
Playgrounds, Factorization Systems, and Graphs

Clovis Eberhart
under the supervision of Tom Hirschowitz

September 9, 2014

1 Introduction

Playgrounds [5, 4, 2] are a formal tool that Tom Hirschowitz has developed
to bridge the gap between concurrent languages and game semantics. Game
semantics was proved to be very successful to describe the behavior of func-
tional languages as the interaction, in some sort of game, between a function
and its environment. What “behavior” means in a functional language is fairly
straightforward: a functional program “behaves” like a mathematical function.
However, it is much less clear what a behavior is in the world of concurrent
languages. Indeed, a behavior is an interaction between the different processes,
which is much harder to understand from a mathematical point of view. Play-
grounds are one of the multiple attempts at using game semantics to give a
mathematical meaning to the interaction between processes.

We assume the reader to be familiar with basic notions of category theory,
such as morphisms, functors, natural transformations, limits and colimits [7].
We will first give an extensive introduction to playgrounds and a categorical
tool that has proved to be very useful in our work: factorization systems. Then,
in a first part, we will show several advances or changes in the general approach
to building a playground from its basic blocks. Finally, we will discuss a double
factorization system on the category of graphs as a very simple example of
playgrounds, which has lead us to a better understanding of double factorization
systems for playgrounds, which seem to be the right tool to understand some
their properties and prove some of their axioms.

1.1 Playgrounds

The formalism of playgrounds is born from an attempt at reconciling concurrent
calculi and game semantics. Basically, they can be seen as a game semantics
that is naturally concurrent. It is a game semantics in the sense that there
are players that behave according to their strategies, and that there is a notion
of innocence that corresponds to that of innocence in classic game semantics
(i.e., that a player’s strategy can only be based on what that player observed).
It is naturally concurrent in the sense that multiplayer games are defined as
naturally as two-player games (while in classic game semantics, only two- and
three-player games are studied, and the latter only for composition of plays),
and that natural concurrent operators – such as parallel composition – exist by
construction.

1

Playgrounds are simply pseudo double categories which satisfy some axioms
that ensure that they yield a semantics. Pseudo double categories can be seen
as a structure that has: objects, vertical morphisms, horizontal morphisms, and
2-cells, which satisfy that:

• objects and horizontal morphisms form a category, and so do vertical
morphisms and 2-cells;

• objects and vertical morphisms form a category with weak composition
(i.e., composition is associative only up to isomorphism), and so do hori-
zontal morphisms and 2-cells;

• 2-cells verify the interchange law.

Basically, pseudo double categories are categories with two types of morphisms:
horizontal (denoted −→) and vertical (denoted −→•) and “squares” (or 2-cells,
denoted =⇒):

x0 x1

y0 y1.

• •ϕ
=⇒

f

a0 a1

g

2-cells can be composed horizontally and vertically (horizontal composition of
2-cells is denoted ◦, while the vertical one is denoted •). The interchange law
simply states that the two ways of evaluating

• • •

• • •

ϕ1 ϕ2

ψ1 ψ2

yield the same result ((ψ2 ◦ ψ1) • (ϕ2 ◦ ϕ1) = (ψ2 • ϕ2) ◦ (ψ1 • ϕ1)).
In our case, the objects of the pseudo double category represent “positions”,

vertical morphisms represent “plays” (i.e., the interaction of players in a position
that leads to another position), and horizontal morphisms essentially represent
“spatial inclusion” (i.e., the inclusion of a position in another position) – how-
ever, 2-cells do not have such a simple interpretation.

The question we are mainly interested in is how to build such a pseudo
double category, i.e., how to build a playground. In order to do that, we will
first introduce a base category C that describes the terms of the language we are
studying. Then, we will take presheaves Ĉ over C: some of these presheaves will
describe positions (and which will be the objects of our playground), some will
(essentially) describe moves or plays, while others will hold no meaning. These
presheaves can simply be thought of as higher-dimensional graph-like objects.
Then, we will introduce some cospans over Ĉ that will describe the reductions of
the terms of the language, and which we will call “seeds”. Based on these seeds,
we will select a subcategory of the category of cospans over Ĉ, which we will call
plays and will be the vertical morphisms of our playground (since composition

2

of cospans is associative only up to isomorphism, it will also be the case for our
vertical morphisms). Horizontal morphisms will (essentially) be the injective
presheaf morphisms, and 2-cells will be morphisms of cospans.

Now, we need to introduce some technical terms related to playgrounds and
illustrate them using the base category for the join-calculus (formally described
in A). The base category C comes equipped with a functor F : C → ω, i.e.,
each object c of C has a dimension F (c). Channels are objects of dimension
0 (or an element of a presheaf over C associated to an object of dimension 0),
and will be graphically denoted ◦ (there will be at most a single type of channel
in our examples). Players are objects of dimension 1, and will be graphically
denoted •. Moves are objects of dimension greater than 1 (there may be several
graphical notations for them). In the base category for the join-calculus, the
only channel is ∗, the players are [n] and 〈n〉, and the moves are all the other
objects. A position is a presheaf that is empty in dimensions greater than one
(i.e., it contains only channels and players).

Let us give a few simple illustrated examples:

•◦ ◦

represents a player who can communicate on two channels. Formally, it is
represented by the presheaf [2] (we make a slight abuse of notation here, as we
collapse a presheaf and its representing object in C). Note that this is indeed a
description of [2], as it actually is its category of elements:

([2], id[2])(∗, s1) (∗, s2).
s1 s2

Similarly,

•◦ ◦ •

represents two players (one who can communicate on two channels, and the other
who can communicate on only one channel) sharing a channel. It is formally
represented by a presheaf whose category of elements is:

([2], p1)(∗, c1) (∗, c2) ([1], p2).
s1 s2 s1

Seeds are the basic components of moves. There is a one-to-one correspon-
dence between seeds and move object (we use the term “move object” to distin-
guish between the objects called “moves” in the base category C and what we
simply call “moves”, which are the basic components of plays, the vertical mor-
phisms in our playground) in the base category C, and each seed represents the
local modification of a position after a given move, i.e., seeds are “local moves”.
Therefore, one could think that seeds are described by an initial position and a
final position. However, we are not simply interested in whether the game can
evolve from a position to another, but also in how the game can evolve from
that position to another, i.e., which moves can change the position into another
position. Therefore, seeds cannot be described simply by two positions. Seeds

are cospans Y
s−→ M

t←− X in the category Ĉ of presheaves over C. X and Y
are positions, more precisely, X represents the initial position of the local move,
while Y represents its final position. M represents how the local moves goes

3

from X to Y , and it is not a position. M is the representable presheaf of the

move object corresponding to the seed Y
s−→M

t←− X.
Once again, let us illustrate seeds using the join-calculus. The following seed

corresponds to π2:

•◦ ◦

•
•

◦ ◦

which could be drawn as

•◦ ◦

•
•

◦ ◦

•◦ ◦

•
•

◦ ◦

X

M

Y

The initial position X is drawn at the bottom, and the final position is drawn at
the top. In all the drawings, time will flow upwards. Here, the initial position
consists of a binary player (a player who knows two channels), and the final
position two binary players who share both their channels (the sign between
the channels are = signs that show which channels are the same in the initial
and final positions). If we think of players as equipped with strategies that are
(infinite) terms of the join-calculus, then πn is a move where a player of the
form P |Q (that can communicate on n channels) forks into two players P and
Q, who know exactly the same channels as P |Q did (and therefore share all
their channels), which is exactly what is expressed in this seed. Note that this
seed is, again, the category of elements of the representable presheaf for π2:

([2], p)(∗, c1) (∗, c2),

(π2)(πl2) (πr2)

([2], pl)

([2], pr)

(∗, c1) (∗, c2)

l r

t

s

t

s

s1 s2

s1 s2

s1 s2

where the square stands for the three moves in the middle of the category of
elements. The move that is characteristic of the join-calculus is its reduction:
if D = x〈u〉 | y〈v〉 B R is a definition (a sort of process that exists in the join-
calculus), then def D in x〈s〉 | y〈t〉 −→ def D in R{x← s, y ← t}. In that move,
there is a definition (D) and two processes (x〈s〉 and y〈t〉). The definition can
communicate on at least two channels (x and y), while each process can commu-
nicate on one of these channels. Both processes “die” when they send the name
of the channels s and t on x and y (they do not appear, even transformed, in
the final expression). When D receives a communication on these two channels,
it spawns a new process R{x ← s, y ← t} that can communicate on all of the
channels D knows, plus s and t (it is clear this process is spawn by D and not

4

one of the other processes because it contains R, which is information only D
knows). Here, for the sake of simplicity, we assumed that x = s and y = t, that
D only knows two channels, and the processes only one. It corresponds, in the
base category for the join-calculus, to τ2,1,1〈1〉,1〈1〉. It is modeled as:

◦

◦

•

•

◦

◦
•

It also corresponds to τ2,1,1〈1〉,1〈1〉’s category of elements, but it is a bit convo-
luted, and will probably not be enlightening to the reader, so we will not draw
it.

Each seed comes with a canonical interface I, which tells how this local move
can be embedded into a bigger position to make a global move. A canonical
interface is an example of interface, which are presheaves of dimension 0, i.e.,

they only contain channels. If Y
s−→ M

t←− X is a seed, its canonical interface
must have morphisms to X and Y that are equal when composed with s and
t. At the start of this work, canonical interfaces were defined as the set of
all channels in the initial position of the seed. We will explain later why this
definition, allied with that of move, is not a satisfactory definition and had to be
changed. Now, a global move, is simply a pushout of the seed along a morphism
I → Z, where Z is a position:

X

M

Y

I Z

X ′,

M ′

Y ′

i.e., X ′, Y ′, and M ′ are pushouts of X, Y , and M along I → Z, and the
morphisms X ′ → M ′ and Y ′ → M ′ are defined by universal property of the
pushout. Basically, what this does is embed the move Y → M ← X into the
position Z by identifying some channels between X, Y , M and Z.

Let us illustrate this in the join-calculus. Take π2. Its canonical interface is
made of two channels a and b. Let Z be the position with an isolated channel a′,
and a player that knows two channels b′ and c′, and let I → Z that associates a′

to a and b′ to b. Then the global move resulting of pushing-out π2’s seed along
I → Z is:

•◦ ◦

•
•

◦ ◦

• ◦

• ◦

5

As the drawing shows, the move behaves exactly the same way as the seed
did, but in a larger position, and the rest of the position is not affected by the
move. The pushout can also identify two or more channels that in the canonical
interface to describe a move where a player knows the same channel multiple
times (for example, a player x whose first and second channels are the same and
who forks).

Now that we have defined (global) moves, let us define plays, which are
the vertical morphisms in our playground. Basically, plays are sequences of
moves. However, they are not exactly sequences, since, in concurrent languages,
it does not make sense to remember the ordering between two moves that could
have happened in any order. Therefore, they will be equivalent to sequences
of moves, quotiented by reordering when two moves can be done in any order.
Technically, they are defined as generalized pushouts. Take a sequence of moves

Xi+1
si−→Mi

ti←− Xi, then the resulting play is the generalized pushout U :

X0

X1

...

Xn+1

M0

M1

Mn

U

t0

t1

s0

sn

Let us give two examples using the join-calculus. The first one means to
show that plays are basically piled-up moves. Take a position X with a binary
player that forks (π2), and then, its left avatar communicates the name of its
second channel on its first, therefore dying (this move, σ2,1〈2〉, does not make
sense in a closed-world execution, i.e., when the process evolves on its own,
but it does if we assume that it can communicate with an environment, and is
necessary in the definition of the playground). Then, the resulting play is:

•◦ ◦

•
•

◦ ◦

••
◦ ◦

The second example is meant to show that the order between moves is not
remembered when these moves can be executed in any order. Take two binary
players who share a channel, and both fork, in any order. Then, the resulting
play is:

6

•◦ ◦

•
•

◦ ◦

• ◦

•
•
◦

The last elements of the playground left to define are the double cells. They
simply are cospan morphisms, i.e., a double cell α as in the diagram below on
the left is actually a presheaf morphism as on the right:

Y Y ′

X X ′

• •α
=⇒

k

U V

h

Y Y ′

U V

X X ′,

k

s s′

α

t

h

t′

such that the diagram commutes.

1.2 Factorization Systems

A crucial tool that will be used in the construction of playgrounds (or, more
precisely, in the proof that a pseudo double category is indeed a playground) is
that of factorization systems.

Definition 1. A factorization system on a category C is a pair (L,R) of a left
class of morphisms L and a right class of morphisms R such that:

• every morphism f : X → Y in C admits a factorization rl into a morphism
l : X → Z in L followed by a morphism r : Z → Y in R, and this
factorization is unique up to a unique isomorphism;

• L and R contain the isomorphisms and are closed under composition.

A weak factorization system is a factorization system in which the factoriza-
tion needs not be unique.

Example 1. Here is a short list of examples of factorization systems and weak
factorization systems:

• in every category C, (Mor, Iso) and (Iso,Mor) are trivial factorization
systems;

• in every category C, (Mor,Mor) is a trivial weak factorization system;

• in the category Set of sets and functions, (Epi,Mono) is a factorization
system (every map can be factored through its image, and that is the only
(Epi,Mono) factorization up to isomorphism);

7

• in the category Set, (Mono,Epi) is a weak factorization system (every

map X
f−→ Y can be factored through its graph X

(idX ,f)−−−−−→ X×Y πY−−→ Y , but

also through its (generally not isomorphic) cograph X
ιX−−→ X + Y

[f,idY]−−−−→
Y).

Factorization systems enjoy strong properties, such as some cancellation
properties:

Property 1. If (L,R) is a factorization system, then:

• L has the right cancellation property: if vu ∈ L and u ∈ L, then v ∈ L;

• R has the left cancellation property: if vu ∈ R and v ∈ R, then u ∈ R.

Factorization systems are strongly linked to orthogonality between maps.

Definition 2. A map f : X → Y is left orthogonal to g : X ′ → Y ′ (or that g
is right orthogonal to f) and note it f ⊥ g if for every commutative square

X

Y

X ′

Y ′,

there is a unique map d : Y → X ′ such that

X

Y

X ′

Y ′

f

u

v

g f

u

v

d g

commutes.

We say that f is weakly left orthogonal to g (or that g is weakly right orthog-
onal to f) and note it f t g if they fulfill the same conditions, except that the
diagonal d needs not be unique.

We write M ⊥ M′ if for all f in M and all g in M′, f ⊥ g. If M is a
class of morphisms of C, we denote by M⊥ its right orthogonal (the class of all
morphisms that are right orthogonal to all morhisms inM), and by ⊥M its left
orthogonal. We do the same for weak orthogonality, replacing ⊥ by t.

Theorem 1. A pair (L,R) of classes of maps in a category C is a factorization
system if and only if:

• every map f admits an (L,R)-factorization;

• L and R are replete (stable under isomorphisms);

• L ⊥ R.

Our main interest lies in “strong” factorization systems (as opposed to weak
ones). However, there are links between the two notions, and weak factorization
systems come with interesting constructions, such as the small object argument.

Take a set S of maps of C, then (
t
(St), St) is a weak factorization system, and

we say it is cofibrantly generated by S (note that a weak factorization system
(L,R) may be cofibrantly generated by different sets). Telling which morphisms
are in the right class is quite straightforward: they’re the morphisms that are
weakly right orthogonal to every morphism in S, which is usually a property that
is easy to understand. What is less clear is what morphisms are in the left class.
The answer to this question is given by Quillen’s small object argument [3]. In
any locally presentable category (such as presheaf categories, the ones we are
interested in), the left class is the smallest class of maps that:

8

• contains S,

• is stable under pushouts, transfinite composition, and retracts.

This class can also be described as the class of transfinite compositions of
pushouts of elements of S. We note this class Sat(S).

Example 2. In the category of sets and functions, take S to be the one-function
set containing the only function f : {a, b} → {c}. Then St is the set of all
injective functions. Indeed, if g : X → Y is not injective, then there are x and
y, different, in X such that g(x) = g(y). Take u : a 7→ x, b 7→ y and v : c 7→ g(x),
then the orthogonality square commutes, but there is no diagonal that can make
both triangles commute. If, however, g is injective, then the only possibility
to make a commutative square from f to g is for u to map both a and b to
the same element in X, and therefore there is a diagonal lifting. Furthermore,
t
(St) the set of all surjective functions. Indeed, pushouts of f are surjective,

and so are their transfinite compositions, and any surjective function can easily
be written as a transfinite composition of pushouts of f . Therefore, the resulting
factorization system is (Epi,Mono).

Another very interesting link between strong and weak factorization systems
is that, if the category has nice properties, then a variant of the small object
argument still works for strong factorization systems. First, let us define what
the codiagonal of a map f : X → Y is. It is the map δ0f defined by universal
property of the pushout:

X Y

Y P

Y ,

f

f idY

idY

δ0f

where P is the pushout of f and f . If we note δ0(S) the class of codiagonals of
elements of S, the following theorem holds [6]:

Theorem 2. Let S be a set of maps between small objects in a cocomplete
category C. Then the pair (Sat(S ∪ δ0(S)), S⊥) is a factorization system.

Finally, we will need another notion related to factorization systems to ex-
plain this work, and that is the notion of double factorization system [8].

Definition 3 (Double Factorization System). A double factorization system is
made of three classes of maps (E ,J ,M) such that:

• Iso · E ⊆ E, Iso · J · Iso ⊆ J , and M · Iso ⊆M,

• Mor =M · J · E,

• for any commutative diagram

9

u

e j

v

j′ m

with e ∈ E, j, j′ ∈ J , and m ∈ M, there are unique “diagonals” s and t
such that se = u, tj = j′s and mt = v.

Double factorization systems have nice properties that relate them to stan-
dard factorization systems.

Proposition 1. If (E ,J ,M) is a double factorization system, then Iso = E ∩
J ∩M, and (E ,M · J) and (J · E ,M) are both factorization systems.

Corollary 1. If (E ,J ,M) is a double factorization system, then E = (M·J)⊥,

J = ⊥E ∩M⊥, and M =
⊥

(J · E).

There is even a bijective correspondence between the double factorization
systems and pairs of comparable factorization systems. We say that two factor-
ization systems (E ,N) and (D,M) are comparable if one of the following (equiv-
alent) properties holds: (1) E ⊆ D, (2)M⊆ N , (3) E ⊥M, (4) D = (D∩N) ·E ,
(5) N =M · (D ∩N).

Theorem 3. For every double factorization system (E ,J ,M), (E ,M·J) and
(J · E ,M) are comparable factorization systems. For every pair of comparable
factorization systems (E ,M), (D,N), (E ,D ∩ N ,M) is a double factorization
system. This correspondence is bijective.

2 Building Playgrounds

The study of the join-calculus and attempts at generalizing the approach used
to define a playground from a category of presheaves has lead us to a deeper
insight of some properties that must be asked of the basic blocks the plays are
based on, namely seeds.

2.1 Canonical Interfaces and Moves

As stated in the introduction, each seed has a canonical interface that describes
how a seed, i.e., a local move, can be embedded in a larger position, creating a
global move. The canonical interface is an interface, i.e., a presheaf that only
contains channels. Basically, these channels are the ones that may be shared
between the local move and a position, to create a global move. More precisely,
every seed Y →M ← X is equipped with a canonical interface I and morphisms
from I to X and Y (such that they’re equal when composed with X →M and
Y → M respectively). Global moves are just pushouts of this seed along a
morphism from the interface to a position Z:

10

X

M

Y

I Z

X ′,

M ′

Y ′

where the dashed arrows are obtained by universal property of the pushout.
Basically, it just amounts to pasting a seed next to a position, while identifying
some channels between them.

In the cases of CCS, the π-calculus, or the join-calculus, finding the right
canonical interfaces is very easy. Indeed, since all channels behave well (they
are only ever created or left untouched, never destroyed, much less fused or
duplicated), the canonical interface corresponds exactly to the channels that
are present in the initial position of the seed.

However, generalizing this definition of the canonical interface as the chan-
nels present in the initial position makes it impossible to define a language with
garbage collection, i.e., in which channels may be destroyed. Indeed, the prob-
lem is that if a channel is destroyed by a move Y →M ← X, i.e., that it exists
in X but not in Y , then there is in general no way to define a morphism from
the canonical interface I to Y . Indeed, consider the following, simple example,
where the only seed is:

• ◦

•

,

i.e., a move where a player that knows a single channel can destroy this channel.
Then, if the canonical interface is the interface that contains the channel in
X, then it contains exactly one channel, and there is no morphism from this
interface to Y . The reader may think at first sight that such a move should
not be accepted anyway, since it would be impossible to write the final position
of a global version of this move, even if the initial position is defined, but that
exactly means that a player cannot destroy a channel on his their own accord
if they’re not the only one who knows of this channel.

To be able to account for garbage collection, we therefore decided to change
the definition of the canonical interface. Instead of taking the channels in X,
we take the pullback of the channels in X and those in Y . Then, there are
obviously morphisms from I to X and Y , and they commute when composed
with X →M and Y →M . The pullback gives the channels that are both in X
and Y : if channels are only created, destroyed, or left untouched (i.e., they are
never fused or duplicated), then the pullback corresponds to the channels that
are left untouched (if there are some fused or duplicated channels, then things
are a bit more complicated, and there are several copies of the “same” channel
in the interface). For example, in the example above, the canonical interface
would be empty. In the case where channels are only created or left untouched,
as in CCS or the π-calculus, the canonical interface consists of the channels in
X, which is what we expect. It also gives a satisfactory canonical interface in

11

the case of interaction nets, where the channels can be fused, but we will not
go into the details.

However, this solution is not exactly satisfactory. Indeed, consider a play-
ground where one of the moves is of the form:

• •◦ ◦.

• •

We would like this move to be playable in the following position:

• •,◦

since both players want to destroy that channel, it should not matter whether
they share it or not. However, it is not possible, since it would ask that the
map I → Z identifies these channels, but I is empty by definition. Therefore,
this definition, though better than the first one, is not satisfactory either.

The core problem is that the channels that can be shared in the initial
position are exactly the channels that can be linked to the global position.
However, changing the definition of the canonical interface will not give the
solution to this problem, since the channels that can be shared are exactly the
channels in the canonical interface, and so are the channels that can be linked
to the global position. Therefore, the definition that needs to be changed is
that of moves, so that the canonical interface will not handle two roles that
should be different exactly the same way. Canonical interfaces are still defined
as pullbacks, as before, but the definition of a move has been changed to reflect
this fact. A move is still a cospan that has the same shape as before:

X

M

Y

I Z

X ′,

M ′

Y ′

except we do not ask that the rectangles be pushouts. Instead, we ask that
they be collectively surjective pullbacks, and that all functions be injective in
dimension greater than 0. First, this definition allows moves such as the one
discussed above, even with the channel shared by the two players (take Z = ∅).
Furthermore, in the simple cases where all the t’s and s’s in seeds Y

s−→M
t←− X

are injective (such as in CCS, the π-calculus, or the join-calculus), the old
definition of moves is a particular case of this new definition. Indeed, in that
case, we have that the following pushout:

I Z

X X ′

k

l f

g

12

is of course collectively surjective, and that all the functions are injective in di-
mension greater than 0. Furthermore, in adhesive categories (such as presheaf
categories), pushouts of monomorphisms are pullbacks, so the square is a pull-
back square.

However, this definition is, again, not entirely satisfactory. Indeed, take a
move that creates two channels. Then, using this definition, it is possible for the
two channels to be identified in the final position, which is a behavior that we do
not wish to capture. This is still a work in progress, and there are multiple ways
to solve the problem. One would be to allow the strange behavior described
above, where only one channel is created when two different ones should be,
and to rule out this possibility by constraining the strategies a player can play.
Another way would be to rule out cases where the morphisms in the seeds are
not injective. However, it would be better to find a solution without having to
resort to any of these, simply by understanding better what the good definition
of a move should be, and it seems that the right tool to understand what this
definition should be is (very close to) a factorization system, a version of which
is given for graphs in section 3.

2.2 Right Decomposition Axiom

We have proved one of the playground axioms in the general case, the proof can
be found in annex B. The right decomposition axiom states the following:

Theorem 4. Any double cell (in the middle), where B is a basic move and
M is a move, decomposes into exactly one of the forms (on the left and on the
right):

X

Y

Z

X ′

Y ′

Z ′
h

U

B

k

U ′

M

α
=⇒

•

•

•

•

X

Y

Z

X ′

Y ′

Z ′
h

U

B

l

k

U ′

M

α1=⇒

α2=⇒

•

•

•

•

X

Y

Z

X ′

Y ′

Z ′
h

U

B

k

l

U ′

M

α1=⇒

α2=⇒

•

•

•

•

Basically, this axiom states that, if B is a basic move (which are a certain
type of move), then a morphism into a play can be decomposed into morphisms
between smaller plays: either B can be embedded in the first move of the play
M and U into U ′, or all of B • U is embedded into U ′.

2.3 Building Factorizations in the Finite Case

In this part, we discuss how to build factorizations in the finite case. The idea is
that plays are finite objects, and that we would like a way to factor a morphism
between plays as the composition of two morphisms that show different things
about the play. We want the first class of morphisms to show how a play is
included in another one “in time”, and the second one how it is included in the
other “in space”. We also want to show that when a morphism f between two
plays U and V is factorized this way, it is factorized through another play W .

13

Here, to factorize morphisms, we use the factorization system cofibrantly
generated by the set T0 of all “t-legs” of seeds, the morphisms from the initial

position of a seed to its middle presheaf, that is, if Y
s−→M

t←− X is a seed, then
t ∈ T0. We call them t-legs because they are always labelled with the letter t (the
letter t itself stands for “target”, while s stands for source, reminding that, in the
playground, plays are arrows from their final position to their initial position).
Let (T,H) denote this factorization system. A morphism h : X → Y is in H if,
when Y “contains” a move whose initial position is in X, X already contains the
whole move. This intuition is made more precise by the orthogonality square:

X0

M0

X

Y .

t

u

v

h

Such an orthogonality square exists when v : M0 → Y and u : X0 → X
exist such that the square commutes (what we meant above by “Y contains a
move and X its initial position”), and the existence of a unique diagonal filler
d : M0 → X shows that X already “contains” the whole move. According
to the variant of the small object argument for strong factorization systems, a
morphism t is in T when it is the transfinite composition of pushouts of t-legs or
codiagonals of t-legs. We can factorize any morphism between plays f : U → V
as f = ht, where t : U →W is in T and h : W → V is in H, and we want W to
be a play.

The first idea we had was that, if a morphism between plays is injective,
then its factors should be injective as well, which would have guaranteed the
finiteness of all objects, since V is finite, and would have been a step towards
showing that W is a play. However, that is impossible. Consider a move m that
goes from a nullary player to another nullary player. Now, take the play U that
only contains two nullary players, and V that only contains m (and, therefore,
the two players). There is an obvious injective morphism f : U → V that maps
each player in U to a player in V . The factorization of that morphism is not
injective. Indeed, its factorization is the following (where we named the players
for convenience):

x

y

x

y′ y

x,

y

t−→ h−→

where t creates the whole move starting at x, with a new y′ as its final position,
and h identifies y and y′ (and therefore is not injective). It can easily be checked
that t is in T (as a pushout of a t-leg) and that h is in H. Also, that is the only
factorization up to isomorphism, by definition of a factorization system.

Another idea we had was that, if the factorization system does not preserve
injectivity, maybe it would at least preserve finiteness. However, that is also
wrong. Here, however, the counter example is cyclic, in the sense that the target

14

of one move is also its source, and it therefore is not a play. Again, take the
move m that goes from a nullary player to another nullary player. Take U the
play with just one nullary player, and V the play that contains m whose initial
position is also its final position. There is a morphism from U to V , but W in

its factorization U
t−→W

h−→ V is not finite. Indeed, its factorization is (we wrote
the t-legs and s-legs, because they are not necessarily obvious in this example):

• •

•

•

...

t−→ h−→
t

s

t

s

t

Again, it can easily be checked that t is in T and h in H, and the presheaf in
the middle is not finite.

However, plays are not simply finite objects. The counter-example above has
a particular shape that plays cannot have. Indeed, in a sense, plays are acyclic
objects, as it would not make sense for a play to contain a move that creates a
new player, but also needs that player to be played. Formally, a causal graph
can be defined for each presheaf, and only presheaves with an acyclic causal
graph can be plays. Basically, U ’s causal graph contains all the moves, players,
and channels of U , an arrow from a move to a player (or channel) if that player
is in U ’s initial position, and an arrow from a player (or channel) to a move if
that player is created by that move (it is slightly more complex, but that is the
main idea, for more details, see [1]).

We can write the following algorithm to build the factorization of a mor-
phism between plays. Note that this algorithm is a variant of the small object
argument, which is a transfinite construction, so it does not stop in the general
case, but it does stop on plays, because they are acyclic and finite. The algo-

rithm is given a morphism U
f−→ V between plays, and outputs a factorization

U
t−→ W

h−→ V of f with t in T , h in H, and W a play. This algorithm keeps a

factorization U
t−→W

h−→ V of f and loops until it has reached a fixed point (at
the beginning of the algorithm, t = f , h = idV and W = V). At each iteration,
it does the following:

• take I the set of commutative squares from a morphism t : X → Y in T0
to h that has no diagonal filler, and take the pushout:

∐
i∈I Xi

∐
i∈I Yi

W

W̃ ,

[ui]i∈I

∐
i∈I fi t̃

and call the morphism W̃ → V obtained by universal property of the
pushout h̃,

15

• then do the same with all commutative squares from morphims in δ0(T0)

to h̃, call the new pushout W ′, t̃′ : W̃ → W ′, the morphism W ′ → V
obtained by universal property of the pushout h′, and t′ = t̃′t̃t.

• If W ′ = W , t′ = t, and h′ = h, then stop. Otherwise, loop with the new
values t = t′, h = h′, and W = W ′.

Next, we describe the idea of the proof that this algorithm works (the formal
proof has yet to be completely done). Each loop is done in finite time, since
all the objects considered are finite, and there is only a finite number of com-
mutative squares to be considered. We need to show that there is only a finite
number of loops. Actually, the number of loops the algorithm runs is less or
equal than the height of V ’s causal graph (give or take one turn to realize it has
come to a fixed point). The height of a move m in the causal graph is 0 if it has
no path to another move, and n+1 if n is the maximum height of other moves m
has a path to. The height of the causal graph is the maximum height of a move
in it. The reason why the number of loops is not greater than the height of the
causal graph is because, at loop n, the smallest subpresheaf of W that contains
all the moves of height less than n is left untouched by the algorithm. W being
a play is an invariant of the algorithm (while W̃ is not a play in general), as
well as t being in T . h being in H at the end of the algorithm comes from the
fact that there is no commutative diagram from a morphism in T0 or δ0(T0) to
h that does not have a unique diagonal filler (this part is a bit tricky, especially
the fact that the second pushout does not erase elements introduced by the first
one, which would make the statement false).

3 A Factorization System on Graphs

Here, we introduce and study the properties of a double factorization system
on graphs. The basic idea is that graphs are proto-playgrounds. Graphs are
known to be presheaves on the category:

v.

e

s0 t0

Indeed, such a presheaf G is made two sets, a set of vertices G(v) and a set of
edges G(e), with two functions s0, t0 : G(e) → G(v) that are the source and
target of each edge. Graphs can be thought of as a playground with a single

player object v and a single move object e, whose seed is v
s0−→ e

t0←− v (with
a slight abuse of notation, as we write the object instead of its representable
presheaf).

3.1 A Factorization System on Graphs

There are three classes of morphisms we are interested in: T = {t0}, which
represent how a play can evolve “forward” in time, S = {s0}, which represents
how a play can evolve “backward” in time, and H = (T ∪S)⊥, which represents
some sort of spatial rearrangement, without “moving in time”. Therefore, the
construction we are interested in will be a ternary construction. We will use

16

a double factorization system (T , S,H). It is built by using two comparable

factorization systems, using theorem 3: (
⊥

(T⊥), T⊥) and (
⊥

((T ∪ S)⊥), H),

which gives us that T =
⊥

(T⊥) and S = T⊥ ∩ ⊥((T ∪ S)⊥).
T is fairly easy to understand: a morphism t : G → G′ in T is a transfinite

composite of pushouts of t and codiagonal of t. In terms of graphs, G′ is G where
some edges to the same target have been identified (potentially recursively), and
each vertex is the root of a (potentially infinite) tree of edges pointing towards
this root.

A morphism s : G → G′ in S is a transfinite composite of pushouts of t0,
s0, and their codiagonals and is also orthogonal to t. In terms of graphs, G′

is G where some edges from the same source (and not from the same target)
have been identified (potentially recursively), and each node is the root of a
(potentially infinite) tree of edges pointing either towards the root or not, but
whose first level of edges must not point to the root.

A morphism h : G → G′ in H is orthogonal to both t0 and s0. In terms of
graphs, it means that G′ is G where some vertices and all the edges pointing
to and from them have been identified (two different vertices that h identifies
must have the same number of edges pointing to and from them, and each pair
of identified edges must point to vertices that are identified by h), plus another
graph G′′ that is not connected to G.

This factorization system is interesting because it is probably close to the
answer to the question “What is the good definition of a move?” and can be
used to prove some properties of playgrounds more easily.

3.2 Properties

There are a number of properties that we want this factorization system to have
for the axiom of fibration (one of the playground axioms) to hold:

• T ·H ⊆ H · T

• the pullback of a morphism in H along a morphism in S is in H, and the
pullback of a morphism in S along a morphism in H is in S,

• the pushout of a morphism in H along a morphism in T is in H, and the
pushout of a morphism in T along a morphism in H is in T .

The first property has been proven to hold true, and the complete proof can
be found in appendix C. The other two properties seem to hold, but proving
them seems to be quite difficult.

Quillen factorization systems also have some nice properties and have been
extensively studied in category theory, and it would have been interesting if this
double factorization system was a Quillen factorization system. However, it is
not the case. Recall from [8] that a double factorization system (E ,J ,M) is a
Quillen factorization system if and only if both E ·M ⊆ M · E and for all j in
J , if there is an e in E such that ej is in E or an m in M such that jm is in
M, then j is an isomorphism.

We know that the first property holds true, but the second one does not.
Indeed, consider G that has one vertex x and no edge, G′ with two vertices x
and y and no edge, and G′′ with three vertices x, y, and z and an edge between
y and z. Take h : G → G′ and s : G′ → G′′ to be the graph inclusions, h is in
H, s in S, and hs in S, but s is not an isomorphism.

17

4 Conclusion

The main goal of this work was to develop tools to allow the automated construc-
tion of playgrounds from their most basic blocks, seeds, under some conditions
on them. Some of the more difficult axioms have been proven, such as the
right decomposition axiom, but others, such as the fibration axiom or the left
decomposition axiom, remain unproven yet. However, some drastic advances
have been made: the key to understanding playgrounds better, and therefore
to prove their axioms in the general case partly lies with factorization systems.
The study of one candidate to be a good double factorization system on the
category of graphs is encouraging, but not completely satisfactory yet: for ex-
ample, the dissymmetry between the class T and S shows that it is perhaps not
the most well-suited tool for this work.

Of course, the work left to be done on playgrounds is a real challenge. So far,
only CCS and the π-calculus have been proven to form playgrounds, and new
techniques have to be invented for each new language. The first goal to achieve
is the semi-automated construction of playgrounds based on the seeds, to have
a wide range of possible languages to study. Then, once this is done, studying
the semantics given by the playgrounds to show that they are adequate. Finally,
studying the morphisms between playgrounds could lead to an understanding
of what a semantics-preserving transformation, such as compilation, should be.

References

[1] Clovis Eberhart. Towards a Theory of Programming Languages. Master’s
thesis, ENS Cachan, 2013.

[2] Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. Fully-abstract con-
current games for pi. 20 pages, submitted, 2013.

[3] Richard Garner. Understanding the small object argument. Applied Cate-
gorical Structures, 17(3):247–285, 2009.

[4] Tom Hirschowitz. Full abstraction for fair testing in CCS (expanded version).
80 pages, under revision for LMCS., 2013.

[5] Tom Hirschowitz and Damien Pous. Innocent strategies as presheaves and
interactive equivalences for CCS (expanded version). Scientific Annals of
Computer Science, 22(1):147–199, 2012. 53 pages. Expanded version of ICE
’11 paper DOI 10.4204/EPTCS.59.2 .

[6] André Joyal. Joyal’s CatLab. http://ncatlab.org/joyalscatlab/

published/HomePage.

[7] Saunders Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer, 1998.

[8] Aleš Pultr and Walter Tholen. Free Quillen Factorization Systems. Georgian
Mathematical Journal, 9(4):807–820, 2002.

18

A Playground for the join-calculus

This appendix is taken nearly entirely and without change from my Master’s
Thesis [1].

Consider the graph GC with vertices:

• a vertex ∗

• for every n ∈ N, a vertex [n]

• for every n ≥ 2, a vertex 〈n〉

• for every n ∈ N, vertices πln, πrn, πn, δln, δrn, δn, reacn, and freacn

• for every n ∈ N and every i, j ∈ {1, ..., n}, a vertex σn,j〈i〉

• for every n ∈ N, every p ∈ N, every i, j ∈ {1, ..., p}, every q ∈ N and every
k,m ∈ {1, ..., q}, a vertex τn,p,j〈i〉,q,m〈k〉

and edges:

• for every vertex [n], edges s1, ..., sn : ∗ → [n]

• for every vertex 〈n〉, edges s1, .., sn : ∗ → 〈n〉

• for every vertex πln, edges s, t : [n]→ πln (idem for πrn)

• for every vertex πn, an edge l : πln → πn and an edge r : πrn → πn

• for every vertex δln, an edge t : [n]→ δln and an edge s : 〈n+ 2〉 → δln

• for every vertex δrn, an edge t : [n]→ δrn and an edge s : [n+ 2]→ δrn

• for every vertex δn, an edge l : δln → δn and an edge r : δrn → δn

• for every vertex reacn, an edge t : 〈n〉 → reacn and an edge s : [n+ 2] →
reacn

• for every vertex freacn, an edge f : reacn → freacn

• for every vertex σn,j〈i〉, an edge t : [n]→ σn,j〈i〉

• for every vertex τn,p,j〈i〉,q,m〈k〉, an edge d : freacn → τn,p,j〈i〉,q,m〈k〉, an
edge l : σp,j〈i〉 → τn,p,j〈i〉,q,m〈k〉, and an edge r : σq,m〈k〉 → τn,p,j〈i〉,q,m〈k〉

Now, we define C to be the free category on GC , modulo the relations:

t ◦ si = s ◦ si for any πln, π
r
n, δ

l
n, δ

r
n, reacn, i ∈ n

l ◦ s ◦ si = r ◦ s ◦ si for any δn, i ∈ {n+ 1, n+ 2}
l ◦ t = r ◦ t for any πn, δn

f ◦ d ◦ t ◦ sn−1 = l ◦ t ◦ sj
f ◦ d ◦ t ◦ sn = r ◦ t ◦ sm
f ◦ d ◦ s ◦ sn+1 = l ◦ t ◦ si
f ◦ d ◦ s ◦ sn+2 = r ◦ t ◦ sk

for any τn,p,j〈i〉,q,m〈k〉

The reasoning behind the construction of this category is the following.
The object ∗ represents channels on which the processes communicate.

19

The objects [n] are processes that can communicate on n channels, the si :
∗ → [n] represent the channels on which the process can communicate (since
positions will be modelled as presheaves, the si’s will go from a process to a
channel).

The objects 〈n〉 are definitions that know n channels and listen on channels
n− 1 and n, the si’s represent the channels it knows.

The object σn,j〈i〉 represents a process that knows n channels and sends the
name i on channel j, i.e. that a process can be of the form x〈u〉.

The object πn represents the move of a process that knows n channels and
forks into two different processes, i.e. that a process can be of the form P1 |P2

(πln and πrn are the left and right “half-fork” moves, with l and r being morphisms
that link a fork move to its left and right half-fork moves). The morphisms t
(target) and s (source) represent respectively the player before and after the
move (note that “source” and “target” may sound counter-intuitive). We require
that t ◦ si = s ◦ si because the avatars of the forking player know exactly the
same channels as this player, and the fact that l ◦ t = r ◦ t is because πn is a
forking move, so there is only one player before the move is made.

The object δn represents the move of a process that knows n channels and
forks into a definition that listens on two new channels n + 1 and n + 2 and
another process (the two channels it creates are shared between the definition
and the process), i.e. that a process can be of the form def D in P (δln and
δrn are the left and right half-fork moves). The morphism equations required
express exactly the same constraints as for πn, plus that the two new channels
are indeed shared between the definition and the process.

The object τn,p,j〈i〉,q,m〈k〉 represents the synchronization move between a
definition that listens on channels n− 1 and n and two processes that send the
channel names i and k on channels j and m respectively (reacn is the part of
the synchronization that creates a new process from a definition and freacn is
here for technical purposes). The morphism equations required express the fact
that channels n− 1 and n (on which the definition listens) are indeed channels
j and m (on which the names are sent) and that channels n+ 1 and n+ 2 of the
newly created process are channels i and k (that were sent to the definition).

Before we define the seeds, we have to define some positions n |n, n+2Bn+2,

p
j〈i〉
 n

m〈k〉
 q, n D n + 2, and n D n + 2, p, q. They are defined as below, and

the corresponding morphisms t′ and s′ are defined by the universal properties
of these colimits.

n · ∗ [n]

[n] n |n

πln

πrn

πn

[si]i≤n

[si]i≤n

s

s
s′ r

l

20

(n+ 2) · ∗ [n+ 2]

〈n+ 2〉 n+ 2B n+ 2

δln

δrn

δn

[si]i≤n+2

[si]i≤n+2

s

s
s′

r

l

∗+ ∗ 〈n〉

[p] + [q] p
j〈i〉
 n

m〈k〉
 q

σp,j〈i〉 + σq,m〈k〉

reacn

τn,p,j〈i〉,q,m〈k〉

[sn−1, sn]

sj + sm
t

t+ t
t′ d

[l, r]

∗+ ∗

n · ∗

p · ∗+ q · ∗

[n+ 2]

〈n〉 nD n+ 2

[p] + [q]

σp,j〈i〉 + σq,m〈k〉

reacn τn,p,j〈i〉,q,m〈k〉

ιi + ιk

[sn+1, sn+2]

[si]i≤n

[si]i≤n

[si]i≤p + [si]i≤q

t

s′

t+ t

[l, r]

d

s

n · ∗ [n+ 2]

〈n〉 nD n+ 2

reacn

[si]i≤n

[si]i≤n
s

t

s′

Now we can define the seeds of the join-calculus:

21

〈n〉

reacn

[n+ 2]

[n]

δln

〈n+ 2〉

[n]

δrn

[n+ 2]

[n]

σn,j〈i〉

n · ∗

[n]

πln

[n]

[n]

πrn

[n]

t t t t t t

s s s t ◦ [si]i≤n s s

[n]

πn

n |n

[n]

δn

n+ 2B n+ 2

〈n〉

freacn

nD n+ 2

p
j〈i〉
 n

m〈k〉
 q

τn,p,j〈i〉,q,m〈k〉

nD n+ 2, p, q

l ◦ t = r ◦ t l ◦ t = r ◦ t f ◦ t t′

s′ s′ f ◦ s′ s′

B Right Decomposition Axiom: A Proof

B.1 Conditions on the seeds

• Any t in T is a monomorphism.

• Any s in S is a monomorphism.

• For all seeds Y →M ← X, X contains at least a player.

• For all basic seeds Y
s−→ B

t←− X, and all c of dimension 1, sc(Y (c)) ∩
tc(X(c)) = ∅.

• for all seeds Y
s−→M

t←− X and Y ′
s′−→M ′

t′←− X ′ such that there is a nat-
ural transformation α : M →M ′, there exist two natural transformations
αX : X → X ′ and αY : Y → Y ′ such that:

– the diagram

X

M

Y

X ′

M ′

Y ′

t

αX

s

αY

α

t′

s′

commutes;

22

– if y ∈ Y is a player and s(y) is not in the image of t, then α(s(y)) is
not in the image of t′.

B.2 Proof

Lemma 1 (Existence of a Path). For any play Z
V−→ Y

U−→ X and any core
µ in V , there is a path in GU•V from µ to some player in Y , and that path
alternates between players and cores.

Proof. Let us choose a decomposition of V into moves:

Y = Y0

Y1

...

Yn

M0

...

Mn−1

V

and prove the stronger following statements by induction:

• for any player x in Yi, there is a path from x to some player y in Y , and
that path alternates between players and cores;

• there is a path from the core µ in Mi to some player y in Y , and that path
alternates between players and cores.

Let us prove the statement for Yi:

• for i = 0, it is obviously true for Y0 = Y : for every x in Y , the empty
path goes from x to itself;

• for i > 0, we assume the corresponding statements are true for Yi−1 and
Mi−1 respectively, then:

– either x is created by the core µ in Mi−1, in which case x → µ in
GU•V , and since µ has a path that alternates between players and
cores to a player in Y by induction, then so does x;

– or x is already in Yi−1, so the statement is true by induction.

Let us prove the statement for the core µ in Mi, assuming the corresponding
statement is true for Yi: since for any seed Y → M ← X, there is at least one
player in X0, we know that there is at least one player x in Yi such that µ→ x.
Therefore, since x has a path that alternates between players and cores to a
player in Y by induction, so does µ.

Lemma 2 (Arrow Transfer). Let U and V be plays, α : U → V , and x and y
in U such that c(x)→ c(y) in GU . Then:

23

• if x is a player and y a move,

• or x is a move and y a player,

c(α(x))→ c(α(y)) in GV .

Proof. Let us study both cases:

• If x is a player and y is a move, then c(x) = x, and x → c(y), which
means that x is created by c(y). Let us denote Y → M ← X the seed
that corresponds to c(y) and X ′ →M ′ ← Y ′ the one that corresponds to
c(α(y)). Note that c(α(y)) = c(α(c(y)), so there is a morphism c(y) →
c(α(y)), and therefore a cospan morphism between their seeds, so α(x) is
created by c(α(y)), so there is an arrow α(x)→ c(α(y)) in GV .

• If x is a move and y is a player, then c(y) = y, and c(x) → y, which
means that y is initial for c(x). Let us denote Y → M ← X the seed
that corresponds to c(x) and X ′ →M ′ ← Y ′ the one that corresponds to
c(α(x)). Note that c(α(x)) = c(α(c(x)), so there is a morphism c(x) →
c(α(x)), and therefore a cospan morphism between their seeds, so α(y) is
initial for c(α(x)), so there is an arrow c(α(x))→ α(y) in GV .

Lemma 3 (Right Decomposition). Any double cell (in the middle), where B is
a basic move and M is a move, decomposes into exactly one of the forms (on
the left and on the right):

X

Y

Z

X ′

Y ′

Z ′
h

U

B

k

U ′

M

α
=⇒

•

•

•

•

X

Y

Z

X ′

Y ′

Z ′
h

U

B

l

k

U ′

M

α1=⇒

α2=⇒

•

•

•

•

X

Y

Z

X ′

Y ′

Z ′
h

U

B

k

l

U ′

M

α1=⇒

α2=⇒

•

•

•

•

Proof. Let b be B’s core. α(t3(b)) is in M • U ′, therefore either in the image of
t′3 or in that of s′3. Let us study both cases:

• α(t3(b)) is in the image of t′3: then there is a b′ in M such that t′3(b′) =
α(t3(b)) (this b′ is actually unique because Y is empty in dimension greater
than 1, so (M • U ′)(c) = M(c) + U ′(c) for objects c of dimension greater
than 1). Since Y ′ → M ← X ′ is a move, it stems from a diagram of the
form:

24

X

B

Y B • U

U

Z

X ′

M

Y ′ M • U ′

U ′

Z ′

t1
h

t3

t2

s1

α

s3

s2

k

t′1

t′3

t′2

s′1

s′3

s′2

Figure 1: The double cell from lemma 3 in terms of cospans.

X0

M0

Y0

X ′

M

Y ′

I

I

I

Z

Z

Z

h0

l0

k0

l′

where Y0 → M0 ← X0 is a seed, I and Z are interfaces, the horizontal
squares are pullbacks and collectively surjetive. Since limits are computed
pointwise in presheaf categories, Z is empty in dimension greater than
1, and of the aforementioned properties of horizontal squares, there is a
unique b′′ in M0 such that l0(b′′) = b′. We define l1 : B → M0 to be the
unique natural transformation that maps b to b′′. Then, by construction,

B M

B • U M • U ′

l0l1

t3 t′3

α

commutes (note that we didn’t have a choice of where to map b to in M0

25

for this square to commute, and that a morphism B →M can always be
factored through M0). Now, since Y → B ← X and Y0 → M0 ← X0 are
seeds, there are morphisms h1 : X → X0 and k1 : Y → Y0 such that the
corresponding diagrams commute. Therefore, we have k0k1 : Y → Y ′. To
show that l0l1 : B →M is a double cell

X

Y

X ′,

Y ′

B

k0k1

h

Ml0l1⇒

it only remains to show that h = h0h1. They are equal when composed
with t′3t

′
1, and since t′3t

′
1 is monic – t′3 is monic as a pushout of t′2 monic

(pushouts of monomorphisms are monomorphisms because Ĉ is adhesive),
itself monic as a composition of pushout of monomorphisms –, it entails
that they are equal.

Now, we need to define a double cell

Y

Z

Y ′

Z ′
k

U

k0k1

U ′α2⇒

such that l0l1 • α2 = α, i.e., such that

B • U M • U ′

U U ′
α2

s3 s′3

α

commutes. By lemma 1, we know that every core m in U has a path to
some player y in Y in GB•U , and that this path alternates between players
and cores. Now, by lemma 2, we know that such a path is transformed
by α into a path from c(α(m)) to α(y) in GM•U ′ . However, y is created
by b, so α(y) is created by c(α(b)), which is the core that corresponds to
M , so it is impossible for a m in U to be mapped into the image of t′2.
Therefore, we know that every core m in U is mapped by αs3 into the
image of s′3. Therefore, since s′3 is injective on moves, we know that there
is a unique m′ in U ′ that m can be mapped to for the square to commute.
Therefore, we define α2(m) to be m′. For any player, channel, or move x
in U that is “under” a core m in U , α2(x) is defined by naturality. Now
we have to define α2(x) for players and channels x that are not “under”

26

any core m in U . However, such an x is final in U , therefore it is the image
of a unique x′ by s2, and we define α2(x) to be s′2k(x′) (the only possible
choice for the top square to commute).

We have to show that the three squares

U U ′

Z Z ′
k

s2 s′2

α2
Y Y ′

U U ′

t2

k0k1

t′2

α2

B • U M • U ′

U U ′
α2

s3 s′3

α

commute. Under the assumption that the third square commutes, the first
two commute because they commute when composed with s′3, which is a
monomorphism.

Now, all we need to show is that the third square commutes. Let us take
x ∈ U and show that s′3α2(x) = αs3(x):

– if x is “under” a move, then it is true because it’s true for moves and
by naturality;

– otherwise, x is final, so there is a unique x′ in Z such that s2(x′) =
x, and we have α2(x) = s′2k(x′), therefore s′3α2(x) = s′3s

′
2k(x′) =

αs3s2(x′) = αs3(x).

• α(t3(b)) is in the image of s′3: the proof is similar.

C T ·H ⊆ H · T
Lemma 4 (Morphisms in H). A morphism h : G → G′ is in H if and only
if for all vertex x in G, h restricted to edges to x is bijective onto the edges to
h(x) and h restricted to edges from x is bijective onto the edges from h(x).

Proof. This is just a direct reformulation of strong right orthogonality to both
t0 and s0.

Lemma 5 (TH ⊆ HT). Any morphism f that is decomposable into th with
t ∈ T and h ∈ H can be decomposed into h′t′ with t′ ∈ T and h′ ∈ H.

Proof. First, let us prove the more simple cases where t is a pushout of either
t0 or δ0t0 .

27

• t is a pushout of t0: we have G
h−→ G′

t−→ G′′ where G′′(v) = G′(v) ∪ {∗},
G′′(e) = G′(e)∪ {→}, G′′(s0) = G′(s0)∪ {→7→ ∗}, and G′′(t0) = G′(t0)∪
{→7→ x}, where x is in G′(v). Let (xi)i∈I be all the antecedents of x by

h. We build G̃ as follows: G̃(v) = G(v) ∪ {∗i | i ∈ I}, G̃(e) = G(e) ∪ {→i

| i ∈ I}, G̃(s0) = G(s0) ∪ {→i 7→ ∗i | i ∈ I}, and G̃(t0) = G(t0) ∪ {→i 7→
xi | i ∈ I}, and we define t′ : G → G̃ to be the inclusion. t′ is in T , as

a composite of pushouts of t0. Now, we define h′ : G̃ → G′′ as follows
: h′(∗i) = ∗, h′(→i) =→, and h′(x) = h(x) otherwise. We only need to
show that h′ is in H, i.e., that it is strongly right orthogonal to both t0
and s0.

Assume a commutative square

X

Y

G̃

G′′,

t0 h′

there are two possible cases:

– either the arrow picked in G′′ is →, in which case the vertex picked
in G̃ is an antecedent of x, i.e., one of the xi’s, so there is a unique
lifting Y → G̃ that makes both triangles commute (namely, the one
that picks →i);

– or the arrow picked in G′′ is already in G′. In this case, we have the
following diagram:

X

Y

G̃

G′′,

G

G′

t0 h′

t′
h

t

where the top and bottom triangles commute because the arrow
picked in G′′ is already in G′, and therefore the vertex picked in
G̃ is already in G. Consequently, the square in the back commutes
(since it commutes when composed with t, which is injective). There-
fore, since h is strongly right orthogonal to t0, there is a unique lifting
f : Y → G such that both triangles commute, and so, by injectiv-
ity of t′, t′f : Y → G̃ is the unique lifting such that both triangles
commute.

28

The proof that h′ is strongly right orthogonal to s0 follows exactly the
same pattern.

• t is a pushout of δ0t0 : we have that G
h−→ G′

t−→ G′′ where G′ is of the form:
G′(v) = V ∪ {xl, xr, ∗} (where some of the elements xl, xr, and ∗ may
be identified), G′(e) = E ∪ {l, r}, G′(s0) = f ∪ {l 7→ xl, r 7→ xr} (where
f : E → G′(v)), and G′(t0) = g ∪ {l, r 7→ ∗} (where g : E → G′(v)), and
G′′ is of the form: G′′(v) = V ∪ {x, ∗} (where x and ∗ may be identified
– they are if and only if it is forced by naturality, i.e., xl = ∗ or xr = ∗),
G′′(e) = E ∪ {→}, G′′(s0) = f ∪ {→7→ x}, and G′′(t0) = g ∪ {→7→ ∗} (t
maps l and r to→ – and xl and xr to x by naturality – and is the identity
on the rest of the graph).

Let (∗i)i∈I be all the antecedents of ∗ by h. Since h is in H, for each
∗i, there are two unique arrows li and ri to xi that are mapped to l and
r respectively, and we define xli = li · s and xri = ri · s. Note that any
edge mapped to l has ∗ as its target and is therefore an li (idem for edges
mapped to r), and that any vertex v mapped to xl has a unique edge from
it that is mapped to l, which is therefore an li, so v is therefore an xli
(idem for xr).

Let us denote V0 = (G(v)\{xli, xri | i ∈ I}) ∪ {∗i | i ∈ I} (i.e., G(v)
where all the xli and xri have been erased, except if they were equal to
some ∗j – note that if one xri0 (or xli0) is equal to some ∗j0 , then any xli
(or xri) is equal to some ∗j) and E0 = G(e)\{li, ri | i ∈ I}. Then, we

define G̃ as follows: G̃(v) = V0 ∪ {xi | i ∈ I} (where xi = ∗i if x = ∗),
G̃(e) = E0 ∪ {→i | i ∈ I}, G̃(s) = F(G(s)), and G̃(t) = F(G(t)),

where for f : G(e) → G(v), F(f) : G̃(e) → G̃(v) is defined by F(f) =

{xli, xri 7→ xi} ◦ f ◦ {→i 7→ li (or ri) | i ∈ I}. We define t′ : G → G̃ as
t′(xri) = t′(xli) = xi, t

′(li) = t′(ri) =→, and the identity on the rest of
the graph. t′ is in T , as a composite of pushouts of δ0t0 . Now, we define

h′ : G̃ → G′′ as h′(xi) = x, h′(→i) =→, and h′() = h() otherwise (note

that this mapping indeed goes from G̃ to G′′ because no vertex that is not
xli may be mapped to xl by h – idem for xr). Now, we only need to show
that h′ is in H, i.e., that it is strongly right orthogonal to both t0 and s0.

Assume a commutative square

X

Y

G̃

G′′,

t0 h′

there are two possible cases:

– either the arrow picked in G′′ is →, in which case the vertex picked
in G̃ is an antecedent of x, i.e., one of the xi’s, so there is a unique
lifting Y → G̃ that makes both triangles commute (namely, the one
that picks →i);

– or the arrow picked in G′′ is already in G′. In this case, we have the
following diagram:

29

X

Y

G̃

G′′,

G

G′

t0 h′

t′
h

t

where the top and bottom triangles commute because the arrow
picked in G′′ is already in G′ – i.e., in E –, and therefore the vertex
picked in G̃ is already in G – i.e., in V0. Consequently, the square in
the back commutes (since it commutes when composed with t, which
is injective above V). Therefore, since h is strongly right orthogonal
to t0, there is a unique lifting f : Y → G such that both triangles
commute, and that lifting is such that f(e) ∈ E0 (where e is the
only edge in Y) – otherwise, it is impossible to have hf = Y → G′.

Therefore, by injectivity of t′ above E0, t′f : Y → G̃ is the unique
lifting such that both triangles commute.

The proof that h′ is strongly right orthogonal to s0 follows exactly the
same pattern.

Now, let us prove the property in the general case.
t is a transfinite composite (ti)i<λ of pushouts of t0 and δ0t0 . Let us show by

transfinite induction that, for any ordinal α, we know how to factor (ti)i<αh as
hα(t′i)i<α:

• it is true for α = 0, since we can take h0 = h;

• if α is of the form β+ 1, then we have a factorization hβ(t′i)i<β = (ti)i<βh
by induction, and therefore, since we can factorize tβhβ as some hαt

′
β by

the proof above, we have a factorization hα(t′i)i<α of (ti)i<αh;

• otherwise, α is a limit ordinal. In this case, we have the following diagram:

30

A0

A1

A2

B0

B1

B2

Bα.

t′0h0 = h

t′1h1

t′2

h2

t0

(ti)i<α

t1

t2

We define t′α to be the transfinite composite of (t′i)i<α, so we have the
following:

A0

A1

A2

B0

B1

B2

Bα,

Aα

t′0h0 = h

t′α

t′1h1

t′2

h2

hα

t0

(ti)i<α

t1

t2

where hα is obtained by universal property of the colimit. t′α is in T since
T is stable under transfinite composition. We only need to show that hα is
in H, i.e., that it is right orthogonal to t0, s0, δ0t0 , and δ0s0 (not necessarily
strongly orthogonal). Take a commutative square

X

Y

Aα

Bα,

f

u

v

hα

where f is either t0, s0, δ0t0 , or δ0s0 . Since X is finitely presentable, u
factors through An for some n < α: u = (t′i)n≤i<αũ. For the same reason,

31

Y factors through Bm for some m < α: v = (ti)m≤i<αṽ. Therefore, for
k = max(m,n), we have:

X

Y

Ak

Bk

Aα

Bα,

f

(t′i)n≤i<kũ

(ti)m≤i<kṽ
hk

(t′i)k≤i<α

(ti)k≤i<α

hα

where the left square has a lifting d : Y → Ak because hk is in H. There-
fore, (t′i)k≤i<αd is a lifting for the big square.

32

