
Semirings, Generalized Effect Algebras, and

Weighted Language Equivalence

Clovis Eberhart
under the supervision of Marcello Bonsangue,

Jan Rutten, and Alexandra Silva

September 9, 2014

Contents

1 Introduction 1
1.1 Semirings and Power Series . 2
1.2 Coinductive Reasoning . 3
1.3 Automata from a Coinductive Point of View 5

2 From Fields to Semirings 8
2.1 A First Attempt: Computing the Star 8
2.2 Another Approach: Embeddings 9
2.3 Embedding a Semiring into a Field 11

3 Generalizations 13
3.1 Powerset . 13
3.2 Partial Semirings . 14
3.3 Theorem for Partial Semirings . 14

4 Proof Systems 15

5 Conclusion 16

A Proofs of commutations 18

1 Introduction

Weighted automata are automata where the transition and output functions,
instead of being 0-1 functions (acceptance-or-rejection of a word and existence-
or-absence of a transition), have “weights” associated to them. These weights
can represent the cost to pay to do a certain action, the profit gained from
doing a certain action, the duration of an action, the probability of that action
happening, etc. Since they are so versatile, they are used in different fields
of computer science, such as natural language processing, speech processing,
image processing, quantitative modeling, etc. They are also interesting from
another point of view, namely that they are mathematically more challenging

1

than classic automata. Basically, instead of associating 0 (reject) or 1 (accept) to
each word, a state associates a quantity from a semiring S (which will be defined
later) to each word, which can express several notions (cost, probability, etc.),
based on S’s structure. Therefore, there is a function from words to S associated
to each state of a weighted automaton, called the weighted language that state
recognizes. Two states are weighted language equivalent if they recognize the
same weighted language.

In [1], the authors give several ways to decide weighted language equivalence
for automata with weights on fields. However, these methods use linear algebra
tools that do not exist in general for semirings, while many of the most important
weighted automata have weights on semirings that are not fields. Furthermore,
it is also well-known that weighted language equivalence is not decidable for all
semirings. The goal of this work was to use the base results on fields and adapt
them to a larger class of automata to push further the limits of decidability.

We assume the reader to be familiar with basic category theory. The intro-
duction will contain the mathematical and categorical notions that the reader
will need to know in order to understand this work, as well as a description
of automata from a categorical point of view. In the first part, we first dis-
cuss a first approach that was tried and failed, then state and prove the main
result, and explain its limitations. In the second part, we discuss some pos-
sible generalizations of the approach used to prove the main result, especially
to structures where the addition is defined only partially. In the last part, we
show some sound and complete proof systems that we get “for free” from the
previous results.

1.1 Semirings and Power Series

It is natural in many fields of mathematics and computer science to have a struc-
ture with addition and multiplication that “behave well”, such as the structure
of ring, but where subtraction is not needed or cannot be defined. Such a
structure is called a semiring and is defined as follows:

Definition 1 (Semiring). A semiring (S,+, ·, 0, 1) is a tuple of a set S, together
with elements 0 and 1 of S and binary operations + and · such that:

• (S,+, 0) is a commutative monoid,

• (S, ·, 1) is a monoid,

• 0 is absorbing for ·,

• · distributes over +.

Example 1. Notable examples of semirings:

• rings and fields, such as Z, Q, and R, are special cases of semirings,

• the Boolean semiring {0, 1}, with 1 + 1 = 1,

• N with standard addition and multiplication,

• the tropical semiring (N ∪ {∞},min,+,∞, 0) and arctic semiring (N ∪
{−∞},max,+,−∞, 0),

2

• any Boolean algebra, in particular, for any set X, the powerset Boolean
algebra (2X ,∪,∩, ∅, X),

• the semiring of languages, with union as addition and concatenation as
multiplication...

Moreover, semirings have some nice properties that resemble those of rings.
For example, matrices (and n× n matrices) of elements of a semiring are again
semirings, functions (and finite support functions) from a set to a semiring again
form a semiring (with pointwise addition and multiplication), and much of the
theory of modules can be transferred to semimodules. Here, we will only be
interested in basic semimodule theory.

Definition 2 (Semimodule). A semimodule (M,+, ·, 0) on a semiring S is:

• a commutative monoid (M,+, 0) equipped with

• a scalar multiplication · : S×M →M such that:

• s ·0 = 0, s · (x+ y) = s ·x+ s · y, (s+ t) ·x = s ·x+ t ·x, (st) ·x = s · (t ·x),
and 1 · x = x.

Semimodules are to semirings what vector spaces are to fields. The mor-
phisms of semimodules are the linear functions between them, i.e., the functions
f such that f(

∑
i∈I λi · xi) =

∑
i∈I λi · f(xi), for all λi’s in S and xi’s in M .

Just like the free vector space on a field F associated to X is F(X) the set of all
functions from X to F with finite support, the free semimodule on a semiring
S associated to a set X is S(X), defined the same way. These functions will be
written as formal sums

∑n
i=1 λi · η(xi), where η(xi) maps xi to 1 and all other

xj ’s to 0.
Later on, we will also be interested in the notion of (formal) power series. If

Σ is an alphabet and S is a semiring, a power series r is simply a function from
the set of words Σ∗ to S. The reason why we will be interested in them is because
they can be seen as a semantics for some classes of automata. The set of all
power series is denoted S〈〈Σ∗〉〉. The value of r on a word w is noted (r, w), and
the functions themselves are denoted as formal sums (hence their name): r =∑
w∈Σ∗(r, w)w. The sum of power series is the pointwise sum, and the product

of power series is the Cauchy product: (r · r′, w) =
∑
w1w2=w(r, w1) · (r′, w2).

The 0 power series is defined by (0, w) = 0, and the 1 power series is defined
by (1, ε) = 1 and (1, aw) = 0. Power series again form a semiring with these
definitions.

A power series r is proper if (r, ε) = 0, and cycle-free if there is a k > 0
such that (r, ε)k = 0. If r is cycle-free, then the star of r is defined to be
r∗ =

∑
n∈N r

n (this sum is well defined because r is cycle-free). In [3], we can
find the following theorem that will be used later:

Theorem 1. If r is cycle-free, then the equation y = ry + r′ has a unique
solution σ = r∗r′.

1.2 Coinductive Reasoning

Here, we present the reader the basics of and some intuition about coinductive
reasoning, which will be crucial to understand this work, and we illustrate them
with the particular example of streams.

3

The most basic thing that can be said about coalgeraic reasoning is that it
is reasoning about state systems (labelled transition systems, automata, etc.).
A stream σ of elements in O is an infinite list σ(0), σ(1), σ(2) of elements of
O... However, that is only one possible view of streams. The coinductive view
of a stream is the following: a stream is an output value o(σ) = σ(0) in O and
a derivative σ′ such that σ′(n) = σ(n+ 1). Such a view is very useful when the
stream shows some regularity. For example, the stream σ such that σ(n) = 1
can be represented as o(σ) = 1 and σ′ = σ. Coinductive reasoning is powerful
for many reasons, such as allowing coinductive definitions, i.e., defining a stream
by defining its output and derivative, coinductive calculus, coinductive proofs,
the level of generality of some parts of the reasoning...

Coalgebras for a functor F : C → C is a pair of an object c of C and a
morphism α : c → Fc. They will be denoted α : c → Fc or c

α→ Fc. Streams
can be seen as coalgebras for the functor F : Set→ Set, X 7→ O ×X. Indeed,
the morphism α : X → N × X is just a pair 〈o, d〉 of an output function
o : X → O and a derivation function d : X → X. The representation of a
stream σ as a coalgebra 〈X,α〉 is therefore: X as the set of all derivatives σ(n),
o : σ(n) 7→ σ(n)(0) = σ(n) and d : σ(n) 7→ σ(n+1).

A morphism of coalgebras from α : c → Fc to β : d → Fd is a morphism
f : c→ d such that F (f) ◦ α = β ◦ f , i.e. that

c d

Fc Fd

f

α β

Ff

commutes. In loose terms, it means that f is a morphism from c to d that is
compatible with the coalgebra structures α and β. In the case of streams, a
morphism from a stream σ to a stream τ is simply a function that preserves
outputs and derivatives (for each σ(n)), since

X Y

O ×X O × Y

f

〈o, d〉 〈o′, d′〉

O × f

commutes, i.e., f ◦ d = d′ ◦ f and o = o′. Coalgebras and their morphisms form
a category.

Bisimulation is a notion that stems from concurrency theory and is about
whether two concurrent systems behave similarly. If F is a Set functor, a
bisimulation between two coalgebras α : X → FX and β : Y → FY is a set
R ⊆ X × Y such that there is another coalgebra γ : R → FR and coalgebra
morphisms f : γ → α and g : γ → β, i.e. such that

X R Y

FX FR FY

f g

γα β

Ff Fg

4

commutes. It basically means that R is a relation between the states of α and
the states of β that is compatible with their coalgebra structure. A bisimulation
on α : X → PX (or bisimulation on X, if it is unambiguous) is a bisimulation
between α and α. A bisimulation equivalence is a bisimulation that is also an
equivalence relation. There is a reason why bisimulation does not make much
sense on streams (which will be explained later on). However, coalgebras for
the functor X → O × X are more generally deterministic transition systems
with output. Indeed, X is the set of states of the transition system, o an output
function of each state, and d a transition function. In this case, it can be showed
that any state xi of the transition system on the left is bisimilar to y (i.e., there
is a bisimulation R such that (x, y) ∈ R).

x0 x1 x2 y. . .

1 1 1 1

Sometimes, the category of coalgebras Coal(F) of a functor F have a ter-
minal object, i.e., an object ∗ such that, for every other object c, there exists a
unique morphism from c to ∗. In the case of coalgebras, these objects are called
final coalgebras. All the functors we will study here possess final coalgebras.
This is due to the fact that all the functors that we will study here are bounded,
and any bounded functor has a final coalgebra [5]. Final coalgebras can also be
seen as a semantics for the systems described by the functor F . If α : X → FX
is a coalgebra and f is the F -morphism to the final coalgebra, then two states x
and y are said to be F -behaviorally equivalent if f(x) = f(y). Final coalgebras
also have other interesting properties:

Theorem 2. If π : P → FP is a final coalgebra, then π is an isomorphism.

Theorem 3 (Coinduction Proof Principle). If π : P → FP is a final coalgebra
and R is a bisimulation on P , then R is included in the equality relation.

In the case of the functor F : X 7→ O ×X, the final coalgebra is the set of
streams of elements in O. This is the reason why bisimulation does not make
sense on streams: bisimulations on final coalgebras are always included in the
equality relation. Therefore, since the equality relation is always a bisimulation,
bisimulations and bisimilarity do not make much sense on streams, which are
final. However, it also means that streams are a semantics for deterministic
transition systems with output, and indeed, if a system has an output function
o and a state x0 that goes to x1, then x2, etc., then x0 can be mapped to the
stream (o(x0), o(x1), o(x2), . . .), and that is the only way to map it to a stream
that is compatible with the output and transition structure.

The coinduction proof principle is very interesting, as it states that, in order
to prove that two prove that two states are equal, it is sufficient to prove that
they are bisimilar, i.e., it is sufficient to find a bisimulation that relates them.
In the case of streams, it means that, to prove that two streams are equal, it
is sufficient to find a bisimulation that relates them, which is very useful when
there is no known formula or no formula that is easy to manipulate to describe
then nth term of the stream.

We will also use some very basic coinductive calculus on power series later,
so let us first illustrate it on the simpler example of streams. Define X to be

5

the stream (0, 1, 0, 0, 0, . . .). All the reader will need to know is the very base of
coinductive calculus, which comes from a very simple observation:

Theorem 4 (Fundamental Theorem of Stream Calculus). For any stream σ:
σ = σ(0) +X × σ′

This generalizes very naturally to power series. If we note (σ)a the derivative
of σ in a (the power series that associates (σ, aw) to w) and Xa the power series
defined by (Xa, a) = 1, (Xa, w) = 0 for w 6= a:

Theorem 5 (Fundamental Theorem of Power Series Calculus). For any power
series σ:

σ = σ(ε) +
∑
a∈ΣXa × (σ)a

1.3 Automata from a Coinductive Point of View

Different classes of automata can be seen as coalgebras for different functors.
The strength of reasoning on coalgebras is that, once a property is proved for all
(or a significant class of) coalgebras, it can then be applied to specific functors,
such as the different classes f automata and transition systems.

For example, classic deterministic (complete) automata with input on an
alphabet Σ can be seen as coalgebras for the functor F = {0, 1} × −Σ. Indeed,
such a coalgebra is a pair 〈X,α〉 of a set (of states) X and a function α : X →
{0, 1} × XΣ, i.e., α = 〈o, t〉, where o : X → {0, 1} is the output function that
tells whether a state is accepting or not (and can be interpreted as a subset
F of final states of X), and t : X → XΣ is the transition function that tells,
given a state x and letter a, the state reached from x after reading a (note
that the only difference between these automata and classic automata is the
absence of an initial state, which is not very interesting from this point of view,
since each state has its own semantics). A morphism f from an automaton
〈Q,F, t〉 to an automaton 〈Q′, F ′, t′〉 is simply a function from Q to Q′ that
maps any state in F to a state in F ′ and that respects the transition structure,
i.e., f(t(x)(a)) = t′(f(x))(a).

The final coalgebra of this functor is the set of languages {0, 1}Σ∗ , equipped
with functions:

o :

∣∣∣∣∣∣
{0, 1}Σ∗ → {0, 1}

L 7→
{

1 if ε ∈ L
0 otherwise

and t :

∣∣∣∣ {0, 1}Σ∗ → ({0, 1}Σ∗)Σ

L 7→ a 7→ w 7→ L(aw)

The semantics of a state of an automaton is the language of words that state
recognizes (in the sense of classic automata theory), and two states are bisimilar
if and only if they recognize the same language.

Non-deterministic (finitely-branching) automata can be seen as coalgebras
for the functor F = {0, 1} × Pω(−)Σ, where Pω is the finite powerset functor
that associate to any set the set of its finite subsets. Indeed, here, a coalgebra
〈X,α〉 is a pair of a set of states X together with two functions: an output
function o : X → {0, 1} which, just like in the case of deterministic automata, is
interpreted as a subset of finite states, and a transition function t : X → Pω(X)Σ

which says, given a state x and a letter a, the set of states that can be reached
from x by reading a. This functor also has a final coalgebra (since it is bounded),

6

but we will not make it explicit here, as it is not enlightening and will not be
used again later.

The automata we are interested in here are not these automata, but weighted
automata. It means that the output and transition functions have “weights” that
can represent cost, probability, time, etc. To make the definition as broad as
possible, we have to understand what is needed to define such an automaton.
Let us take the example of non-deterministic automata, which can be seen as
weighted automata with weights in {0, 1}, and a word is accepted if and only if
its weight is 1. Computing the weight f(x)(w) of a word w in a state x is easy:
if the w is ε, then its weight is f(x)(ε) = o(x), otherwise w is aw′ for some a and
w′, and it is accepted if and only if w′ is accepted from any of the states reached
after reading a in x, i.e., f(x)(aw′) =

∑
x′∈t(x)(a) f(x′)(w′) (where 1 + 1 = 1).

Now, if instead of seeing t(x)(a) as a subset of X, we see it as a function t
that associates 1 to (x, a, x′) if and only if x′ is in t(x)(a) and 0 otherwise, this
expression can be seen as f(x)(aw′) =

∑
x′∈X t(x, a, x

′) · f(x′)(w′). Therefore,
if we take this formula and try to make it as general as possible, we see that
we need the weights to have a structure of semiring. Weighted automata with
weights in S are simply coalgebras for the functor F = S× S(−)Σ, where S(X)
is the set of functions from X to S with finite support, i.e., f(x) = 0S, except
for a finite number of x’s. Though this functor possesses a final coalgebra, it is
once again not enlightening, and will not be made explicit or used.

The states of a weighted automata do not recognize words. Instead, to
each word they associate a weight, as described above: f(x)(ε) = o(x) and
f(x)(aw′) =

∑
x′∈X t(x, a, x

′) · f(x′)(w′). This is the reason why they do not
recognize a language, but what is called a weighted language. A weighted lan-
guage is simply a function that associates to each word on an alphabet Σ a
weight in S, i.e., a weighted language is a power series in S〈〈Σ∗〉〉. We say that
two states are weighted language equivalent if they recognize the same weighted
language.

Example 2. Let us examine the following example:

x

1

y

1

z

0

a | 1
b | 2

b | 2
a, b | 1

b | 1
b | 2

a | 1

We want to show that x and y “behave the same way”, i.e., recognize the same
weighted language. There is a “semantic” morphism to the final coalgebra:

7

S(X)

S× S(X)Σ

SΣ∗

S× (SΣ∗)Σ.

J−K

〈o, t〉

S× (J−K)Σ

〈ε, d〉

To prove that x and y are equivalent is exactly to show that they have the same
image through J−K (more precisely, that η(x) and η(y) have the same images,
but we will not write the η’s for conciseness). However, since SΣ∗ is final, it
is sufficient to prove that JxK and JyK are bisimilar, since every bisimulation is
included in the equality relation. Therefore, it is sufficient to find a bisimulation
that relates JxK and JyK. Here, we will use the bisimulation R that relates λ JxK+
µ JyK + ν JzK and λ′ JxK + µ′ JyK + ν JzK if λ + µ = λ′ + µ′ (note that it does
relate JxK and JyK). Unfolding the definition of bisimulation for this particular
functor gives us that R is a bisimulation if for all pairs (x, y) in R, ε(x) = ε(y),
and for all a in Σ, d(x)(a)Rd(y)(a). But (dropping the J−K for conciseness)
ε(λx+µy+νz) = λo(x)+µo(y)+νo(z) = λ+µ = λ′+µ′, d(λx+µy+νz)(a) =
µx+λy+ νz Rµ′x+λ′y+ νz, and d(λx+µy+ νz)(b) = µx+ (2λ+µ)y+ 2(λ+
µ)z Rµ′x+ (2λ′ + µ′)y + 2(λ′ + µ′)z, so R is indeed a bisimulation, and x and
y are weighted language equivalent.

The weighted language recognized by a state can be expressed in terms of
final coalgebras. Take a weighted automaton with weights on a semiring S, i.e.,
a coalgebra 〈o, t〉 : X → S × S(X)Σ. The process of linearization transforms
it into a deterministic linear weighted automaton which is an automataon that
lives in the category SMod of semimodules: its set of states is now S(X) (which
is indeed a semimodule), η(x) outputs o(x) and makes a transition by reading
a to

∑n
j=1 t(x, a, xj) ·xj . Since the output and transition functions are semimo-

dule morphisms, the output and transition function of any state is defined by
linearity. Note that its set of states is not finite, but still of finite dimension if
X is finite. This automaton is now a coalgebra for the functor F = S × (−)Σ

(since it is a morphism S(X) → S × S(X)Σ), so it has a unique morphism to
the set of power series S〈〈Σ∗〉〉, which maps each state to the weighted language
it recognizes.

2 From Fields to Semirings

The main goal of this work is to extend a decidability result that is known for
automata with weights on a field to a larger class of automata. The result in
itself is that weighted language equivalence is decidable (for weighted automata
with weights on a field).

2.1 A First Attempt: Computing the Star

The first approach that we tried was to use the notion of star, which is very close
to the notion of inverse in linear algebra. Assume that 〈o, t〉 : X → S × S(X)
is an automaton with a finite number of states n, and take its linearization
〈o, t〉 : S(X) → S× S(X). If we note JxKS(X) the weighted language recognized
by state x, we have that

8

S(X)

S× S(X)Σ

SΣ∗

S× (SΣ∗)Σ

J−KS(X)

〈o, t〉

S× (J−KS(X))
Σ

〈ε, d〉

commutes. Call σ(i) the power series Jη(xi)KS(X). Then, by commutativity of

the diagram above, we have σi(ε) = o(ηX(xi)) = o(xi) (where ηX(x) is the func-
tion that maps x to 1 and the rest to 0) and (σi)a = (

q
t(ηX(xi))

y
S(X)

)Σ(a) =

Jt(xi)(a)KS(X) =
r∑n

j=1 ti,a,j · ηX(xj)
z

S(X)
=
∑n
j=1 ti,a,j · σj . We thus have n

pairs of power series equations relating the σi’s and their derivatives, as well as
the output and transition from the automaton. By using the fundamental theo-
rem of power series calculus, we have that σ = o(xi)+

∑
a∈ΣXa ·

∑n
j=1 ti,a,j ·σj .

By putting all n of these equations together, we find the following matrix equa-
tion: S = O + (

∑
a∈ΣXaTa)S, where S is the vertical vector of σi’s, O the

vertical vector of o(xi)’s, and Ta is the matrix of ti,a,j ’s. While viewing them as
matrices of power series is fine, it is also possible to see them as power series of
matrices (while the reader may think the multiplication would not behave the
same way with both views, it actually does).

Seeing them as power series, and noticing the fact that
∑
a∈ΣXaTa is proper

(and therefore cycle-free), we deduce that there is a unique solution to this
equation, which is S = (

∑
a∈ΣXaTa)∗O, and now seeing them as matrices, all

that is left is to compute the star of a matrix (defined by M∗ =
∑
n∈NM

n,
when the sum is well-defined).

However, it is not clear under which conditions the star can easily be com-
puted. It can obviously be computed when the semiring is a field (because
M∗ is (I −M)−1). However, in a more general case, it is not obvious what
can be done to compute the star. A possible step towards computing it would
be to find a global formula for Mn, which is already difficult enough. Indeed,
finding a global formula for Mn when M is a matrix whose elements are on a
field already uses mildly advanced mathematics, such as the Cayley–Hamilton
theorem, which already requires the ring to be commutative, and makes use of
notions that become much trickier once they are extended from fields to rings.
We were therefore unable to advance any further down this path, and had to
try another approach.

2.2 Another Approach: Embeddings

Retrospectively, the answer we came up with was very simple. The idea is
that if a semiring can be embedded into a field (or any semiring where we
know weighted language equivalence to be decidable), then its weighted language
equivalence should be the same as the field’s.

Theorem 6. Let S be a semiring, T another semiring, on which weighted lan-
guage equivalence is decidable, and i : S → T be a semiring monomorphism.
Weighted language equivalence is decidable on S.

Proof. Let 〈o, t〉 : X → S × S(X)Σ (in Set) be a weighted automaton on S.
Its lineraization is 〈o, t〉 : S(X) → S × S(X)Σ (in SMod) where 〈o, t〉 is the

9

linearization (in the sense of semimodules) of 〈o, t〉, i.e., the only semimodule
morphism that makes the following diagram commute in Set (this morphism
exists as a universal property of S(X)):

X

S(X),

S× S(X)Σ
〈o, t〉

ηSX
〈o, t〉

where ηSX(x) is the function that maps x to 1S and all other elements of X to
0S.

Similarly, one can define 〈io, i(X)Σt〉 : T(X) → T × T(X)Σ (in SMod),

where 〈io, i(X)Σt〉 is the linearization of 〈io, i(X)Σt〉, i.e. the only semimodule
morphism that makes the following diagram commute in Set:

X

T(X).

S× S(X)Σ T× T(X)Σ
〈o, t〉

ηTX

i× i(X)Σ

〈io, i(X)Σt〉

Now, we have two automata 〈o, t〉 : S(X) → S × S(X)Σ and 〈io, i(X)Σt〉 :
T(X)→ T×T(X)Σ that live in SMod. Therefore, we can define their semantics:

S(X)

S(S(X))

SΣ∗

S(SΣ∗),

J - KSS(X)

〈o, t〉

S(J - KSS(X))

〈εS, dS〉

T(X)

T (T(X))

TΣ∗

T (TΣ∗),

J - KTT(X)

〈io, i(X)Σt〉

T (J - KTT(X))

〈εT, dT〉

where S : X 7→ S ×XΣ and T : X 7→ T ×XΣ. Moreover, since i : S → T, we
can draw the following cube in Set:

10

S(X) SΣ∗

S(S(X)) S(SΣ∗)

T(X) TΣ∗

T (T(X)) T (TΣ∗)

J - KSS(X)

〈o, t〉

i(X)

〈εS, dS〉

iΣ
∗

S(J - KSS(X))

i× i(X)Σ i× (iΣ
∗
)Σ

J - KTT(X)

〈io, i(X)Σt〉

〈εT, dT〉

T (J - KSS(X))

and show that every face commutes. We already know that the front and back
faces commute. The left and right faces commute by trivial calculations. The
only interesting face is the top face, which is shown to commute by coinduction
(by finding a suitable bisimulation). The bottom face commutes as a direct
consequence of the top face commuting.

Now, we prove that, two states x and y in S(X) are bisimilar if and only if
i(X)(x) and i(X)(y) are, by showing both implications:

• if x ∼ y, then JxKSS(X) = JyKSS(X), so iΣ
∗
(JxKSS(X)) = iΣ

∗
(JyKSS(X)), which

brings by commutation of the top face of the cube: Ji(X)(x)KFF(X) =

Ji(X)(y)KFF(X), therefore i(X)(x) ∼ i(X)(y);

• if i(X)(x) ∼ i(X)(y), then Ji(X)(x)KFF(X) = Ji(X)(y)KFF(X), so by commu-

tation of the top face of the cube, we have iΣ
∗
(JxKSS(X)) = iΣ

∗
(JyKSS(X)),

and since iΣ
∗

is mono (because i is), it brings JxKSS(X) = JyKSS(X), so s ∼ y.

Since weighted language equivalence is decidable for automata with weights
on fields, it is also decidable for automata with weights on S.

Remark 1. For a field F, weighted language equivalence does not depend on
whether F is seen as a semiring or as a field.

Corollary 1. If S is a semiring that is embeddable into a field and equality
is decidable on that field, since weighted language equivalence is decidable for
automata with weights on a field, weighted language equivalence is decidable for
automata with weights on S.

Corollary 2. Language equivalence is decidable for any integral domain (which
can be embedded into its field of fractions – if equality is decidable on this field)
and N (which can be embedded into Q).

11

2.3 Embedding a Semiring into a Field

Corollary 1 tells us that weighted language equivalence is decidable if the semi-
ring S is embeddable into a field. Therefore, a logical question to ask is which
semirings can be embedded into a field, and that is what we discuss here.

First of all, there are some obvious necessary conditions for a semiring S to
be embeddable into a field:

• the addition must be cancellative: if a+ b = a+ c, then b = c,

• the multiplication must be commutative,

• there must be no non-zero divisors of 0.

Example 3. Here are some examples that do not enter the scope of corollary 1:

• the tropical semiring (N ∪ {∞},min,+,∞, 0) cannot be embedded into a
field because its addition (min) is not cancellative, and therefore no addi-
tive inverse can be defined: assume i : N∪ {∞} → F (where addition in F
is noted min and multiplication +) is a semiring morphism, then any i(x)
has an additive inverse i(x) in F, and in F we have that:

min(i(x),min(i(x), i(x))) = min(i(x), i(∞)) = i(min(x,∞)) = i(x),

and by associativity of min,

(i(x),min(i(x), i(x))) = min(min(i(x), i(x)), i(x)))

= min(i(min(x, x)), i(x)) = min(i(x), i(x))

= i(∞),

so x and ∞ are mapped by i to the same element in F, so i cannot be
monic;

• no non-commutative ring R can be embedded into a field because, if i :
R → F is a semiring monomorphism, then for all x and y in R, we have
i(xy) = i(x)i(y) = i(y)i(x) = i(yx), so xy = yx;

• the rings Z/nZ for n not prime cannot be embedded into a field because
there are non-zero divisors of 0, but weighted language equivalence is de-
cidable because Z/nZ is finite.

Now, take a semiring S that meets all these conditions. To see whether S
can be embedded into a field, we first embed it into its ring of differences, which
is the “smallest” ring that contains it, then try to see whether that ring can be
embedded into a field. By “smallest”, we mean that this ring will only contain
the elements of S, their additive inverses, and the sums of these elements. This
ring exists because S’s addition is cancellative. Note that this is a general
method to know whether a semiring is embeddable into a field, because every
semiring embeddable into a field is embeddable into a ring (e.g., the field itself),
and that ring must at least contain the ring of differences.

The rings that can be embedded into fields are exactly the integral domains.
A ring is an integral domain if it is commutative and the product of two non-zero
elements is non-zero. A ring that is not integral can obviously not be embedded

12

into a field, and any integral domain can be embedded into its field of fractions.
Therefore, the only thing left to do is compute the ring of differences and see
whether it is an integral domain or not.

The embedding of semirings into rings is discussed in [6], and we only write
about it here to make the construction explicit. Let S∗ = {(a, b) | a, b ∈ S}, and
define the addition of (a, b) and (a′, b′) to be (a+ a′, b+ b′), their multiplication
(aa′+bb′, ab′+a′b) (this makes sense because (a, b) is an element that represents
a − b), and define (a, b) ∼ (a′, b′) if a + b′ = a′ + b. Now, we take S the
ring of differences to be the equivalence classes of ∼ (note that ∼ is indeed an
equivalence relation because the addition on S is cancellative). Proving that S
is a ring is not difficult. There is an obvious semiring monomorphism which
embeds S into S, namely the one that maps s to (s, 0).

Now, S is embeddable into a field if and only if S is an integral domain.
Its multiplication is commutative, but it is not clear when the product of two
non-zero elements is guaranteed to be non-zero. Indeed, let us multiply two
elements and assume the result is 0:

(a, b)(a′, b′) ∼ (0, 0)⇔ aa′ + bb′ = ab′ + a′b

⇔ aa′ + bb′ + ab+ a′b′ = ab′ + a′b+ ab+ a′b′

⇔ (a+ b′)(a′ + b) = (a+ a′)(b+ b′)

(the second line uses the cancellativity of addition). The most interesting lines
are the first and third ones, but even using these, it is not clear under which
conditions on S these equations imply that a = b or a′ = b′.

However, it is a fact that these three conditions are not sufficient. Here is
the example of a semiring that has the three properties but is not embeddable
into a field. Take S = N[X,Y] the polynomials in two variables X and Y with
coefficients in N, and quotient it by the equation X2 = Y 2. The addition is
cancellative (this is very easy to prove, using the fact that any element of S
can be written P +QY , where P and Q are polynomials in X), multiplication
is obviously commutative, and there are no non-zero divisors of zero (because
the equation X2 = Y 2 may not decrease the degree of a polynomial). However,
its ring of differences is not an integral domain. Indeed, it contains additive
inverses, so the polynomials X − Y and X + Y exist, and (X + Y)(X − Y) =
X2 − Y 2 = 0.

Therefore, even though we have an interesting example of a semiring that
can be embedded into a field (N), it is not clear which semirings can actually
be embedded into a field, and therefore when exactly corollary 1 can be used.

3 Generalizations

In this section, we use the same kind of technique to show decidability of
weighted language equivalence for another class of automata, for which addition
is defined only partially. The main example that we have in mind when we talk
about automata with a partial sum is the example of probabilistic automata.
Indeed, the sum of probabilities can never be greater than 1, so it is only de-
fined partially. We want to use a model that captures at least probabilistic
automata. We also show that the same technique cannot be applied for some
another functor, which contains that finite powerset construction.

13

3.1 Powerset

We hoped that the same kind of technique would work on automata of the form
X → N×Pω(N(X))Σ, which represent a more general form of non-determinism.
The idea is that N × Pω(N(X))Σ can be structured as a semimodule, and if
there is a vector space in which it can be embedded, then weighted language
equivalence would also be decidable for automata of this form, by drawing a cube
similar to that of the proof of theorem 6 and proving that weighted language
equivalence is the same as in that vector space. However, it proves impossible
to actually embed Pω(N(X)) into a vector space.

Indeed, the structure of semimodule of Pω(M) for any semimodule (or ac-
tually even any set) M is the following: addition is union (with the empty set
as neutral element), and multiplication is iterated addition (which gives that
0 · S = ∅ and n · S = S otherwise). The problem here is that addition is
idempotent. Assume that there is indeed an embedding i of Pω(M) into some
vector space. Then the image i(S) of each element S of Pω(M) has an additive
inverse −i(S), and we have: (i(S) + i(S)) − i(S) = i(S) − i(S) = ∅ (because
i(S) + i(S) = i(S ∪S) = i(S)), but by associativity of addition in vector spaces,
we also have: (i(S) + i(S)) − i(S) = i(S) + (i(S) − i(S)) = i(S) + ∅ = i(S),
which contradicts injectivity of i when M is not empty.

There is another way to structure Pω(N(X)) into an N-semimodule, that
works only for N(X), and not for any semimodule M . The structure is the
following: S + S′ = {s + s′ | s ∈ S, s′ ∈ S′} (with {0} as neural element), and
multiplication is iterated addition. However, even with this other structure,
embedding Pω(N(X)) into a vector space is impossible. The problem here is
that ∅ is absorbing for addition. Assume there is an embedding i of Pω(N(X))
into a vector space. Then i(∅) has an additive inverse, and (−i(∅)+i(∅))+i(S) =
i({0}) + i(S) = i(S), but by associativity (−i(∅) + i(∅)) + i(S) = −i(∅) + (i(∅) +
i(S)) = −i(∅) + i(∅) = i({0}), which contradicts injectivity of i when X is not
empty.

3.2 Partial Semirings

Definition 3 (Partial Commutative Monoid). A partial commutative monoid
[4] (PCM) is a tuple (M,+, 0) such that:

• + : M ×M →M is a partially defined operation such that:

• if x+ y is defined (hereafter noted x ⊥ y), then y ⊥ x, and x+ y = y+ x,

• if x ⊥ y and x+y ⊥ z, then y ⊥ z, x ⊥ y+z, and (x+y)+z = x+(y+z),

• x ⊥ 0 and x+ 0 = x.

A notable example of PCM, and which is the one that corresponds to prob-
abilistic automata, is that of the interval [0, 1]. The addition x+ y is defined if
and only if x+ y ≤ 1, which is why it is only partial.

A morphism of PCMs f : (M,+, 0)→ (M ′,+′, 0′) is a function f : M →M ′

such that f(0) = 0′ and, if x ⊥ y, then f(x) ⊥ f(y) and f(x+ y) = f(x) + f(y).
PCMs and morphisms of PCMs form a category. This category can be equipped
with a symmetric monoidal structure (⊗, I) where M ⊗N is the PCM of finite
formal sums of pairs m ⊗ n (with the obvious addition and 0), quotiented by

14

the congruence generated by the equations (m + m′) ⊗ n = m ⊗ n + m′ ⊗ n,
m⊗ (n+ n′) = m⊗ n+m⊗ n′, and 0⊗ n = 0 = m⊗ 0 (when the addition is
defined), and I is the one-element PCM. Therefore, we can study the monoids
in this category.

A partial semiring is a monoid in the category of PCMs, just like semir-
ings are monoids in the category of commutative monoids. A partial semiring is
therefore a PCM (M,+, 0) with additional structure M⊗M →M ← I. Unfold-
ing the definitions gives that a partial semiring is a PCM with an element 1 and
a map · : M×M →M such that (M, ·, 1) is a monoid, m·(n+n′) = m·n+m·n′,
(m+m′) ·n = m ·n+m′ ·n, and 0 ·n = 0 = m · 0, when the addition is defined.

For a partial semiring S, we can consider the category of its partial modules,
which are S-actions in the category of PCMs. By unfolding the definitions,
we get that a partial module is a PCM (M,+, 0) equipped with a map called
scalar multiplication · : S ×M → M that verifies s · (x + x′) = s · x + s · x′,
(s + s′) · x = s · x + s′ · x, 0 · x = 0 = s · 0, s · (s′ · x) = (ss′) · x, and 1 · x = x,
when addition is defined. A map f of partial modules from (M,+, ·, 0) to
(M ′,+′, ·′, 0′) is a PCM map from (M,+, 0) to (M ′,+′, 0′) that respects scalar
multiplication: f(s · x) = s ·′ f(x).

Example 4. The sub-probability distribution functor D≤ defined by D≤(X) =
{f : X → [0, 1] | f has finite support,

∑
x∈X f(x) ≤ 1} is a partial module for

the partial semiring [0, 1], with obvious the 0, addition, and scalar multiplication.

3.3 Theorem for Partial Semirings

For the proof to go through, we have to ask one more property of our partial
semiring S. The property is the following: if x ⊥ y, then x · x′ ⊥ y · y′. Let
us explain why we need this property to hold. The proof is based on that of
theorem 6, where the morphism X → S × S(X)Σ is factored through S(X).
Here, we take an automaton 〈o, t〉 : X → S × S(X)Σ, where S(X) denotes
{f : X → S | f has finite support, ⊥x∈Xf(x)}, which is the generalization of
the sub-distribution functor. To factor o through S(X) is to find a partial
module morphism o : S(X) → S such that oη = o, where η(x) is the function
that maps x to 1 and the rest to 0 (which is indeed in S(X)). Therefore,
o (
∑n
i=1 si · η(xi)) =

∑n
i=1 si · o(xi), and the property we asked is necessary and

sufficient for this sum to be always defined, no matter the values o(xi).
Moreover, this property is actually very sound in the world of automata.

Indeed, one of the strong points of automata is that they are easy to write. For
example, to write a probabilistic automaton, everything one needs to check is
that the sum of the weights of transitions from one state is not bigger than 1.
However, for partial semirings that do not have this property, it is possible to
write things that look like automata but actually are not. Indeed, assume that
x ⊥ y, but xx′ 6⊥ yy′. Then

a0

b x′

c y′

x

y

looks like a weighted automata (on an alphabet with a single letter a) but is
not. Indeed, checking each state reveals nothing wrong, but there is no weight

15

associated to the word a2 in x: it should be xx′ + yy′, but this expression does
not exist! Therefore, being an automaton is not a property that can be checked
locally anymore. This is the reason why the property we ask for is not only
useful in the proof, but also something we actually want to ask of the partial
semiring.

Theorem 7. Let S be a partial semiring that can be embedded into another
partial semiring T, and assume that both S and T are such that x ⊥ y implies
xx′ ⊥ yy′, and weighted language equivalence is decidable for weighted automata
with weights on T. Then weighted language equivalence is decidable for weighted
automata with weights on S.

Proof. As shown above, since the property holds for S, o can be factorized
through S(X). A similar computation shows that t can also be factorized
through S(X) (using the fact that ⊥x′∈Xt(x)(a)(x′) by definition of S(X)). Sim-
ilarly, io and i(X)Σt can be factorized through T(X). Therefore, we can draw
the exact same cube as in the proof of theorem 6, except that S(X), T(X),
and i(X) stand for slightly different constructions. However, they are not very
different, and the same proof as in the case of semirings just goes through.

4 Proof Systems

In this section, we show sound and complete proof systems for deciding weighted
language equivalence for weighted automata with weights in a semiring S or a
generalized effect monoid E embeddable into a field. Notable examples include
weighted automata with weights on N and probabilistic automata. Even though
sound and complete proof systems already exist for them, they are quite com-
plex, and the ones we show here are much simpler. Actually, the proof systems
we show here are the proof systems for weighted language equivalence on fields.
However, since the proof of theorem 6 showed that weighted language equiva-
lence on S (or E) is the same as the one on fields, these proof systems directly
apply to these cases as well.

In [2], it is showed that the following proof system is sound and complete
for weighted automata with weights on a Noetherian semiring S (and therefore
in particular for fields). The expressions of the proof system are given by the
grammar:

E ::= x |E + E | r | a.(r · E) |µx.Eg

Eg ::= Eg + Eg | r | a.(r · E) |µx.Eg

Where x ranges over a set of variables, r over S, and a over Σ. Each expression
denotes a weighted language: E1 +E2 is the union of E1 and E2, r associates r
to ε and 0 to all other words, a.(r ·E) associates 0 to ε and r · rw to aw, where
rw is the weight of w in E, and µ is a fixpoint operator.

The calculus is equipped with the following rules:

E1 ≡ E2[E1/x]⇒ E1 ≡ µx.E2 r + s ≡ r + s 0 + E ≡ E
(E1 + E2) + E3 ≡ E1 + (E2 + E3) E1 + E2 ≡ E2 + E1 a.(0 · E) = 0
a.(r · E) + a.(s · E) ≡ a.(r + s · E) µx.E ≡ E[µx.E/x] a.(r · 0) ≡ 0

a.(r · (E1 + E2)) ≡ a.(r · E1) + a.(r · E2) a.(r · s) ≡ a.(1 · rs) a.(r · 0) ≡ 0
a.(r · b.(s · E)) ≡ a.(rs · b.(1 · E))

16

together with α-equivalence and the replacement rule E1 ≡ E2 ⇒ E[E1/x] ≡
E[E2/x]. This calculus is sound and complete for weighted language equiva-
lence. Since these rules never introduce additive or multiplicative inverses, they
can be performed inside a semiring S if S is embeddable into a field. However, it
is not necessarily the case that they can be performed inside a partial semiring
S, since expressions of the form r + s appear in the calculus, and while they
exist in the field that contains S, they may not exist in S itself. However, this
is not a problem, as all the calculations may be done inside the field anyway.

5 Conclusion

The initial goal of this work was to extend decidability of weighted language
equivalence for weighted automata with weights on a field to a larger class of
automata. This was achieved through a fairly simple technique for weighted
automata with weights on a semiring, and the same technique was adapted to
other kinds of automata, with more or less success. The biggest achievement was
probably the development of the theory of partial semirings (based on that of
effect algebras [4], which it is inspired from), and the adaptation of the technique
developed for semirings to partial semirings.

The direct application is that weighted language equivalence is decidable
for two classes of automata: weighted automata with weights on N, for which
weighted language equivalence was already known to be decidable, but the proof
was very complex, while this one (including the proof that weighted language
equivalence is decidable on fields) is much more elementary; and probabilistic
automata, for which weighted language equivalence was also known to be decid-
able. A more interesting result is that we have simple sound and complete proof
systems for these two classes of automata, when the only known proof systems
for them until now were much more complex.

There are several possible ways to continue this work. One possible way to
continue it would be to understand the limits of this technique, e.g., by giving a
necessary and sufficient condition for a semiring S to be embeddable into a field,
or by investigating when a partial semiring has the property x ⊥ y ⇒ xx′ ⊥ yy′.
Another possibility, though maybe not as interesting, is to find other interesting
examples that fit the scope of the theorems proven in this work. It is very
probable that models of computation stemming from quantum theory actually
fit this framework. Of course, there is still a large gap between the weighted
automata for which we know weighted language equivalence and those for which
we know it is undecidable, so this is also a possible direction to explore.

References

[1] Filippo Bonchi, Marcello Bonsangue, Michele Boreale, Jan Rutten, and
Alexandra Silva. A coalgebraic perspective on linear weighted automata.
Information and Computation, 211:77–105, 2012.

[2] Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. Sound and
complete axiomatisations of coalgebraic language equivalence.

17

[3] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. Springer.

[4] Bart Jacobs and Jorik Mandemaker. Relating Operator Spaces via Adjunc-
tions. Computing Research Repository, abs/1201.1272, 2012.

[5] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249:3–80, 2000.

[6] Han-Lee Sang. Extending semiring homomorphisms to ring homomorphisms.
Communications of the Korean Mathematical Society, 13(2):243–249, 1998.

18

A Proofs of commutations

Let us show that the left face

S(X)

S(S(X))

T(X)

T (T(X))

i(X)

〈o, t〉

i× i(X)Σ

〈io, i(X)Σt〉

commutes, i.e., that i ◦ o = io ◦ i(X) and i(X)Σ ◦ t = i(X)Σt ◦ i(X). Take f in
S(X), f is by definition a finite sum f =

∑n
i=0 si ·ηSX(xi), where xi are elements

of X and si elements of S. Now, we have:

(i ◦ o)

(
n∑
i=0

si · ηSX(xi)

)
= i

(
n∑
i=0

si · o(ηSX(xi))

)

=

n∑
i=0

i(si) · i(o(ηSX(xi)))

=

n∑
i=0

i(si) · i(o(xi))

(io ◦ i(X))

(
n∑
i=0

si · ηSX(xi)

)
= io

(
n∑
i=0

i(si) · ηTX(xi)

)

=

n∑
i=0

i(si) · io(ηTX(xi))

=

n∑
i=0

i(si) · i(o(xi))

and

(i(X)Σ ◦ t)

(
n∑
i=0

si · ηSX(xi)

)
= i(X)Σ

(
n∑
i=0

si · t(ηSX(xi))

)

=

n∑
i=0

i(si) · i(X)Σ(t(ηSX(xi)))

=

n∑
i=0

i(si) · i(X)Σ(t(xi))

(i(X)Σt ◦ i(X))

(
n∑
i=0

si · ηSX(xi)

)
= i(X)Σt

(
n∑
i=0

i(si) · ηSX(xi)

)

=

n∑
i=0

i(si) · i(X)Σt(ηSX(xi))

=

n∑
i=0

i(si) · i(X)Σ(t(xi)).

Now, let us show that the right face

19

SΣ∗

S(SΣ∗)

TΣ∗

T (TΣ∗)

iΣ
∗

〈εS, dS〉

i× (iΣ
∗
)Σ

〈εT, dT〉

commutes. Take f in SΣ∗ , we have:

εT(iΣ
∗
(f)) = iΣ

∗
(f)(ε) = i(f(ε))

i(εS(f)) = i(f(ε))

and

dT(iΣ
∗
(f))(a) = w 7→ iΣ

∗
(f)(aw) = w 7→ i(f(aw))

(iΣ
∗
)Σ(dS(f))(a) = iΣ

∗
(dS(f)(a)) = iΣ

∗
(w 7→ f(aw)) = w 7→ i(f(aw))

Now, for the less trivial computation, let us show that the top face

S(X)

T(X)

SΣ∗

TΣ∗

J - KSS(X)

i(X)

J - KTT(X)

iΣ
∗

commutes. Take f in S(X), we will show that iΣ
∗
(JfKSS(X)) = Ji(X)(f)KFF(X) by

coinduction. Let R ⊆ (TΣ∗)2 be the set of pairs 〈iΣ∗(JfKSS(X)), Ji(X)(f)KFF(X)〉,
for all f in SΣ∗ . We have:

iΣ
∗

t
n∑
i=0

si · ηS(xi)

|S

S(X)

 = iΣ
∗

(
n∑
i=0

si · JηS(xi)KSS(X)

)

=

n∑
i=0

i(si) · iΣ
∗
(JηS(xi)KSS(X))

t

i(X)

(
n∑
i=0

si · ηS(xi)

)|T

T(X)

=

t
n∑
i=0

i(si) · ηT(xi)

|T

T(X)

=

n∑
i=0

i(si) ·
q
ηT(xi)

yT
T(X)

.

Now, recall that, from the commutation of the front and back faces, we have:{ q
ηS(x)

yS
S(X)

(ε) = o(x)
q
ηS(x)

yS
S(X)

(aw) = Jt(x)(a)KSS(X){ q
ηT(x)

yF
F(X)

(ε) = i(o(x))
q
ηT(x)

yF
F(X)

(aw) = Ji(X)(t(x)(a))KFF(X)

20

Using these identities, we obtain that:

εT(iΣ
∗
(JfKSS(X))) = εT

(
n∑
i=0

i(si) · iΣ
∗
(
q
ηS(xi)

yS
S(X)

)

)

=

n∑
i=0

i(si) · iΣ
∗
(
q
ηS(xi)

yS
S(X)

)(ε)

=

n∑
i=0

i(si) · i(
q
ηS(xi)

yS
S(X)

(ε))

=

n∑
i=0

i(si) · i(o(x))

εT
(
Ji(X) (f)KTT(X)

)
= εT

(
n∑
i=0

i(si) ·
q
ηT(xi)

yF
F(X)

)

=

n∑
i=0

i(si) ·
q
ηT(xi)

yF
F(X)

(ε)

=

n∑
i=0

i(si) · i(o(xi)),

21

i.e., that εT(iΣ
∗
(JfKSS(X))) = εT

(
Ji(X) (f)KTT(X)

)
, and that

dT(iΣ
∗
(JfKSS(X)))(a) = dT

(
n∑
i=0

i(si) · iΣ
∗
(
q
ηS(xi)

yS
S(X)

)

)
(a)

= w 7→
n∑
i=0

i(si) · iΣ
∗
(
q
ηS(xi)

yS
S(X)

)(aw)

= w 7→
n∑
i=0

i(si) · i(
q
ηS(xi)

yS
S(X)

(aw))

= w 7→
n∑
i=0

i(si) · i(Jt(x)(a)KSS(X))

= iΣ
∗

t
n∑
i=0

si · t(xi)(a)

|S

S(X)

dT
(
Ji(X) (f)KTT(X)

)
(a) = dT

(
n∑
i=0

i(si) ·
q
ηT(xi)

yF
F(X)

)
(a)

=

n∑
i=0

i(si) · dT
(q
ηT(xi)

yF
F(X)

)
(a)

= w 7→
n∑
i=0

i(si) · dT
(q
ηT(xi)

yF
F(X)

)
(a)(w)

= w 7→
n∑
i=0

i(si) ·
q
ηT(xi)

yF
F(X)

(aw)

= w 7→
n∑
i=0

i(si) · Ji(X)(t(xi)(a))KFF(X) (w)

=

n∑
i=0

i(si) · Ji(X)(t(xi)(a))KFF(X)

=

t
n∑
i=0

i(si) · i(X)(t(xi)(a))

|F

F(X)

=

t

i(X)

(
n∑
i=0

si · t(xi)(a)

)|F

F(X)

,

i.e., that dT(iΣ
∗
(JfKSS(X)))(a) R dT

(
Ji(X) (f)KTT(X)

)
(a). Therefore R is a bisim-

ulation, so the diagram commutes by coindution.

22

Commutation of the bottom face comes directly from commutation of the
top face:

(i× (iΣ
∗
)Σ) ◦ 〈idS(X), (J - KSS(X))

Σ〉 = 〈i, (iΣ
∗
)Σ ◦ (J - KSS(X))

Σ〉

= 〈i, (iΣ
∗
◦ J - KSS(X))

Σ〉

= 〈i, (Ji(X)(-)KFF(X))
Σ〉

= 〈idT(X), (J - KFF(X))
Σ〉 ◦ 〈i, i(X)Σ〉

23

