History-Dependent Nominal μ -Calculus

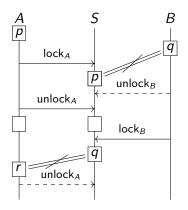
<u>Clovis Eberhart</u>¹ Bartek Klin²

¹National Institute of Informatics, Japan

²University of Warsaw, Poland

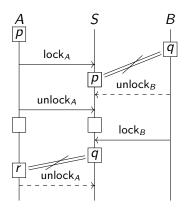
LICS 2019, June 24-27

Example



Can A and B both interact with critical section S at the same time?

Example



Can A and B both interact with critical section S at the same time?

Passwords:

• infinitely many • symmetrical • no repetitions

History-dependent nominal μ -calculus

μ -calculus

- concise, expressive syntax
- good decidability properties

Sets with atoms (a.k.a. nominal sets)

- general recipe to extend framework to infinite framework
- orbit-finite set: possibly infinite set, representable by finite means

Problem

How to talk about non-repetition of values?

Overview of this talk

Already exists:

- μ -calculus,
- sets with atoms,
- μ -calculus with atoms.

Contributions:

- \bullet define history-dependent nominal $\mu\text{-calculus},$
- examples of practical use,
- proof that model checking problem is decidable.

Kripke models

Kripke model \mathcal{K}

- Set K of states,
- *transition* relation $\longrightarrow \subseteq K \times K$,
- satisfaction relation $\vDash \subseteq K \times \mathbb{P}$.

Example

Take
$$\mathbb{P} = \{ in_a \mid a \in \Sigma \} \cup \{ out_a \mid a \in \Sigma \}$$
 and \mathcal{K} :

•
$$K = \Sigma^3$$

• $(b,c,d) \longrightarrow (a,b,c)$ for all $a,b,c,d \in \Sigma$,

•
$$(a, b, c) \vDash \operatorname{in}_a, (a, b, c) \vDash \operatorname{out}_c$$

μ -calculus: syntax and semantics

Goal: prove properties of Kripke models.

Syntax

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \Diamond \varphi \mid X \mid \mu X.\varphi$$

Semantics

Given a Kripke model \mathcal{K} and a context $\rho \colon \mathbb{X} \rightharpoonup \mathcal{P}(\mathcal{K})$:

• $\llbracket \top \rrbracket_{\rho} = K,$ • $\llbracket \rho \rrbracket_{\rho} = \{ x \in K \mid x \models p \},$ • $\llbracket \neg \varphi \rrbracket_{\rho} = K \setminus \llbracket \varphi \rrbracket_{\rho},$ • $\llbracket \varphi \lor \psi \rrbracket_{\rho} = \llbracket \varphi \rrbracket_{\rho} \cup \llbracket \psi \rrbracket_{\rho},$ • $\llbracket X \rrbracket_{\rho} = \rho(X),$ • $\llbracket \mu X . \varphi \rrbracket_{\rho} = \mathsf{lfp}(A \mapsto$ $\llbracket \varphi \rrbracket_{\rho|X \mapsto A}]).$

μ -calculus: properties

Fragments

The μ -calculus contains LTL, CTL, and CTL^{*}.

Model checking

Given a finite \mathcal{K} , $x \in \mathcal{K}$, and φ , it is decidable whether $x \in \llbracket \varphi \rrbracket$.

Satisfiability

Given φ , it is decidable whether there exists \mathcal{K} and $x \in K$ such that $x \in \llbracket \varphi \rrbracket$ (φ has a model).

Nominal sets

[Gabbay, Pitts, LICS 1999]

Sets with atoms

"Sets" built from the emptyset and *atoms* from \mathbb{A} , with finite support.

Examples

$$\{(a_0,a)\mid a\in\mathbb{A}\}$$

$$\{a_i \mid i \text{ even}\}$$

Equivariant function

No particular atom in definition of function.

Examples
$$f: \begin{bmatrix} \mathbb{A}^3 \rightarrow \mathbb{A}^2 \\ (a, a, b) \mapsto (a, a) \\ (a, b, c) \mapsto (a, c) \end{bmatrix}$$
 $f: \begin{bmatrix} \mathbb{A}^2 \rightarrow \mathbb{A}^3 \\ (a, a) \mapsto (a, a, a_0) \\ (a, b) \mapsto (a, a, b) \end{bmatrix}$

Orbit-finite sets

Orbits of X

Possible "shapes" of elements of X.

Example

- classical set (without atoms): each element has its own shape
- A: single shape
- \mathbb{A}^2 : two shapes $((a, a) \text{ and } (a, b) \text{ for } a \neq b)$
- A*: infinitely many shapes

Proposition

Orbit-finite sets can effectively be represented by finite means.

The general recipe

Recipe

For 1 infinite framework:

Ingredients:

• 1 finite framework

atoms

replace "sets" by "sets with atoms"

- add "equivariant" or "finitely-supported" to relations and functions
- replace "finite" by "orbit-finite"

Examples

- automata with atoms [Bojańczyk, Klin, Lasota, LICS 2011]
- Turing machines with atoms [Bojańczyk, Klin, Lasota, Toruńczyk, LICS 2013]
- μ -calculus with atoms [Klin, Łełyk, CSL 2017]

Kripke models (with atoms)

Kripke model

Fix \mathbb{P} set with atoms, $\mathcal{K} = (\mathcal{K}, \longrightarrow, \vDash)$ with:

- K set with atoms,
- $\longrightarrow \subseteq K \times K$ finitely-supported relation,
- $\models \subseteq K \times \mathbb{P}$ finitely-supported relation.

Buffer

$$\mathbb{P} = \{ \mathsf{in}_a \mid a \in \mathbb{A} \} \cup \{ \mathsf{out}_a \mid a \in \mathbb{A} \}$$

•
$$K = \mathbb{A}^3$$

•
$$(b, c, d) \longrightarrow (a, b, c)$$

•
$$(a, b, c) \vDash \operatorname{in}_a, (a, b, c) \vDash \operatorname{out}_c$$

$$u X.((\mathsf{in}_a
ightarrow \Box \Box \mathsf{out}_a) \land \Box X)$$

μ -calculus with atoms: syntax and semantics

From [Klin and Łełyk, CSL 2017].

Syntax

$$\varphi ::= \top \mid p \mid \neg \varphi \mid \bigvee_{a \in \mathbb{A}} \varphi_a \mid \Diamond \varphi \mid X \mid \mu X.\varphi$$

with $\bigvee_{\mathbf{a}\in\mathbb{A}}\varphi_{\mathbf{a}}$ orbit-finite.

Semantics

$$\left[\!\!\left[\bigvee_{\mathbf{a}\in\mathbb{A}}\varphi_{\mathbf{a}}\right]\!\!\right]_{\rho}=\bigcup_{\mathbf{a}\in\mathbb{A}}\left[\!\!\left[\varphi_{\mathbf{a}}\right]\!\!\right]_{\rho}$$

Example

$$\bigwedge_{a\in\mathbb{A}}\nu X.((\mathsf{in}_a\to\Box\Box\mathsf{out}_a)\land\Box X)$$

μ -calculus with atoms: properties

Model checking

Given an orbit-finite \mathcal{K} , $x \in K$, and φ , it is decidable whether $x \in \llbracket \varphi \rrbracket$.

Satisfiability

Given φ , it is **undecidable** whether φ has a model.

Fragments

The μ -calculus with atoms does not contain atomic CTL^{*}.

#Ратн

 $\#\mathrm{PATH:}$ "there exists a path on which no predicate holds more than once".

Problem

#PATH not definable in μ -calculus with atoms.

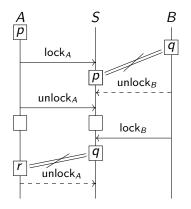
Useful property for verification:

- "if no password is used twice, the protocol behaves well",
- "does there exist a path where predicates hold at most once and property *P* is violated?"

Frustrating

- #PATH definable in atomic CTL*...but model checking problem undecidable,
- #PATH decidable!

Example: critical section



Possible models:

- remember all generated passwords: property expressible in μ-calculus with atoms, model orbit-infinite,
- don't remember anything: model orbit-finite, property not expressible in μ -calculus with atoms.

Example: critical section (formal)

Predicates

$$\{p_a \mid a \in \mathbb{A}\} \cup \{\mathsf{lock}_A, \mathsf{lock}_B, \mathsf{unlock}_A, \mathsf{unlock}_B\}$$

States

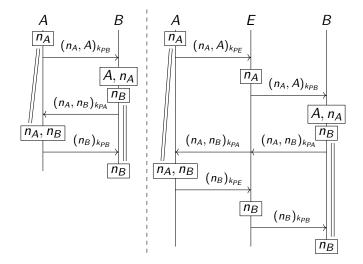
$$x = (a_A, a_B, a_S, s, t)$$
 with

•
$$a_X \in \mathbb{A}$$
 or $a_X = \emptyset$,

•
$$s \in \{\mathsf{p},\mathsf{lock},\mathsf{unlock},\emptyset\}$$
,

•
$$t \in \{\mathsf{A},\mathsf{B},\emptyset\}.$$

Example: Needham-Schroeder protocol



History-dependent nominal μ -calculus

Syntax

$$\varphi ::= \top \mid \mathbf{p}_{\mathbf{a}} \mid \neg \varphi \mid \bigvee_{\mathbf{a} \in \mathbb{A}} \varphi_{\mathbf{a}} \mid \Diamond \varphi \mid X \mid \mu X.\varphi \mid \sharp \mathbf{a}$$

Semantics

Need to track history H of encountered atoms:

• $x \in \llbracket \diamondsuit \varphi \rrbracket_{\rho}^{H}$ iff there exists $x \longrightarrow y \in \llbracket \varphi \rrbracket_{\rho}^{H \cup evt(x)}$, • $\llbracket X \rrbracket_{\rho}^{H} = \rho(X)(H)$, • $\llbracket x \rrbracket_{\rho}^{H} = \rho(X)(H)$, • $\llbracket \# a \rrbracket_{\rho}^{H} = \begin{cases} \emptyset & \text{if } a \in H \\ K & \text{otherwise} \end{cases}$

#РАТН

$$\#\operatorname{PATH} = \nu X.\left(\bigwedge_{a\in\mathbb{A}} (p_a \to \sharp a) \land \Diamond X\right)$$

Example: critical section

"Good" paths

$$\operatorname{safe} = \bigwedge_{a \in \mathbb{A}} (\mathsf{p}_a \to \sharp a)$$

Property of interest

$$P_A = \nu X.(\text{safe} \rightarrow (\text{unlock}_A \lor (\neg \text{unlock}_B \land \Box X)))$$

$$u X.(\text{safe} \rightarrow ((\text{lock}_A \rightarrow P_A) \land (\text{lock}_B \rightarrow P_B) \land \Box X))$$

Model checking

Question

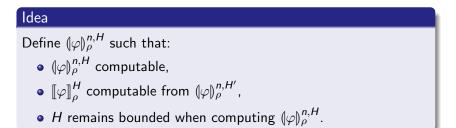
Is model checking decidable on orbit-finite models?

Problem

Computing semantics of fixpoints:

- μ -calculus: compute inductively from \bot , stabilises by Knaster-Tarski ($\llbracket \mu X . \varphi \rrbracket_{\rho} \subseteq K$ finite),
- $\mu\text{-calculus}$ with atoms: idem, stabilises for similar reasons,
- here: $\llbracket \mu X. \varphi \rrbracket_{\rho}$ function of history *H*, no similar technique applies.

Forgetful semantics



Answer

 $(\varphi)_{\rho}^{n,H}$ like $[\![\varphi]\!]_{\rho}^{H'\cup H}$, where H only contains atoms relevant to φ and ρ and the current state.

Theorem

For any closed formula φ , $\llbracket \varphi \rrbracket_{\emptyset}^{\emptyset} = \llbracket \varphi \rrbracket_{\emptyset}^{0,\emptyset}$.

Conclusion

Done

- $\bullet\,$ defined $\mu\text{-calculus}$ with atoms and "atom freshness"
- proves useful for verification
- model checking is decidable

Limit of decidability

 $\sharp p$ for predicates with general supports (> 1 elements) undecidable.

To-do

- vectorial μ -calculus
- links to alternating tree automata and parity games
- other atoms (e.g., ordered) \rightsquigarrow probably undecidable

Conclusion

Done

- $\bullet\,$ defined $\mu\text{-calculus}$ with atoms and "atom freshness"
- proves useful for verification
- model checking is decidable

Limit of decidability

 $\sharp p$ for predicates with general supports (> 1 elements) undecidable.

To-do

- vectorial μ -calculus
- links to alternating tree automata and parity games
- other atoms (e.g., ordered) \rightsquigarrow probably undecidable

Thank you for your attention.