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Semantics of Programming Languages

Semantics:

programs = text (syntax)

no meaning per se

programs → meaning/math (semantics)

Why?

prove properties (of programs)

prove properties (of programming languages)

understand logics (Curry-Howard correspondence)
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Operational Semantics
Intuition: computing machine.

Types:

syntactic labelled transition
systems

abstract machines

M’
(λx .M)N →M[N/x]

M →M ′

MN →M ′N

N → N ′

MN →MN ′

MN ⋆ π →M ⋆N ∶∶ π

λx .M ⋆N ∶∶ π →M[N/x] ⋆ π

Characteristics:

syntactic
dynamic
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Denotational Semantics

Idea:

types → spaces

programs → functions

Example: Scott domains:

spaces = partial orders

functions = monotone maps

Characteristics:

syntax-free

static

compositional
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Features of Game Semantics

Between operational and denotational:

types → games

programs → strategies

dynamic

related to syntax (equivalence of programs is intensional,
rather than extensional)

Game semantics:

significant part of denotational semantics

“solved” full abstraction for PCF

many variants characterise different programming features

applications: model checking, hardware synthesis. . .
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Game Semantics: a Brief (Pre)history

Lorenz-Lorenzen (70s): dialogical logic

Joyal (77): category of strategies

Blass (92): links to linear logic

Coquand (92): links to execution of programs and innocence

Hyland-Ong/Nickau, Abramsky-Jagadeesan-Malacaria (90s):
models of PCF
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HON Game Semantics: Games

Structures possible moves.

booleans (B) natural numbers (N)

q

t f

q

0 1 2 . . .
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HON Game Semantics: Plays
Basically:

sequence of moves

interaction between program and environment

Example: f = fun n -> 2 * n

N N N N

qr

ql

6l

12r
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HON Game Semantics: Strategies

Strategy = prefix-closed set of accepted plays.

Example: for f = fun n -> 2 * n, (roughly) all plays of the
form

N N N N

qr

ql

nl

(2n)r
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HON Game Semantics: Composition
Parallel composition + hiding.

N N N N N N N

q

q q q

q

5

6 6 6

12

f = fun n -> n + 1 f = fun n -> 2 * n

N N

q

6

q

6

N

q

6

N

q

6
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Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view.

View: certain type of play.

strategy of counter:

q 0 q 10 1

0 1

strategy of successor function:

qr ql 5l 6r qr ql 5l 6r6r6r

6r6r

Innocence: the strategy accepts a play iff it accepts all its views.
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Strategies as Presheaves
Presheaf over C: functor Cop → Set.

Boolean presheaf over C: functor Cop → 2 (2 = 0→ 1).

Two notions of strategies:

prefix-closed sets of plays: boolean presheaves PA,B

:

concurrent strategies: presheaves PA,B

⋀

⋅

⋅

⋅ ⋅

a

b c

⋅

⋅ ⋅

⋅ ⋅

a a

b c

σ(a) = {x} σ(a) = {x , x ′}

With traditional strategies:

σ = {ε, a, ab, ac}
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Outline

1 Fibred Approach to Game Semantics

Building Categories of Plays Abstractly

Application: Justified Sequences in String Diagrams

2 A Theory of Game Models

Game Settings, Composition, and Identities

A Category of Strategies

Innocence
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Motivation

Recurring construction in the string diagrammatic approach to
game semantics:

start from an operational description of a language

design string diagrams for this language

derive a pseudo double category D describing the game

derive categories E(X ) of plays

strategies = E(X )
⋀

Here: delineate hypotheses for E(X ) to be a category.
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String Diagrams

Intuition: graphs = presheaves over

[1]

⋆
s t

E

V

σ τ

x

y

a

b

c

α
β γ

δ

ε

V = {a,b, c , x , y}
E = {α,β, γ, δ, ε}
α ⋅ s = x , α ⋅ t = y . . .

String diagram = presheaf over C
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Positions for the π-calculus

positions ∼ graphs presheaf X over C∣≤1

x y

c

a

X (⋆) = {a, c},
X ([1]) = {y}. . .

y ⋅ s1 = a. . .

Morphisms ∼ embeddings of
graphs

Natural transformations

x y

c

a

ya h∶X ′ → X
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Moves for the π-calculus
move ∼ step of computation

Example: ā⟨c⟩.P ∣ a(b).Q → P ∣ Q[b ∶= c]

∼ higher-dimensional graphs cospans of presheaves

x ′

x

y ′

y

c

a

Y Y

M

X X

s

t

M
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Plays for the π-calculus

play ∼ composition (pasting) of moves

x ′

x

x0

y ′

y

c

a
Y Y

M

X X

M ′

X0 X0

M

M′

U
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Pseudo Double Category
D: describes the whole game.

objects (positions)

horizontal morphisms (embeddings)

vertical morphisms (plays)

cells (embeddings of plays)

X X ′

Y Y ′

hh

U U′U

k

αα

E(X ): describes plays over a fixed X .

Y

U

X

U

objects:

Z Y ′

Y

X X

h

W

U′

U

α

morphisms:
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Composition in E(X )

Z ′ Y ′′

Z Y ′

Y

X X X

h′

W ′

U′′

h

W

U′

U

α

α′

Z ′′
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Composition in E(X )

Z ′ Y ′′

Z Y ′

Y

X X X

h′
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U′′

h

W

U′

U

α

α′
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Fibredness

Y ′′

Y ′ Y

X ′′

X ′ X
h

U

X ′′

Y ′′

k ′

h′

U′′

h′′

α′
Y ′

k

U′ α

Y ′
k

U′ α

k ′′

α′′

Theorem: If the data we start from is “nice enough”, then D is
fibred, so E(X ) is a category.
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Factorisation Systems

Orthogonality: f � g :

A C

B D

u

f g

v

d

Extends to classes: L �R, L�, �R.

Factorisation system on C: (L,R)

A
fÐ→ B = A

lÐ→ X
rÐ→ B

L �R

22 / 47



Introduction Fibred Approach to Game Semantics A Theory of Game Models Conclusion

Factorisation Systems

Orthogonality: f � g :

A C

B D

u

f g

v

d

Extends to classes: L �R, L�, �R.

Factorisation system on C: (L,R)

A
fÐ→ B = A

lÐ→ X
rÐ→ B

L �R

22 / 47



Introduction Fibred Approach to Game Semantics A Theory of Game Models Conclusion

Fibredness Through Factorisation Systems

Y ′′

Y ′ Y

U ′′

U ′ U

X ′′

X ′ X
h

f

l

U ′
h′

l ′

Y ′ h′′

f ′

s′

s′′

X ′′

U ′′

Y ′′ q′′

q′

q

f ′′

l ′′

s

U ′
h′

l ′

Y ′ h′′

f ′
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Motivation

Two approaches to concurrent game semantics:

Hirschowitz et al.: CCS (2011), π-calculus (2015)

Tsukada and Ong: non-deterministic λ-calculus (2015)

Similar notions of strategies: sheaves for the “same” topology.

Different notions of plays:

string diagrams

justified sequences

Goal: prove formal link between the two approaches

plays: full embedding of categories

innocent strategies: equivalence of categories

24 / 47
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The Level of Plays

Design string diagrams for HON games.

String diagrams are nice: position A ⊢ B ↝ plays E(A ⊢ B).

full embedding F ∶PA,B → E(A ⊢ B)
restricts to equivalence FV∶VA,B → EV(A ⊢ B)

justified sequences: VA,B PA,B

string diagrams: EV(A ⊢ B) E(A ⊢ B)

iTO

FV

i

F∼

25 / 47
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String Diagrams for HON Games

⋰ ⋱
Γn ∆m

Ax y

Λ
@

β

⋰ ⋱

Γ1
A⋅m

∆1x ′

y ′

Γ1 ∆1

Γn ∆m

A

26 / 47



Introduction Fibred Approach to Game Semantics A Theory of Game Models Conclusion

String Diagrams for HON Games

⋰ ⋱
Γn ∆m

Ax y

Λ
@

β

⋰ ⋱

Γ1
A⋅m

∆1x ′

y ′

Γ1 ∆1

Γn ∆m

A

26 / 47



Introduction Fibred Approach to Game Semantics A Theory of Game Models Conclusion

String Diagrams for HON Games

⋰ ⋱
Γn ∆m

Ax y

Λ
@

β

⋰ ⋱

Γ1
A⋅m

∆1x ′

y ′

Γ1 ∆1

Γn ∆m

A

26 / 47



Introduction Fibred Approach to Game Semantics A Theory of Game Models Conclusion

The Big Picture

qr ql tl fr fl tr
fr tr

tl fl

ql

qr

Bl ,{t, f}r ,∅l ⊢ ∅r
frBl ,{t, f}r ,∅l ⊢

Bl ,{t, f}r ,∅l ⊢ ∅r
trBl ,{t, f}r ,∅l ⊢

tl , flBl ,{t, f}r ⊢ {t, f}l qlBl ,{t, f}r ⊢ qrBl ⊢ Br

Bl ,{t, f}r ,∅l ⊢ ∅r
frBl ,{t, f}r ,∅l ⊢

Bl ,{t, f}r ,∅l ⊢ ∅r
trBl ,{t, f}r ,∅l ⊢ Bl ,{t, f}r ⊢ {t, f}l

flBl ,{t, f}r ⊢ {t, f}l tlBl ,{t, f}r ⊢ {t, f}l qlBl ,{t, f}r ⊢ Bl ⊢ Br qrBl ⊢ Br

tr

fl

fr

tl

ql

qr

1

2

3

4

27 / 47



Introduction Fibred Approach to Game Semantics A Theory of Game Models Conclusion

Concurrent Innocence
If F ∶C→ D:

C
⋀

D
⋀

∆F

∏F

�

∏F (X )(d) ≅ ∫c∈C[[F (c),d],X (c)]

Categories of views and plays: EV(A ⊢ B)
iA,BÐÐ→ E(A ⊢ B).

Functor: EV(A ⊢ B)
⋀∏iA,BÐÐÐ→ E(A ⊢ B)
⋀

.

Innocent strategy: in the (essential) image of ∏iA,B .

∏iA,B (σ)(p) ≅ ∫v∈VA,B
[[iA,B(v),p], σ(v)]
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The Level of Strategies

VA,B

⋀

PA,B

⋀

EV(A ⊢ B)
⋀

E(A ⊢ B)
⋀

∏iTO

∆
FV

∏i

∆F

Theory of exact squares: square commutes (up to isomorphism).

Theorem: we get

equivalent categories of innocent strategies

compatible with innocentisation
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Motivation
Game models:

HON (justified sequences)

AJM (sequences)

simple games, Blass (trees)

concurrent (event structures)

string diagrams

variants

. . .

Definitions and proofs are similar. . . but tricky!

Goal: define a framework that

encompasses many models

factors out similar proofs
30 / 47
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Recurring Pattern

define games A, B, C , . . .

assumed

define categories of plays PA,B

assumed

define strategies A→ B as prefix-closed sets of plays in PA,B

composition = parallel composition + hiding

identities = copycat strategies

prove that this defines a category of games and strategies

define a notion of innocence

assumed

prove that innocent strategies form a subcategory

31 / 47
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Categories of Plays

games A, B, C . . .

categories of plays PA, PA,B ,
PA,B,C . . .

projections PA,B → PA

insertions PA,B → PA,B,B

compatibility between
projections and insertions

A B B

q

q

q

5

6

6

A B

q

q

5

6

A B

q

q

5

6

A B B

q

q

q

5

6

6
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Describing Categories of Plays Simplicially

Game setting:

set A of games

functor P∶ (∆/A)op → Cat

∆/A:

objects: lists L = A1, . . . ,An of games

morphisms: insertions (A,C → A,B,C ) and fusions
(A,A,B → A,B)

Strategies A→ B: PA,B

⋀

.
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Polynomial Functors

If F ∶C→ D:

C
⋀

D
⋀

∆F

∏F

�

∑F

�

Polynomial functor: composite of ∆’s, ∏’s, and ∑’s.
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Composition

Idea: parallel composition + hiding.

PA,B + PB,C

⋀∆δ2+δ0ÐÐÐÐ→ PA,B,C + PA,B,C

⋀∏∇ÐÐ→PA,B,C

⋀ ∑δ1ÐÐ→ PA,C

⋀

Justification:

mA,B,C(σ, τ) accepts p
iff

there exists an interaction sequence u ∈ PA,B,C

that is accepted and projects to p

iff

both inlu and inr u are accepted

iff

σ accepts δ2(u) and τ accepts δ0(u).
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Copycat strategies

1 ≅ ∅⋀ ∏!Ð→ PA

⋀ ∑ι0ÐÐ→ PA,A

⋀

Justification:

ccA accepts p
iff

there exists a sequence s ∈ PA that is accepted
and mapped to p

iff

there is an s that is mapped to p.
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Game Settings

set A of games

functor P∶ (∆/A)op → Cat

δ1∶PA,B,C → PA,C and ι0∶PA → PA,A discrete fibrations

. . .
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Associativity of composition

Theorem (Composition is associative):

PA,B + PB,C + PC ,D

⋀

PA,C + PC ,D

⋀

PA,B + PB,D

⋀

PA,D

⋀

mA,B,C+PC ,D

PA,B+mB,C ,D mA,C ,D

mA,B,D

commutes if

PA,B,C ,D PA,B,D

PB,C ,D PB,D

and
PA,B,C ,D PA,C ,D

PA,B,C PA,C

are pullbacks (zipping lemma).
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Unitality

Theorem (Copycat strategies are units):

∅ + PA,B

⋀

PA,B + ∅
⋀

PA,A + PA,B

⋀

PA,B

⋀

PA,B + PB,B

⋀

ccA+PA,B ∼ PA,B+ccB∼

mA,A,B mA,B,B

commutes if

PA,B PA

PA,A,B PA,A

and
PA,B PB

PA,B,B PB,B

are pullbacks.

39 / 47



Introduction Fibred Approach to Game Semantics A Theory of Game Models Conclusion

Applications

Applications:

HON

variants

AJM

TO

May all be expressed as game settings, abstract composition agrees
with traditional composition.
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Innocent Game Settings

Add VA,B

iA,BÐÐ→ PA,B to the setting.

Innocent strategy: VA,B

⋀ ∏iA,BÐÐÐ→ PA,B

⋀

.

Composition of innocent strategies:

VA,B +VB,C

⋀

PA,B + PB,C

⋀

PA,C

⋀∏iA,B+iB,C mA,B,C

Preservation of innocence: composition of innocent strategies is
again innocent (in the image of ∏iA,C ).
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Preservation of Innocence

Preservation of innocence:

VA,B +VB,C

⋀

PA,B + PB,C

⋀

PA,C

⋀

VA,B +VB,C

⋀

VA,C

⋀

VA,B +VB,C

⋀

PA,B + PB,C

⋀

PA,C

⋀

∏iA,B+iB,C mA,B,C

∆iA,C

∏iA,C

∏iA,B+iB,C
mA,B,C
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Proof: Preservation of Innocence

Alternative definition of composition:

PA,B + PB,C

⋀

P(A,B),(B,C)
⋀

PA,B,C

⋀

PA,C

⋀∏ ∆ ∑

VA,B +VB,C

⋀

PA,B + PB,C

⋀

P(A,B),(B,C)
⋀

PA,B,C

⋀

PA,C

⋀

VA,B +VB,C

⋀

V(A,B),(B,C)
⋀

VA,B,C

⋀

VA,C

⋀

VA,B +VB,C

⋀

PA,B + PB,C

⋀

P(A,B),(B,C)
⋀

PA,B,C

⋀

PA,C

⋀

∏ ∏ ∆ ∑

∆

∏

∏ ∏ ∆ ∑
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∏

simple commutation

exact squares (Guitart)

distributive squares
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Conclusion

Results:

abstract construction of categories of plays based on string
diagrams

application: standard plays versus string diagrams in HON
games

abstract construction of categories of games and (innocent)
strategies

Not discussed here:

a model of the π-calculus

interpretation terms → strategies as a singular functor

modelling concurrent rewriting traces as string diagrams
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Perspectives

String diagrams:

fibred approach + composition of strategies

Composition of strategies:

more models

more structure

interpreting languages

categorical implications?
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Thank you.
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Justified Sequences in String Diagrams A Theory of Game Models

full embedding F ∶PA,B → E(A ⊢ B)
restricts to equivalence FV∶VA,B → EV(A ⊢ B)

VA,B PA,B

EV(A ⊢ B) E(A ⊢ B)

iTO

FV

i

F
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Justified Sequences in String Diagrams A Theory of Game Models

Result Transfer
Adjunction:

Set � 2

l

r

Result transfer:

PA,B

⋀

� PA,B

:
l!

r!

PA,B + PB,C

⋀

PA,C

⋀

PA,B + PB,C

:
PA,C

:

mA,B,C

l!

mA,B,C

l!
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Exact Squares

A C

B D

T

S V

U

ϕ

Mates:

A
⋀

C
⋀

B
⋀

D
⋀

∆T

∑S ∑V

∆U

∑ϕ

A
⋀

C
⋀

B
⋀

D
⋀

∏T

∆S ∆V

∏U

∏ϕ

Exact square: the mates are isomorphisms.

Guitart: conditions for square to be exact.
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Distributive Squares

Conditions for

A
⋀

C
⋀

B
⋀

D
⋀

∏T

∑S ∑V

∏U

ϕ̃

to commute.
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Composition

Associativity of composition:

PA,B + PB,C + PC ,D

⋀

PA,C + PC ,D

⋀

PA,B + PB,D

⋀

PA,D

⋀

mA,B,C+PC ,D

PA,B+mB,C ,D mA,C ,D

mA,B,D
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Associativity of Composition

PA,B + PB,C + PC ,D

⋀

P(A,B),(B,C) + PC ,D

⋀

PA,B,C + PC ,D

⋀

PA,C + PC ,D

⋀

PA,B + P(B,C),(C ,D)
⋀

P(A,B),(B,C),(C ,D)
⋀

P(A,C),(C ,D)
⋀

PA,B + PB,C ,D

⋀

PA,B,C ,D

⋀

PA,C ,D

⋀

PA,B + PB,D

⋀

P(A,B),(B,D)
⋀

PA,B,D

⋀

PA,D

⋀

∏

∏

∆ ∑

∏

∆

∑

∆

∑

∏ ∆ ∑
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Proof: Associativity of Composition

PA,B + PB,C + PC ,D P(A,B),(B,C) + PC ,D PA,B,C + PC ,D PA,C + PC ,D

PA,B + P(B,C),(C ,D) P(A,B),(B,C),(C ,D) P(A,C),(C ,D)

PA,B + PB,C ,D PA,B,C ,D PA,C ,D

PA,B + PB,D P(A,B),(B,D) PA,B,D PA,D

∏

∏

∆ ∑

∏

∆

∑

∆

∑

∏ ∆ ∑

P(A,B),(B,C),(C ,D)

PA,B,C ,D

∏

∏
∆

∑

∑
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Proof: Associativity of Composition

PA,B + PB,C + PC ,D P(A,B),(B,C) + PC ,D PA,B,C + PC ,D PA,C + PC ,D

PA,B + P(B,C),(C ,D) P(A,B),(B,C),(C ,D) P(A,C),(C ,D)

PA,B + PB,C ,D PA,B,C ,D PA,C ,D

PA,B + PB,D P(A,B),(B,D) PA,B,D PA,D

∏

∏

∆ ∑

∏

∆

∑

∆

∑

∏ ∆ ∑

P(A,B),(B,C),(C ,D)

PA,B,C ,D

∏

∏
∆

∑

∑
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Proof: Associativity of Composition (cont.)

PA,B + P(B,C),(C ,D) P(A,B),(B,C),(C ,D)

PA,B + PB,C ,D P(A,B),(B,C),(C ,D) PA,B,C ,D

P(A,B),(B,C ,D)

PA,B + PB,D P(A,B),(B,D) PA,B,D

∏

∆

∑

∏

∏

∏

∆

∑

∆

∆

∆

∑

∆
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Applications

Applications: HON, variants, AJM, TO.

May all be expressed as game settings, abstract composition agrees
with traditional composition.

Subtleties:

HON: liberal definition of PA (for projections PA,B → PA to
exist)

AJM: slightly different definition of PA,B,C (projection
PA,B,C → PA,C should be a discrete fibration)

Blass games: composition known to be non-associative. Cannot be
expressed as a game setting (zipping fails).
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Conditions to Preserve Innocence
Locality: δ1∶PA,B,C → PA,C and ι0∶PA → PA,A are sheaves.

VA,B,C PA,B,C

VA,C PA,C

δ1

iA,C

VA,B,C
iA,B,C

δ1

u1

un u

v1

vn p

f1

fn

u

View-analyticity:

iA,B(v) δ2(u)

δ2(iA,B,C(w))

f

δ2(iA,B,C(w))
g δ2(h)
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Boolean Innocent Strategies

But (non-deterministic) innocent strategies should not compose!

Answer:

VA,B +VB,C

⋀

PA,C

⋀

VA,B +VB,C

:
PA,C

:

l!r!

does not commute.

concurrent innocent strategies compose

traditional innocent strategies do not
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