Game Settings

A Category of Strategies

Conclusion O

What's in a game? A theory of game models

Clovis Eberhart and Tom Hirschowitz

Univ. Grenoble Aples, Univ. Savoie Mont Blanc, CNRS, LAMA

LICS 2018, July 10, 2018

Game Settings

A Category of Strategies 000

Conclusion O

Game Semantics

Between operational and denotational:

- types \rightarrow games
- programs \rightarrow strategies
- dynamic
- related to syntax (equivalence of programs is intensional, rather than extensional)

Game semantics:

- significant part of denotational semantics
- "solved" full abstraction for PCF
- many variants characterise different programming features
- applications: model checking, hardware synthesis...

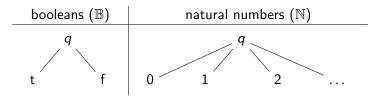
Game Settings

A Category of Strategies

Conclusion O

HON Game Semantics: Games

Structures possible moves.



Game Settings

A Category of Strategies 000

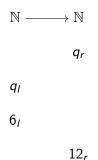
Conclusion O

HON Game Semantics: Plays

Basically:

- sequence of moves
- interaction between program and environment

Example: $f = fun n \rightarrow 2 * n$



Game Settings

A Category of Strategies 000

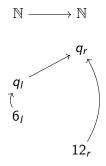
Conclusion O

HON Game Semantics: Plays

Basically:

- sequence of moves
- interaction between program and environment

Example: $f = fun n \rightarrow 2 * n$



Game Settings

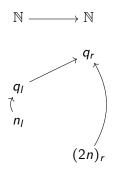
A Category of Strategies

Conclusion O

HON Game Semantics: Strategies

Strategy = prefix-closed set of accepted plays.

Example: for f = fun n \rightarrow 2 * n, (roughly) all plays of the form



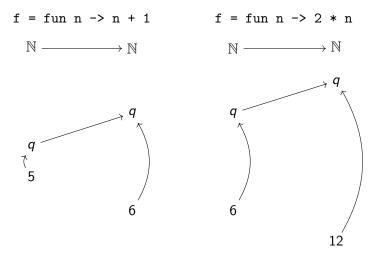
Game Settings

A Category of Strategies

Conclusion O

HON Game Semantics: Composition

Parallel composition + hiding.



Game Settings

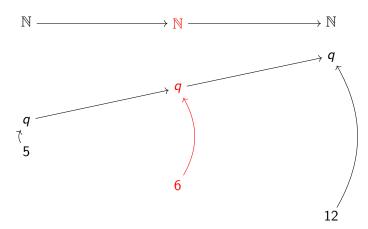
A Category of Strategies

Conclusion O

HON Game Semantics: Composition

Parallel composition + hiding.

 $f = fun n \rightarrow n + 1$ $f = fun n \rightarrow 2 * n$



Game Settings

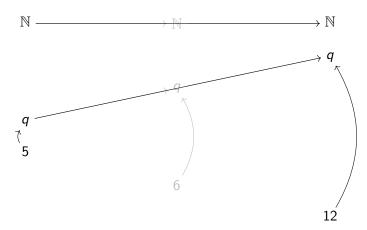
A Category of Strategies

Conclusion O

HON Game Semantics: Composition

Parallel composition + hiding.

 $f = fun n \rightarrow n + 1$ $f = fun n \rightarrow 2 * n$



A Category of Strategies 000

Conclusion O

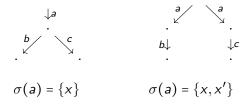
Strategies as Presheaves

Presheaf over \mathbb{C} : functor $\mathbb{C}^{op} \to \mathsf{Set}$.

Boolean presheaf over \mathbb{C} : functor $\mathbb{C}^{op} \to 2$ (2 = 0 \to 1).

Two notions of strategies:

- prefix-closed sets of plays: boolean presheaves $\widetilde{\mathbb{P}_{A,B}}$
- concurrent strategies: presheaves $\widetilde{\mathbb{P}_{A,B}}$



With traditional strategies:

$$\sigma = \{\varepsilon, \mathbf{a}, \mathbf{ab}, \mathbf{ac}\}$$

Game Settings

A Category of Strategies

Conclusion O

Motivation

Game models:

- HON (justified sequences)
- AJM (sequences)
- simple games, Blass (trees)
- concurrent (event structures)
- string diagrams
- variants
- . . .

Definitions and proofs are similar... but tricky!

Goal: define a framework that

- encompasses many models
- factors out similar proofs

Game Settings

A Category of Strategies

Conclusion O

Recurring Pattern

- define games A, B, C, ...
- define categories of plays $\mathbb{P}_{A,B}$
- define strategies $A \rightarrow B$ as prefix-closed sets of plays in $\mathbb{P}_{A,B}$
- composition = parallel composition + hiding
- identities = copycat strategies
- prove that this defines a category of games and strategies

Game Settings

A Category of Strategies

Conclusion O

Recurring Pattern

- define games A, B, C, ... assumed
- define categories of plays $\mathbb{P}_{A,B}$ assumed
- define strategies $A \rightarrow B$ as prefix-closed sets of plays in $\mathbb{P}_{A,B}$
- composition = parallel composition + hiding
- identities = copycat strategies
- prove that this defines a category of games and strategies

Game Settings

A Category of Strategies 000

Conclusion O

Categories of Plays

 $A \longrightarrow B$

- games A, B, C...
- categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...



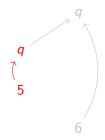
Game Settings

A Category of Strategies

Conclusion O

Categories of Plays

- games A, B, C...
- categories of plays ℙ_A, ℙ_{A,B}, ℙ_{A,B,C}...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$



Game Settings

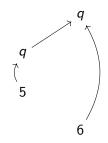
A Category of Strategies 000

Conclusion O

Categories of Plays

 $A \longrightarrow B$

- games A, B, C...
- categories of plays ℙ_A, ℙ_{A,B}, ℙ_{A,B,C}...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$



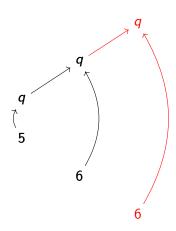
Game Settings

A Category of Strategies

Conclusion O

Categories of Plays

- games *A*, *B*, *C*...
- categories of plays ℙ_A, ℙ_{A,B}, ℙ_{A,B,C}...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$
- insertions $\mathbb{P}_{A,B} \to \mathbb{P}_{A,B,B}$



Game Settings

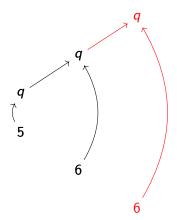
A Category of Strategies

Conclusion O

Categories of Plays



- games *A*, *B*, *C*...
- categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$
- insertions $\mathbb{P}_{A,B} \to \mathbb{P}_{A,B,B}$
- compatibility between projections and insertions



A Category of Strategies

Describing Categories of Plays Simplicially

Game setting:

- $\bullet \mbox{ set } \mathbb{A} \mbox{ of games }$
- functor $\mathbb{P}: (\Delta/\mathbb{A})^{op} \to \mathsf{Cat}$

 Δ/\mathbb{A} :

- objects: lists $L = A_1, \ldots, A_n$ of games
- morphisms: insertions (A, C → A, B, C) and fusions (A, A, B → A, B)

Strategies $A \to B$: $\widehat{\mathbb{P}_{A,B}}$.

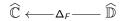
Game Settings

A Category of Strategies 000

Conclusion O

Polynomial Functors

If $F: \mathbb{C} \to \mathbb{D}$:



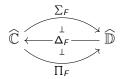
Game Settings

A Category of Strategies 000

Conclusion O

Polynomial Functors

If $F: \mathbb{C} \to \mathbb{D}$:



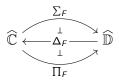
Game Settings

A Category of Strategies 000

Conclusion O

Polynomial Functors

If $F: \mathbb{C} \to \mathbb{D}$:



Polynomial functor: composite of Δ 's, \prod 's, and \sum 's.

Game Settings

A Category of Strategies 000

Conclusion O

Composition

Idea: parallel composition + hiding.

$$\xrightarrow{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_{2}+\delta_{0}}} \xrightarrow{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \xrightarrow{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_{1}}} \xrightarrow{\mathbb{P}_{A,C}}$$

Game Settings

A Category of Strategies 000

Conclusion O

Composition

Idea: parallel composition + hiding.

$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,B,C} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Game Settings

A Category of Strategies 000

Conclusion O

Composition

Idea: parallel composition + hiding.

$$\xrightarrow{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_{2}+\delta_{0}}} \xrightarrow{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \xrightarrow{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_{1}}} \xrightarrow{\mathbb{P}_{A,C}}$$

Game Settings

A Category of Strategies 000

Conclusion O

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \overline{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $\mathsf{m}_{\textit{A},\textit{B},\textit{C}}(\sigma,\tau) \text{ accepts } p$ iff

iff iff

13/20

Game Settings

A Category of Strategies

Conclusion O

Composition

Idea: parallel composition + hiding.

$$\xrightarrow{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_{2} + \delta_{0}}} \xrightarrow{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \xrightarrow{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_{1}}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $\begin{array}{l} \mathsf{m}_{A,B,C}(\sigma,\tau) \text{ accepts } p \\ \text{iff} \quad \text{there exists an interaction sequence } u \in \mathbb{P}_{A,B,C} \\ \text{that is accepted and projects to } p \\ \text{iff} \\ \text{iff} \end{array}$

Game Settings

A Category of Strategies

Conclusion O

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \overline{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $m_{A,B,C}(\sigma,\tau)$ accepts p

- iff there exists an interaction sequence $u \in \mathbb{P}_{A,B,C}$ that is accepted and projects to p
- iff both inl *u* and inr *u* are accepted

iff

Game Settings

A Category of Strategies

Conclusion O

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \overline{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $m_{A,B,C}(\sigma,\tau)$ accepts p

- iff there exists an interaction sequence $u \in \mathbb{P}_{A,B,C}$ that is accepted and projects to p
- iff both inl u and inr u are accepted
- iff σ accepts $\delta_2(u)$ and τ accepts $\delta_0(u)$.

Game Settings

A Category of Strategies 000

Conclusion O

Copycat strategies

$$1 \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

 \mathfrak{C}_A accepts p iff

iff

Game Settings

A Category of Strategies 000

Conclusion O

Copycat strategies

$$1 \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

 \mathfrak{C}_A accepts p

iff there exists a sequence $s \in \mathbb{P}_A$ that is accepted and mapped to p

iff

Game Settings

A Category of Strategies

Conclusion O

Copycat strategies

$$1 \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

 cc_A accepts p

- iff there exists a sequence $s \in \mathbb{P}_A$ that is accepted and mapped to p
- iff there is an *s* that is mapped to *p*.

Game Settings

A Category of Strategies

Conclusion O

Game Settings

- $\bullet \mbox{ set } \mathbb{A} \mbox{ of games}$
- functor $\mathbb{P}: (\Delta/\mathbb{A})^{op} \to \mathsf{Cat}$
- $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ discrete fibrations
- . . .

Game Settings

A Category of Strategies •00 Conclusion O

Associativity of composition

Theorem (Composition is associative):

$$\frac{\mathbb{P}_{A,B} + \mathbb{P}_{B,C} + \mathbb{P}_{C,D}}{\mathbb{P}_{A,B} + \mathbb{m}_{B,C,D}} \xrightarrow{\mathsf{m}_{A,B,C} + \mathbb{P}_{C,D}} \xrightarrow{\mathbb{P}_{A,C} + \mathbb{P}_{C,D}} \xrightarrow{\mathsf{m}_{A,C,D}} \xrightarrow{\mathsf{m}_{A,C,D}}$$

commutes if

$$\begin{array}{cccc} \mathbb{P}_{A,B,C,D} \longrightarrow \mathbb{P}_{A,B,D} & & \mathbb{P}_{A,B,C,D} \longrightarrow \mathbb{P}_{A,C,D} \\ & & \downarrow & \downarrow & \text{and} & & \downarrow & \downarrow \\ \mathbb{P}_{B,C,D} \longrightarrow \mathbb{P}_{B,D} & & & \mathbb{P}_{A,B,C} \longrightarrow \mathbb{P}_{A,C,D} \end{array}$$

are pullbacks (zipping lemma).

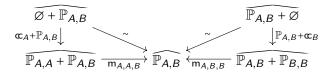
Game Settings

A Category of Strategies

Conclusion O

Unitality

Theorem (Copycat strategies are units):



commutes if

are pullbacks.

Game Settings

A Category of Strategies $00 \bullet$

Conclusion O

Applications

Applications:

- HON
- variants
- AJM
- TO

May all be expressed as game settings, abstract composition agrees with traditional composition.

Introduction

Game Settings

A Category of Strategies

Conclusion

Conclusion

Results:

- conceptual definitions of composition of strategies
- abstract proof this forms a category
- applications to different game models

Not discussed here:

- conceptual definition of innocence
- proof that innocent strategies form a subcategory

Perspectives:

- more models
- more structure

Introduction 000000 Game Settings

A Category of Strategies

Conclusion O

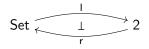
Thank you.

A Category of Strategies

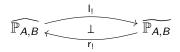
Innocence

Result Transfer

Adjunction:

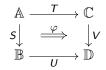


Result transfer:



A Category of Strategies •000000 Innocence 0000000

Exact Squares



Mates:

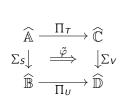
Exact square: the mates are isomorphisms. Guitart: conditions for square to be exact.

A Category of Strategies

Innocence 0000000

Distributive Squares

Conditions for

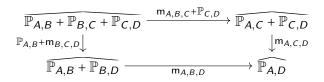


to commute.

Innocence 0000000

Composition

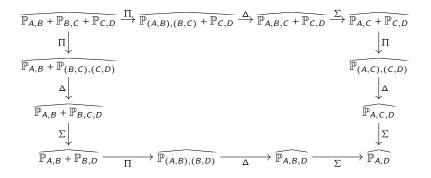
Associativity of composition:



A Category of Strategies

Innocence 0000000

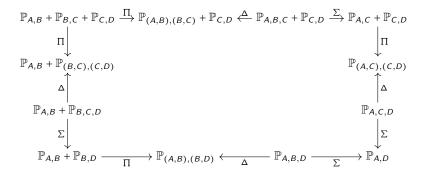
Associativity of Composition



A Category of Strategies

Innocence 0000000

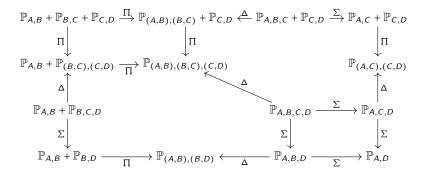
Proof: Associativity of Composition



A Category of Strategies

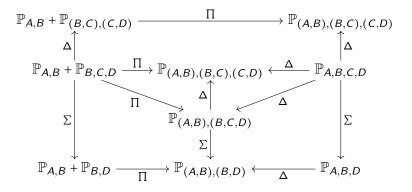
Innocence

Proof: Associativity of Composition



Innocence 0000000

Proof: Associativity of Composition (cont.)



Innocence

Applications

Applications: HON, variants, AJM, TO.

May all be expressed as game settings, abstract composition agrees with traditional composition.

Subtleties:

- HON: liberal definition of \mathbb{P}_A (for projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$ to exist)
- AJM: slightly different definition of $\mathbb{P}_{A,B,C}$ (projection $\mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ should be a discrete fibration)

Blass games: composition known to be non-associative. Cannot be expressed as a game setting (zipping fails).

Innocence •000000

Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.

• strategy of counter:

$$q \stackrel{\checkmark}{0} 0 q \stackrel{\checkmark}{1} 1$$

• strategy of successor function:

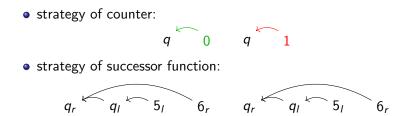
Innocence: the strategy accepts a play iff it accepts all its views.

Innocence •000000

Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.



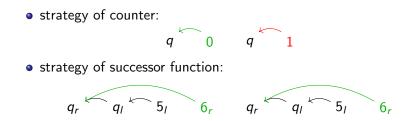
Innocence: the strategy accepts a play iff it accepts all its views.

Innocence •000000

Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.



Innocence: the strategy accepts a play iff it accepts all its views.

Innocence

Innocent Game Settings

Add
$$\mathbb{V}_{A,B} \xrightarrow{i_{A,B}} \mathbb{P}_{A,B}$$
 to the setting.
Innocent strategy: $\widehat{\mathbb{V}_{A,B}} \xrightarrow{\Pi_{i_{A,B}}} \widehat{\mathbb{P}_{A,B}}$.
Composition of innocent strategies:

$$\overline{\mathbb{V}_{A,B} + \mathbb{V}_{B,C}} \xrightarrow{\Pi_{i_{A,B} + i_{B,C}}} \overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\mathsf{m}_{A,B,C}} \widehat{\mathbb{P}_{A,C}}$$

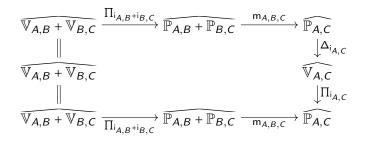
Preservation of innocence: composition of innocent strategies is again innocent (in the image of $\prod_{i_{A,C}}$).

A Category of Strategies

Innocence

Preservation of Innocence

Preservation of innocence:



Innocence

Proof: Preservation of Innocence

Alternative definition of composition:

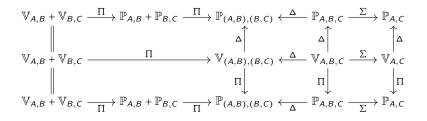
Innocence

Proof: Preservation of Innocence

$$\begin{array}{c} \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \\ & & & & \uparrow^{\Delta} \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & & & \mathbb{V}_{A,C} \\ & & & & & \downarrow^{\Pi} \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \end{array}$$

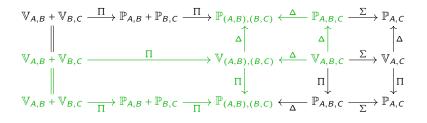
Innocence

Proof: Preservation of Innocence



Innocence

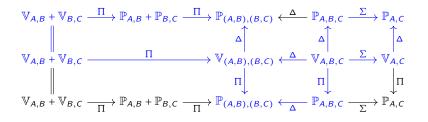
Proof: Preservation of Innocence



• simple commutation

Innocence

Proof: Preservation of Innocence



- simple commutation
- exact squares (Guitart)

Innocence

Proof: Preservation of Innocence

- simple commutation
- exact squares (Guitart)
- distributive squares

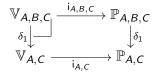
Innocence

Conditions to Preserve Innocence Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

$$\mathbb{V}_{A,C} \xrightarrow[i_{A,C}]{} \mathbb{P}_{A,C}$$

Innocence

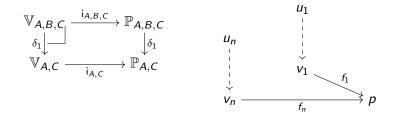
Conditions to Preserve Innocence Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.



Innocence

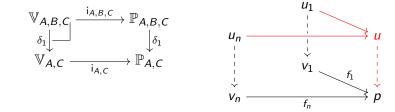
Conditions to Preserve Innocence

Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.



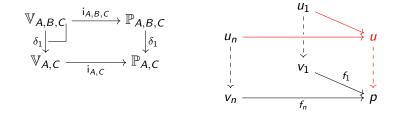
Innocence

Conditions to Preserve Innocence Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.



Innocence

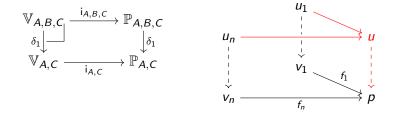
Conditions to Preserve Innocence Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

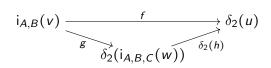


$$i_{A,B}(v) \xrightarrow{f} \delta_2(u)$$

Innocence

Conditions to Preserve Innocence Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.





Innocence

Boolean Innocent Strategies

But (non-deterministic) innocent strategies should not compose! Answer:

$$\begin{array}{c} \overline{\mathbb{V}_{A,B} + \mathbb{V}_{B,C}} \longrightarrow \widehat{\mathbb{P}_{A,C}} \\ \stackrel{\mathsf{r}_{l} \uparrow}{\underset{\mathbb{V}_{A,B} + \mathbb{V}_{B,C}}{\overset{\mathsf{r}}{\underset{\mathbb{P}_{A,C}}{\longrightarrow}}} \xrightarrow{\mathbb{P}_{A,C}} \\ \end{array}$$

does not commute.

- concurrent innocent strategies compose
- traditional innocent strategies do not