Mathematical Semantics of Computer Systems, MSCS (4810-1168) Handout for Lecture 4 (2016/10/24)

Ichiro Hasuo, Dept. Computer Science, Univ. Tokyo http://www-mmm.is.s.u-tokyo.ac.jp/~ichiro

Video recording of the lectures is available at:

http://www-mmm.is.s.u-tokyo.ac.jp/videos/mscs2016

(ask me for username, password)

1 Today's Goal

Identify the following framework of abstract interpretation [?] as an instance of adjunction. (Thanks are due to Kengo Kido for a nice introduction.)

Definition (Galois connection). Let L and \overline{L} be posets; and $\alpha \colon L \to \overline{L}$ and $\gamma \colon \overline{L} \to L$ be monotone functions. The pair (α, γ) is said to be a *Galois connection* if, for any $x \in L$ and $\overline{x} \in \overline{x}$,

$$\alpha(x) \leq_{\overline{L}} \overline{x}$$
 if and only if $x \leq_L \gamma(\overline{x})$.

Example (interval domain). Let

$$L := \mathcal{P}(\mathbb{N}) \text{ and } \overline{L} := \{\emptyset\} \cup \{[l,r] \mid l,r \in \mathbb{N} \cup \{-\infty,\infty\}, l \leq r\}$$

where each set is ordered by inclusion. Moreover,

$$\alpha(S) := [\min S, \max X] \text{ and } \gamma(\overline{S}) := \{n \in \mathbb{N} \mid n \in \overline{S}\}\$$
.

Then the pair (α, γ) is a Galois connection.

2 Today's Agenda

2.1 From the Last Lecture

Proposition 1. If an arrow is at the same time a split mono and an epi, then it is an isomorphism.

2.2 Functors

Definition. Functor

Example. Monotone functions as functors (for preorders considered as categories); monoid homomorphisms as functors (for monoids).

Example. Graphs as functors. Monoid/group actions as functors.

2.3 Natural Transformations

Definition. Natural transformation

Example. Natural transformations in graphs, and in monoid/group actions. Natural transformations between monotone maps as functors.

Definition. Horizontal and vertical composition of natural transformation

2.4 Limits and Colimit

 $\textbf{Definition.} \ \operatorname{Diagram, cone, cocone}$

Definition. Limit, colimit

Proposition 2. Limits from products and equalizers

Corollary 1. Concrete presentation of (co)limits in Sets

2.5 Adjunction

Definition. Homset.

Definition. Adjunction.

Example. Free monoids.

Definition. Unit, counit.

Lemma 1. Adjoint transposes by units and counits.

Proposition 3. Characterization of adjuction by: 1) the universality of η (Def. 3.2 of [Lambek & Scott], intuitive for free monoids); 2) the triangular equalities (Def. 3.1 of [Lambek & Scott]).

Lemma 2. 1. Adjoint functors determine each other uniquely up-to canonical natural isomorphisms.

2. Composition of adjoints.

2.6 Limits as Adjoints

Definition. Functor category

Proposition 4. A limit gives rise to an adjunction.

3 Exercises

1. Formulate and prove the following statement.

A right adjoint preserves limits.

2. Prove the following: in an adjunction $F \dashv G$, G is faithful if and only if every component of the counit ε is an epi. [?, Thm. IV.3.1]