Architecture-Guided Test Resource Allocation Via Logic

Clovis Eberhart^{1,2} Akihisa Yamada³ Stefan Klikovits¹ Shin-ya Katsumata¹ Tsutomu Kobayashi^{4,1} Ichiro Hasuo¹ Fuyuki Ishikawa¹

¹National Institute of Informatics, Japan ² Japanese-French Laboratory for Informatics, Japan $^3\mbox{National Institute}$ of Advanced Industrial Science and Technology, Japan ⁴Japan Science and Technology Agency, Japan eberhart@nii.ac.jp

TAP 2021, June 21–22

Test Resource Allocation Problem

Test Resource Allocation Problem

Architecture

- more or less critical modules
- independent of reliability

Architecture:

- should influence TRA
- not taken into account in most approaches

Our approach to the TRAP

Our approach

- system: represented by QCL proof (e.g. via a fault tree)
- reliability of each module: given by confidence functions
- (limited) resources

Our solution

Solve an optimisation problem

Validation of approach: experimental results (Astrahl)

Applications

Applications

- complex systems (complex architecture)
- heterogeneous systems (different types of components)
- continuous development
- product line development

Disclaimer

- QCL: general framework for confidence
- this work: preliminary results
- needs more experimental results

Quantitative Confidence Logic Formulas

Quantitative Confidence Logic (QCL)

- confidence (not truth)
- positive and negative

Formulas: $\varphi ::= A \mid \top \mid \bot \mid \varphi \Rightarrow \varphi \ (\neg \varphi, \ \varphi \land \varphi, \ \varphi \lor \varphi)$

Formula with confidence

$$\varphi : (t, f) \text{ with } (t, f) \in \{(t, f) \in [0, 1]^2 \mid t + f \le 1\}$$

- t: positive confidence
- f: negative confidence

Examples

- φ : (0,0): totally unknown
- φ : (1,0): true with total confidence
- φ : (1/2,1/2): total confidence in truth with probability 1/2

QCL Proof Rules

$$\frac{\Gamma, \varphi \colon (t, f) \vdash \varphi \colon (t, f)}{\Gamma \vdash \Gamma \colon (1, 0)} \xrightarrow{(T_I)} \frac{\Gamma \vdash \varphi \colon (0, 0)}{\Gamma \vdash \bot \colon (0, 1)} \xrightarrow{(\bot_I)} \frac{\Gamma \vdash \varphi \colon (t, f)}{\Gamma \vdash \varphi \Rightarrow \psi \colon (f + t' - ft', tf')} \xrightarrow{(\Rightarrow_I)} \frac{\Gamma \vdash \varphi \Rightarrow \psi \colon (t, f)}{\Gamma \vdash \psi \colon (t', f')} \xrightarrow{(\Rightarrow_{E, I})} \text{if } t' \neq 0 \text{ and } f' \neq 1$$

$$\frac{\Gamma \vdash \varphi \Rightarrow \psi \colon (t, f)}{\Gamma \vdash \psi \colon (t', f')} \xrightarrow{(\Rightarrow_{E, I})} \text{if } t' \neq 1 \text{ and } f' \neq 1$$

$$\frac{\Gamma \vdash \varphi \Rightarrow \psi \colon (t, f)}{\Gamma \vdash \varphi \colon (t', f')} \xrightarrow{(\Rightarrow_{E, I})} \text{if } t' \neq 1 \text{ and } f' \neq 0$$

$$\frac{\Gamma \vdash \varphi \Rightarrow \psi \colon (t, f)}{\Gamma \vdash \varphi \colon (t', f')} \xrightarrow{(\Rightarrow_{E, I})} \text{if } t' \neq 1 \text{ and } f' \neq 0$$

$$\frac{\Gamma \vdash \varphi \colon (t,f)}{\Gamma \vdash \neg \varphi \colon (f,t)} \, (\neg_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \land \psi \colon (tt',f+f'-f\!f')} \ (\land_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \lor \psi \colon (t+t'-tt',ff')} \ (\lor_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f)}{\Gamma \vdash \neg \varphi \colon (f,t)} \ (\neg_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \land \psi \colon (tt',f+f'-f\!f')} \ (\land_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \lor \psi \colon (t+t'-tt',ff')} \ (\lor_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f)}{\Gamma \vdash \neg \varphi \colon (f,t)} \, (\neg_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \land \psi \colon (tt',f+f'-f\!f')} \ (\land_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \lor \psi \colon (t+t'-tt',ff')} \ (\lor_I)$$

$$\frac{\Gamma \vdash \varphi \colon (t,f)}{\Gamma \vdash \neg \varphi \colon (f,t)} (\neg_{I})$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \land \psi \colon (tt',f+f'-ff')} (\land_{I})$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \Gamma \vdash \psi \colon (t',f')}{\Gamma \vdash \varphi \lor \psi \colon (t+t'-tt',ff')} (\lor_{I})$$

$$\frac{\Gamma \vdash \varphi \colon (t,f) \qquad \overline{\Gamma \vdash \psi \colon (0,0)} (unk)}{\Gamma \vdash \varphi \lor \psi \colon (t+0-t\cdot 0,f\cdot 0) = (t,0)} (\lor_{I})$$

QCL Proof Trees

Example Simple CPS: $\frac{\Gamma \vdash \text{software}}{\Gamma \vdash \text{software} \land \text{hardware}}$ $\frac{(ax)}{(\land I)}$

QCL Proof Trees

Example

Simple CPS:

```
\frac{\Gamma \vdash \text{software}: (0.5, 0.2)}{\Gamma \vdash \text{software} \land \text{hardware}: (0.15, 0.208)} \frac{(ax)}{(\land_I)}
```

QCL Proof Trees

Example

Simple CPS:

$$\frac{\Gamma \vdash \text{software: } (0.5, 0.2)}{\Gamma \vdash \text{software: } (0.5, 0.2)} \frac{(ax)}{\Gamma \vdash \text{hardware: } (0.3, 0.01)} \frac{(ax)}{(\land_I)}$$

QCL:

- not about truth
- flow of confidence from hypotheses to conclusion

QCL, Dempster-Shafer Theory, and Fuzzy Logic

Dempster-Shafer Theory

- theory of belief
- major difference to Bayesian approaches: $t+f \leq 1$ (rather than t+f=1)

Fuzzy logical features:

- product *T*-norm (interpretation of ∧)
- probabilistic sum *T*-conorm (interpretation of ∨)
- involution (interpretation of ¬)

QCL vs Fuzzy Logic

- φ : t with $t \in [0,1]$, equivalent: φ : (t,f) with f=1-t
- φ : (t, f) with $t + f \le 1$, equivalent: φ : (t, u, f) with u = 1 t f

Probabilistic Interpretation of QCL

Interpretation in probability spaces: $[\![\varphi]\!]_{\rho}$ probability that φ holds $(\rho \text{ gives probability of atomic variables}). <math>\rho \vDash \varphi \colon (t, f) \iff [\![\varphi]\!]_{\rho} \in [t, 1 - f]$

Lemma

For all rules, formulas φ and ψ that share no atomic propositions, and contexts ρ , if the premise sequents hold for ρ , then so does the conclusion.

Corollary

If φ is linear (each atomic proposition appears at most once) and a proof π of $\Gamma \vdash \varphi \colon c$ only uses base rules and introduction rules, then $\Gamma \vdash \varphi \colon c$ holds for all contexts ρ .

Fault trees:

- industry standard
- represent fault propagation
- ullet fault at root \iff failure

- assign fault probabilities to base events
- compute failure probability

Fault trees:

- industry standard
- represent fault propagation
- ullet fault at root \iff failure

- assign fault probabilities to base events
- compute failure probability

Fault trees:

- industry standard
- represent fault propagation
- ullet fault at root \iff failure

- assign fault probabilities to base events
- compute failure probability

Fault trees:

- industry standard
- represent fault propagation
- ullet fault at root \iff failure

- assign fault probabilities to base events
- compute failure probability

Fault trees:

- industry standard
- represent fault propagation
- ullet fault at root \iff failure

- assign fault probabilities to base events
- compute failure probability

Fault trees:

- industry standard
- represent fault propagation
- fault at root ←⇒ failure

- assign fault probabilities to base events
- compute failure probability

- ullet dualisation: propagation of faults o confidence
- Γ: contains hypotheses

- ullet dualisation: propagation of faults o confidence
- Γ: contains hypotheses

- ullet dualisation: propagation of faults o confidence
- Γ: contains hypotheses

- ullet dualisation: propagation of faults o confidence
- Γ: contains hypotheses

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \lor B} \qquad \frac{\Gamma \vdash C \qquad \Gamma \vdash D}{\Gamma \vdash C \lor D} \\
\Gamma \vdash (A \lor B) \land (C \lor D)$$

- ullet dualisation: propagation of faults o confidence
- Γ: contains hypotheses

$$\Gamma \vdash (A \lor B) \land (C \lor D) : ((t_A + t_B - t_A t_B)(t_C + t_D - t_C t_D),$$

$$f_A f_B + f_C f_D - f_A f_B f_C f_D)$$

$$\Gamma \vdash \varphi : (g_t(c_1, \dots, c_n), g_f(c_1, \dots, c_n))$$

Confidence Functions

Confidence function

$$c: \mathbb{R}_+ \to \mathbb{C} \ (= \left\{ (t, f) \in [0, 1]^2 \,\middle|\, t + f \leq 1 \right\})$$

- takes resources (time, money, etc.)
- returns confidence

Given:

- proof of $\Gamma \vdash \varphi \colon (t, f)$
- confidence functions c_i 's for hypotheses in Γ
- resources r_i spent on hypotheses

positive confidence
$$t = g_t(c_1(r_1), \dots, c_n(r_n))$$

Examples of Confidence Functions

Here: negative confidence f = 0.

complete test suite

• independent test suite

SRGMs

TRAP as Optimisation Problem

TRAP

Given:

- fault tree
- confidence functions c; for modules
- resources r_i spent on modules
- resources r to spend

maximise $g_t(c_1(r_1+r_1'),\ldots,c_n(r_n+r_n'))$ under $\sum_{i=1}^n r_i' \leq r$

→ constrained optimisation problem

Experimental Competitors

Competitors:

- uniform
- "inverse proportional"

Experimental Competitors

Competitors:

- uniform
- "inverse proportional"

- naive
- architecture unaware

	Astrahl	Uniform		Proportional	
Budget	Score	Score	Diff %	Score	Diff %
1	.8445	.8442	-0.19	.8442	-0.19
10	.8498	.8465	-2.20	.8471	-1.80
50	.8697	.8565	-10.13	.8593	-7.98
100	.8884	.8682	-18.10	.8729	-13.89
250	.9226	.8976	-32.30	.9053	-22.35
500	.9544	.9329	-47.15	.9400	-31.58
1000	.9812	.9711	-53.72	.9730	-43.62

	Astrahl	Uniform		Proportional	
Budget	Score	Score	Diff %	Score	Diff %
60	.8982	.8890	-9.04	.8887	-9.33
120	.9146	.9000	-17.10	.8995	-17.68
240	.9380	.9188	-30.97	.9179	-32.42
360	.9541	.9341	-43.57	.9329	-46.19
480	.9657	.9466	-55.69	.9451	-60.06
600	.9743	.9567	-68.48	.9550	-75.10

Future Experiments

Compare to architecture-aware TRA strategies

- parallel-series architecture → fault tree
- using same confidence functions for modules (SRGM)
- same function to optimise

Experiments on larger fault trees

- numerical optimisation less efficient
- should still be better than not taking architecture into account (even better)

Other Frameworks

Other TRAPs

- optimise t + f
- optimise resources (for fixed t / fixed t + f)

Dynamic TRAP

- take test results into account → many faults = loss of confidence
- ullet number of faults unknown o not optimisation problem
- use Bayesian reasoning to guess number of faults

Others

- test prioritisation
- ...?

Conclusion

This work

- Quantitative Confidence Logic proof rules
- ullet translation fault tree o proof tree
- architecture-aware TRA strategy
- experimental validation

Future work

- logical side:
 - QCL and truth (e.g., $\vdash A \Rightarrow A$: (1,0))
 - QCL and time
 - equip logic with confidence
- practical side:
 - dynamic TRAP

Thank you for your attention!