Implication and Functional Dependency in intensional Contexts

Toshikazu Ishida
Kazumasa Honda
Yasuo Kawahara
Department of Informatics
Kyushu University, Japan

RIMS Kyoto, June 30 - July 2, 2008

Formal concept
Example of Formal concept
Concept lattice
Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Introduction

Formal concept

Introduction

Formal concept

Example of Formal concept

Concept lattice

Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

■ Formal concept:

- Mathematical notion proposed by R. Wille in 1970's
- Made for formal context(binary relation)
- The set of all formal concepts forms a complete lattice
- ◆ Implies the features of a formal context

■ Formal concept analysis:

The method is used to discover hidden information, such as patterns and correlations between attributes.

Formal concept

Introduction

Formal concept

Example of Formal concept

Concept lattice

Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

■ Formal concept:

- Mathematical notion proposed by R. Wille in 1970's
- Made for formal context(binary relation)
- The set of all formal concepts forms a complete lattice
- ◆ Implies the features of a formal context

Formal concept analysis:

The method is used to discover hidden information, such as patterns and correlations between attributes.

Example of Formal concept

Introduction

Formal concept

Example of Formal concept

Concept lattice Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

	(1)	$(\overline{1})$	(2)	$(\overline{2})$	(3)	(3)
а	0			0	0	
b		0	0			0
С		0		0		0
d	0			0	0	
е	0		0		0	

Breakfast	(1)	No Breakfast	$(\overline{1})$
Sleepy	(2)	Not sleepy	$(\overline{2})$
Concentrate	(3)	Not Conc	$(\overline{3})$

Concept lattice

Introduction

Formal concept Example of Formal concept

Concept lattice

Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Dependency

Introduction

Formal concept Example of Formal concept Concept lattice

Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Correlation of attributes.

An attribute in the database uniquely determines other attributes.

■ Functional dependency

For relational database Introduced by E. Codd

Dependency

Introduction

Formal concept Example of Formal concept Concept lattice

Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Correlation of attributes.

An attribute in the database uniquely determines other attributes.

Functional dependency

For relational database Introduced by E. Codd

Implication

For formal context Introduced by B. Ganter and R. Wille

Dependency

Introduction

Formal concept Example of Formal concept Concept lattice

Dependency

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Correlation of attributes.

An attribute in the database uniquely determines other attributes.

Functional dependency

For relational database Introduced by E. Codd

Implication

For formal context Introduced by B. Ganter and R. Wille

Implication and functional dependency are sound and complete for Armstrong's inference rules.

Further, to distinguish semantics and syntax, we give a comon proof.

We give an example which shows the difference between implication and functional dependency.

Intensional context

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Intensional context

Intensional context

Introduction

Intensional context

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Let Y be a set of attributes and $\wp(Y)$ the power set of Y. A subset \mathcal{T} of $\wp(Y)$ is called an *intensional context* on Y.

	y_0	y_1	y_2	• • •	
x_0	1	1	0	• • •	T_{x0}
x_1	1	1	1	• • •	T_{x1}
x_2	0	1	0	• • •	T_{x2}
:	:	:	:	:	:

$$\leftrightarrow \quad \mathcal{T} = \{T_{x0}, T_{x1}, T_{x2}, \dots\} \subseteq \wp(Y)$$

$$B^{\downarrow\uparrow} = \bigcap \{T \in \mathcal{T} \mid B \subseteq T\} \text{ for } B \subseteq Y.$$

We define $\mathcal{T}^* = \{ \cap \mathcal{A} \mid \mathcal{A} \subseteq \mathcal{T} \}$. Then \mathcal{T}^* is the set of all formal concepts for an intensional context \mathcal{T}

Intensional context

Introduction

Intensional context

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Let Y be a set of attributes and $\wp(Y)$ the power set of Y. A subset \mathcal{T} of $\wp(Y)$ is called an *intensional context* on Y.

	y_0	y_1	y_2	• • •	
x_0	1	1	0		T_{x0}
x_1	1	1	1	• • •	T_{x1}
x_2	0	1	0	• • •	T_{x2}
				:	:

$$\leftrightarrow \quad \mathcal{T} = \{T_{x0}, T_{x1}, T_{x2}, \dots\} \subseteq \wp(Y)$$

$$B^{\downarrow\uparrow} = \bigcap \{T \in \mathcal{T} \mid B \subseteq T\} \text{ for } B \subseteq Y.$$

We define $\mathcal{T}^* = \{ \cap \mathcal{A} \mid \mathcal{A} \subseteq \mathcal{T} \}$. Then \mathcal{T}^* is the set of all formal concepts for an intensional context \mathcal{T}

For constructing concept lattices, it is enough to treat with a family of subsets of attributes instead of a formal context.

Intensional context

Armstrong's Inference Rules

Armstrong's inference rules [A0'], [A1'], [A2'] → [A0], [A1], [A2] [A0], [A1], [A2] → [A0'], [A1'], [A2'] Provability

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Armstrong's Inference Rules

Armstrong's inference rules

Introduction

Intensional context

Armstrong's Inference Rules

Armstrong's inference rules

[A0'], [A1'], [A2'] \rightarrow [A0], [A1], [A2] [A0], [A1], [A2] \rightarrow [A0'], [A1'], [A2'] Provability

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Let A, B, C and D be subsets of attributes. Armstrong's inference rules are

$$[\mathsf{A0}] \ \frac{}{A \rhd A} \quad [\mathsf{A1}] \ \frac{A \rhd B}{A \cup C \rhd B} \quad [\mathsf{A2}] \ \frac{A \rhd B}{A \cup C \rhd D}$$

Armstrong's inference rules are equivalent to

$$[\mathsf{A0'}] \, \frac{A \supseteq B}{A \rhd B} \quad [\mathsf{A1'}] \, \frac{A \rhd B \quad C \supseteq D}{A \cup C \rhd B \cup D} \quad [\mathsf{A2'}] \, \frac{A \rhd B \quad B \rhd C}{A \rhd C}$$

[A0'], [A1'], [A2'] \rightarrow [A0], [A1], [A2]

Introduction

Intensional context

Armstrong's Inference Rules

Armstrong's inference rules

[A0'], [A1'], [A2'] $\rightarrow [A0], [A1], [A2]$

 $\begin{array}{l} [\mathsf{A0}],\ [\mathsf{A1}],\ [\mathsf{A2}] \rightarrow \\ [\mathsf{A0'}],\ [\mathsf{A1'}],\ [\mathsf{A2'}] \end{array}$

Provability

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

[A0]

 $[\mathsf{A0'}] \frac{\overline{A \supseteq A}}{A \rhd A}$

[A1]

 $[\mathrm{A1'}] \, \frac{A \rhd B}{C \supseteq \emptyset}$

[A2]

$$[\mathsf{A2'}] \, \frac{A \rhd B}{A \cup C \rhd B \cup C} \quad B \cup C \rhd D}{A \cup C \rhd D}$$

[A0], [A1], [A2] \rightarrow [A0'], [A1'], [A2']

_	1	
ntroc	tucti	\sim n
IILIOC	ıucı	OH

Intensional context

Armstrong's Inference Rules

Armstrong's inference rules [A0'], [A1'], [A2'] $\rightarrow [A0]$, [A1], [A2]

[A0], [A1], [A2] \rightarrow [A0'], [A1'], [A2']

Provability

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

[A0']

$$[A1] \frac{[A0] \frac{}{B \rhd B}}{B \cup A \rhd B} \quad A \supseteq B$$
$$A \rhd B$$

[A1']

$$[A2] \begin{tabular}{c} $C\supseteq D$ \\ \hline $B\cup C\supseteq B\cup D$ \\ \hline $A\cup C\rhd B\cup D$ \\ \hline $A\cup C\rhd B\cup D$ \\ \hline \end{tabular}$$

[A2']

$$[A2] \frac{A \rhd B \quad [A1'] \frac{B \rhd C}{B \cup A \rhd C}}{A \cup A \rhd C}$$

Provability

Introduction

Intensional context

Armstrong's Inference Rules

Armstrong's inference rules [A0'], [A1'], [A2'] → [A0], [A1], [A2] [A0], [A1], [A2] → [A0'], [A1'], [A2']

Provability

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Let \mathcal{L} be a set of dependencies. $\mathcal{L} \vdash A \rhd B$ is defined Armstrong's inference rules. (A dependency $A \rhd B$ is *provable* from \mathcal{L}).

Let Y be a set of all attributes, A a subset of Y. We define a subset $A_{\mathcal{L}}$ of Y by $A_{\mathcal{L}} = \{y \in Y \mid \mathcal{L} \vdash A \rhd \{y\}\}.$

Lemma 1. If B is a finite subset of Y then

$$\mathcal{L} \vdash A \rhd B \leftrightarrow B \subseteq A_{\mathcal{L}}.$$

Intensional context

Armstrong's Inference Rules

Functional Dependency

Functional dependency

Proposition

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Functional Dependency

Functional dependency

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Functional dependency

Proposition

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Let \mathcal{T} be an intensional context on Y.

$$\mathcal{T} \models_F A \rhd B$$

$$\leftrightarrow \forall S, T \in \mathcal{T}. \ (S \cap A = T \cap A \to S \cap B = T \cap B).$$

If $\mathcal{T} \models_F A \rhd B$ then $A \rhd B$ is called a functional dependency on \mathcal{T} and a dependency $A \rhd B$ is valid (as functional dependency) for an intensional context \mathcal{T} on Y.

	(1)	$(\overline{1})$	(2)	$(\overline{2})$	(3)	(3)
а	0			0	0	
b		0	0			0
С		0		0		0
d	0			0	0	
е	0		0		0	

Breakfast	(1)	No Breakfast	$(\overline{1})$
Sleepy	(2)	Not sleepy	$(\overline{2})$
Concentrate	(3)	Not Conc	$(\overline{3})$

$$\mathcal{T} = \{\{1, \overline{2}, 3\}, \{\overline{1}, 2, \overline{3}\}, \{\overline{1}, \overline{2}, \overline{3}\}, \{1, 2, 3\}\}$$

functional dependency

$$\mathcal{T} \models_F \{1\} \rhd \{3\}, \quad \mathcal{T} \not\models_F \{1\} \rhd \{2\}$$

Proposition

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Functional dependency

Proposition

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

(soundness) Let \mathcal{T} be an intensional context and $A \triangleright B$ a dependency on Y.

(A0') If
$$A\supseteq B$$
 then $\mathcal{T}\models_F A\rhd B$.
(A1') If $\mathcal{T}\models_F A\rhd B$ and $C\supseteq D$ then $\mathcal{T}\models_F A\cup C\rhd B\cup D$.
(A2') If $\mathcal{T}\models_F A\rhd B$ and $\mathcal{T}\models_F B\rhd C$ then $\mathcal{T}\models_F A\rhd C$.

- Let A be a proper subset of Y. There exists a intensional context \mathcal{T}_0 such that $(\mathcal{T}_0 = \{A, Y\})$
 - 1. $C \subseteq A \text{ iff } \mathcal{T}_0 \models_F \emptyset \triangleright C$,
 - 2. $C \nsubseteq A \text{ iff } \mathcal{T}_0 \models_F C \triangleright Y$.

Proposition

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Functional dependency

Proposition

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

(soundness) Let \mathcal{T} be an intensional context and $A \triangleright B$ a dependency on Y.

(A0') If
$$A\supseteq B$$
 then $\mathcal{T}\models_F A\rhd B$.
(A1') If $\mathcal{T}\models_F A\rhd B$ and $C\supseteq D$ then $\mathcal{T}\models_F A\cup C\rhd B\cup D$.
(A2') If $\mathcal{T}\models_F A\rhd B$ and $\mathcal{T}\models_F B\rhd C$ then $\mathcal{T}\models_F A\rhd C$.

- Let A be a proper subset of Y. There exists a intensional context \mathcal{T}_0 such that $(\mathcal{T}_0 = \{A, Y\})$
 - 1. $C \subseteq A \text{ iff } \mathcal{T}_0 \models_F \emptyset \triangleright C$,
 - 2. $C \not\subseteq A \text{ iff } \mathcal{T}_0 \models_F C \triangleright Y$.

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Implication

Proposition

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Implication

Implication

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Implication

Proposition

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Let \mathcal{T} be an intensional context on Y, and \mathcal{L} a set of dependencies.

$$\mathcal{T} \models_I A \triangleright B \leftrightarrow \forall T \in \mathcal{T}. (A \subseteq T \rightarrow B \subseteq T).$$

If $\mathcal{T} \models_I A \triangleright B$ then $A \triangleright B$ is valid (as implication) for an intensional context \mathcal{T} on Y or is called an *implication* on \mathcal{T} .

Example

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Implication

Proposition

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

	(1)	$(\bar{1})$	(2)	$(\overline{2})$	(3)	$(\overline{3})$
а	0			0	0	
b		0	0			0
С		0		0		0
d	0			0	0	
е	0		0		0	

Breakfast	(1)	No Breakfast	$(\overline{1})$
Sleepy	(2)	Not sleepy	$(\overline{2})$
Concentrate	(3)	Not Conc	$(\overline{3})$

$$\mathcal{T} = \{ \{1, \overline{2}, 3\}, \{\overline{1}, 2, \overline{3}\}, \{\overline{1}, \overline{2}, \overline{3}\}, \{1, 2, 3\} \}$$

$$\mathcal{T}^* = \{ \varphi, \{1, \overline{2}, 3\}, \{\overline{1}, 2, \overline{3}\}, \{\overline{1}, \overline{2}, \overline{3}\}, \{1, 2, 3\}, \{1, 3\}, \{\overline{1}, \overline{3}\}, \{2\}, \{\overline{2}\}, Y \}$$

Implications

$$\mathcal{T} \models_{I} \{1\} \rhd \{3\}$$

$$\mathcal{T} \not\models_{I} \{\overline{1}\} \rhd \{\overline{3}\}$$

Proposition

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Implication

Proposition

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Any intentional context $\mathcal T$ satisfies followings.

(soundness)

1.
$$\mathcal{T} \models_I A \rhd A$$
, (A0)

2. If
$$\mathcal{T} \models_I A \triangleright B$$
 then $\mathcal{T} \models_I A \cup C \triangleright B$, (A1)

3. If
$$\mathcal{T} \models_I A \rhd B$$
 and $\mathcal{T} \models_I B \cup C \rhd D$ then $\mathcal{T} \models_I A \cup C \rhd D$. (A2)

Let A be a proper subset of Y. There exists a set \mathcal{T}_0 such that $(\mathcal{T}_0 = \{A\})$

1.
$$C \subseteq A \text{ iff } \mathcal{T}_0 \models_I \emptyset \triangleright C$$
,

2.
$$C \not\subseteq A \text{ iff } \mathcal{T}_0 \models_I C \triangleright Y$$
.

 \blacksquare Every dependency $A \triangleright B$ satisfies

1.
$$\mathcal{T} \models_I A \triangleright B \iff \mathcal{T}^* \models_I A \triangleright B$$
.

2.
$$\mathcal{T} \models_I A \triangleright B \iff B \subseteq A^{\downarrow \uparrow}$$
.

Proposition

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Implication

Proposition

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Any intentional context $\mathcal T$ satisfies followings.

(soundness)

1.
$$\mathcal{T} \models_I A \rhd A$$
, (A0)

2. If
$$\mathcal{T} \models_I A \triangleright B$$
 then $\mathcal{T} \models_I A \cup C \triangleright B$, (A1)

3. If
$$\mathcal{T} \models_I A \rhd B$$
 and $\mathcal{T} \models_I B \cup C \rhd D$ then $\mathcal{T} \models_I A \cup C \rhd D$. (A2)

Let A be a proper subset of Y. There exists a set \mathcal{T}_0 such that $(\mathcal{T}_0 = \{A\})$

1.
$$C \subseteq A \text{ iff } \mathcal{T}_0 \models_I \emptyset \triangleright C$$
,

2.
$$C \not\subseteq A \text{ iff } \mathcal{T}_0 \models_I C \triangleright Y$$
.

■ Every dependency $A \triangleright B$ satisfies

1.
$$\mathcal{T} \models_I A \triangleright B \iff \mathcal{T}^* \models_I A \triangleright B$$
.

2.
$$\mathcal{T} \models_I A \triangleright B \iff B \subseteq A^{\downarrow \uparrow}$$
.

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Soundness and Completeness

Soundness and Completeness

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

$$\mathcal{T} \models_{\bullet} \mathcal{L} \leftrightarrow \forall A \triangleright B \in \mathcal{L}. \mathcal{T} \models_{\bullet} A \triangleright B.$$

Theorem 1. Let $A \triangleright B$ be a dependency, and \mathcal{L} be a set of dependencies on a finite set Y. Then

$$\mathcal{L} \vdash A \rhd B \leftrightarrow \forall \mathcal{T} \subseteq \wp(Y). \ (\mathcal{T} \models_{\bullet} \mathcal{L} \to \mathcal{T} \models_{\bullet} A \rhd B).$$

$$(\bullet = F \text{ or } I)$$

Functional dependency and implication are sound and complete for Armstrong's Inference rules.

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Example

Proposition

Summary and Outlook

Difference between Implication and Functional Dependency

Example

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Example

Proposition

Summary and Outlook

Let $\mathcal{T} = \{\{a, b\}, \{b, c\}, \{c\}\}.$

	a	b	c
x			
y			\bigcirc
z			

The dependency $\{a\} \rhd \{b\}$

Since $\{a\}^{\downarrow\uparrow} = \{a,b\}$. Therefore $\mathcal{T} \models_I \{a\} \rhd \{b\}$.

For $\{b,c\}, \{c\} \in \mathcal{T}$, both $\{b,c\} \cap \{a\} = \{c\} \cap \{a\}$, and

 $\{b,c\}\cap\{b\}\neq\{c\}\cap\{b\}$ hold. Therefore $\mathcal{T}\not\models_F\{a\}\rhd\{b\}$.

The dependency $\{a\} \rhd \{c\}$

$$\mathcal{T} \models_F \{a\} \rhd \{c\},\$$

$$\mathcal{T} \not\models_I \{a\} \rhd \{c\}.$$

Proposition

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Example

Proposition

Summary and Outlook

Let \mathcal{T} be an intensional context.

- For \mathcal{T} , there is not often exit $\mathcal{U} \subseteq \wp(Y)$ such that $\mathcal{T} \models_I A \rhd B \iff \mathcal{U} \models_F A \rhd B$.
- $\blacksquare \quad \text{If } Y \in \mathcal{T} \text{ then } \mathcal{T} \models_F A \rhd B \to \mathcal{T} \models_I A \rhd B.$
- lacksquare Define a set \mathcal{T}' of subsets of Y by

$$\mathcal{T}' = \{ (S^- \cup T) \cap (T^- \cup S) \mid S, T \in \mathcal{T} \}.$$

Then

- 1. $\mathcal{T}' \models_I A \triangleright B \iff \mathcal{T} \models_F A \triangleright B$.
- 2. If $\mathcal{T} \subseteq \mathcal{T}' \subseteq \mathcal{T}^*$, then $\mathcal{T} \models_F A \triangleright B \iff \mathcal{T} \models_I A \triangleright B$.

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Summary and Outlook

Summary and Outlook

Summary and Outlook

Introduction

Intensional context

Armstrong's Inference Rules

Functional Dependency

Implication

Soundness and Completeness

Difference between Implication and Functional Dependency

Summary and Outlook

Summary and Outlook

Summary

- functional dependency is sound and complete for Armstrong's inference rules.
- implication of formal concept is complete and sound for Armstrong's inference rules.
- an example which shows the difference between implication and functional dependency.

Future works

the conditions in which implication and functional dependency are equivalent.