Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Categories and String Diagrams for Concurrent Game Semantics

Clovis Eberhart

LAMA, CNRS, Université Savoie Mont Blanc

June 22, 2018

A Theory of Game Models 00000000 000 0000 Conclusion 00

Semantics of Programming Languages

Semantics:

- programs = text (syntax)
- no meaning per se
- programs → meaning/math (semantics)

Why?

- prove properties (of programs)
- prove properties (of programming languages)
- understand logics (Curry-Howard correspondence)

Introduction	
00000	

A Theory of Game Models 00000000 000 0000 Conclusion 00

Operational Semantics

Intuition: computing machine.

Types:

syntactic labelled transition
systemsabstract machines $\overline{(\lambda x.M)} N \to M[N/x]$ $MN \star \pi \to M \star N :: \pi$ $\underline{M} \to M'$
 $MN \to M'N$ $\lambda x.M \star N :: \pi \to M[N/x] \star \pi$ $\underline{N} \to N'$
 $MN \to MN'$ $\lambda x.M \star N :: \pi \to M[N/x] \star \pi$

Characteristics:

- syntactic
- dynamic

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Denotational Semantics

Idea:

- types → spaces
- programs → functions

Example: Scott domains:

- spaces = partial orders
- functions = monotone maps

Characteristics:

- syntax-free
- static
- compositional

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Features of Game Semantics

Between operational and denotational:

- types \rightarrow games
- programs → strategies
- dynamic
- related to syntax (equivalence of programs is intensional, rather than extensional)

Game semantics:

- significant part of denotational semantics
- "solved" full abstraction for PCF
- many variants characterise different programming features
- applications: model checking, hardware synthesis. . .

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Game Semantics: a Brief (Pre)history

- Lorenz-Lorenzen (70s): dialogical logic
- Joyal (77): category of strategies
- Blass (92): links to linear logic
- Coquand (92): links to execution of programs and innocence
- Hyland-Ong/Nickau, Abramsky-Jagadeesan-Malacaria (90s): models of PCF

00000 0000 00 Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

HON Game Semantics: Games

Structures possible moves.

A Theory of Game Models 00000000 000 0000 Conclusion 00

HON Game Semantics: Plays

Basically:

- sequence of moves
- interaction between program and environment

Example: $f = fun n \rightarrow 2 * n$

A Theory of Game Models 00000000 000 0000 Conclusion 00

HON Game Semantics: Plays

Basically:

- sequence of moves
- interaction between program and environment

Example: $f = fun n \rightarrow 2 * n$

A Theory of Game Models 00000000 000 0000 Conclusion 00

HON Game Semantics: Strategies

Strategy = prefix-closed set of accepted plays.

Example: for f = fun n -> 2 * n, (roughly) all plays of the form

Introduction

0000

A Theory of Game Models 00000000 000 0000 Conclusion 00

HON Game Semantics: Composition Parallel composition + hiding.

Introduction

0000

A Theory of Game Models

Conclusion 00

HON Game Semantics: Composition Parallel composition + hiding.

Introduction

0000

A Theory of Game Models 00000000 000 0000 Conclusion 00

HON Game Semantics: Composition Parallel composition + hiding.

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.

• strategy of counter:

• strategy of successor function:

Innocence: the strategy accepts a play iff it accepts all its views.

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.

• strategy of counter:

Innocence: the strategy accepts a play iff it accepts all its views.

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.

• strategy of counter:

Innocence: the strategy accepts a play iff it accepts all its views.

00

ibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Strategies as Presheaves

Presheaf over \mathbb{C} : functor $\mathbb{C}^{op} \to \text{Set}$.

Boolean presheaf over \mathbb{C} : functor $\mathbb{C}^{op} \to 2 \ (2 = 0 \to 1)$.

Two notions of strategies:

- prefix-closed sets of plays: boolean presheaves $\widetilde{\mathbb{P}_{A,B}}$
- concurrent strategies: presheaves $\widetilde{\mathbb{P}}_{A,B}$

With traditional strategies:

$$\sigma = \{\varepsilon, a, ab, ac\}$$

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

Outline

Fibred Approach to Game Semantics

- Building Categories of Plays Abstractly
- Application: Justified Sequences in String Diagrams

A Theory of Game Models

- Game Settings, Composition, and Identities
- A Category of Strategies
- Innocence

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Motivation

Recurring construction in the string diagrammatic approach to game semantics:

- start from an operational description of a language
- design string diagrams for this language
- $\bullet\,$ derive a pseudo double category $\mathbb D$ describing the game
- derive categories $\mathbb{E}(X)$ of plays
- strategies = $\widehat{\mathbb{E}(X)}$

Here: delineate hypotheses for $\mathbb{E}(X)$ to be a category.

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

String Diagrams

Intuition: graphs = presheaves over

 $\mathsf{String}\ \mathsf{diagram} = \mathsf{presheaf}\ \mathsf{over}\ \mathbb{C}$

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

String Diagrams

Intuition: graphs = presheaves over

String diagram = presheaf over \mathbb{C}

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

String Diagrams

Intuition: graphs = presheaves over

 $\mathsf{String}\ \mathsf{diagram} = \mathsf{presheaf}\ \mathsf{over}\ \mathbb{C}$

presheaf X over $\mathbb{C}_{|<1}$ positions ~ graphs • $X(\star) = \{a, c\},\$ $X([1]) = \{y\}...$ X а • $y \cdot s_1 = a...$ Morphisms ~ embeddings of Natural transformations graphs $h: X' \to X$ V $\rightarrow x$ а

а

cospans of presheaves

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

Plays for the π -calculus

play ~ composition (pasting) of moves

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

Plays for the π -calculus

play ~ composition (pasting) of moves

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

- $\mathbb{D}:$ describes the whole game.
 - objects (positions)

Introd	uction
0000 0000 00	0

A Theory of Game Models 00000000 000 0000

Y

Conclusion 00

Pseudo Double Category

- $\mathbb{D}:$ describes the whole game.
 - objects (positions)
 - horizontal morphisms (embeddings)

Y'

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

- $\mathbb{D}:$ describes the whole game.
 - objects (positions)
 - horizontal morphisms (embeddings)
 - vertical morphisms (plays)

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

- $\mathbb{D}:$ describes the whole game.
 - objects (positions)
 - horizontal morphisms (embeddings)
 - vertical morphisms (plays)

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

- $\mathbb{D}:$ describes the whole game.
 - objects (positions)
 - horizontal morphisms (embeddings)
 - vertical morphisms (plays)
 - cells (embeddings of plays)

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Pseudo Double Category

- $\mathbb{D}:$ describes the whole game.
 - objects (positions)
 - horizontal morphisms (embeddings)
 - vertical morphisms (plays)
 - cells (embeddings of plays)

 $\mathbb{E}(X)$: describes plays over a fixed X. objects:

morphisms:

Fibred Approach to Game Semantics

Conclusion 00

Composition in $\mathbb{E}(X)$

Fibred Approach to Game Semantics

Conclusion 00

Composition in $\mathbb{E}(X)$

00000 0000 00 Fibred Approach to Game Semantics

Conclusion 00

00000 0000 00 Fibred Approach to Game Semantics

Conclusion 00

Fibredness

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 0000 Conclusion 00

Fibredness

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 0000 Conclusion 00

Fibredness

Fibred Approach to Game Semantics

Conclusion 00

Fibredness

Theorem: If the data we start from is "nice enough", then \mathbb{D} is fibred, so $\mathbb{E}(X)$ is a category.

Fibred Approach to Game Semantics

Conclusion 00

Factorisation Systems

Orthogonality: $f \perp g$:

Extends to classes: $\mathcal{L} \perp \mathcal{R}$, \mathcal{L}^{\perp} , ${}^{\perp}\mathcal{R}$.

Factorisation system on $\mathbb{C}:$ $(\mathcal{L},\mathcal{R})$

•
$$A \xrightarrow{f} B = A \xrightarrow{l} X \xrightarrow{r} B$$

• $\mathcal{L} \perp \mathcal{R}$

Fibred Approach to Game Semantics

Conclusion 00

Factorisation Systems

Orthogonality: $f \perp g$:

Extends to classes: $\mathcal{L} \perp \mathcal{R}$, \mathcal{L}^{\perp} , ${}^{\perp}\mathcal{R}$.

Factorisation system on $\mathbb{C}:$ $(\mathcal{L},\mathcal{R})$

•
$$A \xrightarrow{f} B = A \xrightarrow{l} X \xrightarrow{r} B$$

• $\mathcal{L} \perp \mathcal{R}$

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

Motivation

Two approaches to concurrent game semantics:

- Hirschowitz et al.: CCS (2011), π -calculus (2015)
- Tsukada and Ong: non-deterministic λ -calculus (2015)

Similar notions of strategies: sheaves for the "same" topology. Different notions of plays:

- string diagrams
- justified sequences

Goal: prove formal link between the two approaches

- plays: full embedding of categories
- innocent strategies: equivalence of categories

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

The Level of Plays

Design string diagrams for HON games.

String diagrams are nice: position $A \vdash B \rightsquigarrow$ plays $\mathbb{E}(A \vdash B)$.

- full embedding $F: \mathbb{P}_{A,B} \to \mathbb{E}(A \vdash B)$
- restricts to equivalence $F^{\mathbb{V}}: \mathbb{V}_{A,B} \to \mathbb{E}^{\mathbb{V}}(A \vdash B)$

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion 00

String Diagrams for HON Games

Fibred Approach to Game Semantics

Conclusion 00

String Diagrams for HON Games

Fibred Approach to Game Semantics

Conclusion 00

String Diagrams for HON Games

00000

Fibred Approach to Game Semantics

Conclusion 00

The Big Picture

A Theory of Game Models 00000000 000000000 Conclusion 00

Concurrent Innocence

If $F: \mathbb{C} \to \mathbb{D}$:

$$\prod_{F}(X)(d) \cong \int_{c \in \mathbb{C}} [[F(c), d], X(c)]$$

Categories of views and plays: $\mathbb{E}^{\mathbb{V}}(A \vdash B) \xrightarrow{i_{A,B}} \mathbb{E}(A \vdash B)$.

Functor:
$$\widetilde{\mathbb{E}^{\mathbb{V}}}(A \vdash \overline{B}) \xrightarrow{\Pi_{A,B}} \widetilde{\mathbb{E}(A \vdash B)}.$$

Innocent strategy: in the (essential) image of $\prod_{i_{A,B}}$.

$$\prod_{\mathsf{i}_{A,B}}(\sigma)(p) \cong \int_{v \in \mathbb{V}_{A,B}}[[\mathsf{i}_{A,B}(v), p], \sigma(v)]$$

Fibred Approach to Game Semantics ○○○○○○○○○ Conclusion 00

The Level of Strategies

Theory of exact squares: square commutes (up to isomorphism).

Theorem: we get

- equivalent categories of innocent strategies
- compatible with innocentisation

Fibred Approach to Game Semantics

Conclusion 00

Motivation

Game models:

- HON (justified sequences)
- AJM (sequences)
- simple games, Blass (trees)
- concurrent (event structures)
- string diagrams
- variants
- . . .

Definitions and proofs are similar... but tricky!

Goal: define a framework that

- encompasses many models
- factors out similar proofs

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Recurring Pattern

- define games A, B, C, ...
- define categories of plays $\mathbb{P}_{A,B}$
- define strategies $A \rightarrow B$ as prefix-closed sets of plays in $\mathbb{P}_{A,B}$
- composition = parallel composition + hiding
- identities = copycat strategies
- prove that this defines a category of games and strategies
- define a notion of innocence
- prove that innocent strategies form a subcategory

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Recurring Pattern

- define games A, B, C, ... assumed
- define categories of plays $\mathbb{P}_{A,B}$ assumed
- define strategies $A \rightarrow B$ as prefix-closed sets of plays in $\mathbb{P}_{A,B}$
- composition = parallel composition + hiding
- identities = copycat strategies
- prove that this defines a category of games and strategies
- define a notion of innocence assumed
- prove that innocent strategies form a subcategory

Introducti	0
00000	
00	

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Categories of Plays

 $A \longrightarrow B$

- games A, B, C...
- categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...

Introductio	
00000	

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Categories of Plays

- games A, B, C...
- categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Categories of Plays

 $A \longrightarrow B$

- games A, B, C...
- categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$

Fibred	Approach to	Game Ser	mantics
0000	000000		

A Theory of Game Models

Conclusion 00

Categories of Plays

- games A, B, C...
- categories of plays ℙ_A, ℙ_{A,B}, ℙ_{A,B,C}...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$
- insertions $\mathbb{P}_{A,B} \to \mathbb{P}_{A,B,B}$

Fibred	Approach	to	Game	Semantics
00000	000000			

A Theory of Game Models

Conclusion 00

Categories of Plays

- games A, B, C...
- categories of plays ℙ_A, ℙ_{A,B}, ℙ_{A,B,C}...
- projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$
- insertions $\mathbb{P}_{A,B} \to \mathbb{P}_{A,B,B}$
- compatibility between projections and insertions

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Describing Categories of Plays Simplicially

Game setting:

- $\bullet \ \, {\rm set} \ \, \mathbb{A}$ of games
- functor $\mathbb{P}: (\Delta/\mathbb{A})^{op} \to \mathsf{Cat}$

 Δ/\mathbb{A} :

- objects: lists $L = A_1, \ldots, A_n$ of games
- morphisms: insertions (A, C → A, B, C) and fusions (A, A, B → A, B)

Strategies $A \to B$: $\widehat{\mathbb{P}_{A,B}}$.

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Polynomial Functors

If $F: \mathbb{C} \to \mathbb{D}$:

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Polynomial Functors

If $F: \mathbb{C} \to \mathbb{D}$:

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Polynomial Functors

If $F: \mathbb{C} \to \mathbb{D}$:

Polynomial functor: composite of Δ 's, \prod 's, and \sum 's.

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \widehat{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \widehat{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \overline{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \overline{\mathbb{P}_{A,C}}$$

Fibred Approach to Game Semantics

A Theory of Game Models 0000000 000 000 Conclusion 00

Composition

Idea: parallel composition + hiding.

$$\xrightarrow{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_{2}+\delta_{0}}} \xrightarrow{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \xrightarrow{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_{1}}} \xrightarrow{\mathbb{P}_{A,C}}$$

Justification:

 $\mathsf{m}_{\textit{A},\textit{B},\textit{C}}(\sigma,\tau) \text{ accepts } p$ iff

iff iff

35 / 47

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \widehat{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $\begin{array}{ll} \mathsf{m}_{A,B,C}(\sigma,\tau) \text{ accepts } p \\ \text{ there exists an interaction sequence } u \in \mathbb{P}_{A,B,C} \\ \text{ that is accepted and projects to } p \\ \text{ iff} \\ \text{ iff} \end{array}$
Fibred Approach to Game Semantics

A Theory of Game Models 0000000 000 000 Conclusion 00

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_{2} + \delta_{0}}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \overline{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_{1}}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $m_{A,B,C}(\sigma,\tau)$ accepts p

iff there exists an interaction sequence $u \in \mathbb{P}_{A,B,C}$ that is accepted and projects to piff both inl u and inr u are accepted

iff

Fibred Approach to Game Semantics

A Theory of Game Models 0000000 000 000 Conclusion 00

Composition

Idea: parallel composition + hiding.

$$\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \overline{\mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C}} \xrightarrow{\Pi_{\nabla}} \overline{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $m_{A,B,C}(\sigma,\tau)$ accepts p

- iff there exists an interaction sequence $u \in \mathbb{P}_{A,B,C}$ that is accepted and projects to p
- iff both inl u and inr u are accepted
- iff σ accepts $\delta_2(u)$ and τ accepts $\delta_0(u)$.

Introd	uction
0000	0

A Theory of Game Models

Conclusion 00

Copycat strategies

$$1 \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

 \mathfrak{C}_A accepts p iff

iff

Introducti	or
00000	
0000	
00	

A Theory of Game Models

Conclusion 00

Copycat strategies

$$1 \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

 \mathfrak{C}_A accepts p

iff there exists a sequence $s \in \mathbb{P}_A$ that is accepted and mapped to piff

Introduction
00000
0000
00

A Theory of Game Models

Conclusion 00

Copycat strategies

$$1 \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

 \mathfrak{C}_A accepts p

- iff there exists a sequence $s \in \mathbb{P}_A$ that is accepted and mapped to p
- iff there is an *s* that is mapped to *p*.

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Game Settings

- $\bullet \mbox{ set } \mathbb{A} \mbox{ of games }$
- functor $\mathbb{P}: (\Delta/\mathbb{A})^{op} \to \mathsf{Cat}$
- $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ discrete fibrations
- . . .

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Associativity of composition

Theorem (Composition is associative):

$$\begin{array}{c}
\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C} + \mathbb{P}_{C,D}} & \xrightarrow{\mathbf{m}_{A,B,C} + \mathbb{P}_{C,D}} & \overline{\mathbb{P}_{A,C} + \mathbb{P}_{C,D}} \\
\mathbb{P}_{A,B} + \mathbf{m}_{B,C,D} \downarrow & & \downarrow \mathbf{m}_{A,C,D} \\
\overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,D}} & \xrightarrow{\mathbf{m}_{A,B,D}} & \overline{\mathbb{P}_{A,D}}
\end{array}$$

commutes if

$$\begin{array}{cccc} \mathbb{P}_{A,B,C,D} \longrightarrow \mathbb{P}_{A,B,D} & & \mathbb{P}_{A,B,C,D} \longrightarrow \mathbb{P}_{A,C,D} \\ & \downarrow & \downarrow & & \text{and} & & \downarrow & \downarrow \\ & \mathbb{P}_{B,C,D} \longrightarrow \mathbb{P}_{B,D} & & & \mathbb{P}_{A,B,C} \longrightarrow \mathbb{P}_{A,C} \end{array}$$

are pullbacks (zipping lemma).

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Unitality

Theorem (Copycat strategies are units):

commutes if

are pullbacks.

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Applications

Applications:

- HON
- variants
- AJM
- TO

May all be expressed as game settings, abstract composition agrees with traditional composition.

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Innocent Game Settings

Add
$$\mathbb{V}_{A,B} \xrightarrow{\iota_{A,B}} \mathbb{P}_{A,B}$$
 to the setting.
Innocent strategy: $\widehat{\mathbb{V}_{A,B}} \xrightarrow{\Pi_{i_{A,B}}} \widehat{\mathbb{P}_{A,B}}$.

Composition of innocent strategies:

$$\overline{\mathbb{V}_{A,B} + \mathbb{V}_{B,C}} \xrightarrow{\Pi_{i_{A,B} + i_{B,C}}} \overline{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\mathsf{m}_{A,B,C}} \widehat{\mathbb{P}_{A,C}}$$

Preservation of innocence: composition of innocent strategies is again innocent (in the image of $\prod_{i_A \in I}$).

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Preservation of Innocence

Preservation of innocence:

Fibred Approach to Game Semantics

A Theory of Game Models

Conclusion 00

Proof: Preservation of Innocence

Alternative definition of composition:

A Theory of Game Models

Conclusion 00

Proof: Preservation of Innocence

$$\begin{array}{c} \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \\ & & & & \uparrow^{\Delta} \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & & & \mathbb{V}_{A,C} \\ & & & & & \downarrow^{\Pi} \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \end{array}$$

A Theory of Game Models

Conclusion 00

Proof: Preservation of Innocence

$$\begin{array}{c|c} \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} & \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \\ & & \\ & \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{V}_{(A,B),(B,C)} & \xleftarrow{\Delta} \mathbb{V}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{V}_{A,C} \\ & \\ & \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} & \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \end{array}$$

A Theory of Game Models

Conclusion 00

Proof: Preservation of Innocence

$$\begin{array}{c|c} \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} & \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \\ & & & \\ & & & \\ & & & \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{V}_{(A,B),(B,C)} & \xleftarrow{\Delta} \mathbb{V}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{V}_{A,C} \\ & & & \\ & & & \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} & \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} & \xleftarrow{\Delta} \mathbb{P}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{P}_{A,C} \end{array}$$

• simple commutation

A Theory of Game Models

Conclusion 00

Proof: Preservation of Innocence

- simple commutation
- exact squares (Guitart)

A Theory of Game Models ○○○○○○○ ○○○ Conclusion 00

Proof: Preservation of Innocence

- simple commutation
- exact squares (Guitart)
- distributive squares

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion •0

Conclusion

Results:

- abstract construction of categories of plays based on string diagrams
- application: standard plays versus string diagrams in HON games
- abstract construction of categories of games and (innocent) strategies

Not discussed here:

- a model of the π -calculus
- interpretation terms \rightarrow strategies as a singular functor
- modelling concurrent rewriting traces as string diagrams

Fibred Approach to Game Semantics

A Theory of Game Models 00000000 00000000 Conclusion O•

Perspectives

String diagrams:

• fibred approach + composition of strategies

Composition of strategies:

- more models
- more structure
- interpreting languages
- categorical implications?

00000

ibred Approach to Game Semantics

A Theory of Game Models 00000000 000 0000 Conclusion 00

Thank you.

A Theory of Game Models 0 0000000 00

- full embedding $F: \mathbb{P}_{A,B} \to \mathbb{E}(A \vdash B)$
- restricts to equivalence $F^{\mathbb{V}}: \mathbb{V}_{A,B} \to \mathbb{E}^{\mathbb{V}}(A \vdash B)$

A Theory of Game Models

Result Transfer

Adjunction:

Result transfer:

$$\begin{array}{c}
\overbrace{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\mathsf{m}_{A,B,C}} & \overbrace{\mathbb{P}_{A,C}} \\
\overbrace{\mathfrak{l}_{l}} & \downarrow \\
\overbrace{\mathbb{P}_{A,B} + \mathbb{P}_{B,C}} \xrightarrow{\mathsf{m}_{A,B,C}} & \overbrace{\mathbb{P}_{A,C}} \\
\end{array}$$

Exact Squares

Mates:

Exact square: the mates are isomorphisms. Guitart: conditions for square to be exact.

A Theory of Game Models O O O O O

Distributive Squares

Conditions for

to commute.

Composition

Associativity of composition:

$$\frac{\mathbb{P}_{A,B} + \mathbb{P}_{B,C} + \mathbb{P}_{C,D}}{\mathbb{P}_{A,B} + \mathbb{m}_{B,C,D}} \xrightarrow{\mathsf{m}_{A,B,C} + \mathbb{P}_{C,D}} \xrightarrow{\mathbb{P}_{A,C} + \mathbb{P}_{C,D}} \xrightarrow{\mathsf{m}_{A,C,D}} \xrightarrow{\mathsf{p}_{A,C} + \mathbb{P}_{C,D}} \xrightarrow{\mathsf{p}_{A,C,D}} \xrightarrow{\mathsf{p$$

A Theory of Game Models $\overset{\circ}{\underset{\circ}{\circ}}$

Associativity of Composition

Proof: Associativity of Composition

Proof: Associativity of Composition

A Theory of Game Models

Proof: Associativity of Composition (cont.)

8/11

Applications

Applications: HON, variants, AJM, TO.

May all be expressed as game settings, abstract composition agrees with traditional composition.

Subtleties:

- HON: liberal definition of \mathbb{P}_A (for projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$ to exist)
- AJM: slightly different definition of $\mathbb{P}_{A,B,C}$ (projection $\mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ should be a discrete fibration)

Blass games: composition known to be non-associative. Cannot be expressed as a game setting (zipping fails).

Conditions to Preserve Innocence Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

$$\mathbb{V}_{A,C} \xrightarrow{\mathbb{P}_{A,B,C}} \mathbb{P}_{A,C}$$

A Theory of Game Models

Conditions to Preserve Innocence

Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

Conditions to Preserve Innocence Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

Conditions to Preserve Innocence

Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

Conditions to Preserve Innocence

Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

$$i_{A,B}(v) \xrightarrow{f} \delta_2(u)$$

Conditions to Preserve Innocence

Locality: $\delta_1: \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0: \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

Boolean Innocent Strategies

But (non-deterministic) innocent strategies should not compose! Answer:

$$\begin{array}{c}
\overline{\mathbb{V}_{A,B} + \mathbb{V}_{B,C}} & \longrightarrow & \overline{\mathbb{P}_{A,C}} \\
 & & & \downarrow_{l_{1}} \\
\hline & & & & \downarrow_{l_{2}} \\
\hline & & & & & & & & \\
\overline{\mathbb{V}_{A,B} + \mathbb{V}_{B,C}} & \longrightarrow & & & & & & \\
\end{array}$$

does not commute.

- concurrent innocent strategies compose
- traditional innocent strategies do not