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Abstract

In this paper, we introduce open parity games, which is a compositional approach to parity games. This is achieved by adding
open ends to the usual notion of parity games. We introduce the category of open parity games, which is defined using standard
definitions for graph games. We also define a graphical language for open parity games as a prop, which have recently been used in
many applications as graphical languages. We introduce a suitable semantic category inspired by the work by Grellois and Melliès
on the semantics of higher-order model checking. Computing the set of winning positions in open parity games yields a functor
to the semantic category. Finally, by interpreting the graphical language in the semantic category, we show that this computation
can be carried out compositionally.
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1 Introduction

Parity game is a major tool in theoretical computer science. Many formal verification problems such as model
checking, satisfiability, etc.—can be reduced to solving parity games [39], where alternation of least and greatest
fixed point operators in a specification is modeled by the parity winning condition. Efficient solutions of parity
games, therefore, benefit many problems; recent algorithmic works include [9].

In this paper, we are interested in compositionality in formal verification in general, and in parity games
in particular. It means that the property of a big system can be deduced from those of its constituent parts.
One benefit is efficiency : compositionality can yield an efficient divide-and-conquer algorithm. Another is
maintainability : compositional verification explicates an assumption that each subsystem must satisfy for the
safety of the whole system; a subsystem can then be replaced freely as long as the local assumption is satisfied.

Compositional methods in model checking have been pursued in the literature, such as [8,31]. Many of those
methods require a user to provide interfaces between subsystems, either as systems [8] or as specifications [31].
The role of compositionality is stressed in higher-order model checking (HOMC) [17,37], too, where intermediate
results are combined along typing rules.

In this paper, influenced by the semantical constructs from [17], we introduce a categorical framework
in which parity games are both presented and solved in a compositional manner. The presentation is by a
prop [33] (products and permutations category), a categorical notion of “monoidal” algebraic structure. This
categorical presentation enables us to formulate compositionality as the preservation of suitable structures of
certain functors. It also enables us to exploit general categorical structures (traced, compact closed, etc.) and
properties (such as freeness). The use of props as graphical languages for various mathematical structures
has been actively pursued recently (such as signal flow diagrams, matrices, and network games) [4, 5, 11]; the
current work adds a new item to the list, namely parity games.

Contribution. The outline of our paper is Fig. 3. We extend parity games with so-called open ends so that
we can compose them. The resulting notion (open parity game) is organized in a compact closed category
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(a) An example of an open parity game.
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(b) An example of sequential composition.

Fig. 1. Examples of open parity games.
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Fig. 2. An example of a cycle and its decomposition using the compact closed structure and the traced monoidal structure.
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Fig. 3. An outline. RM is the realization functor that maps a string diagram to an open parity game; WM is the winning position
functor which extends the usual definition of winning positions in parity games; and J−KM is the interpretation functor.

denoted by OPGM . As a graphical language for open parity games, we use the prop F(Σopg
M , Eopg

M ) freely
generated by a suitable monoidal (algebraic) theory (Σopg

M , Eopg
M ). The other category Int(FinScottLop

!M
) in

Fig. 3 originates from [17]—it is our semantic category that tells which player is winning for (closed) parity
games; for open parity games, it provides intermediate results of a suitable granularity to decide winners later.

Our main theorem (Thm. 5.10) is the commutativity of Fig. 3; it says that the semantics of parity games
WM—defined as usual in terms of plays, strategies, and the parity acceptance condition—can be computed
compositionally by a compact closed functor J−KM . The last compositional computation is illustrated in
Ex. 5.11. After all, in the framework in Fig. 3, one writes down a parity game as a composition of smaller ones,
in the graphical language of the prop F(Σopg

M , Eopg
M ); when it comes to solving games, the winning positions for

larger games are computed from those of the smaller ones, using that J−KM preserves composition.
We illustrate our notion of open parity games that populates the category OPGM . Open parity games are

parity games that come additionally with interfaces called open ends, along which they can be composed. An
example is in Fig. 1(a). The domain interface consists of two open ends, 1 and 2, and the codomain interface
simply of 1′, while the internal positions are a and b, each equipped with a role and a priority, as usual in
parity games. We give an example of sequential composition in Fig. 1(b). There, arrows are composed through
the intermediate interfaces 1′, 1 between the two games. We also have a parallel composition ⊕, and Fig. 2(b)
gives an example of how a cycle (in Fig. 2(a)) can be defined using sequential and parallel composition.

The technical key in Fig. 3 is the identification of compact closed structures. All the three categories are
compact closed; moreover, we identify the prop F(Σopg

M , Eopg
M ) to be a free compact closed category in a suitable

sense. The functors RM and J−KM arise by the freeness; the commutativity is proved by the freeness, too.
In this paper, we find a new application of props as graphical languages in parity games. It allows one to

solve parity games in a compositional manner (Ex. 5.11), thanks also to the identification of the right semantical
domain (namely Int(FinScottLop

!M
)) that retains the right level of information in intermediate results. Such

compositional solution has multiple potential applications. Firstly, the categorical structure we identify has
a lot in common with those used for HOMC [17, 37]. Therefore we expect we can streamline known HOMC
algorithms and reveal their categorical essences. Secondly, we will pursue algorithmic applications, such as
efficient divide-and-conquer algorithms and those which accommodate blackbox components as part of a game.

Organization. In §2, we introduce open parity games. In §3, we define the graphical language F(Σopg
M , Eopg

M )
and the realization functor RM . In §4, we define the semantic category Int(FinScottLop

!M
) and the interpreta-

tion functor J−KM . In §5, we define the winning position functor WM and establish the triangle in Fig. 3. We
also exhibit an example of compositional solution of a parity game in Ex. 5.11. We conclude in §6.

Related Work. We use F(Σopg
M , Eopg

M ) as the graphical language for open parity games. The use of monoidal
categories as graphical languages dates back to [34]. There have been numerous such languages; see [36] for
a survey. Languages that compositionally describe graph-like structures are of particular interest to us: [12]
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describes the algebra of directed acyclic graphs but does not consider cyclic structures; [2] describes open Petri
nets, and compositionality is achieved “externally” by the use of cospans.

In particular, props have been used extensively as graphical languages. They define graphical languages as
models for some mathematical structures (signal flow diagrams [5], networks [1], Petri nets [3], automata [35],
and the ZX-calculus [6,7] respectively) and prove that the graphical language is equivalent to the category that
they are studying. They can therefore transfer properties of the graphical language (for example, decidability
of equivalence of diagrams) to the category they are studying. In our work, however, we use the graphical
language for expressing open parity games compositionally, and we are not necessarily interested in equivalence
between F(Σopg

M , Eopg
M ) and OPGM (see also Rem. 3.16).

Note that our work uses a 2-colored prop for modeling the two possible directions for edges in an open
parity game, while [3, 5, 11] only have a single type of edges, which are undirected. In [35], the authors use a
colored prop to model different kinds of edges, and in particular, they use two colors to model directed edges.

Kissinger gives a general construction of the free traced symmetric monoidal categories Ft(Σ), which are
also props [29]. This is related to the free compact closed category F(Σopg

M , Eopg
M ) in the present paper, as

explained in §3. Free traced monoidal categories are also given in [26] in the study of attribute grammars,
where many-to-one signatures are treated while Kissinger’s paper treats many-to-many signatures.

Another related work is [15], which introduces the concept of composing games. Their approach is mainly
applied to economic models, and they use a symmetric monoidal category for compositional game theories.
However, their framework is different from ours in the sense that the objects along which games are composed
have different meanings: in our framework, games are composed along graph edges, while in theirs, games are
composed along interfaces describing player choices, game utility, etc.

Notation. We use the following notations. (i) [m] := {1, . . . ,m}. (ii) We write the unit and the multiplication
of a free monoid C∗ as ε and ·. (iii) For w ∈ {r, l}∗, −→w is the number of r in w, and ←−w is the number of
l in w. (iv) NM := {0, . . . ,M} where M ∈ N. (v) N≥1 := {i ∈ N | i ≥ 1}. (vi) r⊥ := l, l⊥ := r, and

(w1 · · ·wn)⊥ := w⊥n · · ·w⊥1 where w1 · · ·wn ∈ {r, l}∗. (vii) !∅X is the unique function from ∅ to X. (viii) For
f : A → C and g : B → C, we write [f, g] : A + B → C for the copairing function, i.e., [f, g](a) = f(a) and
[f, g](b) = g(b). (ix) We often omit the injections ini : Ai → A1 +A2, i.e., for example, we may write a ∈ A+B
for in1(a) ∈ A+B, if no confusion happens.

2 Categories of Open Parity Games

We introduce the notion of open parity games. It extends parity games by adding open ends to the game,
which are used to define composition of parity games; specifically, we obtain a compact closed category OPGM

of open parity games (Def. 2.11).
In this paper, we often encounter situations where the structure of interest can be organized both as a traced

symmetric monoidal category (TSMC) or as a compact closed category (CpCC). (Specifically, we have three
such classes of structures, yielding three TSMCs and CpCCs. See Fig. 3.) While our applicational interests lie
in the CpCC structures, we work mostly with the TSMC structures for technical convenience, and use the Int
construction [25] to define the CpCC structures from them (OPGM is defined as Int(OPGr

M ), and we show
that F(Σopg

M , Eopg
M ) is equivalent to Int(Ft(Σ

int
M )) for some signature Σint

M ).

2.1 Open Parity Games

Definition 2.1 (open parity game) An open parity game from m to n is a tuple (m,n,Q,E, ρ,M, ω) such
that the following conditions are satisfied:

(i) m = (mr, ml) and n = (nr, nl) are pairs of natural numbers, where m represents the domain interface
of the game and n the codomain interface.

(ii) Q is a finite set, whose elements are called internal positions.

(iii) E is a relation E ⊆ ([mr +nl] +Q)× ([nr +ml] +Q), whose element is called an edge. Moreover, for any
s ∈ [mr +nl], there is a unique s′ ∈ [nr +ml] +Q such that (s, s′) ∈ E; and similarly for any t ∈ [nr +ml],
there is a unique t′ ∈ [mr + nl] +Q such that (t′, t) ∈ E.

(iv) ρ is a function ρ : Q→ {∃,∀}, which assigns a role to each internal position.

(v) M ∈ N is called the maximal rank and ω : Q→ NM is called the priority function.

We call an element of ([mr + nl] + [nr +ml]) +Q a position, one of [mr + nl] + [nr +ml] an open end, one of
[mr + nl] an entry position, and one of [nr +ml] an exit position.

We extend the priority function ω to ω : ([mr + nl] + [nr +ml]) +Q→ NM by ω(i) = 0 for i ∈ [mr + nl] +
[nr +ml], i.e., we define the priority of each open end to be 0.
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Example 2.2 The open parity game in Fig. 1(a) is the tuple (m,n,Q,E, ρ,M, ω) where

m = (1, 1), n = (1, 0), Q = {a, b}, ρ(a) = ∃, ρ(b) = ∀,
1E a, aE 2, aE b, bE a, bE 1′, ω(a) = 1, ω(b) = 2, and M = 2.

In Fig. 1(a), the open end 1 is the entry position in [mr + nl] = [1 + 0]. The open ends 1′ and 2 are the exit
positions in [nr + ml] = [1 + 1]. The two boxes are internal positions in Q, with annotations on roles ρ and
priorities ω. As usual, E is depicted by arrows.

Condition (iii) of Def. 2.1 requires that a unique outgoing/incoming edge from/to an entry/exit position,
respectively. This condition can be enforced by adding some dummy positions.

The following definition is a first step towards introducing a trace operator.

Definition 2.3 (rightward open parity game) An open parity game A = (m,n,Q,E, ρ,M, ω) is rightward
if m = (mr, 0l) and n = (nr, 0l) for some mr and nr.

In the last definition, we require each open end in m and n to be headed in the right. Note that we do not
impose the same requirement on (internal) edges in E—a rightward open parity game may contain cycles.

2.2 A Traced Symmetric Monoidal Category of Rightward Open Parity Games

We shall first define the traced symmetric monoidal category OPGr
M of rightward open parity games. It yields

the compact closed category OPGM of open parity games by the Int construction (see Fig. 3).
In fact, we do so restricting the priorities to be below a certain natural number M , talking about OPGr

M
and OPGM . The reason for doing so is discussed in Rem. 4.4.

In what follows, we assume that a given rightward open parity game A is of the form A =(
(mA, 0), (nA, 0), QA, EA, ρA, M, ωA

)
. The convention also applies to B.

We need an equivalence relation on the set of rightward open parity games to define OPGr
M . For our

purpose here, we define the equivalence in terms of structure-preserving bijections. It is easy to define an
equivalence relation on open parity games in the same way.

Definition 2.4 (equivalence relation ∼ on rightward open parity games) We define an equivalence
relation ∼ on the set of rightward open parity games as follows: A ∼ B if mA = mB, nA = nB, and there is a
bijection η : QA → QB such that the following conditions are satisfied: (i) for (s, t) ∈ ([mA]+QA)×([nA]+QA),
(s, t) ∈ EA ⇐⇒ (η̄(s), η̄(t)) ∈ EB, (ii) for s ∈ QA, ρA(s) = ρB(η(s)), and (iii) for s ∈ QA, ωA(s) = ωB(η(s)).
Here we extend η to η̄ : (N +QA)→ (N +QB) by η̄(n) = n for n ∈ N.

We define the category OPGr
M as follows. Objects are natural numbers, and a morphism from m to n is

an equivalence class [A]∼ of rightward open parity games from (m, 0) to (n, 0). The identity and composition
of morphisms are given by idn := [In]∼ and [A]∼; [B]∼ := [A;B]∼, where In and A;B are given in Def. 2.5 and
Def. 2.6 below, respectively.

Definition 2.5 (identity) For n ∈ N, we define the identity game In as
(
(n, 0), (n, 0), ∅, E, !∅{∃,∀}, M, !∅NM

)
where E = {(a, a) | a ∈ [n]}.

1

2

3

1′

2′

3′

Fig. 4: id3.
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3

1′

2′

3′

Fig. 5: σ2,1.
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5
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Fig. 6: Parallel composition
of Fig. 1(b) & Fig. 2(a).

Fig. 4 shows the identity id3.
Next, we define the sequential composition

A;B of rightward open parity games. The intu-
ition is to connect each exit position of A with
the corresponding entry position of B, and then
to hide those interface open ends. Fig. 1(b) in the
introduction illustrates this construction.

Definition 2.6 (sequential composition) Let A and B be rightward open parity games and nA =
mB. We define the sequential composition A;B as follows: A;B =

(
(mA, 0), (nB, 0), QA +

QB, EA;B, [ρA, ρB], M, [ωA, ωB]
)
, where EA;B = EA \

(
([mA] + QA) × [nA]

)
+ EB \

(
[mB] × ([nB] +

QB)
)

+
{

(s, s′) | there exists a ∈ [nA] = [mB] such that (s, a) ∈ EA and (a, s′) ∈ EB
}
.

We can show associativity and unitality up to structure-preserving bijection, which entails that OPGr
M is

a category by Def. 2.4.

4



Watanabe, Eberhart, Asada, and Hasuo

We also define a parallel (or vertical) composition ⊕ of rightward open parity games, which gives a monoidal
product structure of OPGr

M by [A]∼ ⊕ [B]∼ = [A⊕ B]∼. Fig. 6 gives an example, notice that the open ends
in the second game need to be shifted, for which we need the following definition: for l ∈ N and s ∈ [m] +Q,
let s↓l ∈ [l +m] +Q be defined by s↓l = l + s if s ∈ [m], and s↓l = s if s ∈ Q.

Definition 2.7 (parallel composition) Let A and B be rightward open parity games. The parallel composi-
tion A⊕B is defined as follows: A⊕B =

(
(mA+mB, 0), (nA+nB, 0), QA+QB, EA⊕B, [ρA, ρB], M, [ωA, ωB]

)
,

where EA⊕B is given by EA⊕B = EA +
{

(s↓m
A
, t↓n

A
)
∣∣ (s, t) ∈ EB}.

The following game swaps the order of entry positons and that of exit positions. This makes OPGr
M a

symmetric monoidal category. Fig. 5 shows the swap game σ2,1.

Definition 2.8 (swap) For any m,n ∈ N≥1, we define the swap game σm,n as follows: σm,n =
(
(m+n, 0), (n+

m, 0), ∅, Eσm,n , !∅{∃,∀}, M, !∅NM

)
, where Eσm,n = {(a, n+ a) | a ∈ [m]} ∪ {(m+ a, a) | a ∈ [n]}.

Cycles are essential to parity games: without them there would not be any infinite play. To introduce cycles
in rightward open parity games, we use a trace opearator on OPGr

M , as illustrated in Fig. 2(c).

Definition 2.9 (trace operator of OPGr
M) Let l, m, and n be objects in OPGr

M . We define the trace
operator trl;m,n : OPGr

M (l + m, l + n) → OPGr
M (m,n) as follows. Let A ∈ OPGr

M (l + m, l + n), i.e., let

mA = l +m and nA = l + n. Then, trl;m,n([A]∼) := [trl;m,n(A)]∼ where

trl;m,n(A) =
(
(m, 0), (n, 0), QA, Etrl;m,n(A), ρA, M, ωA

)
, where

Etrl;m,n(A) =
{

(s, s′) ∈ ([m]+QA)×([n]+QA)
∣∣ s↓lEA a1E

A · · · EA ak EA s′↓l for some k ∈ N, (ai)i ∈ [l]k
}
.

Here is the main result of this section. With the given definitions, the proof is (lengthy but) routine work.

Theorem 2.10 (OPGr
M) The data (OPGr

M , ⊕, ∅, σ, tr) defined so far constitutes a strict traced symmetric
monoidal category, where ∅ denotes the obvious empty game. 2

2.3 A Compact Closed Category of Open Parity Games

To obtain the category OPGM of open parity games, we use the Int construction [25] (see also [21] for some
correction). It is a free construction from a traced symmetric monoidal category C to a compact closed category
Int(C). We briefly explain how it is defined here, but see Appendix A or [25] for more details.

Let CpCC be the 2-category of (locally small) CpCCs, compact closed functors, and monoidal natural
transformations. Note that its 2-cells automatically respect compact closed structures and are monoidal natural
isomorphisms [23, Proposition 7.1]. Also, let TrSMCg be the 2-category of (locally small) TSMCs, traced
symmetric strong monoidal functors, and monoidal natural isomorphisms.

Then the Int construction is a left biadjoint to the embedding TrSMCg → CpCC. Specifically, given
a traced symmetric monoidal cateogry (C,⊗, I, σ, tr), the category Int(C) is defined as follows: An object of
Int(C) is a pair (X+, X−) of objects of C. Then Int(C)

(
(X+, X−), (Y+, Y−)

)
:= C(X+ ⊗ Y−, Y+ ⊗X−), and

id(X+,X−) := idX+⊗X− . Notably, for f ∈ Int(C)
(
(X+, X−), (Y+, Y−)

)
and g ∈ Int(C)

(
(Y+, Y−), (Z+, Z−)

)
, the

composite of f and g is defined using the trace operator, namely by trCY−;X+⊗Z−,Z+⊗X−
(
(σZ+,Y− ⊗ idX−) ◦ (g⊗

idX−)◦(idY+
⊗σX−,Z−)◦(f⊗ idZ−)◦(σY−,X+

⊗ idZ−)
)
. See [25] for details, including diagrammatic illustration.

Definition 2.11 (OPGM) Let OPGM be the compact closed category Int(OPGr
M ) of open parity games.

The following proposition is trivial from the definition.

Proposition 2.12 A morphism of OPGM is an ∼-equivalence class of open parity games (in Def. 2.1). 2

The compact closed structure is the basis of our compositional approach to parity games. The structure
serves as game constructors, and the compact closed functor WM : OPGM → Int(FinScottLop

!M
) (see Fig. 3)

given in §5 computes compositionally if an entry position in a composed game wins.

3 A Graphical Language of Open Parity Games

In this section, we introduce the category F(Σopg
M , Eopg

M ) as a graphical language for open parity games. The
category is a prop, a symmetric monoidal category version of the notion of Lawvere theory whose use has been
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actively pursued recently [1,5,7]. It gives to open parity games introduced in §2 a language of string diagrams
generated by certain generators and equations. Moreover, we find that the category F(Σopg

M , Eopg
M ) is free in

two senses: (i) as the prop induced by a theory (Σopg
M , Eopg

M ) for open parity games; and (ii) as a compact
closed category Int(Ft(Σ

int
M )) (see Fig. 3). The second freeness is exploited in the compositional definition of

the interpretation functor J−KM in Fig. 3.

3.1 The Graphical Language F(Σopg
M , Eopg

M )

We define F(Σopg
M , Eopg

M ) as a colored prop constructed from a symmetric monoidal theory (Σopg
M , Eopg

M ). For
the detail of this prop construction, the reader can consult, e.g., [7].

Definition 3.1 (C-prop, morphism, C-Prop) Let C be a set (of colors). A C-prop is a small strict
symmetric monoidal category where the monoid of all the objects is the free monoid C∗ of C. A C-prop
morphism between C-props is a strict symmetric monoidal functor that is the identity on objects. We write
C-Prop for the category of C-props and C-prop morphisms.

In this paper, we consider {r, l}-props. The colors r and l represent “rightward” and “leftward”, respectively.
They intuitively correspond to mr and ml of m = (mr, ml) in an open parity game.

We want to define F(Σopg
M , Eopg

M ) as a free {r, l}-prop. A free C-prop is generated from a C-symmetric
monoidal theory (C-SMT for short), i.e., a pair of a C-signature and a set of C-equations. Intuitively, given
a C-SMT, morphisms of the corresponding free C-prop are terms built freely from the signature (as well as
sequential and parallel composition) and quotiented by the equations.

Definition 3.2 (C-signature, morphism, C-Sig) A C-signature is a functor Σ : C∗ × C∗ → Set where
the free monoid C∗ is thought of as a discrete category. A C-signature morphism f : Σ → Σ′ is a natural
transformation from Σ to Σ′. We write C-Sig for the category of C-signatures and C-signature morphisms.

Thus, C-Sig = SetC
∗×C∗ . We define an {r, l}-signature Σopg

M , which is used to define the graphical language
F(Σopg

M , Eopg
M ). In the signature Σopg

M , for each domain w ∈ {r, l}∗, codomain u ∈ {r, l}∗, role r ∈ {∀,∃}, and
priority p ∈ NM , there is a single generator nw,ur,p that represents the type of nodes in open parity games with
these specific domain, codomain, role, and priority.

Definition 3.3 ({r, l}-signature Σopg
M ) For w, u ∈ {r, l}∗, we define Σopg

M (w, u) as follows: Let Nw,u ={
nw,ur,p

∣∣ r ∈ {∀,∃} , p ∈ NM
}

. Then Σopg
M (ε, r · l) = Nε,r·l ∪ {dr}, Σopg

M (l · r, ε) = Nl·r,ε ∪ {er}, and Σopg
M (w, u) =

Nw,u otherwise.

The generators dr and er intuitively represent a unit and counit over r, respectively. We now turn to
equations, for which we first need to define terms of a C-SMT. They are given by the following free construction.
Let UCsig : C-Prop→ C-Sig be the obvious forgetful functor.

Theorem 3.4 ([13,18]) The forgetful functor UCsig has a left adjoint FCsig : C-Sig→ C-Prop. 2

For the unit η : IdC-Sig → UCsig ◦ FCsig, we identify (ηΣ)w,u(f) ∈ UCsig(FCsig(Σ))(w, u) = FCsig(Σ)(w, u) with

f ∈ Σ(w, u) for simplicity of presentation.

Definition 3.5 (C-SMT) A C-colored symmetric monoidal theory (C-SMT for short) is a tuple (Σ, E, l, r)
where Σ and E are C-signatures and l, r : E → UCsig(FCsig(Σ)) are C-signature morphisms.

We often write simply (Σ, E) for (Σ, E, l, r). We call FCsig(Σ) the set of terms generated by Σ, and E the

set of (C-)equations in Σ, where each e ∈ E represents the equation l(e) = r(e).

Definition 3.6 (SMT (Σopg
M , Eopg

M )) We complete the definition of the {r, l}-SMT (Σopg
M , Eopg

M , lopg
M , ropg

M ) by
giving the equations: (er ⊕ idl) ◦ (idl ⊕ dr) = idl and (idr ⊕ er) ◦ (dr ⊕ idr) = idr.

The {r, l}-SMT (Σopg
M , Eopg

M ) describes open parity games, an intuition supported by the technical results
in §3.2, in particular Thm. 3.15.

In general, a C-SMT induces a free C-prop F(Σ, E), whose arrows give a graphical language.

Definition 3.7 (free prop F(T ) [1, 7]) Let T = (Σ, E, l, r) be a C-SMT. We define a C-prop F(T ) as the
coequalizer of l†, r† : FCsig(E) → FCsig(Σ) in C-Prop where l† and r† are, respectively, the transposition of

l, r : E → UCsig(FCsig(Σ)) in C-Sig by FCsig a UCsig.
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idr idl σr,r σr,l σl,l σl,r

(a) Identites and swaps in {r, l}-prop.

r, p

nw,ur,pdr er

(b) Signature Σopg
M .

= =

(c) Equations Eopg
M .

∃, 2

(d) An exam-
ple.

Fig. 7. Illustration of (Σopg
M , Eopg

M ).

Definition 3.8 (graphical language F(Σopg
M , Eopg

M )) We define F(Σopg
M , Eopg

M ) by Def. 3.6 and Def. 3.7.

By definition, an object of F(Σopg
M , Eopg

M ) is an element of {r, l}∗, and a morphism is the class of terms
generated by sequential and parallel composition applied to constants in Σopg

M , and quotiented by the congruence
produced by the equations in Eopg

M (again under sequential and parallel composition). The prop F(Σopg
M , Eopg

M )
is illustrated in Fig. 7(a), Fig. 7(b), and Fig. 7(c).

Example 3.9 Fig. 7(d) is the morphism (idl ⊕ er) ◦ (idl ⊕ nr·r,l·r
∃,2 ) ◦ (dl ⊕ idr) from r to l in F(Σopg

M , Eopg
M ).

3.2 Free Compact Closedness of F(Σopg
M , Eopg

M ) and the Full Functor RM
We show that the graphical language F(Σopg

M , Eopg
M ) is a free compact closed category, so that we can freely

define a compact closed functor from F(Σopg
M , Eopg

M ) to any compact closed category C with additional structure.
This way we obtain the realization functor RM : F(Σopg

M , Eopg
M ) → OPGM (see Fig. 3); we show that RM is

full, meaning that every open parity game has a presentation in F(Σopg
M , Eopg

M ). Due to the space limitation,
we put the detailed information that is written here in Appendix B.

We need some definitions for proving that F(Σopg
M , Eopg

M ) is a free compact closed category. We call an

object of the category Set{r,l}
∗×{r,l}∗ a compact closed signature (CCS, for short). Recall that the signature

Σopg
M consists of nodes nw,ur,p of open parity games and the unit dr and counit er of compact closed structure.

We define a CCS ΣM that is a signature of open parity games without the compact closed structure dr or er.

Definition 3.10 (CCS ΣM) We define a CCS ΣM by ΣM (w, u) :=
{

nw,ur,p

∣∣ r ∈ {∃,∀} and p ∈ NM
}

.

To state the free compact closedness of F(Σopg
M , Eopg

M ), we define a valuation, which defines a way to interpret
elements of a signature into a compact closed category.

Definition 3.11 (valuation) For a CCS Σ and a compact closed category C, a valuation of Σ into C is a
pair

(
Vr, (Vw,u)w,u

)
such that (i) Vr ∈ ob(C) and (ii) Vw,u : Σ(w, u) → C(V ∗w , V

∗
u ) for w, u ∈ {r, l}∗ where V ∗w

(w ∈ {r, l}∗) is defined as follows: V ∗d1...dn := Vd1 ⊗ . . .⊗ Vdn where Vl := V ⊥r .

Definition 3.12 (action on valuations) Given a compact closed functor F : C → D and a valuation V
of Σ into C, the action (F ◦ V ) on V by F is defined by (i) (F ◦ V )r := F (Vr) and (ii) (F ◦ V )w,u(f) :=
(φFu )−1 ◦ F (Vw,u(f)) ◦ φFw , where φFw (and φFu ) are defined as follows: for any w = ri1 · · · rin ∈ {r, l}∗ where
each rij is either r or r⊥, the morphism φFw : F (Vr)i1 ⊗· · ·⊗F (Vr)in → F (V i1r ⊗· · ·⊗V inr ) is the isomorphism
given by the fact that F respects the compact closed structures.

Finally, we prove the free compact closedness of F(Σopg
M , Eopg

M ) by using the above definitions.

Theorem 3.13 (free compact closedness of F(Σopg
M , Eopg

M )) The prop F(Σopg
M , Eopg

M ) is a strict compact
closed category. Furthermore, F(Σopg

M , Eopg
M ) is a free compact closed category, i.e., there exists a valuation

ηΣM
of ΣM into F(Σopg

M , Eopg
M ) such that, for any compact closed category C and any valuation V of ΣM into

C, there exists a unique (up to iso) compact closed functor F : F(Σopg
M , Eopg

M )→ C such that (F ◦ ηΣM
) = V .2

For a 2-categorical and generalized version of Thm. 3.13, see Appendix B. By the general result (Thm. 3.13),
we define the realization functor RM : F(Σopg

M , Eopg
M )→ OPGM (see Fig. 3):

Definition 3.14 (realization functor RM) We let the realization functor RM : F(Σopg
M , Eopg

M ) → OPGM

be the functor determined by Thm. 3.13 with RM (r) = (1, 0) and RM (nw,ur,p ) =
(
(−→w ,←−w ), (−→u ,←−u ), {?}, E,

{? 7→ r}, M, {? 7→ p}
)

where E =
{

(a, ?) | a ∈ [−→w +←−u ]
}
∪
{

(?, a) | a ∈ [−→u +←−w ]
}

.

The following theorem says that every open parity game in OPGM can be represented as a graphical one,
i.e., a morphism in F(Σopg

M , Eopg
M ). The proof is given in a standard way and can be found in Appendix B.3.
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Theorem 3.15 (fullness) The functor RM : F(Σopg
M , Eopg

M )→ OPGM is full. 2

Remark 3.16 The functor RM is not faithful (a one-node example can be easily given). In recent works
on props such as [5, 35], the main interest is in the faithfulness of a semantics functor whose codomain is
a well-known semantic category (that of linear relations [5], automata [35], etc.). In this case, faithfulness
amounts to the completeness of equational axioms. We do not share this interest: in Fig. 3, the codomain
of RM : F(Σopg

M , Eopg
M ) → OPGM is not a well-known category, and the value of a corresponding complete

equational axiomatization is not clear. Faithfulness of the interpretation functor J−KM : F(Σopg
M , Eopg

M ) →
Int(FinScottLop

!M
) (introduced in §4) seems more interesting, since it amounts to an equational characterization

of the equivalence of parity games in terms of who is winning. The problem seems challenging, however, given
the complexity of solving parity games, and we leave it as future work. We note that, for our purpose of
compositional solution of parity games (see e.g. Ex. 5.11), faithfulness of RM or J−KM is not needed.

Kissinger gives a construction for free traced symmetric monoidal categories Ft(Σ) [29]. We show an
equivalence F(Σopg

M , Eopg
M ) ' Int(Ft(Σ

int
M )) in CpCC for some 1-signature Σint

M (see Appendix B.2).

4 The Semantic Category of Open Parity Games

In this section, we define a semantic category of open pairty games Int(FinScottLop
!M

). Grellois and Melliès

restricted ScottL to the full subcategory FinScottL [16, 17] of finite preordered sets, in order to introduce
a fixpoint operator on FinScottL!M for some suitable comonad !M so that it forms a model of higher-order
model checking. We use this fixpoint operator for the Int construction of Int(FinScottLop

!M
). We then define

the interpretation functor J−KM : F(Σopg
M , Eopg

M ) → Int(FinScottLop
!M

). (The reader may look at Ex. 5.11 for

an example of computation of JAKM on a concrete open parity game A.)

Definition 4.1 (FinScottL [16, 17]) The category FinScottL has as objects finite preordered sets A =
(|A|,≤A) and as morphisms R : A−+→ B downward-closed binary relations R between Aop and B: i.e., a binary
relation R ⊆ |A| × |B| such that if a′ ≥A a, aR b, b ≥B b′, then a′Rb′. Composition is defined as usual:
a (S ◦R) c iff aR b and b S c for some b ∈ |B|. The identity on A is idA = {(a′, a) | a ≤A a′}.

Note that FinScottL has a symmetric monoidal structure induced by the existence of finite cartesian
products 1 = ({∗},=) and (|A|,≤A)× (|B|,≤B) = (|A|+ |B|, ≤A +≤B).

In open parity games, we have two roles: ∃ and ∀. For player ∃, a choice by ∀ is not predictable. This
nondeterminism is represented by the finite powerset comonad P.

Definition 4.2 (finite powerset comonad) The finite powerset comonad (P, εP , δP) on FinScottL is de-
fined by P((|A|,≤A)) := (P (|A|),≤), where X ≤ Y iff for any x ∈ X there exists y ∈ Y such that x ≤A y.
For R : A −+→ B, P(R) := {(X,Y ) ∈ P (|A|) × P (|B|) | ∀y ∈ Y, ∃x ∈ X, (x, y) ∈ R}. Then εPA := {(X, a) ∈
P (|A|)× |A| | ∃x ∈ X, a ≤A x} and δPA := {(X, {Y1, . . . , Yn}) ∈ P (|A|)× P (P (|A|)) | Y1 ∪ · · · ∪ Yn ≤P(A) X}.

Priorities that are not greater than M in open parity games are represented by the coloring comonad �M .

Definition 4.3 (coloring comonad [16, 17]) The coloring comonad (�M , ε�M , δ�M ) on FinScottL is de-
fined as follows: �M (|A|,≤A) = (NM × |A|, ≤�MA) where (p, a) ≤�MA (q, b) iff p = q and a ≤A b.
For R : A −+→ B, �M (R) :=

{(
(p, a), (p, b)

)
∈ (NM×|A|) × (NM×|B|)

∣∣ p ∈ NM and (a, b) ∈ R
}

.

Then ε�M

A :=
{(

(0, a), a′
)
∈ (NM×|A|) × |A|

∣∣ a′ ≤A a
}

and δ�M

A :=
{(

(max(p, q), a), (p, (q, a′))
)
∈

(NM×|A|)× (NM×(NM×|A|))
∣∣ a′ ≤A a}.

Remark 4.4 We expect that this comonad can be extended to a graded comonad [14, 27] so that its Kleisli
category interprets all open parity games, without fixing the parity bound M . However, we do not take this
approach because it is reasonably harmless to fix the maximal parity, while the use of the complex notion of
graded comonad makes it hard to see the essential idea.

Combining the above notions, we define the comonad !M .

Definition 4.5 (comonad !M [16, 17]) We define a distributive law λ : P ◦ �M ⇒ �M ◦ P on FinScottL
by λ(A,≤A) :=

{
(X, (p, Y )) ∈ P (NM × |A|) × (NM × P (|A|))

∣∣ ∀y ∈ Y,∃ a ∈ A, (p, a) ∈ X and y ≤A a
}

, and

we define a comonad !M = (!M , ε
!M , δ!M ) on FinScottL by: (i) !M := P ◦�M , (ii) ε!M := εP ◦ (P ∗ ε�M ), and

(iii) δ!M := (P ∗ λ ∗�M ) ◦ (δP ∗ δ�M ) where ∗ is the horizontal composition of natural transformations.
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In general, the Kleisli category of a comonad inherits the cartesian product from the original category, and
so the Kleisli category FinScottL!M has a cartesian products given by (|A| + |B|,≤A + ≤B). (Furthermore,
FinScottL!M is cartesian closed [16,17], though we do not use this fact.)

In order to give a model of higher-order model checking, Grellois and Melliès introduced a fixpoint operator
on FinScottL!M , which we denote as fixGM [16, 17], to deal with infinite plays. Then we obtain a trace

operator trGM on FinScottLop
!M

induced by fixGM, because for a cartesian category C, having a trace operator

is equivalent to having a fixpoint operator [19], and because if C is a traced symmetric monoidal category,

then so is Cop canonically. Now we give the definition of trGM. (The definition of fixGM can be found in

Appendix C.) To define fixGM, Grellois and Melliès also introduced the notion of semantic run-tree. We use a
similar notion, which we also call semantic run-tree, but is tailored towards the trace operator.

Definition 4.6 (semantic run-tree for trGM) Let R ∈ FinScottLop
!M

(D + A,D + B) and a ∈ |A|; then

especially, R ⊆ P (NM × (|D|+ |B|))× (|D|+ |A|). A semantic run-tree ψ for R and a (for the trace operator)
is a possibly infinite (NM × (|D|+ |A|+ |B|))-labeled tree ψ that satisfies the following conditions:

(i) The label of the root of ψ is (0, a) ∈ NM × |A|.
(ii) Any node of ψ that is neither a leaf nor the root has its label in NM × |D|.

(iii) For any non-leaf node (possibly being the root that is not a leaf) of ψ with label (p, x) ∈ NM × (|D|+ |A|),
let X ⊆ NM × (|D|+ |A|+ |B|) be the set of the labels of all the children of the node. Then (X,x) ∈ R.

(iv) For any leaf node (possibly being the root that is a leaf) of ψ such that its label belongs to NM×(|D|+|A|)
(rather than NM × |B|) and is (p, x), we have (∅, x) ∈ R.

We write SRT(A,B,D,R, a) for the set of semantic run-trees with respect to A,B,D,R and a. For a semantic
run-tree ψ ∈ SRT(A,B,D,R, a), we define leaves(ψ) ∈ |P(�M (B))| = P (NM × |B|) as the set of elements
(p, b) ∈ NM × |B| such that there exists a leaf ` of ψ such that: (i) the label of leaf ` is (p′, b) for some p′ ∈ NM
and (ii) p is the maximal priority encountered on the path from the leaf ` to the root of ψ.

A semantic run-tree is similar to a (usual) run for a parity game, except that (i) its branching models ∀’s
choices, and (ii) it is induced by a suitable semantic construct R instead of a graph-theoretic notion of game.
In our use of the notion (§5), R will be a “summary” of an open parity game, which retains the necessary data
to decide who is winning yet is much smaller than the original open parity game.

Definition 4.7 (trace operator trGM [16,17]) For every A,B,D ∈ FinScottLop
!M

, we define a trace operator

trGM
D;A,B : FinScottLop

!M
(D ⊗A,D ⊗B)→ FinScottLop

!M
(A,B) as follows:

trGM
D;A,B(R) := {(leaves(ψ), a) | ψ ∈ SRT(A,B,D,R, a) that meets the parity condition}

where a semantic run-tree meets the parity condition if for every infinite path ((pi, xi))i∈N, the maximum
priority met infinitely along the path is even (i.e., max{q | #{i | pi = q} =∞} is even).

Thus FinScottLop
!M

is a traced symmetric monoidal category. The trace operator above is used in the

(sequential) composition of Int(FinScottLop
!M

) given below.

Now we define the semantic category Int(FinScottLop
!M

) for open parity games. In §5, we explain how

FinScottLop
!M

and Int(FinScottLop
!M

) serve as the semantic categories in the traced and compact closed struc-

tures, respectively, by giving a suitable winning-position functor Wr
M from OPGr

M to FinScottLop
!M

and then

by inducing WM (see Fig. 3).

Definition 4.8 (semantic category Int(FinScottLop
!M

)) By applying the Int construction to the traced

symmetric monoidal category FinScottLop
!M

, we obtain the compact closed category Int(FinScottLop
!M

).

Remark 4.9 We have FinScottLop
!M
∼= FinPreordT , where FinPreord is the category of finite pre-

ordered sets and monotonic functions, and (a Kleisli morphism of) the monad T is of the following form:

FinScottLop
!M

(
A,B

) ∼= FinPreord
(
A,
(
P ↑(P(NM × |B|, ≤�MB)), ⊇

))
, where P ↑ is the upward-closed

powerset. This description is closed to the double-powerset style semantics for 2-player games, e.g., in [22].

We want to define an interpretation functor J−KM : F(Σopg
M , Eopg

M ) → Int(FinScottLop
!M

) that reflects the

winning condition on open parity games. The idea is that, if ((jk, pk)k∈n, i) ∈ JGKM , then player ∃ can force any
play that starts from the entry position corresponding to i in G to end in one of the exit positions corresponding
to the jk’s while encountering a maximum priority of pk. By Thm. 3.13, we obtain this functor as:
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Definition 4.10 (interpretation functor J−KM) We define the interpretation functor J−KM :
F(Σopg

M , Eopg
M ) → Int(FinScottLop

!M
) to be the compact closed functor whose action on objects is generated

by JrKM =
(
([1],=), (∅,=)

)
∈ Int(FinScottLop

!M
) and whose action on morphisms is generated by:

r
na,b∃,p

z

M
=

{
∅ (

−→
b +←−a = 0){

(T, i) ∈ P (NM × [
−→
b +←−a ])× [−→a +

←−
b ]
∣∣ (j, p) ∈ T for some j ∈ [

−→
b +←−a ]

}
(
−→
b +←−a 6= 0)

r
na,b∀,p

z

M
=

{
P (∅)× [−→a +

←−
b ] (

−→
b +←−a = 0){

(T, i) ∈ P (NM × [
−→
b +←−a ])× [−→a +

←−
b ]
∣∣ {(j, p) | j ∈ [

−→
b +←−a ]} ⊆ T

}
(
−→
b +←−a 6= 0).

Both morphisms above are from JaKM = ([−→a ], [←−a ]) to JbKM = ([
−→
b ], [
←−
b ]) in Int(FinScottLop

!M
), i.e., P (NM ×

[
−→
b +←−a ])−+→ [−→a +

←−
b ] in FinScottL, where powerset is ordered by inclustion.

5 Strategies and the Winning Position Functor

In §5.1, we define notions of play and strategy for open parity games (in the traditional style of graph game),
as well as winning, losing, and pending strategies and positions. We use these definitions in §5.2 to define the
winning-position functor Wr

M : OPGr
M → FinScottLop

!M
, which gives information that allows compositional

computation of winning positions. We show that the diagram in Figure 3 commutes, which gives a justification
of our compositional approach to parity games. In this section, we assume that a given rightward open parity
game A is of the form A = (m,n,Q,E, ρ,M, ω).

5.1 Winning Strategies and Winning Positions for Open Parity Games

Here we give the notions of strategy and play. We also define the denotation of a strategy/position, which
is how they win, lose, or are pending. These definitions are given only for rightward open parity games, but
we can readily extend them to general open parity games, because any open parity game is a rightward open
parity game by definition: OPGM ((mr,ml), (nr, nl)) = OPGr

M (mr + nl, nr +ml).
First we define the notion of strategy. For an open parity game A : [m]→ [n], a family (si)i∈I of positions

in [m] + [n] +Q is called a position sequence if I = N≥1 or I = {1, . . . , k} for some k ∈ N≥1, (in that case, we
also write (si)i∈I as s1 · · · sk).

Definition 5.1 (∃-strategy and ∀-strategy) Let A be a rightward open parity game from m to n. We
define Play∃ :=

{
s1 · · · sk

∣∣ k ≥ 1, si ∈ Q (i ∈ [k]), (si, si+1) ∈ E (i ∈ [k−1]), ρ(sk) = ∃
}

. Then, an ∃-strategy
on A is a partial function τ : Play∃ ⇀ [n] + Q where for any s1 · · · sk ∈ Play∃, (i) if τ(s1 · · · sk) = s, then
(sk, s) ∈ E, and (ii) if τ(s1 · · · sk) is undefined, then for all s ∈ [n] + Q, (sk, s) /∈ E. A ∀-strategy on an open
parity game A is defined in the same way, by replacing the occurrence of ∃ with ∀ in the above definition. The
sets of ∃-strategies and ∀-strategies on A are Str∃(A) and Str∀(A), respectively.

A pair of an ∃-strategy and a ∀-strategy resolves the non-determinism in a game to induce a unique play:

Definition 5.2 (induced play playτ∃,τ∀a ) Let A be a rightward open parity game from m to n. The induced
play playτ∃,τ∀a from an entry position a ∈ [m] by an ∃-strategy τ∃ and a ∀-strategy τ∀ is the (necessarily unique)
maximal position-sequence (si)i∈I (for the prefix order) such that: (i) aE s1, (ii) for any i ∈ I, if ρ(si) = ∃ and
τ∃(s1 · · · si) is defined, then τ∃(s1 · · · si) = si+1, and similarly (iii) for any i ∈ I, if ρ(si) = ∀ and τ∀(s1 · · · si) is
defined, then τ∀(s1 · · · si) = si+1.

The following notion for a play corresponds to the winning condition in (traditional) game theory, where
the condition is two-valued, “win” or “lose”. Below ∃ and ∀ correspond to “win” and “lose”, but we have
other intermediate results (m, s|I|) due to the openness, which we call pending states. In this paper, we call
the following many-valued winning/losing/pending condition ⦃ − ⦄A on plays simply winning condition. An
infinite position sequence (si)i∈N satisfies the parity condition if the maximum of priorities that occur infinitely
in the play is even. We apply the following notion ⦃− ⦄A only to induced plays.

Definition 5.3 (winning condition ⦃ − ⦄A on plays) Let A be a rightward open parity game. The
denotation ⦃(si)i∈I ⦄A of a position sequence (si)i∈I is defined as

(m, s|I|) if I is finite, m = max{ω(si) : i ∈ I}, and s|I| is an open end,

∃ if (I is finite and ρ(s|I|) = ∀) or (I is infinite and (si)i∈I satisfies the parity condition),
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∀ if (I is finite and ρ(s|I|) = ∃) or (I is infinite and (si)i∈I does not satisfy the parity condition).

We call the function ⦃− ⦄A the winning condition of A.

Next, we define the denotation of an ∃-strategy; note that an ∃-strategy is a strategy for the “player” while
∀-strategies are those for the “opponent”. The denotation is “lose” if there is a losing play, and otherwise is
the collection of all the pending states; if the collection is the empty set, then the denotation is “win”.

Definition 5.4 (denotation of positions and ∃-strategies) Let A be a rightward open parity game from
m to n. The denotation ⦃(a, τ∃)⦄ of an entry position a ∈ [m] and an ∃-strategy τ∃ is defined by

⦃(a, τ∃)⦄ :=

{
lose if there is τ∀ such that ⦃playτ∃,τ∀a ⦄A = ∀,{

⦃playτ∃,τ∀a ⦄A ∈ NM × [n]
∣∣ τ∀ ∈ Str∀(A) and ⦃playτ∃,τ∀a ⦄A 6= ∃

}
otherwise.

5.2 The Winning Position Functor WM

Now we give the central notion of this section, the winning position functor WM , which is a compact closed
functor constructed by the Int-construction of a traced symmetric strong monoidal functor Wr

M . In the
definition of Wr

M , if we fix an entry position a, then Wr
M (A) (or precisely {T | (T, a) ∈ Wr

M (A)}) is the
upward-closed set generated by the denotations ⦃(a, τ∃)⦄ of a and all ∃-strategies τ∃ that does not lose from a:

Definition 5.5 (the functor Wr
M) We define a functor Wr

M : OPGr
M → FinScottLop

!M
. The mapping on

objects is given by Wr
M (m) := ([m],=), and for a morphism A ∈ OPGr

M (m,n),

Wr
M (A) :=

{
(T, a) ∈ P (NM × [n])× [m]

∣∣ ⦃(a, τ∃)⦄ 6= lose and ⦃(a, τ∃)⦄ ⊆ T for some ∃-strategy τ∃
}
.

The functor Wr
M determines whether an entry position wins, but the precise perspective is as follows. As

mentioned in the introduction, in the traditional notion of (non-open) parity games, a position is just either
winning or losing, two-valued. With the new notion of open ends, however, we have the intermediate result of
pending states. The following definition reflects this idea.

Definition 5.6 (winning/losing/pending positions) Let A and a be a rightward open parity game and
an entry position, respectively. (i) a is winning if (∅, a) ∈ Wr

M (A), (ii) a is losing if (T, a) /∈ Wr
M (A) for any

T , and (iii) a is pending otherwise (i.e., if (∅, a) /∈ Wr
M (A) and (T, a) ∈ Wr

M (A) for some T 6= ∅).

There is an obvious transformation that maps a traditional parity game G and position x into an open parity
game AGx : 1 → 0 ∈ OPGr

M , where 1 ∈ [1] points to the internal position x. The notion of winning/losing
defined above agrees with the traditional one in the following sense (n.b. there is no pending case):

Proposition 5.7 Given a (traditional) parity game G and a position x in G, x is winning (resp. losing) in
G iff x is winning (resp. losing) in AGx . 2

The main technical result of this section is stated below, and allows us to define a compact closed functor
WM : OPGM → Int(FinScottLop

!M
).

Theorem 5.8 The functor Wr
M : OPGr

M → FinScottLop
!M

is a traced symmetric strict monoidal functor. 2

Definition 5.9 (winning position functor WM) We define the winning position functor WM by Int(Wr
M ).

Summarizing all the main results in this paper, we obtain the following theorem:

Theorem 5.10 The triangle in Fig. 3 commutes: J−KM ' WM ◦ RM . 2

We remark that we can obtain a similar result to the above in the TSMC setting by the freeness of Ft(Σ
int
M ).

Given any open parity game, which can be represented also by a morphism in F(Σopg
M , Eopg

M ) by the fullness
of RM (Thm. 3.15), the above Thm. 5.10 says that we can calculate whether an entry position is winning,
losing, or pending, either (i) by calculating strategies (i.e., by WM ), or equivalently (ii) by induction (i.e., by
J−KM ) without calculating strategies. An elaborated example on how we can compute the denotation of an
entry position of an open parity game by the induction J−KM can be found below.

Finally, note that the notion of winning/losing/pending position is defined for Int(FinScottLop
!M

), and hence

is defined also for F(Σopg
M , Eopg

M ) and OPGM , by using J−KM and WM , respectively. On the other hand, the
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a
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b
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c
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(a) Parity game A.

1
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(b) Open parity game A1.

1

2

3

a

∃, 1
1′

2′

(c) Open parity game A2.

1

2

b

∀, 1

c

∃, 2

(d) Open parity game A3.

Fig. 8. An extended example.

notion of winning/losing/pending strategy is defined for morphisms of OPGM (and hence of F(Σopg
M , Eopg

M ), too)
but not of Int(FinScottLop

!M
). In particular, we can conclude that we have given an abstract (or extensional)

semantics for open parity games, by eliminating the information of strategies.

Example 5.11 Let A be the open parity game in Fig. 8(a). We want to check whether the position 1 is
winning by composing the interpretations of A’s subgames. For more details, see Appendix D.

Concretely, A is divided as A3 ◦ A2 ◦ A1 with A1, A2, and A3 shown in Fig. 8(b), 8(c), and 8(d), respec-
tively (note that open ends are labelled using prop-style ordering, and while the ordering in Int(FinScottLop

!M
)

is different, we keep the same notations for readability). It follows directly by unfolding definitions
and by compact closedness of J−KM that JA1KM = {(T, 1) | (0, 3′) ∈ T} ∪ {(T, 1′) | (0, 2′) ∈ T}, JA2KM =
{(T, i) | i ∈ {2, 3, 2′} ,∃j ∈ {1, 1′} , (1, j) ∈ T}, and JA3KM = {(T, 1) | (2, 2) ∈ T}, which are indeed the expected
resuts. For example, to compute JA1KM , we can decompose A1 as dl ⊕ idr, so JA1KM = dJlKM ⊕ idJrKM , which

can easily be computed from the definition of the identity in FinScottLop
!M

.

In order to compute the composition of two interpretations in Int(FinScottLop
!M

), we need to compute a

trace, and therefore semantic run-trees (we can avoid it in A2 and A3 above because they can be reorganized so
that composition involves a trivial trace). In semantic run-trees corresponding to JA2KM ◦ JA1KM , there must
be no infinite path (corresponding to the intuition that the only infinite path is losing), and the only possible
leaf is 1′ (the only exit position), while conditions in Def. 4.6 (involving JA2KM and JA1KM above) ensure that
(1, 1′) must be one of the leaves, which gives JA2 ◦ A1KM = {(T, i) | i ∈ {1, 2′} , (1, 1′) ∈ T}.

Similarly, to compose JA3KM with JA2 ◦ A1KM , we also have to compute the corresponding semantic run-
trees. Here, there can be no leaves (no exit positions), and the run-tree corresponding to taking the loop
infinitely meets the parity condition (because all its nodes are (2, 1′), except for the root), so (∅, 1) is in the
interpretation, whence JAKM = {(T, 1) | true} = {(∅, 1)}. Therefore, 1 is a winning poistion in G.

6 Conclusions and Future Work

We have given a compositional approach to parity games by exhibiting their underlying compact closed struc-
ture. Parity games can be composed by considering open ends, and we defined a prop that gives a graphical
language to describe such open parity games. At the semantic level, we have given a notion of winning/losing
positions that takes open ends into account. It retains enough information to be compositional, but is still
extensional, as it can be computed without referring to starategies.

The current semantic category is a strategy-insensitive model, in that it only keeps track of the
(non)existence of a winning strategy, while strategy-sensitive models should keep track of all strategies (per-
haps up to some suitable equivalence). Strategy-sensitive models can easily be obtained when restricting to
history-free strategies. One future work is to find some history-dependent strategy-sensitive model.

It could be fruitful to deepen the link between the existing body of work on props and our use of props
in this work. For example, by showing equivalence between the graphical language and the category of open
parity games, we could get decidability results on parity games from the syntax, as in [5].

Another possible future work is the coalgebraic treatment of open parity games. There seems a bijective
correspondence between open parity games up to some notion of bisimilarity and pairs of functions [m] → Q
and Q→ P (Q+[n])×{∃,∀}×NM up to the bisimilarity of coalgebras. Then there might exist a compact closed
structure in the category of coalgebraic open parity games up to the bisimilarity. However, it seems subtle to
give the same categorical structure in the category of, say, the above form of coalgebras up to isomorphism.
Also, it might be interesting to give a functor (similar to RM ) from some graphical category to the category of
coalgebras up to bisimilarity by using bialgebraic methods [30, 38]. We did not take the bisimilarity approach
in this paper because in game theory we basically consider the level up to isomorphism, say, for complexity.
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[24] André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in mathematics, 88(1):55–112, 1991.
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A The Int Construction

In this section, we recall the notions of traced symmetric monoidal category, compact closed category, and the
Int construction. We assume that readers are familiar with symmetric monoidal categories [32]. A symmetric
monoidal category (C,⊗, I,a, l, r, σ) is a strict symmetric monoidal category if the associator a, the left unitor
l, and the right unitor r are the identity natural transformations. For readability and without loss of generality,
we deal with symmetric monoidal categories as strict symmetric monoidal categories.

We begin with the definition of a traced symmetric monoidal category [25]. For another equivalent axiom-
atization, see [20].

Definition A.1 (traced symmetric monoidal category [25]) A traced symmetric monoidal category is a
symmetric monoidal category (C,⊗, I, σ) equipped with a trace operator trCZ;X,Y : C(Z⊗X,Z⊗Y )→ C(X,Y )
that satisfies the following conditions:

trCI;X,Y (f) = f (f : X → Y ) (Vanishing1)

trCU⊗W ;X,Y (f) = trCW ;X,Y (trCU ;W⊗X,W⊗Y (f)) (f : U ⊗W ⊗X → U ⊗W ⊗ Y ) (Vanishing2)

trCU ;X,Y (f)⊗ g = trCU ;X⊗W,Y⊗Z(f ⊗ g) (f : U ⊗X → U ⊗ Y and g : W → Z) (Superposing)

trCX;X,X(σX,X) = idX (Yanking)

trCU ;X′,Y (f ◦ (idU ⊗ g)) = trCU ;X,Y (f) ◦ g (f : U ⊗X → U ⊗ Y and g : X ′ → X) (Naturality in X)

trCU ;X,Y ′((idU ⊗ g) ◦ f) = g ◦ trCU ;X,Y (f) (f : U ⊗X → U ⊗ Y and g : Y → Y ′) (Naturality in Y )

trCU ;X,Y ((g ⊗ idY ) ◦ f) = trCU ′;X,Y (f ◦ (g ⊗ idX)) (f : U ⊗X → U ′ ⊗ Y and g : U ′ → U) (Dinaturality in U).
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Definition A.2 (traced symmetric strong monoidal functor [25]) Let (C,⊗C, IC, σC, trC) and
(D,⊗D, ID, σD, trD) be traced symmetric monoidal categories. A traced symmetric strong monoidal func-
tor F : (C,⊗C, IC, σC, trC) → (D,⊗D, ID, σD, trD) is a symmetric strong monoidal functor

(
F : C → D,

(φX,Y : F (X)⊗D F (Y )→ F (X ⊗C Y ))X,Y , φ
0 : ID → F (IC)

)
that satisfies the following condition:

trDF (Z);F (X),F (Y )

(
φ−1
F (Z),F (Y ) ◦ F (f) ◦ φF (Z),F (X)

)
= F

(
trCZ;X,Y (f)

)
(f : Z ⊗C X → Z ⊗C Y ).

A compact closed category [10] is a symmetric monoidal category where each object A has a dual object
A⊥; one typical example is the category of finite dimensional vector spaces V , which have the dual spaces V ∗.
For the notion of strict compact closed category, see [28, §9] (or Rem. B.2).

Definition A.3 (compact closed category) A compact closed category is a symmetric monoidal category
(C,⊗, I, σ) that has, for every object A, a chosen triple of a (left) dual object A⊥, an unit dA : I → A ⊗ A⊥,
and a counit eA : A⊥ ⊗A→ I, and satisfies the following conditions:

(eA ⊗ idA⊥) ◦ (idA⊥ ⊗ dA) = idA⊥ ,

(idA ⊗ eA) ◦ (dA ⊗ idA) = idA.

A compact closed functor is defined to be just a symmetric strong monoidal functor. We note that every
symmetric strong monoidal functor between compact closed functors preserves the dual objects up to canonical
isomorphism.

Every compact closed category has the canonical trace operator. For example, the application of the trace
operator in Figure 2(c) is obtained by the unit and the counit as in Figure 2(b); see [25] for the formal defi-
nition. Thus, there is an embedding from compact closed categories to traced symmetric monoidal categories.
Conversely, there is a free construction of a compact closed category Int(C) from a traced symmetric monoidal
category C. This free construction is called the Int construction [25].

Definition A.4 (the Int construction of 0-cell [25]) Let (C,⊗, I, σ, tr) be a traced symmetric monoidal
category. We define a compact closed category (Int(C),⊗Int(C), IInt(C), σInt(C)) by the following:

(i) An object of Int(C) is a pair (X+, X−) of objects X+, X− in C.

(ii) A morphism f in Int(C)((X+, X−), (Y+, Y−)) is a morphism f ∈ C(X+ ⊗ Y−, Y+ ⊗X−).

(iii) Let f ∈ Int(C)((X+, X−), (Y+, Y−)) and g ∈ Int(C)((Y+, Y−), (Z+, Z−)). The composite of f and g is
trCY−;X+⊗Z−,Z+⊗X−

(
(σZ+,Y− ⊗ idX−) ◦ (g ⊗ idX−) ◦ (idY+

⊗ σX−,Z−) ◦ (f ⊗ idZ−) ◦ (σY−,X+
⊗ idZ−)

)
.

(iv) The identity over (X+, X−) is defined by id(X+,X−) := idX+⊗X− .

(v) The tensor product (X+, X−)⊗Int(C)(Y+, Y−) is (X+⊗Y+, Y−⊗X−), and (f : (X+, X−)→ (Y+, Y−))⊗Int(C)

(g : (X ′+, X
′
−)→ (Y ′+, Y

′
−)) is (idY+

⊗g⊗ idX−)◦(σX′+,Y+
⊗σX−,Y ′−)◦(idX′+⊗f⊗ idY ′−)◦(σX+,X′+

⊗σY ′−,Y−).

(vi) The monoidal unit IInt(C) is (I, I).

(vii) The swap σ
Int(C)
(X+,X−),(Y+,Y−) is σ(X+,Y+) ⊗ σ(Y−,X−).

(viii) (X+, X−) has as dual object (X−, X+), with idX+⊗X− as a unit d
Int(C)
(X+,X−), and idX−⊗X+ as a counit

e
Int(C)
(X+,X−).

Definition A.5 (the Int construction of 1-cell [25]) Let C and D be traced symmetric monoidal categories,
and F : C → D be a traced symmetric strong monoidal functor. We define a compact closed functor Int(F ) :
Int(C)→ Int(D) by the following:

Int(F )((X+, X−)) := (F (X+), F (X−)),

Int(F )(f : (X+, X−)→ (Y+, Y−)) := (φFY+,X−)−1 ◦ F (f) ◦ φFX+,Y− ,

φ
Int(F )
(X+,X−),(Y+,Y−) := φFX+,Y+

⊗ (φFY−,X−)−1,

φInt(F ),0 := idF (IC).

Definition A.6 Let C be a traced symmertic monoidal category. We define a traced symmetric strong
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monoidal functor ηInt
C : C→ Int(C) by the following:

ηInt
C (X) := (X, IC),

ηInt
C (f) := f,

φ
ηIntC
X,Y := idX⊗Y ,

φη
Int
C ,IC := idIC .

The following proposition states that the Int construction is a free construction.

Theorem A.7 ([25] and [21]) The embedding of the 2-category CpCC in the 2-category TrSMCg has a
left biadjoint Int whose unit is given by the functors

(
ηInt
C : C→ Int(C)

)
C∈TrSMCg

. 2

B Free Compact Closed Categories and Fullness of the Functor RM

Here we explain the free compact closedness of F(Σopg
M , Eopg

M ) with a 2-categorical and generalized statement
(§B.1), the relationship between the free compact closed categories and the free traced symmetric monoidal
categories by Kissinger (§B.2), and the fullness of RM (§B.3).

Given categories C and D, we write [C,D] for the functor category, and we write [C,D]g for the subcategory
of functors and natural isomorphisms.

B.1 Free Compact Closedness of F(Σopg
M , Eopg

M )

Here we give a 2-categorical and generalized version of Thm. 3.13, and suppose the familiarity to 2-category
theory. We first give a generalization of the notion of CCS to arbitrary color sets C:

Definition B.1 We call an object of the category Set(C+C)∗×(C+C)∗ a (C-colored) compact closed signature
(C-CCS, for short).

We define an involution operator (−)⊥ : (C + C)∗ → (C + C)∗ by (ini(c))
⊥ := in3−i(c) (for i = 1, 2),

ε⊥ := ε, and (x1 · · · · · xn)⊥ := x⊥n · · · · · x⊥1 . Then (C + C)∗ with embedding in1(−) : C → (C + C)∗ is the
free involutive monoid generated by C. (An involutive monoid is a monoid with unary operator (−)⊥ and the
following axioms: (x⊥)⊥ = x, (xy)⊥ = y⊥x⊥, and redundantly e⊥ = e.) We write in1(c) ∈ (C + C)∗ simply
as c. We identify {r, l}∗ with ({r} + {r})∗; thus the notion of CCS defined in §3.2 agrees with the notion of
{r}-colored CCS, i.e., single-colored CCS.

Remark B.2 Definition B.1 is inspired by the notion of strict compact closed category [28]. A compact closed
category C is strict if C is strict as a monoidal category and moreover the following canonical isormophisms
are the identities: (A⊥)⊥ ∼= A, (A ⊗ B)⊥ ∼= B⊥ ⊗ A⊥, and I⊥ ∼= I. Thus we are led to use the notion
of involutive monoid in the definitions of the compact closed version of the notions of prop and symmetric
monoidal signature, though we do not pursue the detail in this paper.

Next we generalize {r, l}-SMT (Σde
M , E

de
M ) given in Def. 3.6 as follows:

Definition B.3 (SMT T de
Σ = (Σde, Ede

Σ ) of CCS Σ) Given a C-CCS Σ, we define a (C + C)-SMT T de
Σ =

(Σde, Ede
Σ , l, r) as follows:

Σde(ε, c · c⊥) := Σ(ε, c · c⊥) + {dc} (for c ∈ C),

Σde(c⊥ · c, ε) := Σ(c⊥ · c, ε) + {ec} (for c ∈ C),

Σde(w, u) := Σ(w, u) (for other w, u ∈ (C + C)∗),

and Ede
Σ (c, c) := {(idc⊕ec)◦(dc⊕idc) = idc}, Ede

Σ (c⊥, c⊥) := {(ec⊕idc⊥)◦(idc⊥⊕dc) = idc⊥}, and Ede
Σ (w, u) := ∅

otherwise, where the monoidal category structures id, ◦,⊕ are those of FC+C
sig (Σde). Then l and r are the left

hand side and right hand side, respectively.

Note that the {r, l}-SMT (Σopg
M , Eopg

M ) is nothing but T de
ΣM

= (Σde
M , E

de
ΣM

), where ΣM is given in Def. 3.10.

Above, the unit dc and counit ec are given just for a color c ∈ C, but we can extend them to all the
elements of (C + C)∗ in an obvious way so that the following coherence conditions for strict compact closed
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category [28, Sections 6 and 9] hold:

dε = idε, dw·u = (idw ⊕ du ⊕ idw⊥) ◦ dw, dw⊥ = σw,w⊥ ◦ dw,
eε = idε, ew·u = eu ◦ (idu⊥ ⊕ ew ⊕ idu), and ew⊥ = ew ◦ σw,w⊥ .

where σw,u : w ·u→ u ·w is the swap. Then, we also have the triangular identities for dw and ew. (To construct
a prop isomorphic to F(T de

Σ ), we can alternatively use the (C + C)-SMT that is obtained by adding to T de
Σ

all dw, ew, and the triangular identities for them as well as the above coherence equations, among which the
former (or latter) three are sufficient.)

We generalize Def. 3.11 and 3.12 with arbitrary C-CCSs, and also extend them by dealing with also
morphisms.

Definition B.4 (valuation, [Σ,C]cpt
g ) For a C-CCS Σ and a compact closed category C, we define the

category [Σ,C]cpt
g as follows. An object V , called a valuation, is a pair (V, (Vw,u)w,u) such that

V : C → ob(C) Vw,u : Σ(w, u)→ C(V ∗(w), V ∗(u)) (w, u ∈ (C + C)∗)

where V ∗(w) for w ∈ (C + C)∗ is defined by the following: V ∗(ε) := I, and for w ∈ (C + C)∗, V ∗(w · c) :=
V ∗(w) ⊗ V (c) and V ∗(w · c⊥) := V ∗(w) ⊗ V (c)⊥. A morphism θ : V → W , called a valuation morphism, is a
family

(
θc : V (c)→W (c)

)
c∈C of isomorphisms in C such that for all f ∈ Σ(w, u),

θ∗u ◦ Vw,u(f) = Ww,u(f) ◦ θ∗w

holds where θ∗w : V ∗(w)→W ∗(w) for w ∈ (C +C)∗ is defined by the following: θ∗ε := idI , θ
∗
w·c := θ∗w ⊗ θc, and

θ∗w·c⊥ := θ∗w ⊗ (θ⊥c )−1.

Definition B.5 (action on valuations) For a C-CCS Σ and compact closed categories C and D, the action
(− ◦ −)C,D,Σ, written also (− ◦ −) for short, is a functor (− ◦ −)C,D,Σ : CpCC(C,D) × [Σ,C]cpt

g → [Σ,D]cpt
g

defined by the following:

(F ◦ V )(c) := F (V (c)) and (F ◦ V )w,u(f) := (φFu )−1 ◦ F (Vw,u(f)) ◦ φFw

where the isomorphisms φFw (and φFu ) are defined as follows: For w = ci11 · · · cinn ∈ (C + C)∗, where each

c
ij
j is either cj or c⊥j , we let φF

c
i1
1 ···c

in
n

: F (V (c1))i1 ⊗ · · · ⊗ F (V (cn))in → F (V (c1)i1 ⊗ · · · ⊗ V (cn)in) be the

morphism obtained by the fact that F is a compact closed functor. Given an α ∈ CpCC(C,D)(F,G) and
θ ∈ [Σ,C]cpt

g (V,W ), we define (α ◦ θ)c := αW (c) ◦ F (θc) : F (V (c))→ G(W (c)).

Now we give the theorem of free compact closed categories. This statement is in a similar style to that in [24]
for free (symmetric) monoidal categories and to that in [29] for free traced symmetric monoidal categories.

Theorem B.6 (free compact closed categories) For a C-CCS Σ, F(TΣ) is a strict compact closed category.
Furthermore, F(TΣ) is a free compact closed category, i.e., there exists a valuation ηΣ ∈ ob([Σ,F(TΣ)]cpt

g ) such
that, for any compact closed category C,

(− ◦ ηΣ) : CpCC(F(TΣ),C)→ [Σ,C]cpt
g

yeilds an equivalence of categories. 2

The proof of the above theorem is given by a standard calculation; we use the universal property of Fsig

(in Thm. 3.4) and the coequalizer in the definition of F (in Def. 3.7). We note that the latter extends to a
2-coequalizer. We also use the fact that, given a valuation V ∈ [Σ,C]cpt

g , we obtain a C-colored prop C|V by
C|V (w, u) := C(V ∗(w), V ∗(u)), so that the obvious functor from C|V to C belongs to CpCC.

B.2 Relation to the Free Traced Symmetric Monoidal Category

Here we show that we have an equivalence F(T de
Σ ) ' Int(Ft(Σ

′)) if Σ and Σ′ have a certain relationship.
First we recall the result by Kissinger [29]. Differently from the original definition, in the next definition

we restrict morphisms to isomorphisms, to adjust it to the compact closed setting (as in [21]).
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Definition B.7 (valuation into traced symmetric monoidal category [Σ,C]trg ) For a C-signature Σ

and a traced symmetric monoidal category C, we define the category [Σ,C]trg as follows. An object V is a pair
(V, (Vw,u)w,u) such that

V : C → ob(C) Vw,u : Σ(w, u)→ C(V ∗(w), V ∗(u)) (w, u ∈ C∗)

where V ∗(c1 · · · · · cn) := V (c1) ⊗ · · · ⊗ V (cn). A morphism θ : V → W is a family
(
θc : V (c) → W (c)

)
c∈C of

isomorphisms in C such that for all f ∈ Σ(w, u),

θ∗u ◦ Vw,u(f) = Ww,u(f) ◦ θ∗w

holds where θ∗c1·····cn := θc1 ⊗ · · · ⊗ θcn : V ∗(c1 · · · · · cn)→W ∗(c1 · · · · · cn).

We omit the definition of the traced version of the action (− ◦ −)C,D,Σ (which is defined similarly to the
compact closed case), because it is not important in the proof of F(T de

Σ ) ' Int(Ft(Σ
′)) given below. The next

theorem is changed from the original one in [29]: morphisms of CpCC(F(TΣ),C) and [Σ,C]cpt
g are restricted

to isomorphisms.

Theorem B.8 (free traced symmetric monoidal categories [29]) For a C-signature Σ, Ft(Σ) is a strict
traced symmetric monoidal category. Furthermore, Ft(Σ) is a free traced symmetric monoidal category, i.e.,
there exists a valuation ηΣ ∈ ob([Σ,F(TΣ)]trg ) such that, for any traced symmetric monoidal category C,

(− ◦ ηΣ) : TrSMCg(Ft(Σ),C)→ [Σ,C]trg

yeilds an equivalence of categories. 2

In order to show F(T de
Σ ) ' Int(Ft(Σ

′)), we next give the relationship between the different notions of C-

CCS Σ and C-signature Σ′. Specifically, given a C-CCS Σ ∈ Set(C+C)∗×(C+C)∗ , we shall define the desired

C-signature Σint ∈ SetC
∗×C∗ to be the left Kan extension of Σ along a function intC : (C +C)∗× (C +C)∗ →

C∗ × C∗. The function intC—inspired by Int—is defined as follows.
First let [f, g] : C + C → C∗ be given by f(c) = c and g(c) = ε, and then we have [f, g]† : (C + C)∗ → C∗

as the monoid homomorphism induced by [f, g], and similarly, we have [g, f ]† : (C + C)∗ → C∗. Then let
ν := 〈[f, g]†, [g, f ]†〉 : (C +C)∗ → C∗ ×C∗, which, intuitively, “divides” colors in w ∈ (C +C)∗ into ones from
the left C of C+C and ones from the right C of C+C. Then we define intC : (C+C)∗× (C+C)∗ → C∗×C∗
by

intC(w, u) := (w+ · u−, u+ · w−)

where (w+, w−) = ν(w)

(u+, u−) = ν(u).

Let LintC be the left adjoint to SetintC : SetC
∗×C∗ → Set(C+C)∗×(C+C)∗ (where the left adjoint can be

obtained by the left Kan extension). Then we define ΣintC := LintC (Σ). We may write Σint for ΣintC .
With the left adjointness of Int (i.e. Thm. A.7) and of LintC , we can show the following as a corollary to

Thm. B.6 (and Thm. B.8).

Corollary B.9 For a C-CCS Σ, We have an equivalence F(TΣ) ' Int(Ft(Σ
int)) in CpCC. Hence the full

subcategory of F(TΣ) whose objects are those in (in1(C))∗ (⊆ (C + C)∗) is isomorphic to Ft(Σ
int) as traced

symmetric monoidal categories.
Especially, specializing to the {r}-CCS ΣM given in Def. 3.10, we have an equivalence F(Σopg

M , Eopg
M ) '

Int(Ft(Σ
int
M )) in CpCC, and the full subcategory of F(Σopg

M , Eopg
M ) whose objects are those in {r}∗ (⊆ {r, l}∗)

is isomorphic to Ft(Σ
int
M ) as traced symmetric monoidal categories.

Thus, Int(Ft(Σ
int)) induces an alternative (up-to isomorphic) construction of F(TΣ), by using the strictifi-

cation of compact closed categories [28] (and then by adjusting objects to ones in (C +C)∗). Conversely, as in
the corollary, the full subcategory of F(TΣ) gives an alternative (up-to isomorphic) construction of Ft(Σ

int).
To show the above corollary easily, we prepare some definitions. In the next definition, when V ∈ [C,C] is

given, Cm
C (V, V ) gives the underlying C-signature of a monoidal category C. Below, we use the notations V ∗

and θ∗ given in Def. B.7
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Definition B.10 Given a monoidal category C, we define Cm
C : [C,C]opg × [C,C]g → SetC

∗×C∗ as follows: for
(V ′, V ) ∈ [C,C]opg × [C,C]g and (w, u) ∈ C∗ × C∗,

Cm
C (V ′, V )(w, u) := C(V ′∗(w), V ∗(u)).

For θ′ : W ′ → V ′ and θ : V →W in [C,C]g and (w, u) ∈ C∗ × C∗, we define

Cm
C (θ′, θ)(w, u) := C(θ′∗w , θ

∗
u) : C(V ′∗(w), V ∗(u))→ C(W ′∗(w),W ∗(u)).

We also have the compact closed version of the above notion; below we use the notations V ∗ and θ∗ given
in Def. B.4.

Definition B.11 Given a compact closed category C, we define Cc
C : [C,C]opg × [C,C]g → Set(C+C)∗×(C+C)∗

as follows: for (V ′, V ) ∈ [C,C]opg × [C,C]g and (w, u) ∈ (C + C)∗ × (C + C)∗,

Cc
C(V ′, V )(w, u) := C(V ′∗(w), V ∗(u)).

For θ′ : W ′ → V ′ and θ : V →W in [C,C]g and (w, u) ∈ (C + C)∗ × (C + C)∗, we define

Cc
C(θ′, θ)(w, u) := C(θ′∗w , θ

∗
u) : C(V ′∗(w), V ∗(u))→ C(W ′∗(w),W ∗(u)).

The following is a variant of the notion of the category of elements:

Definition B.12 (category of elements of mixed-variant functor) Given a category C and a functor

F : Cop × C → Set, we define the category elC∈CF (C,C) as follows: An object is a pair of X ∈ C and x ∈
F (C,C). A morphism f : (X,x)→ (Y, y) is a morphism f : X → Y in C such that F (X, f)(x) = F (f, Y )(y).
The identity and the composition is given by those of C.

The construction F 7→ elC∈CF (C,C) extends to a functor from [Cop × C,Set] to Cat. Therefore:

Lemma B.13 If F and G are isomorphic, then so are elC∈CF (C,C) and elC∈CG(C,C). 2

Next we reformulate the notion of valuation.

Lemma B.14 For a C-signature Σ and a traced symmetric monoidal category C, we have an isomorphism

[Σ,C]trg
∼= elV ∈[C,C]gSetC

∗×C∗(Σ,Cm
C (V, V )).

Also, for a C-CCS Σ and a compact closed category C, we have an isomorphism

[Σ,C]cpt
g

∼= elV ∈[C,C]gSet(C+C)∗×(C+C)∗(Σ,Cc
C(V, V )).

2

Now we show Cor. B.9:

Proof. We only show the equivalence F(TΣ) ' Int(Ft(Σ
int)) in CpCC, from which the remaining parts follow

easily.
We have

CpCC(Int(Ft(Σ
int)),C)

' TrSMCg(Ft(Σ
int),C) (Thm. A.7: Int is a left biadjoint)

' [Σint,C]trg (Thm. B.8: Ft is the free TSMC construction)

' elV ∈[C,C]gSetC
∗×C∗(Σint,Cm

C (V, V )). (Lem. B.14: reformulation of valuations)

' elV ∈[C,C]gSet(C+C)∗×(C+C)∗(Σ,SetintC (Cm
C (V, V ))). (Σint = LintC (Σ) and LintC a SetintC )
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and also we have

CpCC(F(TΣ),C)

' [Σ,C]cpt
g (Thm. B.6: F(T(−)) is the free CpCC construction)

' elV ∈[C,C]gSet(C+C)∗×(C+C)∗(Σ,Cc
C(V, V )). (Lem. B.14: reformulation of valuations)

Thus, by Lem. B.13, we only need to show the following isomorphism

SetintC (Cm
C (V, V )) ∼= Cc

C(V, V ), i.e.,

C(V ∗(w+ · u−), V ∗(u+ · w−)) ∼= C(V ∗(w), V ∗(u)) where (w+ · u−, u+ · w−) = intC(w, u).

This can be shown by using the internal adjointness of duals X⊥ in C (recall that the dual X⊥ can be seen
as an internal left adjoint to X in C, where a strict monoidal category C can be seen as the single-object
2-category [28]). 2

We also have inl := (in1)∗ × (in1)∗ : C∗ ×C∗ → (C +C)∗ × (C +C)∗ in the converse direction of intC , and

have the left adjoint Linl to Setinl : Set(C+C)∗×(C+C)∗ → SetC
∗×C∗ . This gives a similar result to Cor. B.9

for a given C-signature Σ and Linl(Σ) (rather than for a given C-CCS Σ and LintC (Σ)). Especially, given a
C-signature Σ, the full subcategory of F(TLinl(Σ)) whose objects are those in (in1(C))∗ (⊆ (C + C)∗) gives an
alternative (up-to isomorphic) construction of Ft(Σ).

B.3 Fullness of the Functor RM
We prove Thm. 3.15, which says that the functor RM : F(Σopg

M , Eopg
M )→ OPGM is full. For this, it is sufficient

to show that Rr
M : Ft(Σ

int
M )→ OPGr

M is full, because, if a traced symmetric strong monoidal functor F is full,
so is Int(F ).

Let A be a rightward open parity game from m to n. Let k be the size of E. We define a graphical game

f ∈ Ft(Σ
int
M )(rk+m, rk+n) so thatRr

M (tr
Ft(Σ

int
M )

k;m,n (f)) ∼ A. We first take enumerations of positions [m]+[n]+Q =

{s1, s2, . . . } and of edges E = {e1, e2, . . . }. Then for each position si, we prepare a fresh node 〈si〉 (of the
form nw,ur,p ) in the graphical language if si is an internal position, and prepare an identity game 〈si〉 on r if si
is an open end. Then we vertically compose all the games 〈si〉. For each internal position si, the role r and
priority p of 〈si〉 = nw,ur,p are obviously inherited from those of si in A, and the domain w and codomain u will
be determined below.

For each ` = 1, . . . , k, if e` = (si` , sj`), then we add an edge from a fresh exit position of 〈si`〉 to the exit
position k of f , and similarly, we add an edge to a fresh entry position of 〈sj`〉 from the entry position ` of f .
Also, for each a ∈ [m], we add an edge from the entry position k + a of f to the unique entry position of the
identity game 〈a〉 prepared above, and similarly, for each b ∈ [n], we add an edge to the exit position k+ b of f
from the unique exit position of the identity game 〈b〉. Above, connecting edge can be done by using suitable

swap games. Then we can show that Rr
M (tr

Ft(Σ
int
M )

k;m,n (f)) ∼ A, where an isomorphism for the equialence relation
∼ is given obviously from the above construction.

C Fixpoint Operator on FinScottL!

Here we give the definition of the fixpoint operator introduced in [16,17], with our notation.

Definition C.1 (semantic run-tree for fixGM[16, 17]) Let R ∈ FinScottL!(A + B,B) and b ∈ |B|; then
especially, R ⊆ P (NM×(|A|+ |B|))×|B|, and, intuitively, think of b as an element of the codomain of R, rather
than the domain. A semantic run-tree ψ (for fixpoint operator) is a possibly infinite (NM × (|A|+ |B|))-labeled
tree ψ that satisfies the following conditions:

(i) The label of the root of ψ is (0, b).

(ii) Any non-leaf node of ψ has the label in NM × |B|.
(iii) For any non-leaf node of ψ with label (p, b′) ∈ NM × |B|, let X ⊆ NM × (|A|+ |B|) be the set of the labels

of all the children of the node. Then (X, b′) ∈ R.

(iv) For any leaf node of ψ such that its label belongs to NM × |B| (rather than NM × |A|) and is (p, b′), we
have (∅, b′) ∈ R.
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1

a

∃, 1
b

∀, 1

c

∃, 2

(a) Open parity game A.

1

1′

2′

3′

(b) Open parity game A1.

1

2

3

a

∃, 1
1′

2′

(c) Open parity game A2.

1

2

b

∀, 1

c

∃, 2

(d) Open parity game A3.

Fig. D.1. A detailed example.

We write SRTfix(A,B,R, b) for the set of semantic run-trees for fixpoint operator with respect to A,B,R and

b. For a semantic run-tree ψ ∈ SRTfix(A,B,R, b), we define leavesfix(ψ) ∈ |P(�M (A))| = P (NM × |A|) as the
set of elements (p, a) ∈ NM × |A| such that there exists a leaf ` of ψ such that: (i) the label of leaf ` is (p′, a)
for some p′ ∈ NM and (ii) p is the maximal priority encountered on the path from the leaf ` to the root of ψ.

Definition C.2 (fixpoint operator fixGM [16, 17]) For every A,B ∈ FinScottL!, we define a fixpoint

operator fixGM
A,B : FinScottL!(A+B,B)→ FinScottL!(A,B) as follows:

fixGM
A,B (R) := {(leavesfix(ψ), b) | ψ ∈ SRTfix(A,B,R, b) and every infinite path on ψ meets the parity condition}

where an infinite sequence ((pi, bi))i∈N of labels meets the parity condition if the maximal priority that inifinitely
occurs in the sequence is even (i.e., max{q | #{i | pi = q} =∞} is even).

D A Detailed Example

Here we demonstrate the use of our categorical theory by exhibiting the compositional solution of an open
parity game. Such compositionality is enabled by the fact that the functors RM , J−KM , and WM preserve
suitable structures.

Consider the open parity game A shown in Fig. D.1(a), where the open ends are labelled using prop-style
ordering. In reality, the numbering differs in Int(FinScottLop

!M
) (because the Int construction numbers ends

differently from props), but we make sure to refer to ends by their labels in Fig. D.1 throughout the explanation.
Our goal is to check whether the entry position 1 is a winning position or not in A. We do so compositionally,

i.e. by solving A’s subgames and propagating those solutions. Concretely, A is divided into A1, A2, and A3

shown in Fig. D.1(b), Fig. D.1(c), and Fig. D.1(d), respectively.
Let us start with A1, which can be decomposed as dl ⊕ idr, whence JA1KM = dJlKM ⊕ idJrKM by compact

closedness of J−KM . When translated back to the level of FinScottLop
!M

, the unit dl in Int(FinScottLop
!M

) is

a morphism from {1′} to {2′}, defined as the identity (up to isomorphism here, since we changed the names

to reflect those in Fig. D.1). By definition of Kleisli categories, this identity is ε!M[1] = {(T, 1′) | (0, 2′) ∈ T}.
Similarly idJrKM = {(T, 1) | (0, 3′) ∈ T}. Therefore, the interpretation JA1KM is the following:

JA1KM = {(T, 1) | (0, 3′) ∈ T} ∪ {(T, 1′) | (0, 2′) ∈ T} .

While A2 is a slightly more complex game than A1 (involving a generator, a parallel composition, and a
sequential composition), because the counit is basically an identity in the Int construction, the parallal and
sequential compositions amount to bureaucratic index tracking, and we get that the interpretation is that of
the generator:

JA2KM = {(T, i) | i ∈ {2, 3, 2′} ,∃j ∈ {1, 1′} , (1, j) ∈ T} .

The last subgame, A3, is defined as the composition of two generators (up to a unit). Here, the computation
involves a non-trivial composition in FinScottLop

!M
, for which we need a direct and explicit definition of

δ!M , which is a bit more involved and can be found in [16], so we skip here. Intuitively, δ!M takes care
of both the non-determinism and of registering the highest priority seen along a path. In our case, we get
JA3KM = {(T, 1′) | (2, 2) ∈ T} ◦ {(T, 1) | (1, 1′) ∈ T} (for some fictious position 1′ between the two generators),
so:

JA3KM = {(T, 1) | (2, 2) ∈ T} .
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Next, we turn our attention to the first sequential composition that is not trivial in Int(FinScottLop
!M

).

Indeed, up to this point, none of the computations required to compute a trace (because the trace was over
the tensor unit and therefore trivial), but the interpretation of A2 ◦ A1 will. By definition, if f : (X+, X−)→
(Y+, Y−) and g : (Y+, Y−)→ (Z+, Z−) in Int(FinScottLop

!M
), then g ◦ f is computed (in FinScottLop

!M
) as the

trace over Y− of:

((σZ+,Y− ◦ g)⊕ idX−) ◦ (idY+ ⊕ σX−,Z−) ◦ ((f ◦ σY−,X+)⊕ idZ−).

Here, however, X− = I, so σX−,Z− = idZ− , JA1KM ◦ σY−,X+
= idY−,X+

(A1 is a swap), and σZ+,Y− ◦ JA2KM =
JA2KM (A2 is “symmetric” in 1 and 1′), we get that we need to compute the trace of JA2KM .

To this end, we compute the set of semantic run-trees ψ that correspond to it. Here, D = {2} = {1} (we
need to resort to such notation because we kept the names from Fig. D.1, but this does give the right intuition
that 2 and 1 get “connected” by the trace in A2), A = {3, 2′}, B = {1′}, and R = JA2KM .

The root of ψ must be (0, 3) or (0, 2′) by Def. 4.6(i). By Def. 4.6(iv) and the value of JA2KM , only elements
of the form (p, 1′) can be leaves, and in particular, the root cannot be a leaf. By Def. 4.6(iii), all non-leaves
must have either (1, 1) or (1, 1′) as one of its children. From this, we can deduce that, either ψ has (1, 1′) as
one of its leaves, or it has an infinite path with only parity 1, and therefore does not meet the parity condition.
This corresponds to the fact that, if ∃ wants to win, then they cannot choose to go through the cycle infinitely
often and have to go to 1′ at some point. Moreover, any ψ without leaves fails to meet the parity condition,
so (after renaming 3 to 1 because of the composition)

JA2 ◦ A1KM = {(T, i) | i ∈ {1, 2′} , (1, 1′) ∈ T} .

The computation follows the same step for the final composition. We need to take the trace of some
composite of JA2 ◦ A1KM , JA2KM , some swaps and identities, namely R = {(T, i) | i ∈ {1, 2} , (2, 2) ∈ T}. Here,
D = {2} = {2′}, A = {1}, and B = ∅. Contrary to the example above, however, there is a semantic run-tree
with no leaves that meets the parity condition: for example the tree whose root is (0, 1), and whose nodes all
have (2, 2) as their unique child (note that this does verify condition (iii) of Def. 4.6 because 2 = 2′). This
corresponds to the fact that this new cycle is winning for ∃. Finally, we get

JAKM = {(T, 1) | true} = {(∅, 1)},

which means that 1 is winning in A.
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