Coalgebraic Components
in a Many-Sorted Microcosm

Ichiro Hasuo'#, Chris Heunen?, Bart Jacobs?, and Ana Sokolova3

L RIMS, Kyoto University, Japan
2 Radboud University Nijmegen, the Netherlands
3 University of Salzburg, Austria
4 PRESTO Research Promotion Program, Japan Science and Technology Agency

Abstract. The microcosm principle, advocated by Baez and Dolan and
formalized for Lawvere theories lately by three of the authors, has been
applied to coalgebras in order to describe compositional behavior sys-
tematically. Here we further illustrate the usefulness of the approach by
extending it to a many-sorted setting. Then we can show that the coalge-
braic component calculi of Barbosa are examples, with compositionality
of behavior following from microcosm structure. The algebraic struc-
ture on these coalgebraic components corresponds to variants of Hughes’
notion of arrow, introduced to organize computations in functional pro-
gramming.

1 Introduction

Arguably the most effective countermeasure against today’s growing complexity
of computer systems is modularity: one should be able to derive the behavior of
the total system from that of its constituent parts. Parts that were developed and
tested in isolation can then safely be composed into bigger systems. Likewise,
one would like to be able to prove statements about the compound system based
on proofs of substatements about the parts. Therefore, the theoretical models
should at the very least be such that their behavior is compositional.

This is easier said than done, especially in the presence of concurrency, that
is, when systems can be composed in parallel as well as in sequence. The mi-
crocosm principle [1,12] brings some order to the situation. Roughly speaking,
compositionality means that the behavior of a compound system is the com-
position of the components’ behaviors. The microcosm principle then observes
that the very definition of composition of behaviors depends on composition of
systems, providing an intrinsic link between the two.

The present article gives a rigorous analysis of compositionality of compo-
nents as sketched above. Considering models as coalgebras, we study Barbosa’s
calculi of components [2,3] as coalgebras with specified input and output inter-
faces. Explicitly, a component is a coalgebra for the endofunctor

Fry=(T(J x_))": Set — Set, (1)

where I is the set of possible input, and J that of output. The computational
effect of the component is modeled by a monad T, as is customary in func-
tional programming [25]. The monad T can capture features such as finite non-
determinism (T' = P,,), possible non-termination or exceptions (I' = 1 + _),
probabilistic computation (7' = D), global states (T = (S x _)?), or combina-
tions of these.

To accommodate component calculi, the surrounding microcosm needs to
be many-sorted. After all, composing components sequentially requires that the
output of the first and the input of the second match up. This is elaborated on
more precisely in §2. The contribution of the present article is twofold:

— a rigorous development of a many-sorted microcosm principle, in §4;
— an application of the many-sorted microcosm framework to component cal-
culi, in §5.

It turns out that components as F7 j-coalgebras carry algebraic structure
that is a variant of Hughes’ notion of arrow [14,19].> Arrows, generalizing mon-
ads, have been used to model structured computations in semantics of functional
programming. In §5 we give a rigorous proof that components indeed carry such
arrow-like structure; however the calculation is overwhelming as it is. We shall
exploit the fact that a Kleisli category K¢(T'), where the calculation takes place,
also carries the same arrow-like structure. This allows us to use the axiomatiza-
tion of the (shared) structure as an “internal language.”

2 Leading example: sequential composition

We shall exhibit, using the following example, the kind of phenomena in com-
ponent calculi that we are interested in.

For simplicity let us assume that we have no effect in components (i.e. T' =
Id, Fr j = (J % _)!). Coalgebras for this functor are called Mealy machines, see
e.g. [7]. A prominent operation in component calculi is sequential composition,
or pipeline. It attaches two components with matching I/O interfaces, one after

another: .
(IJ J K) > 1., K IJK (2)
*c) #]—> %c d
Let X and Y be the state spaces of the components ¢ and d, respectively. The
resulting component ¢ >>7 5k d has the state space X X Y0 first ¢ produces
output j € J that is fed into the input port of d. More precisely, we can define
the coalgebra ¢ >3 ; ik d to be the adjoint transpose of the following function.
IxXxY ZL Ix X x (K xY) 2V K x X xY (3)
Here ¢ : I x X — J x X is the adjoint transpose of the coalgebra ¢, and
evy:J x (K xY)? — K x Y is the obvious evaluation function.

5 Throughout the paper the word “arrow” always refers to Hughes’ notion. An “arrow”
in a category (as opposed to an object) will be always called a morphism.

5 We will use the infix notation for the operation >s>. The symbol > is taken from
that for (Hughes’) arrows, whose relevance is explained in §5.

An important ingredient in the theory of coalgebra is pyxy _ _ 4 gz
“behavior-by-coinduction” [18]: when a state-based system is ¢t final ™=
viewed as an F-coalgebra, then a final F-coalgebra (which very X “beh (*c)ﬁ Z
often exists) consists of all the “behaviors” of systems of type
F'. Moreover, the morphism induced by finality is the “behavior map”: it carries
a state of a system to its behavior. This view is also valid in the current example.

A final Fy j-coalgebra—where Fy ; = (J x _)I—is carried by the set of
stream functions I* — J“ which are causal, meaning that the n-th letter of the
output stream only depends on the first n letters of the input.” It conforms to our
intuition: the “behavior” of such a component is what we see as an output stream
when we feed it with an input stream. Let us denote the final F; j-coalgebra by

CI,J : Z],JiFLJ(Z],J) , that is, Z]7J={t11w—>Jw |tiS causal} .

The structure map (s is described in detail in [29].

Then there naturally arises a “sequential composition” operation that is dif-
ferent from (2): it acts on behaviors of components, simply composing two be-
haviors of matching types.

SSr K Zrg X 25K — VAR

(1°%gv , Jv L KY) — ¢35 LK)

The following observation—regarding the two operations (2) and (4)—is cru-
cial for our behavioral view on component calculi. The “inner” operation (4),
although it naturally arises by looking at stream functions, is in fact induced
by the “outer” operation (2). Specifically, it arises as the behavior map for the
(outer) composition (r,7 >3>1 5k (7. x of two final coalgebras.

Frx(Zrgx Zix)— = Fr.x(Zr,x)
Cr,g >> CJ,KT ﬁnalTC[,K ie.

Zrg X Zyk ———— 21K
=>1,0,K

Note here that, due to our definition (3), the coalgebra (;,; > k (s, x has a
state space Z7.;7 X Zj k.

As to the two operations (2) and
(4), we can ask a further question: , ,,
are they compatible, in the sense that (.) =,
the the diagram on the right com- J K
mute? One can think of this compat-
ibility property as mathematical for- Ibehxbeh behI
mulation of compositionality, a funda- e S>> rTE—

. (1> J°, J° = KY) > I J°—>K*

mental property in the theory of pro-
cesses/components. The characterization of the inner operation by finality (5) is
remarkably useful here; finality immediately yields a positive answer.

" This is how they are formalized in [29]. Equivalent formulations are: as string func-
tions I* — J* that are length-preserving and prefix-closed [26]; and as functions
I™ — J where IT is the set of strings of length > 1.

In fact, the microcosm principle is the mathematical structure that has been
behind the story. It refers to the phenomenon that the same algebraic structure
is carried by a category C and by an object X € C, a prototypical example
being “a monoid object in a monoidal category” (see e.g. [24, §VIIL.3]). In [12] we
presented another example eminent in the process theory: parallel composition
of two coalgebras for the same signature functor, as well as parallel composition
of their behaviors. Our story so far is yet another example taken from component
calculi, with its new feature being that the algebraic structure is many-sorted.

3 FP-theory

3.1 Presenting algebraic structure as a category

Algebraic structure in this paper refers to the one in universal algebra (see
g. [10]). We need it to be many-sorted in modeling component calculi. Al-
gebraic structure consists of

— aset S of sorts;

— a set X of operations. Each operation o € X is equipped with its in-arity
inar(o) given by a finite sequence of sorts denoted by Sy X - -+ x Sy, and its
out-arity outar(o) that is some sort S € S;

— and a set E of equations.

A straightforward presentation of such is as a tuple (S, X, E') which is called an
algebraic specification (see e.g. [17]).

In this paper we prefer different, categorical presentation of algebraic struc-
ture. The idea is that algebraic structure can be presented by a category L with:

— all the finite sequences of sorts S1 x --- x .S, as its objects;

— operations o € X as morphisms inar(c) % outar(c). Additionally, projections
(such as m : S1 x Sg — S7) and diagonals (such as (id,id) : S — S x 5)
are morphisms. So are (formal) products of two morphisms, equipping the
category L with finite products. Besides we can compose morphisms in the
category L; that makes the morphisms in L precisely the terms composed
using the operations in J;

— an equation as a commutative diagram. For example, when S is a singleton
and we have a binary operation m, its associativity

3%l
x,y,zF m(z,m(y,2)) = m(m(z,y),z) amounts to idxml m . (6)

le

See [17, §3.3] for the precise correspondence between an algebraic specification
(S, X, F) and a category L. The correspondence is not bijective; to be precise
such a category L represents the clone of an algebraic specification (see e.g. [10]).
Sketched in the above is the construction in one way, from (S, X, E) to L.

In a one-sorted setting—where arities (objects of L) are identified with nat-
ural numbers by taking their length—such a category L is called a Lawvere
theory (see e.g. [12,15,22]). In a many-sorted setting, such a category L—say a
“many-sorted Lawvere theory”—is usually called a finite-product theory, or an
FP-theory, see e.g. [4,5].

Definition 3.1 (FP-theory) An FP-theory is a category with finite products.

The idea of such categorical presentation of algebraic structure originated
n [22]. Significant about the approach is that one has a model as a functor.

Definition 3.2 (Set-theoretic model) Let L be an FP-theory. A (set-theoretic)
model of L is a finite-product-preserving (FP-preserving) functor X : L — Set
into the category Set of sets and functions.

Later in Def. 4.1 we introduce the notion of category with L-structure—this is
the kind of models of our interest—based on this standard definition.

To illustrate Def. 3.2 in a one-sorted setting, think about an operation 2 = 1
which satisfies associativity (6). Let the image X (1) of 1 € L be simply denoted
by X; then 2 = 1 x 1 € L. must be mapped to the set X2 by FP-preservation.
By functoriality the morphism m is mapped to a morphism X(m) : X2 — X
in Set, which we denote by [m]x. This yields a binary operation on the set X.
Moreover, the associativity diagram (6) in L is carried to a commutative diagram
in Set; this expresses associativity of the interpretation [m]x.

When L arises from a many-sorted algebraic specification, it is not a single
set X that carries L-structure; we have a family of sets {X(5)}ges—one for
each sort S—as a carrier. By FP-preservation this extends to interpretation of
products of sorts: X (S1 x +-+ x Sy,) = X(S1) x -+ x X(S;).% In this way an
operation is interpreted with its desired domain and codomain.

3.2 The FP-theory PLTh

We now present a specific FP-theory which will be our working example. We
list its sorts, operations and equations; these altogether induce an FP-theory in
the way that we sketched above. We denote the resulting FP-theory by PLTh.
Later in §5 we will see that this FP-theory represents Hughes’ notion of arrow,
without its first operation. One can think of PLTh as a basic component calculus
modeling pipelines (PL for “pipeline”).

Assumption 3.3 Throughout the rest of the paper we fix a base category B to
be a Cartesian subcategory (i.e. closed under finite products) of Set. Its objects

8 To be precise, one should see the right-hand side as denoting a specific choice of a
product, say (--- (X S1 x XS2) x---) X XS,,. Because Cartesian products in Set are
not strictly associative, one cannot force a functor X to be strictly FP-preserving.
This is why the displayed equation holds only up-to isomorphism.

I € B are sets that can play a role of an interface. Its morphisms f : [— J—
these are set-theoretic functions—represent “stateless” computations from I to
J that can be realized by components with a single state.

The FP-theory PLTh is generated by:

— the sorts S = {(I,J) | I,J € B}. Hence an object of PLTh can be written
as a formal product (I1,J1) X - -+ X (I, Jm). We denote the nullary product
(i.e. the terminal object) by 1 € PLTh;

— the operations:

> (I,J)x (LK) — (I,K) sequential composition
arrf 11— (1,J) pure function

for each object I, J, K € B and each morphism f : I — J in B. Sequential
composition is graphically understood as in (2). The component arr f, intu-
itively, has a singleton as its state space and realizes “stateless” processing

of data stream ;

— the equations:
e associativity:

a:(I,J),b: (J,K),c: (K,L) F a>3>(b>>c¢)=(a>3>b)>3>c
(>>-Asso0)
for each I, J, K, L € B, omitting the obvious subscripts for >3 i.e.

=>>1,0,K X (K7L)
(IvJ) X (JvK) X (KvL) E— (IvK) X (KvL)
(I,J) x 3>kl 1>k,

(1) % (1) e (I.L)

e preservation of composition: for each composable pair of morphisms f :
I—Jandg:J— KinB,

Ok arr(go f)=arrf>>arrg (arr-Funcl)
where () denotes the empty context. That is as a diagram,

arr f X arrg (1) % (J. K)

_
\ 1>k
arr(go f (1K)

e preservation of identities: for each I,J € B,

1

a:(I,J) F arrid; > 5a=a=a>>; arridy . (arr-FuNc2)

For this FP-theory, the model of our interest is not a family of sets with this
structure, but a family of categories, namely the category Coalg(F7r ;) for each
sort (I, J). Formalization of such an outer model carried by categories, together
with that of an inner model carried by final coalgebras, is the main topic of the
next section.

4 Microcosm model of an FP-theory

In this section we present our formalization of microcosm models for an FP-
theory L. It is about nested models of L: the outer one (L-category) being a
family {C(S)}ses of categories; the inner one (L-object) being a family {Xg €
C(S)}ses of objects. Its relevance has been mentioned in §2; we shall use our
formalization to prove a general result (Thm. 4.7) that ensures compositionality.

In fact the formalization we present is essentially the one in our previous
work [12]. Due to the space limit we cannot afford sufficient illustration of our
seemingly complicated 2-categorical arguments. The reader is strongly suggested
to have [12, §3] as her companion; the thesis [11, Chap. 5] of one of the authors
has a more detailed account. What is new here, compared to [12], is the following.

— The algebraic structure of our interest is now many-sorted, generalizing L
from a Lawvere theory to an FP-theory.

— Now we can accommodate categories with “pseudo” algebraic structure in
our framework, such as monoidal categories as opposed to strict monoidal
categories. We cannot avoid this issue in the current paper, where we deal
with concrete models that satisfy equations only up-to isomorphisms.

4.1 Owuter model: L-category

Take the functor Fy; = (T(J x _))!, for which coalgebras are components
(see §1). We would like that the categories {Coalg(Fr j)}s sep model PLTh,
the algebraic structure for pipelines in §3.2. That is, we need functors

[>>14k] : Coalg(F; ;) x Coalg(F; k) — Coalg(Fr k) foreach I, J K €B,
[arr f] : 1 — Coalg(Fy) for each morphism f: I — J in B,

where 1 is a (chosen) terminal category, satisfying the three classes of equations
of PLTh in §3.2. One gets pretty close to the desired definition of “category
with L-structure” by replacing “sets” by “categories” in Def. 3.2. That is, by
having CAT—the 2-category of locally small categories, functors and natural
transformations—in place of Set. In fact we did so in [12].

However here arises the problem of the right notion of “equality,” as it always
does when one moves up from n-categories to (n + 1)-categories. In a set the
right notion of “equality” is the identity between elements; this is why a monoid
satisfies associativity up-to identity. In a category it is weakened into (coherent)
isomorphisms between objects;? hence in a monoidal category multiplication is
associative only up-to isomorphism. The definition of L-categories must suitably
address this issue. Specifically, an equation—a commutative diagram in L—must
now be carried to a diagram which is “commutative up-to isomorphism,” i.e. a

9 Equivalence of O-cells is the right “equality” in a 2-category; biequivalence (see
e.g. [27]) is the one in a 3-category; and so on.

diagram filled in with an iso-2-cell. Using the (one-sorted) example (6):

inlL gixm, in Set s w X2 in CAT (s w C?
mxid] g |m Imxidlx] » |Imlx [mxidlel / |Imlc
2 T> 1 X2 — X (C2 —C

[mlx [mlc

1 (T2 23) = (21-22) 23 X1 ®(X2® X3) > (X1 ®Xa) ® Xs3

We have worked on the clue obtained in [12, §3.3] and [11, §5.3.3]'° and come
to the following definition. In short, we get equations satisfied up-to isomorphism,
by weakening a functor into a pseudo functor; the latter preserves identities
and composition only up-to coherent isomorphisms (see e.g. [8]). The delicate
question here is what it means for a pseudo functor to be FP-preserving. The
conditions below are chosen so that Prop. 4.2 holds (see also Rem. 4.3 later).

Definition 4.1 (L-category) An L-category is a pseudo functor C : L —
CAT that is FP-preserving in the following sense:!!

1. the canonical map (Cmy,Cma) : C(A; x Ag) — C(A;) x C(Ag) is an isomor-
phism for each Ay, A3 € L;

2. the canonical map C(1) — 1 is an isomorphism;

it preserves identities up-to identity: C(id) = id;

4. it preserves pre- and post-composition of identities up-to identity: C(id o
a) = C(a) = C(a o id);

5. it preserves composition of the form m; o a up-to identity: C(m; o a) =
C(m;) o C(a). Here m; : A1 x As — A; is a projection.

w0

We shall often denote C’s action C(a) on a morphism a by [a]c.

One consequence from the definition is that C also preserves composition of the
form ¢ o a, where § : A — A x A is a diagonal. It is illustrated in [11,12] how
pseudo functoriality induces isomorphisms up-to which equations are satisfied.
The definition is justified by the following fact. Its proof, as well as its gen-
eralization to other algebraic structure, is postponed to another venue.

Proposition 4.2 Let us denote the Lawvere theory for monoids by MonTh.
The 2-category MonCAT of monoidal categories, strong monoidal functors and
monoidal transformations is equivalent to the 2-category of MonTh-categories
with suitable 1- and 2-cells. ad

In Def. 4.1 one can replace CAT by any 2-category with finite 2-products and
obtain a more general notion of pseudo L-model. Such generality is not needed
in this paper.

10 Later we came to know that the idea is folklore at least for “monoidal” theories. Tt
is mentioned in [13] as Segalic presentation of monoidal categories.

11 To be precise, each of the conditions 3-5 means that the corresponding mediating
isomorphism (as part of the definition of a pseudo functor) is actually the identity.

Remark 4.3 A standard way to avoid the complication with pseudo algebraic
structure is by a coherence result [20,24]. For example: every monoidal category
is equivalent to a strict one. This, however, only gives us a biequivalence (see
e.g. [27]) between MonCAT and the 2-category of strict monoidal categories.
Although one readily sees that the latter is equivalent to the 2-category of strict
MonTh-categories, the two correspondence results combined only yield biequiv-
alence. In contrast, Prop. 4.2 realizes equivalence between MonCAT and the
2-category of MonTh-categories, by fine-tuning the latter notion.

Remark 4.4 In [21] a different approach for modeling pseudo algebraic struc-
ture is presented. There a “Lawvere theory” for monoidal categories is a 2-
category with all the coherent isomorphisms «, A, p explicit as 2-cells. This allows
one to have a model as a (strict) 2-functor. In contrast, in our approach, monoids
and monoidal categories are specified by the same Lawvere theory MonTh with-
out any 2-cells; the former is an FP-functor into Set and the latter a pseudo
FP-functor into CAT.

4.2 Inner model: L-object

Once we have an outer model C of IL, we can define the notion of inner model
in C. Tt is a family of objects {Xg € C(S)}ses which carries L-structure in
the same way as a monoid object in a monoidal category carries structure as a
monoid [24, §VIL.3]. Its relevance to component calculi is explained in §2 where
final coalgebras carry an inner model and realize composition of behaviors.

Definition 4.5 (L-object) Let C : L — CAT be an L-category. An L-object
in C is a lax natural transformation (see e.g. [8])

1

XN

LTCAT

which is FP-preserving in the sense that: it is strictly natural with regard to
projections and diagonals (see [12, Def. 3.4]). Here 1 : L — CAT denotes the
constant functor to a (chosen) terminal category 1.

An LL-object is also called a microcosm model of L, emphasizing that it is a
model that resides in another model C.

The definition is abstract and it might be hard to grasp how it works. While the
reader is referred to [11,12] for its illustration, we shall point out its highlights.
An L-object X, as a lax natural transforma- ;1 in CAT

. . .) be
tion, consists of the following data: 4 1 Ao (4)

— its components X 4 : 1 — C(A), identified with la | 7 x, Yl
objects X4 € C(A), for each A € L; B 1 X5 C(B)
— mediating 2-cells X,, as shown on the right, for each morphism a in L.

10

Generalizing the illustration in [11,12] one immediately sees that
— X’s components are determined by those {Xg}secs for sorts. The latter
extend to an object S; X --- x Sy, by:
C(S1 %+ %X Sm) D X, xens,, — (Xg,1-.., Xs,) €C(Sy) x -+ xC(Sp)

m

— an operation ¢ is interpreted on X by means of the mediating 2-cell X,;
— equations hold due to the coherence condition on the mediating 2-cells.

4.3 Categorical compositionality

Here we shall present a main technical result, namely the compositionality theo-
rem (Thm. 4.7). It is a straightforward many-sorted adaptation of [12, Thm. 3.9],
to which we refer for its proof and more illustration.

Definition 4.6 (L-functor) Let C, D be L-categories. A laxz L-functor F : C —
C

D is a lax natural transformation LZVF 2CAT that is FP-preserving in the
D

same sense as in Def. 4.5. Similarly, a strict L-functor is a strict natural trans-
formation of the same type.

A lax/strict L-functor determines, as its components, a family of functors {F}y :
C(A) — D(A)}acr. Much like the case for an L-object, it is determined by the
components {Fs : C(S) — D(S)}ses on sorts.

Theorem 4.7 (Compositionality) Let C be an L-category, and F' : C — C be

a lax L-functor. Assume further that there is a final coalgebra (4 @ Z EN Fa(Z4)
for each A € L.

1. The family {Coalg(F)} acL carries an L-category.

2. The family {Ca € Coalg(Fa)}acL carries a microcosm model of L.
3. The family {C(A)/Z s} aeL of slice categories carries an L-category.
4. The family of functors {beh, : Coalg(F4a) — C(A)/Za} acL, where

FpaX — - %FA(ZA)

behs : Coalg(Fa) — C(A)/Z4 is by coinduction T finalt=

X o 74

is a strict L-functor. O

An informal reading of the theorem is as follows. To get a “nice” interpretation
of a component calculus I by F-coalgebras, it suffices to check that

— the base category C models L, and
— the functor F' is “lax-compatible” with L.

These data interpret I on the category of coalgebras, yielding composition of
components (the point 1.). Final coalgebras acquire canonical inner L-structure,
yielding composition of behaviors (the point 2.). Finally, relating the two inter-
pretations, compositionality is guaranteed (the point 4.).

11

5 Taxonomy of FP-theories for component calculi

Up to now we have kept an FP-theory L as a parameter and have developed a
uniform framework that applies to any L. Now we start looking at: concrete mod-
els (components as coalgebras); and three concrete FP-theories PLTh, ArrTh
and M ArrTh that express basic component calculi. The latter two are equipped
with different “parallel composition” operations.

Notably the algebraic structure expressed by ArrTh is that of (Hughes’)
arrow [14], equivalently that of Freyd categories [23], the notions introduced for
modeling structured computations in functional programming.

The main result in this section is that the categories {Coalg(Fr s)}r,—
modeling components with Fy ; = (T(J x _))!—carry ArrTh-structure. If ad-
ditionally the effect monad T is commutative, then {Coalg(Fr s)}1 s a forte-
riori carries stronger ML ArrTh-structure. These results parallel classic results
in categorical semantics of functional programming, investigating (pre)monoidal
structure of a Kleisli category.

5.1 The FP-theories ArrTh, MArrTh

We shall add, to the FP-theory PLTh in §3.2, a suitable “parallel composition”
operation and equational axioms to obtain the FP-theory ArrTh. By imposing
stronger equational axioms we get the FP-theory M ArrTh.

In ArrTh one has additional sideline operations

I . I K
first; g @ ([,J) — (IXxK,Jx K) , graphically [? frtr o x ([? l)
7 J K

for each I, J, K € B. The equations regarding these are:

firsta > arrm = arrm > a (p-NAT)
firsta > arr(id x f) = arr(id x f) > firsta (arr-CENTR)
firsta > arra = arr a > first(first a) (a-NAT)
first(arr f) = arr(f x id) (arr-PREMON)

first(a > b) = firsta > firstb (first-Func)

It is easy to recover the omitted subscripts for arr, > and first. In the equations,
f denotes a morphism in the base category B. In (p-NAT), if a has the type (I, J)
then the 7 on the left is the projection 7 : J x 1 = J in B. In (a-NAT), o’s are
associativity isomorphisms like I x (J x K) = (I x J) x K in B.

Remark 5.1 In fact the equation (p-NAT) holds for any projection 7 : J x
K — J without requiring K = 1; one can derive this general case from the
special case and other equations. However, the special case has a clearer role in
the corresponding premonoidal structure (see §5.2). Namely, it is the naturality
requirement of the right-unit isomorphism p; = arr7; with 77 : J x 1 5 J.

12

In M ArrTh, instead of the operations first, one has
lrorr: (I,J)x (K,L) — (I x K,J x L) synchronous composition
for each I, J, K, L € B. The equations are:

(a]b)>=>(c||d)=(a>>c)| (b>>d) (|IFFuncl
arrid || arrid = arrid (|IF-Func2

al (@|ec)=>ara=arra>ss>(a|bd)|c (a-NaT
(a || arridy) > arrm = arrm >>a (p-Nat
arr(f x g) =arr f || arrg (arr-MoON

(a] b)>=>arry=arry>> (b a) (v-NAT

)
)
)
)
)
)
Here o’s are associativity isomorphisms, and 7’s are projections like J x 1 = J,
as in ArrTh. The morphisms v in (-NAT) are symmetry isomorphisms like
Jx 1= I'xJinB. One readily derives, from (p-NAT) and (7-NAT), the equation

(arridy || @) > arrn’ = arr’ >>a (A-NaT)

where 7'’s are (second) projections like 1 x I = I.
The reason that we have the first operation in ArrTh, instead of || as in
MArrTh, should be noted. The first operation in ArrTh yields the operation

second; s : (I,J) — (K xI,KxJ) byseconda = arry>s>firsta>s>arrvy ,

where 7’s are symmetry isomorphisms. But the equa- « ;

tions in ArrTh do not derive second b >>> firsta = I K
first a >3 second b; that is, the two systems on the %%L a T,%]
right should not be identified. Indeed there are many 7 L
situations where these two systems are distinct. Assume that we have the global
state monad 7 = (S x _)% as effect in F; ;. One can think of a global state
s € S as residing in the ambience of components, unlike local/internal states
that are inside components (i.e. coalgebras). When a component executes, it
changes the current global state as well as its internal state; hence the order of
execution of a and b does matter. In contrast, when one interprets MArrTh in
{Coalg(Fr,s)} 1,7, the natural axiom (||-FUNC1) requires the above two systems
to be equal.

5.2 Set-theoretic models: arrows, Freyd categories

The FP-theories PLTh, ArrTh and MArrTh and their set-theoretic models
are, in fact, closely related with some notions that have been studied extensively
in semantics of functional programming. Here we elaborate on the relationship;
it will be exploited later in §5.3.

To start with, ArrTh is almost exactly a categorical presentation of the
axiomatization of Hughes’ arrow [14] (specifically the axiomatization in [19]),

13

the only gap being the one explained in Remark 5.1. The notion of arrow gen-
eralizes that of monad (modeling effects, i.e. structured output [25,31]) and
that of comonad (modeling structured input [30]); the notion of arrow models
“structured computations” in general. See e.g. [19, §2.3].

Definition 5.2 An arrow is a set-theoretic model (Def. 3.2) of ArrTh.

It had been folklore, and was proved in [19], that an arrow is the same thing
as a Freyd category. A Freyd category is a symmetric premonoidal category K
together with a Cartesian category B embedded via an identity-on-object strict
premonoidal functor B — K, subject to a condition on center morphisms. The
notion is introduced in [28], and it is named as such later in [23].

In this way one can look at ArrTh as an axiomatization of the notion of
Freyd category. There is a similar corresponding structure for the (stronger)
FP-theory M ArrTh, which explains its name MArrTh.

Definition 5.3 Let B be a Cartesian (hence monoidal) category. A monoidal
Freyd category on B is a symmetric monoidal category K together with a strictly
monoidal, identity-on-object functor B — K.

Proposition 5.4 1. A set-theoretic model ArrTh — Set of ArrTh is the
same thing as a Freyd category.

2. A set-theoretic model M ArrTh — Set of MArrTh is the same thing as a
monoidal Freyd category.

Proof. The first point is simply the correspondence result [19, Thm. 6.1] between
arrows and Freyd categories, put together with Def. 4.5. The proof of the second
point goes similar. a

Remark 5.5 To be precise, the correspondences in the previous proposition are
equivalences of suitable categories. This is for the same reason as the category of
set-theoretic models of the Lawvere theory MonTh is equivalent to the category
Mon of monoids. These correspondences fail to be isomorphisms because of the
possible different choices of products in Set.

The notions of (monoidal) Freyd category were introduced in [28], prior to
arrows, as axiomatizations of the structure possessed by a Kleisli category K¢(T')
for a monad 7T'. Here a Kleisli category is understood as a category of types and
effectful computations [25]. The results [28, Cor. 4.2 & 4.3]—showing that K¢(T')
indeed induces a Freyd category—mnow read as follows, in view of Prop. 5.4. For
the notion of strong/commutative monad, see e.g. [16, §3].

Proposition 5.6 Let B be our base category (see Assumption 3.3).

1. A monad T on Set induces a model KU(T) : ArrTh — Set. Specifically,
its carrier set KU(T)(1,J) for the sort (I,.J) is the homset Homyey (I, J);
arr is interpreted by the Kleisli inclusion functor; >3 is by composition in
KU(T); and first is obtained using the canonical strength st of T. Recall that
every monad on Set is strong.

14

2. Furthermore, if T is commutative then it induces a model K¢(T) of M ArrTh.
The operation || is interpreted using T’s double strength. O

Thanks to the proposition we know that all the equations in ArrTh or in
MArrTh hold in K¢(T), with the operations suitably interpreted. This fact
will be heavily exploited in the equational reasoning later in §5.3.

For PLTh—the parallel-free part of ArrTh and M ArrTh—a set-theoretic
model is an arrow without first, or equivalently, a category K with an identity-on-
object functor B — K. Yet another characterization of this structure, discovered
in [19], is as a monoid object in the monoidal category of bifunctors [B°P x
B, Set] where the monoidal products are given by the so-called Day tensor [9].
Equivalently, it is a monad on B in the bicategory of profunctors (also called
distributors or bimodules, see e.g. [6,8]).

5.3 PLTh, ArrTh and MArrTh as component calculi

We now show that our coalgebraic modeling of components indeed models the
calculi PLTh, ArrTh and MArrTh, according to the choice of an effect monad
T. The result parallels Prop. 5.6.

Throughout the rest of the section we denote by Lcc any one of PLTh,
ArrTh and MArrTh (CC for “component calculus”).

In view of Thm. 4.7, we only need to establish that: 1) the (constant) map
(I, J) — Set extends to an Loc-category; and 2) {Fy ; : Set — Set} ; extends
to a lax Loe-functor. Then Thm 4.7 ensures that the components (as coalgebras)
and their behaviors (as elements of final coalgebras) carry a microcosm model
of Lcc, and that compositionality holds.

For 1), we interpret the operations in the following way. The guiding ques-
tion is: what is the state space of the resulting component, when we apply an
operation to components as its arguments.

Definition 5.7 We denote by Set the L¢c-category defined as follows. It maps
each sort (I,J) to Set € CAT; and it interprets operations by

100 set, Set ™™V set, Set x Set P2 Set, Set x Set 1L Set.
* — 1 X — X (X)Y) — X xY (X)Y) — X xY

We are using the same notation Set for models of three different FP-theories.
This will not cause confusion.

Lemma 5.8 The data in Def. 5.7 indeed determine FP-preserving pseudo func-
tors. In particular, all the equations in PLTh, ArrTh and MArrTh are satis-
fied up-to coherent isomorphisms.

Proof. Easy. The equations hold only up-to isomorphisms because, for example,
the associativity X x (Y xU) 2 (X xY) x U in Set is only an isomorphism. O

15

The requirement 2)—that {F7 ; : Set — Set}; jep extends to a lax Loc-
functor—puts additional demands on T'. This is parallel to Prop. 5.6. Still the
actual calculation is overwhelming. We notice that all the operations that appear
throughout the calculation can be described as morphisms in the Kleisli category
KU(T). Therefore, by Prop. 5.6, they are themselves subject to the equations in
Lce- This substantially simplifies the calculation.

Lemma 5.9 For the endofunctors Fr ; = (T'(J x _))! : Set — Set, the follow-
ing hold.

1. The family {Fr j : Set — Set}; ; extends to a lax ArrTh-functor Set —
Set. Therefore so it does to a lax PLTh-functor.

2. If T is commutative, {Fy j : Set — Set}; ; extends to a lax M ArrTh-
functor Set — Set.

Proof. What we need to do is: first to “interpret operations” on {Fs s} j; second
to check if these interpreted operations “satisfy equations.”

More specifically, to make {F7 ;}; s into a lax Loc-functor, we need to have
a mediating 2-cell corresponding to each operation (such as >s>). For example:

. . Fr ;s xF
inLec (1,0)x (J,K) i CAT get x Set —" ", Set x Set
1> [>]=x] 2 g =>l=x 7
([a K) Set Set
Frx

In the diagram, we have denoted the binary product in Set by the boldface
X : Set x Set — Set to distinguish it from the binary product x in CAT. The
needed 2-cell Fiss is nothing but a natural transformation

F>>> : F[’JXXFJ’KY%FIVK(XXY) . (8)

After that we have to show that these mediating 2-cells satisfy the coherence
condition. In the current setting where the domain category Lcc is syntactically
generated by sorts, operations and equations, it amounts to checking if the me-
diating 2-cells “satisfy the equations.” Taking (>3>-AsSsoC) as an example, it
means showing the following equality between 2-cells.

3 Fr gxFj g XFK L 3 3 Fr gxFj gk XFK L 3

Set® ———— Set Set® ————— Set
_@ idxx\L l*//1d><F>>> \Lidxx xxid\L l4F>>> xid \Lx xid />-<\
X

x| £ Set? —FrxxFixi— Set? = Set? —FrxxFxi— Set? <[z (9)

% x| 2 pss 1x x] 2 pss 1 X

Set ——————— Set Set ———— > Set

Frp, Fr,.

Here « denotes the associativity isomorphism X x (Y x U) = (X xY) x U.
See [11, Rem. 5.4.1] for more illustration. One readily sees that the equation (9)

16

boils down to commutativity of the following diagram in Set.

id x F F
FrX x (FrxY X FgU) —— 5 Fy ;X x Frp(Y x U) ——— Fr..(X x (Y x U))

ad JFr Lo
(F[,JX X FJVKY) X FK,LU—_> FI,K(X X Y) X FK,LU% F]YL((X X Y) X U)

>> X1 >>
(10)
To summarize: we shall introduce a natural transformation F, for each oper-
ation o, like in (8); and check if they satisfy all the equations like in (10). While
the first task is straightforward, the second is painfully complicated as it is. We
shall only do the aforementioned examples in Lcc for demonstration.
In the sequel, let us denote the set-theoretic model of Lo induced by the
Kleisli category (in Prop. 5.6) by K¢(T'). In particular, we have K¢T)(I,J) =
(TJ)!. Hence the natural transformation Fls in (8) is of the type

KUT)I,J x X) x KAT)(J, K xY) — KAT)I, K x (X xY)) .

We define it to be the following composition of morphisms in Lcc, interpreted
in KCU(T).

id X first

(I,J x X)x (JJKxY)" =5 (I,] x X) x (J x X, (KxY) xX)

arra ! (11)
22 (1 (K x V) x X) D72 (1K % (X x V)

One can readily come up with such a morphism in Lce for each of the other
operations.

Let us prove that Fss thus defined satisfies (10). The morphisms in the
diagram (10) can be also written as morphisms in Lec, interpreted in KO(T).
Hence we shall do the equational reasoning in Lcc, using the equational axioms
in §5.1. To reduce the number of parentheses, the terms are presented modulo
associativity (>3>-Assoc) of >35>, The letters ¢, d and e are variables of sorts
(I,J x X), (J,K xY) and (K,L x U), respectively.

(The path, first down, then to the right)

=¢>3> firstd >> arra™! >35> firste 3> arra™!

= ¢ >> first d > firstfirste > arra™ > arra™’ (a-NAT)
= ¢ >3 firstd > firstfirste >3 arr (o™ o a™!) (arr-Funcl)
= ¢ >> firstd 3> firstfirste 3> arr (L x @) o' o (7! x U)) (

= ¢ > firstd > first first e > first (arra™') > arra™! 3 arr (L x @) (first-PREMON
= c>> first((d > firste) 3> arra™") 3> arra™" 3> arr(L X a) (first-FuNc
= (The path, first to the right, then down)

)
= ¢ >3 firstd > firstfirste >3 arr (o' x U) 3> arra”* > arr (L a) (arr-Funcl)
)
)

Here the equality (}) is because of the “pentagon” coherence for « in Set. Nat-
urality of Fss in X,Y, as well as satisfaction of the other equations, can be
derived by similar calculation. O

For obtaining a microcosm model we need final coalgebras. This depends on the
“size” of the monad T'; all the examples of T listed in §1, except for T' = D,
satisfy the requirement.

17

Theorem 5.10 Assume that, for each I,J € B, we have a final coalgebra Cr :
Z1.0 5 F1.0(Z1.).

1. The family {Coalg(Fr 5)} 1,5 forms an ArrTh-category, so a PLTh-category.

2. The family {Z; ; € Set}r ; forms an ArrTh-object, hence a PLTh-object.
Compositionality holds in the sense of Thm. 4.7.4.

3. If T is commutative, then the above two are also an M ArrTh-category and
an MArrTh-object, respectively.

Proof. By Thm. 4.7, Lem. 5.8 and Lem. 5.9. a

6 Conclusions and Future Work

We have extended our previous formalization of the microcosm principle [12] to
a many-sorted setting. This allowed to include Barbosa’s component calculi [2]
as examples. We studied three concrete calculi that are variants of the axiomati-
zation of arrows, demonstrating similarity between components and structured
computations.

As future work, we are interested in further extensions of the component cal-
culi that allow modeling of further interesting examples like wiring and merging
components, queues, stacks, and folders of stacks with feedback, etc., as pre-
sented in [2]. The proof methods that we derived from the microcosm framework
will be useful in its course.

On the more abstract side, it is interesting to elevate the arguments in §5
further, to the bicategory DIST of distributors, with CAT embedded in it via
the Yoneda embedding. Such a higher level view on the matter might reveal
further microcosm instances in our proof methods.

Acknowledgments Thanks are due to Kazuyuki Asada, Masahito Hasegawa,
Paul-André Mellies and John Power for helpful discussions and comments.

References

1. J.C. Baez and J. Dolan. Higher dimensional algebra III: n-categories and the
algebra of opetopes. Adv. Math, 135:145-206, 1998.

2. L.S. Barbosa. Towards a calculus of state-based software components. Journ. of
Universal Comp. Sci., 9(8):891-909, 2003.

3. L. Barbosa. Components as Coalgebras. PhD thesis, Univ. Minho, 2001.

4. M. Barr and C. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
Available online.

5. M. Barr and C. Wells. Category Theory for Computing Science. Centre de
recherches mathématiques, Université de Montréal, 3rd edn., 1999.

6. J. Bénabou. Distributors at work. Lecture notes by Thomas Streicher, 2000.
www.mathematik.tu-darmstadt.de/"streicher/FIBR/DiWo.pdf.gz.

7. M.M. Bonsangue, J.J.M.M. Rutten and A. Silva. Coalgebraic logic and synthesis
of Mealy machines. In R.M. Amadio, editor, FoSSaCS, vol. 4962 of Lect. Notes
Comp. Sci., pp. 231-245. Springer, 2008.

18

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

. F. Borceux. Handbook of Categorical Algebra, vol. 50, 51 and 52 of Encyclopedia

of Mathematics. Cambridge Univ. Press, 1994.

B.J. Day. On closed categories of functors. In Reports of the Midwest Category
Seminar IV, vol. 137 of Lect. Notes Math., pp. 1-38. Springer-Verlag, 1970.

K. Denecke and S.L. Wismath. Universal Algebra and Applications in Theoretical
Computer Science. Chapman & Hall, 2002.

I. Hasuo. Tracing Anonymity with Coalgebras. PhD thesis, Radboud University
Nijmegen, 2008.

I. Hasuo, B. Jacobs and A. Sokolova. The microcosm principle and concurrency in
coalgebra. In Foundations of Software Science and Computation Structures, vol.
4962 of Lect. Notes Comp. Sci., pp. 246-260. Springer-Verlag, 2008.

C. Hermida. A roadmap to the unification of weak categorical structures: trans-
formations and equivalences among the various notions of pseudo-algebra, 2004.
maggie.cs.queensu.ca/chermida/papers/roadmap.pdf.

J. Hughes. Generalising monads to arrows. Science of Comput. Progr., 37(1-3):67—
111, 2000.

M. Hyland and J. Power. The category theoretic understanding of universal alge-
bra: Lawvere theories and monads. Elect. Notes in Theor. Comp. Sci., 172:437—-458,
2007.

B. Jacobs. Semantics of weakening and contraction. Ann. Pure & Appl. Logic,
69(1):73-106, 1994.

B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.
B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222-259, 1997.

B. Jacobs, C. Heunen and I. Hasuo. Categorical semantics for arrows. Journ.
Funct. Progr., 2009. To appear.

A. Joyal and R. Street. Braided tensor categories. Adv. Math, 102:20-78, 1993.
S. Lack and J. Power. Lawvere 2-theories. Presented at CT2007, 2007.
www.mat.uc.pt/ categ/ct2007/slides/lack.pdf.

F.W. Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic
Problems in the Context of Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963. Reprints in Theory and Applications of Categories, 5
(2004) 1-121.

P.B. Levy, A.J. Power and H. Thielecke. Modelling environments in call-by-value
programming languages. Inf. & Comp., 185(2):182-210, 2003.

S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 2nd
edn., 1998.

E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55-92, 1991.
D. Pattinson. An introduction to the theory of coalgebras. Course notes for
NASSLLI, 2003.

www.indiana.edu/ nasslli.

A.J. Power. Why tricategories? Inf. & Comp., 120(2):251-262, 1995.

J. Power and E. Robinson. Premonoidal categories and notions of computation.
Math. Struct. in Comp. Sci., 7(5):453-468, 1997.

J.J.M.M. Rutten. Algebraic specification and coalgebraic synthesis of Mealy au-
tomata. Flect. Notes in Theor. Comp. Sci., 160:305-319, 2006.

T. Uustalu and V. Vene. Comonadic notions of computation. FElect. Notes in
Theor. Comp. Sci., 203(5):263-284, 2008.

P. Wadler. Monads for functional programming. In Marktoberdorf Summer School
on Program Design Calculi. Springer-Verlag, 1992.

