Architecture-Guided Test Resource Allocation
Via Logic

Clovis Eberhart’? Akihisa Yamada® Stefan Klikovits?
Shin-ya Katsumatal Tsutomu Kobayashi*! Ichiro Hasuo!
Fuyuki Ishikawal

INational Institute of Informatics, Japan
2 Japanese-French Laboratory for Informatics, Japan
3National Institute of Advanced Industrial Science and Technology, Japan
4Japan Science and Technology Agency, Japan

eberhart@nii.ac. jp

TAP 2021, June 21-22

SNNE =@

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 1/22

Test Resource Allocation Problem

system

resources

* | . @&
¥)

Clovis Eberhart

resource
repartition

Architecture-Guided Test Resource Allocation Via Logic

2/ 22

Test Resource Allocation Problem

resource
system N
Y resources repartition
X A 2 N
: o @
Goob!

Architecture

@ more or less critical modules

@ independent of reliability

Architecture:
@ should influence TRA

@ not taken into account in most approaches

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 2/22

Our approach to the TRAP

Our approach

TFA TFB TFC TFD r[,ﬂ
TEAVB TECvD

A B c D
r=(AvB)A(CvVD)

@ system: represented by QCL proof (e.g. via a fault tree)
@ reliability of each module: given by confidence functions

Confgenc

o (limited) resources /‘
V.

Solve an optimisation problem

Validation of approach: experimental results (Astrahl)

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 3/22

Applications

Applications

@ complex systems (complex architecture)

@ heterogeneous systems (different types of components)
@ continuous development
]

product line development

QCL: general framework for confidence

@ this work: preliminary results

@ needs more experimental results

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 4/22

Quantitative Confidence Logic Formulas

Quantitative Confidence Logic (QCL)

e confidence (not truth)

@ positive and negative

Formulas: o = A|T|L|o= ¢ (-, p Ap, oV)

Formula with confidence
p: (t,f) with (t,f) € {(t,f) € [0,1]? |t +f < 1}

@ t: positive confidence

@ f: negative confidence

e ¢: (0,0): totally unknown

@ ¢: (1,0): true with total confidence
@ ¢:(1/2,1/2): total confidence in truth with probability 1/2

v

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 5/22

QCL Proof Rules

(ax) (unk)

Mo: (t,f)F e (t,f) = ¢:(0,0)

(T1)

[FT:(1,0) M- L:(0,1) (L

Mee:(t,f) = (t,fF)
FEo=9: (F+t —ft tf)

(=1)
M@= 1:(t,f) FEo: (¢, f)
1—t
MEa: (1 f’)
M@= :(t,f) = (¢, fF)

f 1-—t
e (o)

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 6 /22

(=e)ift' #0and f' #1

(=e)ift' #1and f'#0

Derivable Rules

MNeEe:(t,f))
[—p: (F,t)

e : (t,f) Fa: (t,fF)
FTEoAy: (t, f+Ff —ff)

(A1)

Me: (t,f) FEa: (t,fF)
FToVva: (t+t —tt fF)

(V1)

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic

722

Derivable Rules

MeEe:(t,f)
ME—p: (f,t) (1)

e : (t,f) Fa: (t,fF)
FTEoAy: (t, f+Ff —ff)

(A1)

Me: (t,f) FEa: (t,fF)
FToVva: (t+t —tt fF)

(V1)

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic

722

Derivable Rules

MNeEe:(t,f))
[—p: (F,t)

e : (t,f) Fa: (t,fF)
FTEoAy: (t, f+Ff —ff)

(A1)

e o:(t,f) FEa:(t,fF)
FToVva: (t+t —tt fF)

(V1)

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic

722

Derivable Rules

MNeEe:(t,f))
[—p: (F,t)

e : (t,f) Fa: (t,fF)
FTEoAy: (t, f+Ff —ff)

(A1)

Me: (t,f) FEa: (t,fF)
FToVva: (t+t —tt fF)

(V1)

(unk)

MNee:(t,1) =1 (0,0))

F-eVvy: (t+0—1t-0,f-0)=(t,0)

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 7/22

QCL Proof Trees

Simple CPS:

(ax)

[- software A hardware

I - software [+ hardware

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 8 /22

QCL Proof Trees

Simple CPS:
I - software: (0.5,0.2)

(ax)
I - software A hardware: (0.15,0.208)

(ax)

I - hardware: (0.3,0.01) (A)
/).

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 8 /22

QCL Proof Trees

Simple CPS:
I - software: (0.5,0.2)

(ax)
I - software A hardware: (0.15,0.208)

(ax)

I - hardware: (0.3,0.01) (A)
/).

QCL:
@ not about truth

@ flow of confidence from hypotheses to conclusion

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 8 /22

QCL, Dempster-Shafer Theory, and Fuzzy Logic

Dempster-Shafer Theory

@ theory of belief

@ major difference to Bayesian approaches: t + f <1 (rather
than t +f =1)

Fuzzy logical features:
@ product T-norm (interpretation of A)
@ probabilistic sum T-conorm (interpretation of V)

e involution (interpretation of —)

QCL vs Fuzzy Logic

e ¢: t with t € [0,1], equivalent: ¢: (t,f) with f =1—t¢
e ¢: (t,f) with t + f <1, equivalent: ¢: (t,u,f) with
el ==

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 9 /22

Probabilistic Interpretation of QCL

Interpretation in probability spaces: [¢], probability that ¢ holds
(p gives probability of atomic variables).
pE: (t,f) <= [ol, €[t,1—f]

For all rules, formulas ¢ and v that share no atomic propositions,
and contexts p, if the premise sequents hold for p, then so does the
conclusion.)

If ¢ is linear (each atomic proposition appears at most once) and a
proof 7 of ' = : ¢ only uses base rules and introduction rules,
then I' = ¢: ¢ holds for all contexts p.

.

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 10 / 22

Fault Trees
Fault trees:
@ industry standard
@ represent fault propagation
o fault at root <= failure
Quantitative analysis:
@ assign fault probabilities to base events
@ compute failure probability

A B C D

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 11 /22

Fault Trees
Fault trees:
@ industry standard
@ represent fault propagation
o fault at root <= failure
Quantitative analysis:
@ assign fault probabilities to base events
@ compute failure probability

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 11 /22

Fault Trees
Fault trees:
@ industry standard
@ represent fault propagation
o fault at root <= failure
Quantitative analysis:
@ assign fault probabilities to base events
@ compute failure probability

0.25 % 0.1 = 0.025 0.04 =0.2%0.2

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 11 /22

Fault Trees
Fault trees:
@ industry standard
@ represent fault propagation
o fault at root <= failure
Quantitative analysis:
@ assign fault probabilities to base events
@ compute failure probability

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 11 /22

Fault Trees
Fault trees:
@ industry standard
@ represent fault propagation
o fault at root <= failure
Quantitative analysis:
@ assign fault probabilities to base events
@ compute failure probability

0.025 + 0.04 — 0.025 * 0.04 = 0.064

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic

11/22

Fault Trees
Fault trees:
@ industry standard
@ represent fault propagation
o fault at root <= failure
Quantitative analysis:
@ assign fault probabilities to base events
@ compute failure probability

0.064

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 11 /22

Translation to QCL Proof Trees

[FA TFB TFC TFD
rFAVB rFCvD
F-(AVB)A(CVD)

A B C D
@ dualisation: propagation of faults — confidence

@ [: contains hypotheses

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 12 / 22

Translation to QCL Proof Trees

[FA TFB TFC TFD
[-AVB rFCvD
- (AVB)A(CVD)

A B C D
@ dualisation: propagation of faults — confidence

@ [: contains hypotheses

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 12 / 22

Translation to QCL Proof Trees

[FA TFB TFC TFD
rFAVB [FCvD
- (AVB)A(CVD)

A B C D
@ dualisation: propagation of faults — confidence

@ [: contains hypotheses

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 12 / 22

Translation to QCL Proof Trees

[FA TFB TFC TFD
rFAVB rFCvD
- (AVB)A(CVD)

A B C D
@ dualisation: propagation of faults — confidence

@ [: contains hypotheses

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 12 / 22

Translation to QCL Proof Trees

[FA TFB TFC TFD
rFAVB rFCvD
F-(AVB)A(CVD)

A B C D
@ dualisation: propagation of faults — confidence

@ [: contains hypotheses

N-(AVB)A(CVD): ((ta+ tg — tatg)(tc + tp — tctp),
fafg + fcfp — fAfoch)

M- @ (gt(clv""cn)7gf(cla" 'acn))

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 12 / 22

Confidence Functions

Confidence function
c:Ry = C(={(t,f) e[0,1|t+f <1})

o takes resources (time, money, etc.)

@ returns confidence

Given:
e proof of ' F ¢: (t,f)
@ confidence functions ¢;'s for hypotheses in I’
@ resources r; spent on hypotheses

positive confidence t = gi(c1(n), ..., cn(rn))

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 13 /22

Examples of Confidence Functions

Here: negative confidence f = 0.

@ complete test suite

confidence &(r) = min (1‘ Tm)

00 + resources

@ independent test suite

confidence () =1—c/nta

resources

o SRGMs

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic

14 /22

TRAP as Optimisation Problem

Given:
o fault tree
@ confidence functions ¢; for modules
@ resources r; spent on modules
@ resources r to spend

maximise g¢(c1(ri + r1),..., cn(rn + r})) under Y7, rl <r
— constrained optimisation problem

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 15 / 22

Experimental Competitors

Competitors:
@ uniform

@ ‘“inverse proportional”

°°1";'def‘fe 777777777777777 (r) = 1 —0.99(r+1)
0wt

0.87

| |
| |
| |
| I
0.64 | |
| I
| |
| |
| |

— Uniform
Proportional

0.0 » resources

400 500

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 16 / 22

Experimental Competitors

Competitors:
@ uniform

@ ‘“inverse proportional”

°°1";'def‘fe 777777777777777 (r) = 1 —0.99(r+1)
0wt

0.87

| |
| |
| I
| |
0.64 | |
| |
| |
| |
| |

— Uniform
Proportional

0.0 » resources

400 500

@ naive

@ architecture unaware

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 16 / 22

First Experiment

RQ1: how much confidence does our approach gain?

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 17 /22

First Experiment

RQ1: how much confidence does our approach gain?

0.25 0.1 02 0.2

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 17 /22

First Experiment

RQ1: how much confidence does our approach gain?

budget

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 17 / 22

First Experiment

RQ1: how much confidence does our approach gain?

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 17 / 22

First Experiment

RQ1: how much confidence does our approach gain?

budget r: Astrahl’s score

[] ' competitor’s score

AR relative difference:

A B C D (1_r)_(1_r/)
0.25 01 02 0%
A B C D 11—,
Astrahl Uniform Proportional og1s 1 1~ 3:2:‘“
Budget Score Score Diff % Score Diff % 0950 { —F— Prop

1 8445 8442 -0.19 8442 -0.19 0.925

10 .8498 .8465 -2.20 .8471 -1.80
50 .8697 .8565 -10.13 .8593 -7.98
100 .8884 .8682 -18.10 .8729 -13.89

0.900

System Reliability

0.875

250 9226 8976 -32.30 .9053 -22.35 0.850
500 9544 19329 -47.15 9400 -31.58 0825
1000 9812 9711 -53.72 9730 -43.62 0 100 250 500 1000
Budget
Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic

17 /22

Second Experiment

RQ2: is the gain in confidence linked to a gain in reliability?

budget
15%[45%[20%]20%)
A B C D

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 18 /22

Second Experiment

RQ2: is the gain in confidence linked to a gain in reliability?

budget
15%]45%]20%[20%)
A B C D
faults
[4]6]5]4]
0.25 0.1 0.2 0.2
A B c D A B C D

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 18 /22

Second Experiment

RQ2: is the gain in confidence linked to a gain in reliability?

budget tests
15%[45%[20%]20% [3]9[44]
A B C D A B C D
faults
o o LLal6l5]4]
A B ¢ bp A B CD

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 18 / 22

Second Experiment

RQ2: is the gain in confidence linked to a gain in reliability?

budget tests
15%[45%]20%][20%) [3[9o]4]4]
A B C D A B C D
faults final faults
. o LLal6l5]4]
A B C D A B C D A B C D

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 18 / 22

Second Experiment

RQ2: is the gain in confidence linked to a gain in reliability?

budget tests
15%[45%[20%[20% [3]of4T4]
A B C D A B C D
faults final faults

0.25 01 02 0.2 4 > 1 . . . 2

A B c D A B C D A B C D
09879 T Astrahl
Astrahl Uniform Proportional Uniform

—F— Prop
Budget Score Score Diff % Score Diff %
60 8982 .8890 -9.04 .8887 -9.33
120 9146 9000 -17.10 .8995 -17.68
240 19380 9188 -30.97 9179 -32.42
360 9541 19341 -4357 9329 -46.19
480 19657 9466 -55.69 .9451 -60.06
600 9743 9567 -68.48 9550 -75.10

60 120 240 360 480 600
Budget

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic

Future Experiments

Compare to architecture-aware TRA strategies

@ parallel-series architecture — fault tree
@ using same confidence functions for modules (SRGM)

@ same function to optimise

Experiments on larger fault trees

@ numerical optimisation less efficient

.

@ should still be better than not taking architecture into
account (even better)

.

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 19 / 22

Other Frameworks

Other TRAPs

@ optimise t + f
@ optimise resources (for fixed t / fixed t + f)

Dynamic TRAP

@ take test results into account — many faults = loss of
confidence

@ number of faults unknown — not optimisation problem

@ use Bayesian reasoning to guess number of faults

@ test prioritisation
o .7

.

A

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 20 /22

Conclusion

@ Quantitative Confidence Logic proof rules
@ translation fault tree — proof tree
@ architecture-aware TRA strategy

@ experimental validation

o logical side:
o QCL and truth (e.g., F A= A: (1,0))
e QCL and time
e equip logic with confidence
@ practical side:
e dynamic TRAP

\,

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 21 /22

system

resource
repartition

rEA reB r=c r=bD
— r’FAvVB r=cvobD
r'=(AvB)A(CVD)

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 22 /22

system

resource
repartition

rEA reB r=c r=bD
— r’FAvVB r=cvobD
r'=(AvB)A(CVD)

Goob!

Thank you for your attention!

Clovis Eberhart Architecture-Guided Test Resource Allocation Via Logic 22 /22

	
	Quantitative Confidence Logic
	Fault Trees
	The TRAP
	Experimental Results
	Future Work

