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1 Introduction

Baldan et al. [? ] give a general framework for rewriting systems based on adhesive cate-
gories. They give a definition of process in their setting, which is a sequence of rewriting
steps considered up to permutation of independent steps, and they build the unfolding of
any object. Here, we propose a different approach to model rewriting, processes, and unfold-
ings, which is based on a formalism inherited from playgrounds [? ]. The main contribution
of our work is a direct, combinatorial description of processes and unfoldings in terms of
presheaves. Just like in Bladan et al.’s work, the unfolding of an object has a universal
property (slightly different from theirs, though very close in spirit). This framework can
adequately model executions of Petri nets, term graphs, or interaction nets, as well as pro-
cesses in simple concurrent languages such as CCS [? ], the π-calculus, or the join-calculus.
It can also model some form of graph rewriting, which has yet to be compared to existing
frameworks, such as SPO and DPO.

The main difficulty in Baldan et al.’s work is that a process is more than the sequence
of its successive positions: it also records all the different occurrences of the rules that were
applied. In our framework, this is dealt with by describing the whole process as a single
presheaf that describes a combinatorial object of higher dimension. Given a signature Σ
that describes a set of objects (which are the presheaves over a category C) and rewriting
rules on these objects (given as a set R of spans of such objects), we build a bicategory
B that models rewriting on this set of objects according to the given rewriting rules. This
bicategory will have as objects the set of objects described by Σ, and as morphisms from an
object Y to an object X all the processes (also called execution traces or rewriting traces)
that correspond to rewriting X into Y according to the rules given by Σ. Processes are
defined as particular cospans in Ĉ[R] (the category of presheaves over some category C[R]
constructed from C and R). Such a cospan Y → U ←X describes an execution trace whose
starting position is X and whose final position is Y . We build C[R] from C by adding
an object r for each rewriting rule in R and some meaningful morphisms from objects of
C to r. We then define seeds, which are the local shape of a rewriting step, by equipping
each representable presheaf yr with its initial and final positions X and Y (as given by the
rewriting rule), thus forming a cospan Y → yr ← X. Rewriting steps are then defined by
embedding seeds into larger positions (thus allowing rewriting steps to occur in context).
Finally, rewriting traces are defined to be compositions of rewriting steps in the bicategory
of cospans in Ĉ[R]. We then derive the unfolding UX of any object X as the colimit of all
the rewriting traces whose starting position is X.

Under some assumptions on the category C, the presheaves over C[R] have a graphical
notation that is both close in spirit to string diagrams, and also inspired by that of graphs
(but with multiple types of edges and higher-dimensional edges). For this reason, we usually
call them higher-dimensional graphs or string diagrams (though none of these terms are
actually very accurate).
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2 Presheaves for Processes and Unfoldings

Figure 1 Our running example.

2 From Signatures to Bicategories and Unfoldings

▸ Definition 1 (Signature). A signature Σ is given by:

a “base category” C that describes positions (more precisely, positions are presheaves
over C),
a finite set R of spans Y w←Ð I

uÐ→X in the category Ĉ of presheaves over C, called “rules”,
which describe the possibility to rewrite X into Y ,
and a “starting position” S in Ĉ.

▸ Example 2. We give here two motivating examples our techniques apply to.

In the case of Petri nets, the Petri net ⟨P,T, δ,M⟩, where P and T are the sets of its places
and transitions, δ ∶ T → (NP ) × (NP ) its transition function (where the first component
encodes consumed tokens and the second one created tokens), and M ∶ P → N its initial
marking, is modeled by:

the base category C = P , where P is viewed as the discrete category with ∣P ∣ elements
and only identity morphisms (note that presheaves on C indeed model markings of
the Petri net),
if δ = ⟨δcons, δcrea⟩, R contains a rule Yt ← ∅ → Xt for each transition t ∈ T , where Yt
and Xt are resp. the multisets δcrea(t) and δcons(t), seen as presheaves,
the starting position is S =M , seen as a presheaf.

In the case of graph rewriting, rewriting a graph G according to a given set of rewriting
rules RGph given as spans r = Lr ← Ir → Rr, describing the possibility to rewrite Lr into
Rr, is modeled by:

the base category is the category with two objects e, v and two non-trivial arrows
s, t ∶ v → e (again, note that presheaves over C are indeed graphs),
R contains a rule Rr ← Ir → Lr for each r ∈ RGph, where Lr and Rr are seen as
presheaves over C,
the starting position is S = G, where G is seen as a presheaf over C.

▸ Remark. In the case of Petri nets, we could also model “read arcs” by changing the middle
component of the span (and therefore Yt and Xt as well) to include the place the transition
reads from.

▸ Example 3. We further specialize the example of Petri net rewriting to the particular
Petri net and marking shown in Figure 1. In our setting, this is modeled by:

the set {a, b} as its base category, where a represents the top-left place and b the bottom-
left one,
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rules a ← ∅ → a and b ← ∅ → a + b 1, which represent the top-right and bottom-right
transitions respectively,
the starting position is a + b.

We will also use a more graphical notation for positions, i.e., presheaves over the set
{a, b}. We could of course, as it is usually done for Petri nets, represent a position X by
drawing a circle for each place and drawing as many bullets inside the circle that corresponds
to a place p as there are elements in X(p). However, this will prove quite impractical in our
case, so we use a different representation. We will represent tokens in the place a by bullets
and tokens in the place b by circles. For example, ● ● ○ represents a marking with two
tokens in a and one token in b.

For each rule r ∈ R, we define a new category Cr that has the same objects as C, plus
an additional object r and morphisms from some objects of C to that new object.

▸ Definition 4. For any presheaf U , C[U] is the following cocomma category:

∫ U 1

C C[U],

!

pU ⌜u⌝

iU

λ

where ∫ U is U ’s category of elements.

▸ Remark. In more simple terms, C[U] has the same objects as C, plus an additional object,
say u. Between two objects of C, C[U] has the same morphisms as C, and the only morphism
from u to itself is the identity morphism. For c an object of C, there is a morphism f̄ ∶ c→ u

for each morphism f ∶ c→ U (here again, we identify c and yc), and there are no morphisms
from u to c. Composition is defined in the obvious way.

For each presheaf X over C, there is a presheaf X = Laniop
U
(X) over C[U]. In simple

terms, for each object c of C, X(c) is isomorphic to X(c), and X(u) is empty. Therefore,
we will often denote X instead of X when it’s obvious that the presheaf is over C[U].

▸ Proposition 5. Each presheaf X is the colimit of ∫ X
pXÐ→ C iUÐ→ C[U] yÐ→ Ĉ[U]

Proof. We consider the square

C Ĉ

C[U] Ĉ[U].

y

iU

y

There are two possible ways to fill the morphism on the right and the natural transformation:
either with Lany(yiU) or with Laniop

U
(–), but the two possible fillings are actually isomorphic:

Laniop
U
(X)(d) = ∫

c∈C
C[U](iop

U c, d) ×X(c) ≅ ∫
c∈C

X(c) ×C[U](iUc, d)

Lany(yiU)(X)(d) = (∫
c∈C

Ĉ(yc,X) × yiUc)(d) ≅ ∫
c∈C

X(c) ×C[U](iUc, d).

Now, since

1 Here, a and b are actually ya and yb, the representable presheaves on a and b, i.e., C(–, a) and C(–, b).
We will often identify an object of a category and its representable presheaf and let the context disam-
biguate.
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4 Presheaves for Processes and Unfoldings

∫ X 1

C Ĉ

!

pX ⌜X⌝

y

is a comma square and Kan extensions are pointwise in Cat, the composition of any left
Kan extension Lany F ∶ Ĉ → C′ with ⌜X⌝ is again a left Kan extension. In particular, since
Laniop

U
(–) is isomorphic to Lany(yiU), which is a left Kan extension, it is also a left Kan

extension, and therefore, so is Laniop
U
(–) ○ ⌜X⌝ = ⌜Laniop

U
(X)⌝ = ⌜X⌝, so X is indeed the

desired colimit. ◂

In particular, U is the colimit of ∫ U
pUÐ→ C iUÐ→ C[U] yÐ→ Ĉ[U]. Moreover, we have the

following natural transformation:

∫ U 1

C C[U] Ĉ[U],

!

pU ⌜u⌝
⌜u⌝

iU y

so, by universal property of the colimit, there is a unique morphism from U to u such that

∫ U 1 1

C[U] Ĉ[U] Ĉ[U]

!

iUpU ⌜U⌝ ⌜u⌝

y

gives back the natural transformation above.

▸ Definition 6. We call ∂u ∶ U → u be the morphism constructed above.

▸ Definition 7. Cr is C[Mr], where Mr is defined as the following pushout:

Ir Yr

Xr Mr.

wr

ur

▸ Remark. Cr is defined as any C[U], and, if we call r its new object, then the morphisms
from c to r are as defined below:

for each f ∶ yc →Xr in Ĉ, add a morphism tf ∶ c→ r in Cr,
for each f ∶ yc → Yr in Ĉ, add a morphism sf ∶ c→ r in Cr,
for each f ∶ yc → Ir in Ĉ, add a morphism f̃ ∶ c→ r in Cr,
quotient these morphisms by f̃ = turf and f̃ = swrf .

▸ Remark. In fact, we have only added morphisms tf and sf , since each morphism f̃ will be
identified with turf and swrf .

▸ Definition 8. In Ĉr, we call Yr
srÐ→ r

tr←ÐXr the cospan obtained by composing Yr →Mr ←
Xr with ∂r.

▸ Proposition 9. Yr
srÐ→ r

tr←ÐXr is such that

Ir Yr

Xr r

wr

ur sr

tr

(1)

commutes.
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Proof. It is the composition of a commutative square with ∂r. ◂

We finally define C[R], the base category our pseudo double category will be built on.

▸ Definition 10. For a signature Σ = (C,R, S), we define the base category C[R] as the
wide pushout of C

iMrÐÐ→ Cr for all rules r in R.

▸ Remark. In more simple terms, this is the category C with all the objects r in R and
corresponding morphisms.

▸ Example 11. In our running example, if we call the first rule u and the second one v, we
have that C[u, v], the base category of the corresponding pseudo double category will have:

as objects: the set {a, b, u, v},
as non-trivial morphisms: tida ∶ a→ u, sida ∶ a→ u, til ∶ a→ v, tir ∶ b→ v, sidb

∶ b→ v,

or, up to renaming, and in more graphical terms:

u v

a b

tua su
a

tva
tvb su

b

We now build a pseudo double category that will describe rewriting on the signature.
More precisely, the objects of this pseudo double category will be positions, horizontal mor-
phisms will describe “spatial inclusion”, i.e., how positions are included in larger positions,
and vertical morphisms will be “rewriting traces”, i.e., how a position can reach another
position after a finite number of rewriting steps.

First of all, we need to define how we model a rewriting step.
In order to do this, we first define “seeds”, which are the basic components of a rewriting

step.

▸ Definition 12. The seed that corresponds to the rule r = Yr
wr←Ð Ir

urÐ→Xr is the commuting
square shown in (1).

▸ Definition 13. A rewriting step is any cospan Y →M ←X obtained by taking a pushout
of a seed along some monomorphism Ir → Z:

Yr Y

r M

Ir Z

Xr X.

We say that this rewriting step rewrites X into Y .

▸ Example 14. In our running example, there are two seeds, which correspond respectively
to u and v. They are the pushouts

∅ a ∅ b

and
a u a + b v

ı2

ı1

ı3

ı1+ı2
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6 Presheaves for Processes and Unfoldings

We can represent them in a more graphical way. Recall the graphical notation for positions
from Example 3. We can draw the seeds that correspond to u and v like so:

and
.

The initial position of each seed is drawn at the bottom, and its final position is drawn at
the top, with another element in the middle that corresponds to the action of moving from
the initial position to the final one itself.

▸ Remark. These drawings actually correspond to drawing the category of elements of the
seeds that correspond to u and v, just like drawing a graph corresponds to drawing the
category of elements of its corresponding presheaf. Here, we have drawn the categories of
elements of the presheaves u and v, with the convention that Xu = a and Xv = a + b are
drawn at the bottom, while Yu = a and Yv = b are drawn at the top. Therefore, in all our
drawings, “time flows upwards”.

▸ Example 15. Remember that our starting marking is a + b, so there are two possible
rewriting steps on this marking:

∅

a

u

a

b

a + b

u + b

a + b

and
∅

a + b

v

b

∅

a + b.

v

b

The first one corresponds to firing u on the marking a + b, which indeed gives back the
marking a + b, while the second one corresponds to firing v on the same marking, which
indeed gives the marking b.

We can draw these rewriting steps in a graphical way, very much like we did for seeds
(and again, this corresponds to drawing the category of elements of the object we represent).
Since the move that corresponds to v doesn’t differ from the seed, it is represented exactly
as in the example above; the move that corresponds to u is drawn like so:

.

The top and bottom positions indeed correspond to the initial and final positions of the
rewriting step, and the equal sign between the two tokens in b express that they are actually
the same token, but that this token is present both in the initial and final positions (in the
category of elements, there is of course only one object corresponding to the token in b, but
we draw it twice with an equal sign between them for increased readability).

▸ Definition 16. A rewriting trace is any cospan that is isomorphic to a finite composition
of rewriting steps in the category of cospans on Ĉ[R].

▸ Example 17. For example, on our running example, the different rewriting traces are
(isomorphic to) either:
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Figure 2 A less sequential Petri net.

Un for some n in N, where Un is the n-fold composition of the move that corresponds
to u on the initial marking (note that they can indeed be composed because the final
position is the same as the initial one),
or Vn for some n in N, where Vn is the composition of Un with the move that corresponds
to v.

They can be described in graphical terms, for example, here are the graphical descriptions
of U2 on the left and of V2 on the right:

.

▸ Example 18. To see how this definition is not sequential, but retains only the minimal
causality information between rewriting steps, we have to introduce another Petri net, be-
cause the one from our running example is entirely sequential.

Let us take as example the Petri net in figure 2, which is much more parallel: indeed,
the two transitions do not interact anymore. If we still call a, b, u, and v the different places
and transitions, we have that the possible moves from the initial marking are isomorphic to
one of the following two moves:

∅

a

u

a

b

a + b

u + b

a + b

or
∅

b

v

b

a

a + b.

a + v

a + b

A possible execution in the Petri net consists in first firing u, then firing v. It is the
composition of the two cospans a + b → u + b ← a + b and a + b → a + v ← a + b, which gives
a + b→ u + v ← a + b, which is the same as the rewriting trace obtained by first firing v, and
then firing u, which corresponds to the fact that there is no causality relation between firing
u and firing v.

This can also be seen in graphical terms: if the seeds are drawn as
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8 Presheaves for Processes and Unfoldings

and
,

then the moves on the initial marking can be drawn as

and
.

Therefore, the execution that fires u then v and the one that fires v then u can be drawn as
on the left and right respectively, which can also be drawn as in the middle (these drawings
are again the graphical representation of the categories of elements associated to the different
presheaves):

= =

.

We can now define the pseudo double category D that will describe processes:

its objects are the positions, i.e., the presheaves over C (more precisely, they’re the
presheaves over C[R] that are of the form Laniop

U
X for some presheaf X over C),

its horizontal morphisms are monomorphisms of positions,
its vertical morphisms are rewriting traces,
its double cells are monomorphisms of traces, i.e., commuting diagrams of the form

Y Y ′

U U ′

X X ′,

l

k

h

where h, k, and l are mono.

▸ Remark. We can draw a parallel between rewriting and games (and indeed, the ideas used
here to model rewriting stem from playgrounds, which are a general framework for game
semantics):

the objects our rewriting system works on (in the case of Petri nets, markings) are akin
to positions,
rewriting steps (in the case of Petri nets, the firing of a transition) to moves,
and rewriting traces (in the case of Petri nets, executions) to plays.

▸ Definition 19. The category E(X) is the category of rewriting traces over X:

its objects are the lower legs of rewriting traces: for each rewriting trace Y sÐ→ U
t←Ð X,

X
tÐ→ U is an object of E(X),

the morphisms from X
tÐ→ U to X t′Ð→ U ′ are monomorphisms U uÐ→ U ′ such that ut = t′.
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▸ Remark. The morphisms in E(X) correspond to “prefix” inclusion of rewriting traces, i.e.,
there is a morphism U → U ′ in E(X) if the rewriting trace U can be followed by another
rewriting trace such that the whole rewriting trace is isomorphic to U ′.

▸ Example 20. On our running example, E(X) is composed of all the plays isomorphic to
either Un or Vn (as defined in Example 17), plus the morphisms that correspond to prefix
inclusion, which are generated by:

for each n, the only morphism Un → Un+1 that fixes X,
for each n, the only morphism Un → Vn that fixes X.

E(X) defines a diagram in Ĉ[R] by mapping X tÐ→ U to U (with the identity action on
morphisms).

▸ Definition 21. The unfolding UX of X is the colimit of the functor defined above.

▸ Remark. Since X idXÐÐ→X is an object of E(X), the unfolding UX of X comes with a map
X → UX obtained by universal property of UX .

▸ Example 22. In our running example, if we draw the unfolding UX of X, we obtain:

⋮ ⋮

,

and the morphism X → UX maps X to the bottom of this drawing, which is exactly what
we expect.
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