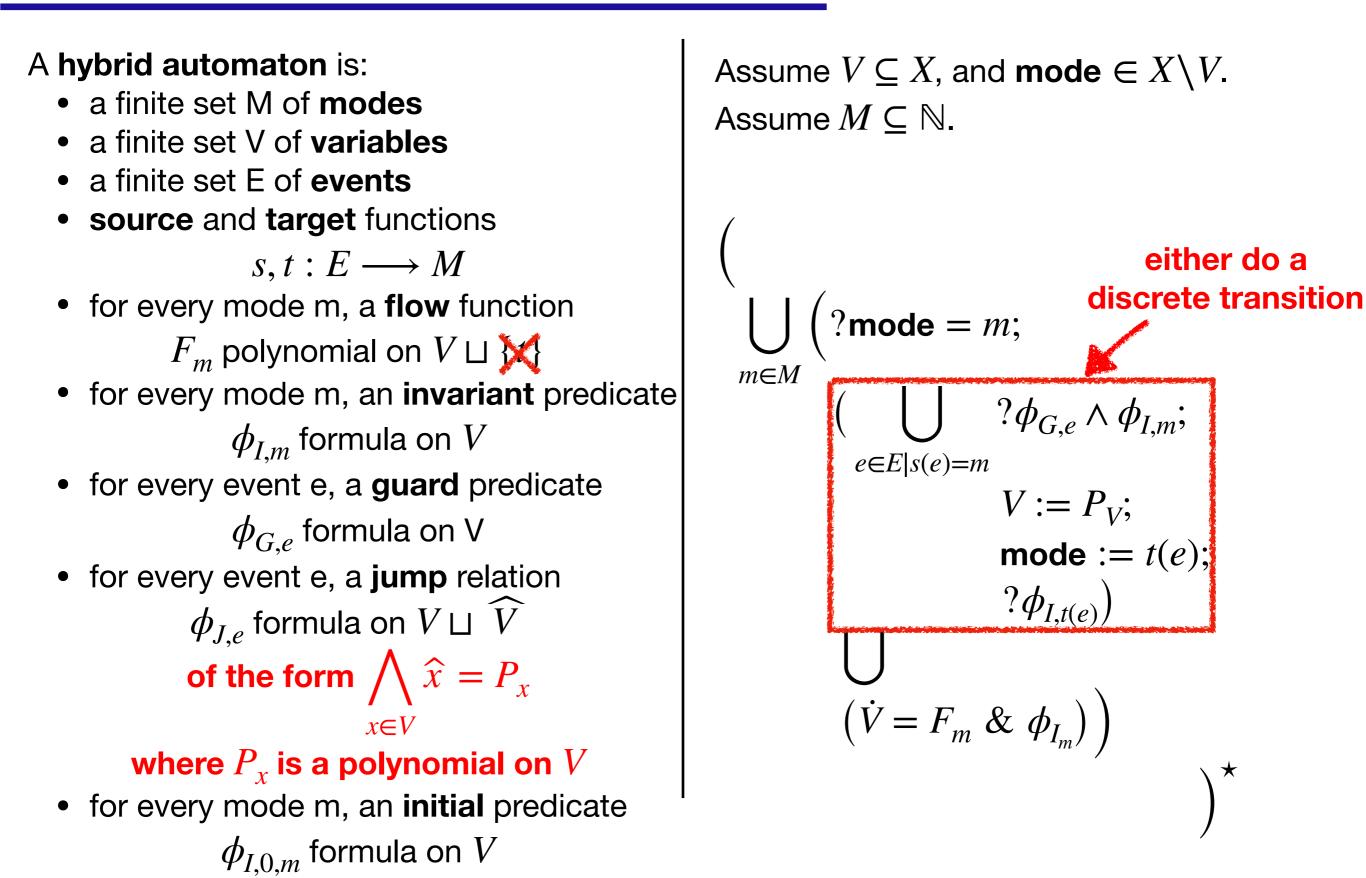
 $\phi_{J,e}$ formula on $V \sqcup \widehat{V}$ of the form $\bigwedge_{x \in V} \widehat{x} = P_x$

where P_x is a polynomial on V

• for every mode m, an **initial** predicate $\phi_{I\,0\,m}$ formula on V

Assume $V \subseteq X$, and **mode** $\in X \setminus V$. Assume $M \subseteq \mathbb{N}$.





A hybrid automaton is:

- a finite set M of modes
- a finite set V of variables
- a finite set E of events
- source and target functions

 $s, t: E \longrightarrow M$

• for every mode m, a **flow** function

 F_m polynomial on $V \sqcup \bigotimes$

- for every mode m, an **invariant** predicate $\phi_{I,m}$ formula on V
- for every event e, a guard predicate

 $\phi_{G,e}$ formula on V

• for every event e, a jump relation

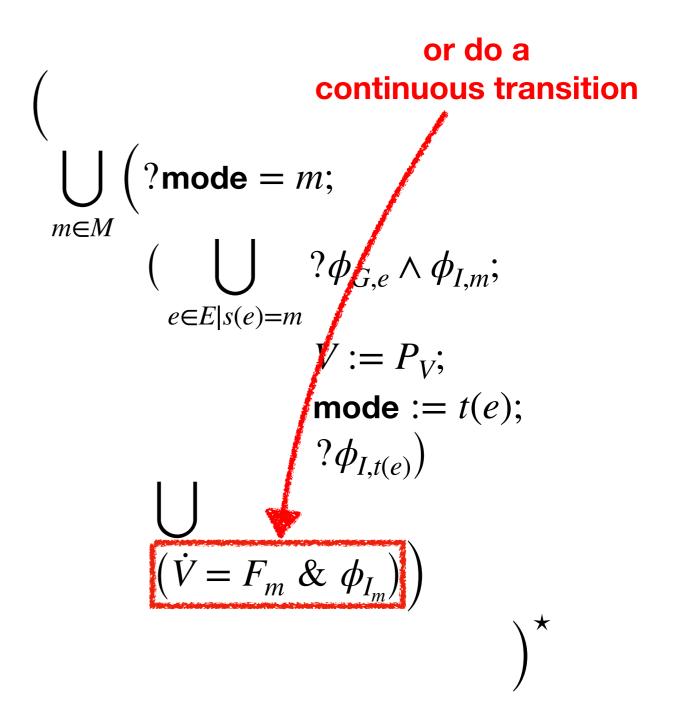
 $\phi_{J,e}$ formula on $V \sqcup \widehat{V}$ of the form $\bigwedge \widehat{x} = P_x$

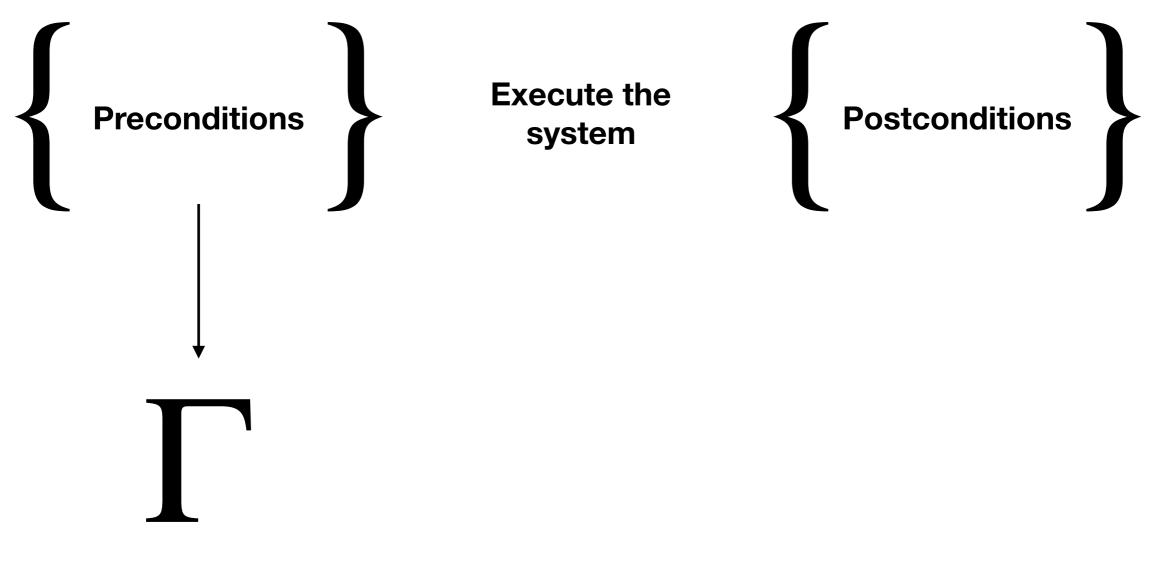
where P_x is a polynomial on V

 $x \in V$

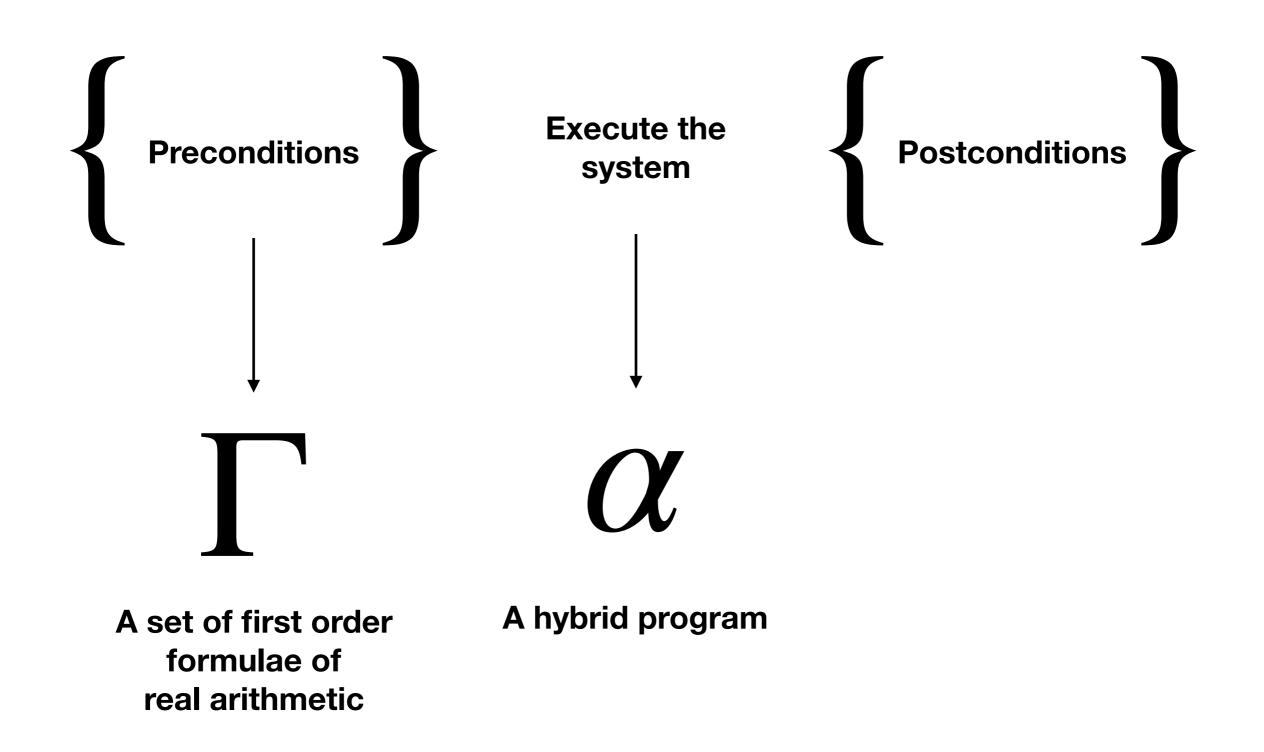
• for every mode m, an **initial** predicate $\phi_{I,0,m}$ formula on V

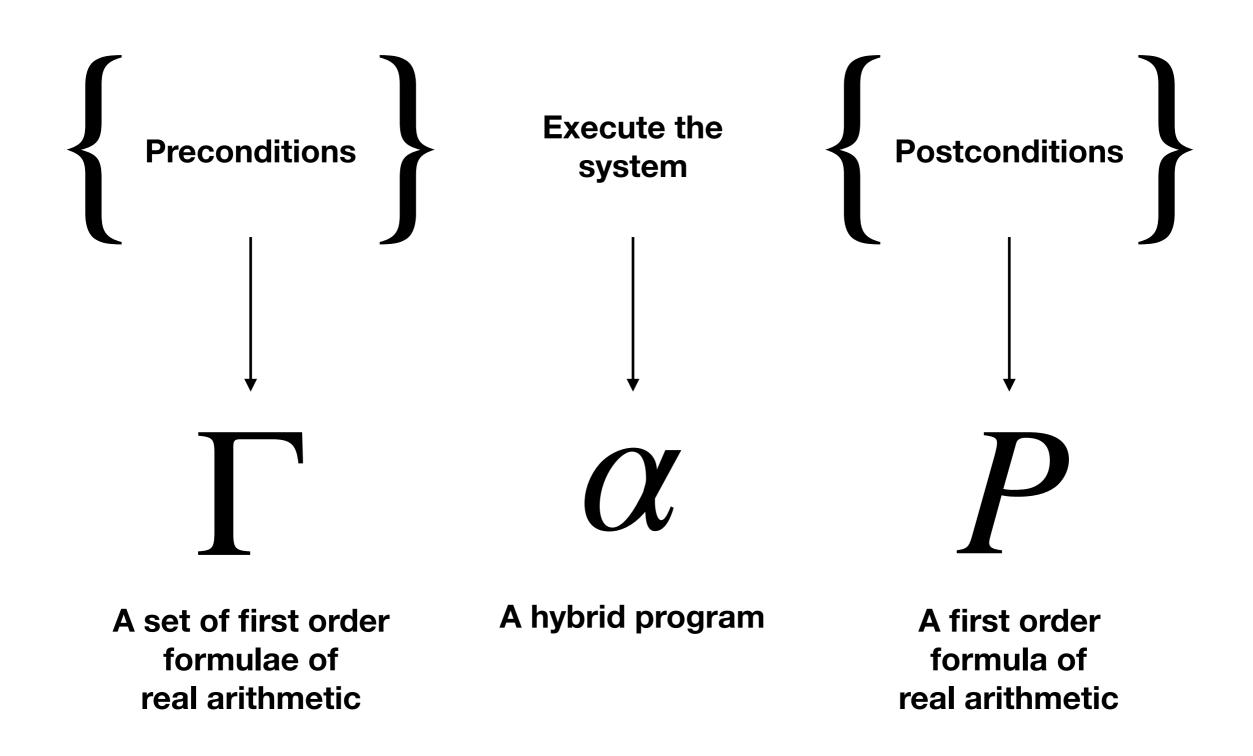
Assume $V \subseteq X$, and **mode** $\in X \setminus V$. Assume $M \subseteq \mathbb{N}$.

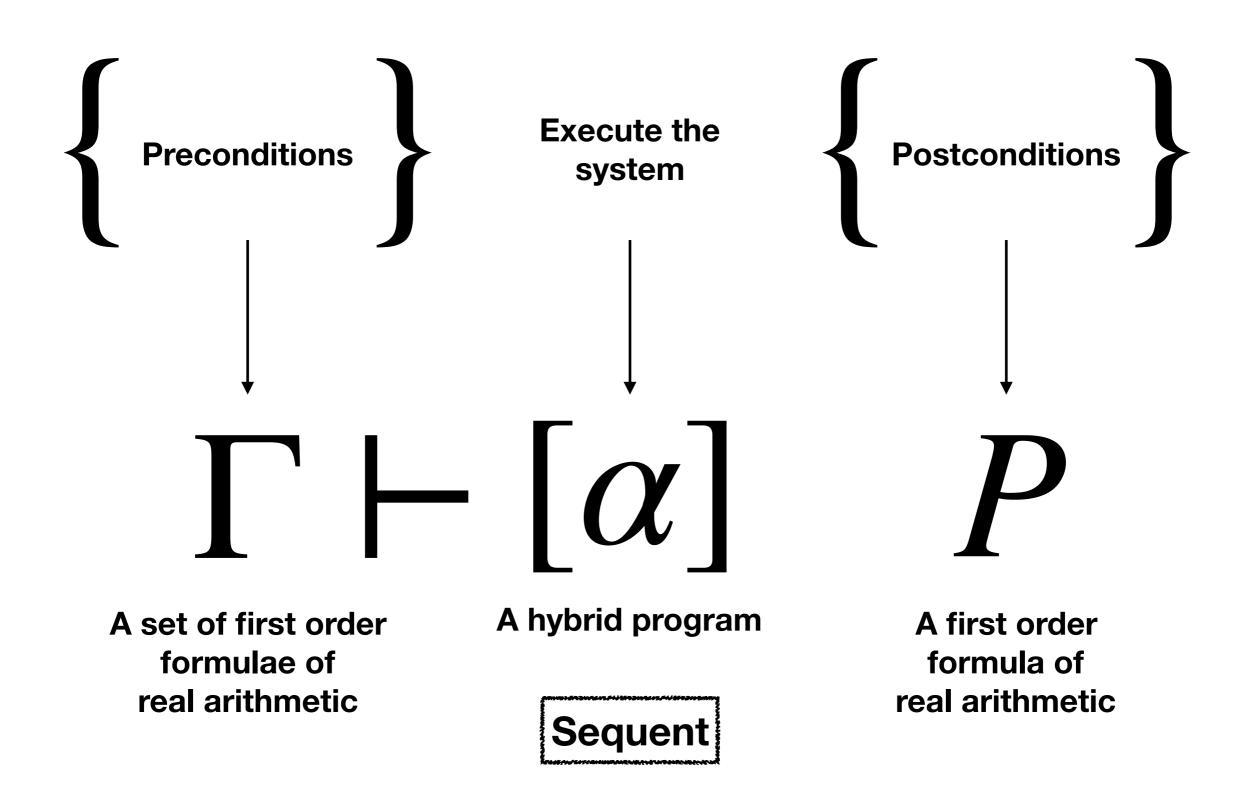




A set of first order formulae of real arithmetic







A sequent calculus for HP

$\Gamma \vdash [\alpha]P$

- Γ a set of first order formulae of real arithmetic
- α a hybrid program
- P a first order formula of real arithmetic

A sequent calculus for HP

$\Gamma \vdash [\alpha_1] \dots [\alpha_n] P$

- Γ a set of first order formulae of real arithmetic
- $\alpha_1, \ldots, \alpha_n$ hybrid programs
- P a first order formula of real arithmetic

In particular, when n = 0 we have a first order sequent of real arithmetic

A sequent
$$\Gamma \vdash [\alpha_1] \dots [\alpha_n] P$$
 is said to be **valid** if
 $\{\omega_n \mid \exists \omega_0, \dots \omega_{n-1}, \omega_0 \in \bigcap_{\phi \in \Gamma} [\! | \phi | \! | \land \forall i, (\omega_{i-1}, \omega_i) \in [\! | \alpha_i | \! | \!] \} \subseteq [\! | P | \!]$

Objective of this lecture: prove that $I_{0,gravity} \vdash [\alpha_{ball}] \ 0 \le z \le H$ is valid

We will see some **proof rules** to prove validity of sequents:

$$\Gamma_1 \vdash [\alpha_1^1] \dots [\alpha_{n_1}^1] P_1 \dots \Gamma_k \vdash [\alpha_1^k] \dots [\alpha_{n_k}^k] P_k$$
$$\Gamma \vdash [\alpha_1] \dots [\alpha_n] P$$

whose meaning are

To prove that $\Gamma \vdash [\alpha_1] \dots [\alpha_n] P$ is valid, it is enough to prove that all $\Gamma_i \vdash [\alpha_1^i] \dots [\alpha_{n_i}^i] P_i$ are valid.

Rules that satisfy this property are called **sound**.

Bouncing ball

Notations:

$$I_0 \equiv z = H, H \ge 0, v = 0, 0 < c \le 1, g > 0$$

ball $\equiv \left(\left(2z = 0; v := -cv \right) \cup \left(\dot{z} = v, \dot{v} = -g \& z \ge 0 \right) \right)^*$

Sequents to prove:

$$I_0 \vdash [\mathsf{ball}] \, 0 \le z \land z \le H$$

Rule for loop invariants

$$\frac{\Gamma \vdash \mathsf{Inv} \quad \mathsf{Inv} \vdash [\alpha] \,\mathsf{Inv} \quad \mathsf{Inv} \vdash P}{\Gamma \vdash [\alpha^{\star}] P} \quad \text{(LI)}$$

$$\frac{\Gamma \vdash \mathbf{Inv} \quad \mathbf{Inv} \vdash [\alpha] \quad \mathbf{Inv} \vdash P}{\Gamma \vdash [\alpha^{\star}] P}$$
(LI)

Proof of soundness. Assume that:

- 1. $\Gamma \vdash \mathbf{Inv}$ is valid, that is $\bigcap_{\phi \in \Gamma} [\phi] \subseteq [\mathbf{Inv}]$
- 2. Inv $\vdash [\alpha]$ Inv is valid, that is $\{\omega' \mid \exists \omega \in [| \ln v |], (\omega, \omega') \in [| \alpha |]\} \subseteq [| \ln v |]$
- 3. Inv $\vdash P$ is valid, that is, $[| Inv |] \subseteq [| P |]$

We want to prove that $\Gamma \vdash [\alpha^{\star}] P$ is valid. Let:

A. $\omega_0 \in \bigcap_{\phi \in \Gamma} \llbracket \phi \rrbracket$

B. $\omega_1, \ldots, \omega_n$ such that $(\omega_i, \omega_{i+1}) \in [] \alpha []$

We want to prove that $\omega_n \in [P]$. By 3., it is enough to prove that $\omega_i \in [I \ln v]$ by induction on *i*:

- <u>case i = 0</u>: by 1. and A.
- inductive case: assume $\omega_i \in [] \ln v]]$, then by 2. and B., $\omega_{i+1} \in [] \ln v]]$.QED.

$$\frac{\Gamma \vdash \mathbf{Inv} \quad \mathbf{Inv} \vdash [\alpha] \quad \mathbf{Inv} \vdash P}{\Gamma \vdash [\alpha^{\star}] P}$$
(LI)

To prove the validity of:

$$I_0 \vdash [\mathsf{ball}] \ 0 \le z \le H$$

it is enough to prove of:

$$\begin{aligned} I_0 &\vdash \mathsf{Inv} \\ \mathsf{Inv} &\vdash [(?z=0; v:=-cv) \cup (\dot{z}=v, \dot{v}=-g \& z \ge 0)] \mathsf{Inv} \\ \mathsf{Inv} &\vdash 0 \le z \le H \end{aligned}$$

where

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

Bouncing ball

Notations:

$$I_0 \equiv z = H, H \ge 0, v = 0, 0 < c \le 1, g > 0$$

Inv $\equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$

Sequents to prove:

$$\begin{split} &I_0 \vdash \mathsf{Inv} \\ &\mathsf{Inv} \vdash [(?z = 0; v := - cv) \cup (\dot{z} = v, \dot{v} = -g \& z \ge 0)] \mathsf{Inv} \\ &\mathsf{Inv} \vdash 0 \le z \le H \end{split}$$

Rule for real arithmetic

$$\frac{\bigcap_{\phi \in \Gamma} \left[\left| \phi \right| \right] \subseteq \left[\left| P \right| \right]}{\Gamma \vdash P} \quad \text{(RA)}$$

This is implementable since the first order theory of reals is decidable!

To prove the validity of:

$$I_0 \vdash \operatorname{Inv} \\ \operatorname{Inv} \vdash 0 \le z \le H$$

it is enough the following inclusions:

$$\{ (z, v, H, g, c) \mid z = H \land H \ge 0 \land v = 0 \land 0 < c \le 1 \land g > 0 \}$$

$$\subseteq$$

$$\{ (z, v, H, g, c) \mid z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2 \}$$

 $\{(z, v, H, g, c) \mid z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2\} \subseteq \{(z, v, H, g, c) \mid 0 \le z \le H\}$

Bouncing ball

Notations:

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

Sequents to prove:

Inv ⊢
$$[(?z = 0; v := -cv) \cup (\dot{z} = v, \dot{v} = -g \& z \ge 0)]$$
 Inv

Rule for non-determistic choices

$$\frac{\Gamma \vdash [\alpha]P \quad \Gamma \vdash [\beta]P}{\Gamma \vdash [\alpha \cup \beta]P} \quad (\cup)$$

To prove the validity of:

$$Inv \vdash [(?z = 0; v := -cv) \cup (\dot{z} = v, \dot{v} = -g \& z \ge 0)] Inv$$

it is enough to prove the validity of :

Inv
$$\vdash$$
 [?*z* = 0; *v* := − *cv*] Inv
Inv \vdash [*ż* = *v*, *v* = − *g* & *z* ≥ 0] Inv

Bouncing ball

Notations:

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

Sequents to prove:

Inv ⊢ [?z = 0; v := − cv] Inv
Inv ⊢ [
$$\dot{z} = v, \dot{v} = -g \& z \ge 0$$
] Inv

Rule for sequential compositions

$$\frac{\Gamma \vdash [\alpha][\beta]P}{\Gamma \vdash [\alpha;\beta]P} \quad (;)$$

To prove the validity of:

$$Inv \vdash [?z = 0; v := -cv] Inv$$

it is enough to prove the validity of :

 $lnv \vdash [?z = 0][v := -cv] lnv$

Bouncing ball

Notations:

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

Sequents to prove:

Inv ⊢ [?z = 0][v :=
$$-cv$$
] Inv
Inv ⊢ [$\dot{z} = v, \dot{v} = -g \& z \ge 0$] Inv

Rule for conditionals

$$\frac{\Gamma, Q \vdash P}{\Gamma \vdash [?Q]P} \quad (?)$$

To prove the validity of:

$$lnv \vdash [?z = 0][v := -cv] lnv$$

it is enough to prove the validity of :

 $Inv, z = 0 \vdash [v := -cv] Inv$

Bouncing ball

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

Inv,
$$z = 0 \vdash [v := -cv]$$
 Inv
Inv $\vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0]$ Inv

Rule for conditionals

$$\frac{\Gamma \vdash P(\mathbf{x} \leftarrow \mathbf{e})}{\Gamma \vdash [\mathbf{x} := \mathbf{e}]P} \quad \textbf{(} := \textbf{)}$$

To prove the validity of:

$$Inv, z = 0 \vdash [v := -cv] Inv$$

it is enough to prove the validity of :

Inv, $z = 0 \vdash z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - (-cv)^2$ which can be proved using the **(RA)** rule.

Bouncing ball

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

Inv
$$\vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0]$$
 Inv

Rule for simplifying the postconditions

$$\frac{\Gamma \vdash [\alpha]P \quad \Gamma \vdash [\alpha]Q}{\Gamma \vdash [\alpha]P \land Q} \quad ([]_{\wedge})$$

To prove the validity of:

$$Inv \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0]$$
 Inv

it is enough to prove the validity of :

$$\begin{aligned}
& \text{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ z \ge 0 \\
& \text{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 0 < c \le 1 \land g > 0 \\
& \text{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 2gz \le 2gH - v^2
\end{aligned}$$

Bouncing ball

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

$$\begin{aligned} & \text{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ z \ge 0 \\ & \text{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 0 < c \le 1 \land g > 0 \\ & \text{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 2gz \le 2gH - v^2 \end{aligned}$$

Rule for differential weakening

$$\frac{Q \vdash P}{\Gamma \vdash [\dot{\mathbf{x}} = \mathbf{e} \& Q]P} \quad \text{(dW)}$$

To prove the validity of:

$$Inv \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ z \ge 0$$

it is enough to prove the validity of :

$$z \ge 0 \vdash z \ge 0$$

which is obvious.

Bouncing ball

$$Inv \equiv z \ge 0 \land 0 < c \le 1 \land g > 0 \land 2gz \le 2gH - v^2$$

$$lnv \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 0 < c \le 1 \land g > 0$$

$$lnv \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 2gz \le 2gH - v^2$$

Rule for constant properties

$$\frac{\Gamma \vdash P \quad \mathbf{fv}(P) \cap \mathbf{x} = \emptyset}{\Gamma \vdash [\dot{\mathbf{x}} = \mathbf{e} \& Q]P} \quad \text{(cst)}$$

To prove the validity of:

$$\mathbf{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 0 < c \le 1 \land g > 0$$

it is enough to prove the validity of :

$$\mathsf{Inv} \vdash 0 < c \le 1 \land g > 0$$

which is obvious.

What about $Inv \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 2gz \le 2gH - v^2$?

Invariant of a dynamics, and Lie derivative

$$\dot{\mathbf{x}} = \mathbf{e} \& Q \simeq (?Q; \mathbf{x} := \mathbf{x} + dt. \mathbf{e})^*; ?Q$$

$$\frac{\Gamma, Q \vdash \mathsf{Inv} \quad \mathsf{Inv}, Q \vdash \mathsf{Inv}(\mathbf{x} \leftarrow \mathbf{x} + dt \, \cdot \mathbf{e}) \quad \mathsf{Inv} \vdash P}{\Gamma \vdash [\dot{\mathbf{x}} = \mathbf{e} \& Q]P}$$
(dtl)

Assume that $P = Inv \equiv f \geq 0$. We want something to ensure: $f(\omega) \geq 0 \Rightarrow f(\omega + dt \cdot \mathbf{e}(\omega)) \geq 0$

It is enough to require that f is constant along the dynamics, that is, if ψ is a solution of $\dot{\mathbf{x}} = \mathbf{e}$, then $K : t \mapsto f(\psi(t))$ is constant, that is, its derivative is zero.

$$\dot{K}(t) = \sum_{x \in \mathbf{X}} \frac{\partial f}{\partial x}(\psi(t)) \cdot \dot{\psi}(t) = \sum_{x \in \mathbf{X}} \frac{\partial f}{\partial x}(\psi(t)) \cdot \mathbf{e}_x(\psi(t))$$

So it is enough that the function $\mathscr{L}_{\mathbf{e}} f = \sum_{x \in \mathbf{X}} \frac{\partial f}{\partial x}$. \mathbf{e}_x to be zero along the dynamics.

Rule for differential invariants

$$\frac{\Gamma, Q \vdash f \ge 0 \quad \Gamma \vdash [\dot{\mathbf{x}} = \mathbf{e} \& Q] \mathscr{L}_{\mathbf{e}} f = 0}{\Gamma \vdash [\dot{\mathbf{x}} = \mathbf{e} \& Q] f \ge 0} \quad \text{(dl)}$$

To prove the validity of:

$$\mathbf{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \ 2gz \le 2gH - v^2$$

it is enough to prove the validity of :

Inv,
$$z \ge 0 \vdash 2gz \le 2gH - v^2$$

which is obvious and of:

$$\mathbf{Inv} \vdash [\dot{z} = v, \dot{v} = -g \& z \ge 0] \mathscr{L}_{\mathbf{e}} f = 0$$

which is true after computation of the Lie derivative.

Sequents to prove:

No more!

https://web.keymaerax.org