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Introduction The authors introduced in [1] the technique of coalgebraic trace

semantics for the powerset monad P. There the initial F -algebra α : FA
∼=→ A

in Sets gives rise to the final coalgebra in the category Rel of sets and relations.
The category Rel is also described as the Kleisli category SetsP for the

powerset monad P. In this work we show that the analogous result holds for
what we call the distribution monad D, instead of P. The monad D is defined
as DX = {d : X → [0, 1] |

∑
x∈X

d(x) ≤ 1}. It has the same monad structure as
the (standard) distribution monad.

The proof for D does not follow trivially from the one for P. However we
notice similar constructions they have in common. Hopefully the current work
will cast a light over the essence underlying these two different settings, and lead
to a result with more generality (e.g. for monads other than P,D).

Technical result and example The endofunctors F that we consider are
constructed inductively by: F ::= id | Σ | F ×F |

∐
i∈I

Fi, where Σ is a constant
functor. This family of functors is large enough to contain many interesting
examples, including the list functor X∗ =

∐
n<ω

Xn. Notice that a functor F
thus constructed preserves ω-colimits: hence the initial F -algebra is obtained as
the colimit {αn : Fn0 → A} of the initial sequence.

Theorem 1 Let α : FA
∼=→ A be the initial F -algebra, and c : X → DFX be a

coalgebra (both in Sets). Then there exists a unique arrow tracec that makes the
following diagram in SetsD commute.

FX
F tracec

FA

X

c

tracec
A

ηFA ◦ α−1 (1)

We sketch the construction of the map tracec. In the first place, to lift a
functor F in Sets to a functor in SetsD, we use a distributive law λ : FD ⇒ DF .
This is constructed inductively on F .1 With λ we can define the n-th composition

1 In fact, for a functor F under consideration we can construct a distributive law
FT ⇒ TF for any commutative monad T (D is commutative). Most notably, for
F = F1 × F2 we use the double strength [2] of T .



cn : X → DFnX of a coalgebra c, whose one step corresponds to n successive
steps of c.

We use a construction which might be called the “contravariant distribution
functor”: for a mono m : X ½ Y , the map Dm : DY → DX is defined by
[(Dm)(d)](x) = (d ◦ m)(x). The n-th trace trace

n
c : X → DA is defined as the

following composite, where ?X : 0 → X is the unique arrow.

X
cn

DFnX
DFn?X

DFn0
Dαn

DA

The n-th trace gives the distribution over the behavior which terminate within
n steps. Now the trace tracec : X → DA is defined as the limit of the n-th trace,
that is, for a ∈ Imαn, [tracec(x)](a) = [tracen

c (x)](a). We have shown that tracec

is indeed well-defined, and that it is the unique arrow which makes the diagram
(1) commute.

Example 2 (Lists) Consider the functor F = 1+Σ×−. The initial F -algebra

[nil, cons] : 1 + Σ × Σ∗ ∼=→ Σ∗ consists of the lists over Σ. The following is an
example of a coalgebra c : X → DFX.
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The behavior of the state x is: it transits to y outputting a with the probability of
1/3, the same to z, and it terminates with the probability of 2/9. The remaining
1/9 is best understood as the probability x gets into deadlock.

By Theorem 1 we obtain tracec : X → DΣ∗ via finality. The distribution
tracec(x) is such that: 〈〉 7→ 2/9 and an 7→ 1/(3 · 2n). Out of the remaining 4/9,
1/9 is the probability that x gets into deadlock at the first transition, and 1/3
is the probability that x goes to z and keep outputting a without termination
(livelock). The n-th trace trace

n
c is the restriction of tracec to the lists of at most

length n.
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