Template games, simple games, and Day convolution

Clovis Eberhart¹, Tom Hirschowitz², and Alexis Laouar²

¹ERATO MMSD, National Institute of Informatics, Tokyo

 2 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Chambéry

GaLoP 2019, Prague, April 6-7, 2019

Introduction

Two abstract approaches to game semantics:

- game settings (E. and Hirschowitz, 2018):
 - rather complex (sheaves, polynomial functors...),
 - ▶ general (several instances: HON, AJM, Tsukada-Ong...),
- ▶ template games (Melliès, 2019):
 - very simple and elegant,
 - maybe less general, differs from classic models.

Here:

- retelling of template games,
- extended to cover simple games,
- brings formal connection to Day convolution.

Overview

- ► Template games:
 - games,
 - strategies,
 - copycats, composition.
- Weak double categories:
 - internal monads,
 - template games.
- ▶ Recovering simple game semantics:
 - games,
 - strategies,
 - copycats, composition.

Template games

Definition

Let $\pm_{\it g}$ be the category freely generated by the graph

$$P \bigcirc 0.$$

Definition

A template game is a category A equipped with a functor $p \colon A \to \pm_g$.

Simple games \rightarrow template games

Simple game A:

- ▶ rooted tree ~> poset ~> category,
- ▶ projection $p_A: A \to \pm_g$:
 - nodes at even depth to O,
 - nodes at odd depth to P.

Template strategies

Definition

Let \pm_s be the category freely generated by

$$PP \bigcirc OP \bigcirc OO.$$

Definition

A template strategy from A to B is a category S equipped with projections

Template strategies

Definition

Let \pm_s be the category freely generated by

Definition

A template strategy from A to B is a category S equipped with projections

Simple strategies: the arrow game

Definition

For A and B simple games, $A \rightarrow B$:

- polarity of moves in A reversed,
- O starts in B,
- only P switches sides.

Boolean simple strategies

Definition

A boolean simple strategy from A to B is a non-empty, prefix-closed set of even-length plays of $A \rightarrow B$.

Can be encoded by red nodes.

Simple strategies

Definition

Let $(A \to B)^{P^*}$ be the full subcategory of $A \to B$ spanning non-empty, even-length plays.

Definition

Simple strategies from A to B: $(A \to B)^{P^*}$.

Simple strategies \rightarrow template strategies

Simple strategy $\sigma \in \widehat{(A \to B)^{P^*}}$:

- ightharpoonup el(σ): all possible "states" of the strategy after playing a non-empty, even-length play,
- ightharpoonup el (σ) : all possible states, adding initial state and receptivity.

Translation

Template strategies: identities (copycats)

The template of interactions

Template strategies: composition

Template strategies: composition

Template strategies: composition

Weak double categories

 $G \xrightarrow{\mathsf{v}} H \xrightarrow{\mathsf{v}} I$

$\mathsf{Span}(\mathbb{C})$

Horizontally:

- composition of spans by pullback,
- composition of cells by universal property,
- ▶ choice of pullbacks → bicategory.

Template games

In Span(Cat):

- ightharpoonup game: $A \to \pm_g$,
- \triangleright strategy: cell over \pm_s .

Internal monads

Definition

Monad in double category: horizontal morphism $M: X \longrightarrow X$ with

satisfying the obvious generalisation of the usual monad laws.

Example

 \pm_s : $\pm_g \longrightarrow \pm_g$ is a monad in Span(Cat):

- $ightharpoonup \eta \colon id_{\pm_g}^{ullet} \Rightarrow \pm_s$: synchronous copycat schedule,
- ▶ μ : $\pm_i \Rightarrow \pm_s$: parallel composition + hiding.

\mathbb{D}/M

Candidate weak double category:

- ightharpoonup objects: vertical morphisms $A \to X$,
- ▶ vertical morphisms from $A \rightarrow X$ to $B \rightarrow X$: commuting triangles of vertical morphisms,
- ▶ horizontal morphisms from $A \rightarrow X$ to $B \rightarrow X$: cells over M,

cells: commuting "triangles" of cells.

Template game semantics: Span(Cat)/ \pm_s

Template strategy from A to B:

$$\begin{array}{ccc}
A & \xrightarrow{S} & B \\
\downarrow p & & \downarrow q \\
\pm g & \xrightarrow{\bullet} & \pm g
\end{array}$$

Copycats and composition:

Theorem

For any monad $M \colon X \to X$ internal to a weak double category \mathbb{D} , \mathbb{D}/M is again a weak double category.

Template games vs. simple games: first discrepancy

First discrepancy

- ► Simple games: initial object, polarity *O* (root).
- ► Template games:
 - $ightharpoonup \mathbb{Z} o \pm_{g}$: no initial object,
 - $ightharpoonup \Gamma P^{\neg} \colon 1 \to \pm_{g} \colon \text{ polarity } P.$

Second discrepancy

Simple games $A \to \pm_g$ are discrete Conduché fibrations:

Recovering simple games

Change the template: $\mathbb{T}_g = O/\pm_g$.

Definition

Refined template game: discrete fibration to \mathbb{T}_g .

Remark

 $\mathbb{T}_{\mathbf{g}} \cong \omega \leadsto \text{discrete fibration into } \mathbb{T}_{\mathbf{g}} = \text{forest}.$

Lemma

Refined template game is isomorphic to simple game iff definite (fibre over id $_{O}$ singleton).

Naively refined template strategies

Same discrepancies as games \rightsquigarrow choose $\mathbb{T}_s = OO/\pm_s$?

Definition

Naively refined template strategy from A to B:

with r a discrete fibration.

Problem

Refined template strategies

We want strategies to be presheaves over $(A \to B)^{P^*} \leadsto \mathbb{T}_s$ spans even-length plays of OO/\pm_s .

Definition

Refined template strategy from A to B: category S equipped with

with r a discrete fibration.

Lemma

Refined template strategy is isomorphic to simple strategy iff definite.

Copycats

 $\mathbb{T}_s \colon \mathbb{T}_g \longrightarrow \mathbb{T}_g$ is still a monad.

Copycat

Problem

 ηp is not always a discrete fibration.

Interlude: double factorisation systems

Given double category \mathbb{D} , pair of factorisation systems:

- $ightharpoonup (\mathcal{L}_{v}, \mathcal{R}_{v}) \text{ on } \mathbb{D}_{v},$
- $ightharpoonup (\mathcal{L}_V, \mathcal{R}_V)$ on \mathbb{D}_V ,

such that $s,t\colon \mathbb{D}_V \to \mathbb{D}_v$ map \mathcal{L}_V (resp. \mathcal{R}_V) to \mathcal{L}_v (resp. \mathcal{R}_v) and

Example

On Span(\mathbb{C}): $(\mathcal{L}, \mathcal{R})$ and componentwise $(\mathcal{L}, \mathcal{R})$.

Simple games: $Span(Cat)/_{DFib}\mathbb{T}$

Horizontal identities:

Horizontal composition:

Theorem

If the double factorisation system is nice enough, then $\mathbb{D}/_{\mathcal{R}}M$ is a weak double category.

Day convolution

- ightharpoonup Weak double category \mathcal{W} :
 - vertically trivial, i.e., essentially a monoidal category,
 - $ightharpoonup \mathcal{W}_V = \mathsf{Cat},$
 - horizontal composition = cartesian product in Cat.
- ▶ Monad \mathbb{C} = strict monoidal category.
- $ightharpoonup (\uparrow, DFib)$ forms a double factorisation system.

Corollary

- $ightharpoonup \mathcal{W}/_{\mathsf{DFib}}\mathbb{C}$ vertically trivial, i.e., a monoidal category.
- $\triangleright \mathcal{W}/_{\mathsf{DFib}}\mathbb{C} \simeq \widehat{\mathbb{C}}.$
- Horizontal composition is Day convolution.

Conclusion

Done:

- characterisation of simple games among template games,
- composition of simple strategies as refinement of composition of template strategies,
- general slicing construction,
- link with Day convolution.

To-do:

- more structure,
- get exactly simple games (unique initial state),
- get Day convolution for general monoidal categories.