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1 Algebraic Semantics as a Precursor of Categorical Seman-
tics

This section is essentially a brief recap of [2, Chap. 2], aimed also at the audience not familiar with
formal logic.

1.1 The Word Problem

Consider the following “syntactic system.”

• Terms are defined by the following BNF notation:

Terms ∋ t, t1, t2 ::= x ∈ Var | e | t · t | t−1 .

• The relation ∼ between terms is defined inductively by the following rules.

(t1 · t2) · t3 ∼ t1 · (t2 · t3)
(Associativity)

e · t ∼ t
(Unit-Left)

t · e ∼ t
(Unit-Right)

t−1 · t ∼ e
(Inverse-Left)

t · t−1 ∼ e
(Inverse-Right)

t ∼ t
(Reflexivity) t ∼ s

s ∼ t
(Symmetry) t ∼ s s ∼ u

t ∼ u
(Transitivity)

t1 ∼ s1 t2 ∼ s2
t1 · t2 ∼ s1 · s2

(· -Congruence)
t ∼ s

t−1 ∼ s−1
(( )−1-Congruence)

Remark 1. (For those who are not familiar with formal logic) The “inductive definition of ∼ by
the rules” means that we have t ∼ s if and only if we can draw a (finite-height) proof tree using the
rules, for example

((xy)−1x)y ∼ (xy)−1(xy)
(Associativity)

(xy)−1(xy) ∼ e
(Inverse-Left)

((xy)−1x)y ∼ e
(Transitivity)

Remark 2. (For those who are familiar with formal logic) The above is an equational theory of
groups, formulated as usual in equational logic.

Now the question is: given terms s and t, can we know if s ∼ t holds? How? This problem is
known as the word problem for groups.

Theorem (Novikov, 1955). The word problem for groups is undecidable.

Therefore there is no generic algorithm that decides the problem.
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1.2 Use of Algebraic Semantics

For those of you who are familiar with abstract algebra or group theory, the following fact will come
as trivial.

(†) If there is a group G in which the terms s and t are not equal, then we know that
s ∼ t does not hold.

Implicit here is the use of algebraic semantics.

Definition. Let G be a group and V : Var → |G| be a function (here |G| denotes the underlying
set of G; we call the function V a valuation). The denotation JtKV of a term t under V is an element
of the group G defined in the obvious inductive way; namely

JxKV := V (x) JeKV := eGJt1 · t2KV := Jt1KV ·G Jt2KV Jt−1KV :=
(JtKV )−1

.

Note here that the unit, the multiplication operator and the inverse operator on the left-hand
sides are syntactic symbols; those on the right-hand sides are mathematical/semantical operators in
the group G.

Now it is possible to “investigate” whether s ∼ t holds by looking at their semantics.

Theorem (soundness). If s ∼ t holds, then JsKV = JtKV for any group G and any valuation
V : Var → |G|.

Proof. Straightforward, by structural induction on the construction of proof trees. □

You see that the quotation (†) in the above is the (sloppily stated version of the) contraposition of
the theorem. Therefore, to refute s ∼ t, it suffices to find convenient G and V such that JsKV ̸= JtKV .
1.3 Completeness and the Term Model

The obvious question that remains is: is the above “investigation method” complete, too? The
answer is positive:

Theorem (completeness). Assume that JsKV = JtKV for any group G and any valuation V : Var →
|G|. Then s ∼ t holds.

Proof. We can in fact construct a special group G0 by syntactic means—and a special valuation
V0 : Var → |G0| that accompanies—such that JsKV0 = JtKV0 if and only if s ∼ t holds.

Concretely:

• |G0| =
{
[s]∼

∣∣ s is a term
}
, where [s]∼ is the ∼-equivalence class of the term s

• Operations are defined syntactically, that is for example,

[s]∼ ·G0
[t]∼ = [s · t]∼ (1)

and so on. Note here that ·G0 on the left-hand side is a semantical/mathematical entity (a
group multiplication); in contrast · on the right-hand side is a syntactic entity (an operation
symbol).

We have to check the following. These are all straightforward.

• ∼ is an equivalence relation of terms. (This follows from the rules that define ∼)

• The operations in (1) are well-defined. (Follows from the Congruence rules)
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• The set |G0|, together with the operations defined as in (1), forms a group. (Easy)

We define the valuation V0 by
V0(x) := [x]∼ . (2)

Then it is straightforward by induction to show that JsKV0 = [s]∼. This establishes: JsKV0 = JtKV0 if
and only if s ∼ t. □

The group G0 that we constructed is often called a term model, since it consists of (equivalence
classes of) terms. A term model is a complete model—in the sense that JsKV0 = JtKV0 if and only if
s ∼ t—but a common problem with it is that equality in the term model is complicated (deciding it
is as hard as deciding ∼ itself!).

The term model G0, in the current setting of an algebraic theory for groups, turns out to be
isomorphic to the free group over the set Var of generators. It is called a free group since it satisfies
the minimal set of equalities for it to be a group, in the sense thatJsKV0 = JtKV0 if and only if s ∼ t.

2 Cartesian Closed Categories as Models of Typed λ-Calculus

We continue and follow slides by Samson Abramsky (Oxford) found at
www.math.helsinki.fi/logic/sellc-2010/course/LectureIII.pdf. See [3] for further details.
There is a big body of literature on the λ-calculus, including [1, 4, 5].

• On conversion in λ-calculus

• Categorical Semantics, as a typed λ-calculus and Cartesian closed categories as examples

Definition. Type judgment. Type derivation tree.

NB: we use the term calculus a la Church (where bound variables have explicit types).

Lemma 1. Each derivable type judgment has a unique derivation tree.

Definition. Cartesian closed category: a category with finite products and exponentials.

Definition. Interpretation J K of typed λ-calculus. Interpreting types, type derivation trees, type
judgments, and terms.

Definition. Substitution lemma: interpretation of s[t/x] is given by composition of arrows.

Definition. Conversion rules, including congruence rules.

Theorem. Soundness of categorical semantics: if s =βη t, then JsK = JtK.
If we have time:

• The Curry-Howard correspondence; terms as proofs; conversion as proof normalization
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