
Generic Forward and Backward Simulations III:
Quantitative Simulations by Matrices

Natsuki Urabe and Ichiro Hasuo

University of Tokyo, Japan

Abstract. We introduce notions of simulation between semiring-weighted au-
tomata as models of quantitative systems. Our simulations are instances of the
categorical/coalgebraic notions previously studied by Hasuo—hence soundness
wrt. language inclusion comes for free—but are concretely presented as matrices
that are subject to linear inequality constraints. Pervasiveness of these formalisms
allows us to exploit existing algorithms in: searching for a simulation, and hence
verifying quantitative correctness that is formulated as language inclusion. Trans-
formations of automata that aid search for simulations are introduced, too. This
verification workflow is implemented for the plus-times and max-plus semirings.

1 Introduction

Quantitative aspects of various systems are more and more emphasized in recent veri-
fication scenarios. Probabilities in randomized or fuzzy systems are a classic example;
utility in economics and game theory is another. Furthermore, now that many computer
systems are integrated into physical ambience—realizing so-called cyber-physical sys-
tems—physical quantities like energy consumption are necessarily taken into account.

Semiring-weighted automata It is standard in the concurrency community to model
such quantitative systems by state-transition systems in which weights are assigned to
their states and/or transitions. The semantics of such systems varies, however, depend-
ing on the interpretation of weights. If they are probabilities, they are accumulated by
× along a path and summed across different paths; if weights are (worst-case) costs,
they are summed up along a path and we would take max across different paths.

The algebraic structure of semirings then arises as a uniform mathematical language
for different notions of “weight,” as is widely acknowledged in the community. The
subject of the current study is state-based systems with labeled transitions, in which
each transition is assigned a weight from a prescribed semiring S. We shall call them
S-weighted automata; and we are more specifically interested in the (weighted, finite)
language inclusion problem and a simulation-based approach to it.

Language inclusion Let A be an S-weighted automaton with labels from an alphabet
Σ. It assigns to each word w ∈ Σ∗ a weight taken from S—this is much like a (purely)
probabilistic automaton assigns a probability to each word. Let us denote this function
by L(A) : Σ∗ → S and call it the (weighted) language of A by analogy with classic
automata theory. The language inclusion problem L(A) v L(B) asks if: L(A)(w) v
L(B)(w) for each word w ∈ Σ∗, where v is a natural order on the semiring S.

2

It is not hard to see that language inclusion L(A) v L(B) has numerous applica-
tions in verification. In a typical scenario, one of A and B is a model of a system and
the other expresses specification; and L(A) v L(B) gives the definition of “the system
meeting the specification.” More concrete examples are as follows.

– S represents probabilities; A models a system; and B expresses the specification
that certain bad behaviors—identified with words—occur with a certain probability.
Then L(A) v L(B) is a safety statement: each bad behavior occurs inA at most as
likely as in B.

– S represents profit, A is a specification and B is a system. Then L(A) v L(B)
guarantees the minimal profit yielded by the system B.

– There are other properties reduced to language inclusion in a less trivial manner. An
example is probable innocence [26], a quantitative notion of anonymity. See [15].

Simulation Direct check of language inclusion is simply infeasible because there are
infinitely many words w ∈ Σ∗. One finitary proof method—well-known for nondeter-
ministic (i.e. possibilistic) systems—is by (forward or backward) simulations, whose
systematic study is initiated in [23]. In the nondeterministic setting, a simulation R is a
relation between states ofA and B that witnesses “local language inclusion”; moreover,
from the coinductive way in which it is defined, a simulation persistently witnesses local
language inclusion—ultimately yielding (global) language inclusion. This property—
existence of a simulation implies language inclusion—is called soundness.

Contribution: weighted forward/backward simulations by matrices In this paper
we extend this simulation approach to language inclusion [23] to the quantitative set-
ting of semiring-weighted automata. Our notions of (forward and backward) weighted
simulation are not given by relations, but by matrices with entries from a semiring S.

Use of matrices in automata theory is classic—in fact our framework instantiates
to that in [23] when we take as S the Boolean semiring. This is not how we arrived
here; conversely, the current results are obtained as instances of a more general theory
of coalgebraic simulations [11, 12, 14]. There various systems are identified with a
categorical construct of coalgebras in a Kleisli category; and fwd./bwd. simulations are
characterized as lax/oplax morphisms between coalgebras. A generic soundness result
(with respect to language/trace inclusion) is also proved in the general categorical terms.

This paper is devoted to concrete presentations of these categorical notions by ma-
trices, and to their application to actual verification of quantitative systems. Presenta-
tion by matrices turns out to be an advantage: a simulation is now a matrix X that
satisfies certain linear inequalities; and existence of such X—i.e. feasibility of linear
inequalities—is so common a problem in many fields that there is a large body of ex-
isting work that is waiting to be applied. For example linear programming (LP) can
be exploited for the plus-times semiring for probabilities; and there are algorithms pro-
posed for other semirings such as the max-plus (tropical) one.

Our (mostly semiring-independent) workflow is as follows. A verification goal is
formulated as language inclusion L(A) v L(B), which we aim to establish by finding
a fwd. or bwd. simulation from A to B. Soundness of simulations follows from the
general result in [11]. A simulation we seek for is a matrix subject to certain linear

3

inequalities, existence of which is checked by various algorithms that exist for different
semirings. We implemented this workflow for the plus-times and max-plus semirings.

This simulation-based method is sound but not necessarily complete with respect to
language inclusion. Therefore we introduce transformations of weighted automata—
called (forward/backward) partial execution—that potentially create matrix simula-
tions. Via our equivalence results between our matrix simulation and some known ones
(including the one in [7]), the partial execution transformations potentially create those
simulations, too.
Organization of the paper In §2 we define semiring-weighted automata, characterize
them in coalgebraic terms and recap the coalgebraic theory in [11]. These are combined
to yield the notion of simulation matrix in §3. In §4 partial execution transformations
of automata are described and proved correct. The framework obtained so far is ap-
plied to the plus-times and max-plus semirings, in §5 and §6, respectively. There our
proof-of-concept implementations (the code is found at the first author’s webpage) and
relationship to other known simulation notions are discussed, too. In §7 we conclude.

2 Preliminaries

We review the generic theory of traces and simulations in [11, 14] that is based on
(T, F)-systems, which will eventually lead to the notion of simulation matrix in §3.

2.1 Semiring-Weighted Automata

The notion of semiring-weighted automaton is parametrized by a semiring S. For our
purpose of applying coalgebraic theory in [11,14], we impose the following properties.

Definition 2.1 A commutative cppo-semiring is a tuple S = (S,+S , 0S ,×S , 1S ,v)
that satisfies the following conditions.

– (S,+S , 0S ,×S , 1S) is a semiring in which ×S , in addition to +S , is commutative.
– A relation v is a partial order on S and (S,v) is ω-complete, i.e. an increasing

chain s0 v s1 v · · · has a supremum.
– Any element s ∈ S is positive in the sense that 0S v s.
– Addition +S and multiplication ×S are monotone with respect to v.

It follows from positivity and ω-completeness that countable sum can be straightfor-
wardly defined in a comm. cppo-semiring S. We will use this fact throughout the paper.

Example 2.2 (Semirings S+,×,Smax,+,B) The plus-times semiring S+,× =
([0,∞],+, 0,×, 1,≤) is a comm. cppo-semiring, where + and × are usual addition
and multiplication of real numbers. This is the semiring that we will use for mod-
eling probabilistic branching. Specifically, probabilities of successive transitions are
accumulated using ×, and those of different branches are combined with +.

The max-plus semiring Smax,+ = ([−∞,∞],max,−∞,+, 0,≤)—also sometimes
called the tropical semiring [24]—is also a comm. cppo-semiring. Here a number r ∈
[−∞,∞] can be understood as (best-case) profit: they are summed up along a path,

4

and an optimal one (max) is chosen among different branches. Another possible under-
standing of r is as (worst-case) cost. The unit for the semiring addition max is given by
−∞; since it must also be a zero element of the semiring multiplication +, we define
(−∞) +∞ = −∞. In the two examples S+,× and Smax,+ we added∞ so that they
become ω-complete.

Finally, the Boolean semiring B = ({0, 1},∨, 0,∧, 1,≤) is an example that is qual-
itative rather than quantitative.

Definition 2.3 (S-weighted automaton, weighted language) Let S = (S,+S , 0S ,×S ,
1S ,v) be a comm. cppo-semiring. An S-weighted automaton A = (Q,Σ,M,α, β)
consists of a countable state spaceQ, a countable alphabetΣ, transition matricesM(a) ∈
SQ×Q for all a ∈ Σ, an initial row vector α ∈ SQ and a final column vector β ∈ SQ.

Let x, y ∈ Q and a ∈ Σ. We write αx and βx for the x-th entry of α and β, respec-
tively, and M(a)x,y for the (x, y)-entry of the matrix M(a). Note that these entries are
all elements of the semiring S.

An S-weighted automaton A = (Q,Σ,M,α, β) yields a weighted language
L(A) : Σ∗ → S. It is given by the following multiplication of matrices and vectors.

L(A)(w) := α ·M(a1) · · · · ·M(ak) · β for each w = a1 · · · ak ∈ Σ∗. (1)
We require a state space Q to be at most countably infinite. This is so that the matrix
multiplications in (1)—by addition and multiplication of S—are well-defined. Recall
that S has countable sum given by supremums of suitable ω-chains.

Our interest is in establishing language inclusion between two weighted automata.

Definition 2.4 (language inclusion) We write L(A) v L(B) if, for each w ∈ Σ∗,
L(A)(w) v L(B)(w). The last v is the order of S.

2.2 Coalgebraic Modeling of Semiring-Weighted Automata

Here we characterize semiring-weighted automata as instances of a generic coalgebraic
model of branching systems—so-called (T, F)-systems with parameters T, F [11, 14].

Definition 2.5 ((T, F)-system) Let T be a monad and F be a functor, both on the
category Sets of sets and functions. A (T, F)-system is a triple

X =
(
X, s : {•} → TX, c : X → TFX

)
of a set X (the state space), and functions s (the initial states) and c (the dynamics).

This modeling is coalgebraic [17] in the sense that c is so-called a TF -coalgebra. In the
definition we have two parameters T and F . Let us forget about their categorical struc-
tures (a monad or a functor) for a moment and think of them simply as constructions on
sets. Intuitively speaking, T specifies what kind of branching the systems in question
exhibit; and F specifies a type of linear-time behaviors. Here are some examples; in the
example F = 1 +Σ × () the only element of 1 is denoted by X (i.e. 1 = {X}).

T “branching”
P non-deterministic
D probabilistic
MS S-weighted

F “linear-time behavior”
1 +Σ × () → X or a→ (where a ∈ Σ)
(Σ + ())∗ words over terminals (a ∈ Σ)

& nonterminals, suited for CFG [13]

5

The above examples of a monad T—the powerset monad P , the subdistribution monad
D, and the S-multiset monadMS for S—are described as follows.

PX = {X ′ | X ′ ⊆ X} DX = {f : X → [0, 1] |
∑
x∈X f(x) ≤ 1}

MSX = {f : X → S | supp(f) is countable}
(2)

Here supp(f) = {x ∈ X | f(x) 6= 0S}. Countable support in MS is a technical
requirement so that composition � of Kleisli arrows is well-defined (Def. 2.7).

It should not be hard to see that a (T, F)-system models a state-based system with
T -branching and F -linear-time behaviors. For example, when T = P and F = 1 +
Σ× (), s : {•} → PX represents the set of initial states and c : X → P(1+Σ×X)
represents one-step transitions—that X ∈ c(x) means x is accepting (x → X), and
(a, x′) ∈ c(x) means there is a transition x a→ x′. Overall, a (P, 1 +Σ × ())-system
is nothing but a nondeterministic automaton.

Analogously we obtain the following, by the definition ofMS in (2).
Proposition 2.6 (weighted automata as (T, F)-systems) Let S be a comm. cppo-semiring.
There is a bijective correspondence between: 1) S-weighted automata (Def. 2.3); and
2)
(
MS , 1 +Σ × ()

)
-systems whose state spaces are at most countably infinite.

Concretely, an S-weighted automatonA = (Q,Σ,M,α, β) gives rise to an
(
MS , 1+

Σ × ()
)
-system XA = (Q, sA, cA) defined as follows. sA : {•} → MSQ is given

by sA(•)(x) = αx; and cA : Q →MS(1 + Σ × Q) is given by cA(x)(X) = βx and
cA(x)(a, y) =M(a)x,y . ut

2.3 Coalgebraic Theory of Traces and Simulations

We review the theory of traces and simulations in [11, 14] that is based on (T, F)-
systems. In presentation we restrict to T =MS and F = 1 +Σ × () for simplicity.
Kleisli Arrows One notable success of coalgebra was a uniform characterization, in
terms of the same categorical diagram, of bisimulations for various kinds of systems
(nondeterministic, probabilistic, etc.) [17]. This works quite well for branching-time
process semantics. For linear-time semantics—i.e. trace semantics—it is noticed in [25]
that so-called a Kleisli category, in place of the category Sets, gives a suitable base
category for coalgebraic treatment. This idea—replacing functionsX → Y with Kleisli
arrows X →p Y and drawing the same diagrams—led to the development in [11, 12,
14] of an extensive theory of traces and simulations. The notion of Kleisli arrow is
parametrized by a monad T : a T -Kleisli arrow X→p T Y (or simply X→p Y) is defined
to be a function X → TY , hence represents a “T -branching function from X to Y .”

We restrict to T = MS for simplicity of presentation. An MS -Kleisli arrow
f : X →p Y below is “an S-weighted function from X to Y .” In particular, for each
x ∈ X and y ∈ Y it assigns a weight f(x)(y) ∈ S.

Definition 2.7 (Kleisli arrow) Let X,Y be sets. An MS -Kleisli arrow (or simply a
Kleisli arrow) from X to Y , denoted by X→p Y , is a function from X toMSY .

We list some special Kleisli arrows: ηX , g � f and Jf .

– For each set X , the unit arrow ηX : X →p X is given by: η(x)(x) = 1S ; and
η(x)(x′) = 0S for x′ 6= x. Here 0S and 1S are units in the semiring S.

6

– For consecutive Kleisli arrows f : X →p Y and g : Y →p Z, their composition
g � f : X→p Z is given as follows:

(g � f)(x)(z) :=
∑
y∈supp(f(x)) f(x)(y)×S g(y)(z) .

Since supp(f(x)) is countable, the above sum in a cppo-semiring S is well-defined.
– For a (usual) function f : X → Y , its lifting to a Kleisli arrow Jf : X→p Y is given

by Jf = ηY ◦ f . Here we identified ηY : Y→p Y with a function ηY : Y →MSY .

Categorically speaking: the first two (η and �) organize Kleisli arrows as a category
(the Kleisli category K`(MS)); and the third gives a functor J : Sets→ K`(MS) that
is identity on objects.

In Prop. 2.6 we characterized an S-weighted automaton A in coalgebraic terms.
Using Kleisli arrows it is presented as a triple

XA =
(
Q, sA : {•} p−→ Q, cA : Q p−→ 1 +Σ ×Q

)
. (3)

Generic Trace Semantics In [14], for monads T with a suitable order, a final coalgebra
in K`(T) is identified. It (somehow interestingly) coincides with an initial algebra in
Sets. Moreover, the universality of this final coalgebra is shown to capture natural
notions of (finite) trace semantics for a variety of branching systems—i.e. for different
T and F . What is important for the current work is the fact that the weighted language
L(A) in (1) is an instance of this generic trace semantics, as we will show in Thm. 2.10.

1 +Σ ×X
=

�1+Σ×(tr(c))
// 1 +Σ ×Σ∗

X

_c
OO

�
tr(c)

// Σ∗
_final J([nil,cons]−1)
OO

{•}
_s
OO

(
tr(X)

99
(4)

We shall state the results in [14] on coalge-
braic traces, restricting again to T =MS and
F = 1 + Σ × () for simplicity. In the di-
agram (4) on the right, composition of Kleisli
arrows are given by � in Def. 2.7; J on the
right is the lifting in Def. 2.7; and nil and cons
are the obvious constructors of words inΣ∗. The top arrow 1+Σ×(tr(c)) is the functor
1+Σ× () on Sets, lifted to the Kleisli category K`(MS), and applied to the Kleisli
arrow tr(c); its concrete description is found in Def. A.4.

Theorem 2.8 (final coalgebra in K`(MS)) Given any set X and any Kleisli arrow
c : X→p 1 +Σ ×X , there exists a unique Kleisli arrow tr(c) that makes the top square
in the diagram (4) commute. ut
Definition 2.9 (tr(X)) Given an

(
MS , 1 + Σ × ()

)
-system X = (X, s, c) (this is

on the left in the diagram (4)), its component c induces an arrow tr(c) : X→p Σ∗ by
Thm. 2.8. We define tr(X) to be the composite tr(c) � s (the bottom triangle in the
diagram (4)), and call it the trace semantics of X .

Theorem 2.10 (weighted language as trace semantics) Let A be an S-weighted au-
tomaton. ForXA = (Q, sA, cA) induced byA in (3), its trace semantics tr(XA) : {•}→p
Σ∗—identified with a function {•} → MSΣ∗, hence with a function Σ∗ → S—
coincides with the weighted language L(A) : Σ∗ → S in (1). ut

In the last theorem we need that Σ∗ is countable; this is why we assumed that Σ is
countable in Def. 2.3. Henceforth we do not distinguish L(A) and tr(XA) : {•}→p Σ∗.

7

Forward and Backward Kleisli simulations In [11], the classic results in [23] on for-
ward and backward simulations—for (nondeterministic) labeled transition systems—
are generalized to (T, F)-systems. Specifically, fwd./bwd. simulations are characterized
as lax/oplax coalgebra homomorphisms in a Kleisli category; and soundness—their ex-
istence witnesses trace inclusion—is proved once for all in a general categorical setting.

As before, we present those notions and results in [11] restricting to T =MS and
F = 1+Σ×(). If T = P and F = 1+Σ×() they instantiate to the results in [23].
Definition 2.11 (Kleisli simulation) LetX = (X, s, c) and Y = (Y, t, d) be (MS , 1+
Σ × ())-systems (cf. Def. 2.5, Prop. 2.6 and (3)).
1. A forward (Kleisli) simulation from X to Y is a Kleisli arrow f : Y→p X such that
s v f � t and c� f v (1 +Σ × f)� d. See Fig. 1.

2. A backward simulation fromX toY is a Kleisli arrow b : X→p Y such that s�b v t
and (1 +Σ × b)� c v d� b.

3. A forward-backward simulation from X to Y consists of: a (T, F)-system Z; a
fwd. simulation f from X to Z; and a bwd. simulation b from Z to Y .

4. A backward-forward simulation from X to Y consists of: a (T, F)-system Z; a
bwd. simulation b from X to Z; and a fwd. simulation f from Z to Y .

FX
v

FY
�Ffoo

X

_cOO

v
Y

_d
OO

f
�oo

{•}
s
OO

t
OO

FX
v

�Fb // FY

X

_cOO

v
b

� // Y

_d
OO

{•}
s
OO

t
OO

FX
v

FZ
v

�Ffoo �Fb // FY

X

_cOO

v
Z

_eOO

v
f

�oo b
� // Y

_d
OO

{•}
s
OO _u

OO
t
OO

FX
v

�Fb // FZ
v

FY
�Ffoo

X

_cOO

v
b

� // Z
_eOO

v
Y

_d
OO

f
�oo

{•}
s
OO _u

OO
t
OO

fwd. sim. bwd. sim. fwd.-bwd. sim. bwd.-fwd. sim.

Fig. 1. Kleisli simulations (here F = 1 +Σ × ())

We write X vF Y , X vB Y , X vFB Y or X vFB Y if there exists a forward,
backward, forward-backward, or backward-forward simulation, respectively.

(Generic) soundness is proved using the maximality of tr(c) in (4) among (op)lax
coalgebra homomorphisms, arguing in the language of enriched category theory [11].
Theorem 2.12 (soundness) Let X and Y be (MS , 1+Σ × ())-systems. Each of the
following yields tr(X) v tr(Y) : {•}→p Σ∗ (cf. Def. 2.9).
1. X vF Y 2. X vB Y 3. X vFB Y 4. X vBF Y ut
Theorem 2.13 (completeness) The converse of soundness holds for backward-forward
simulations. That is: tr(X) v tr(Y) implies X vBF Y . ut

3 Simulation Matrices for Semiring-Weighted Automata

In this section we fix parameters T =MS and F = 1+Σ × () in the generic theory
in §2.3 and rephrase the coalgebraic framework in terms of matrices (whose entries are
taken from S). Specifically: Kleisli arrows become matrices; and Kleisli simulations
become matrices subject to certain linear inequalities. Such matrix representations ease
implementation, a feature we will exploit in later sections.

Recall that a Kleisli arrow A→p B is a function A→MSB (Def. 2.7).
Definition 3.1 (matrix representation Mf) Given a Kleisli arrow f : A→p B, its ma-
trix representation Mf ∈ SA×B is given by (Mf)x,y = f(x)(y).

8

In what follows we shall use the notations f and Mf interchangeably.
Lemma 3.2 Let f, f ′ : A→p B and g : B→p C be Kleisli arrows.

1. f v f ′ if and only ifMf vMf ′ . Here the formerv is betweenMS -Kleisli arrows,
and the latter order v is between matrices, defined entrywise.

2. Mg�f =MfMg , computed by matrix multiplication. ut
The correspondence from A

f
p−→ B to 1 +Σ ×A

1+Σ×f
p−→ 1 +Σ ×B—used in (4) and

in Fig. 1—can be described using matrices, too. Details are in Appendix A.2.

Lemma 3.3 Let f : A→p B be a Kleisli arrow and Mf be its matrix representation.
Then the matrix representation M1+Σ×f is given by

I1 ⊕ (IΣ ⊗Mf) ∈ S(1+Σ×A)×(1+Σ×B) ,

where ⊕ and ⊗ denote coproduct and the Kronecker product of matrices:

X ⊕ Y =

(
X O

O Y

)
,

...

· · · xi,j · · ·
...

⊗ Y =

...

· · · xi,jY · · ·
...

 .

ut

This description of MFf generalizes from F = 1+Σ× () to any polynomial functor
F , inductively on the construction of F . In this paper the generality is not needed.

Using Lem. 3.2–3.3, we can present Kleisli simulations (Def. 2.11) as matrices.
Recall that a state space of a weighted automaton is assumed to be countable (Def. 2.3);
hence all the matrix multiplications in the definition below make sense.

Definition 3.4 (forward/backward simulation matrix) LetA = (QA, Σ,MA, αA, βA)
and B = (QB, Σ,MB, αB, βB) be S-weighted automata.

– A matrix X ∈ SQB×QA is a forward simulation matrix from A to B if
αA v αBX , X ·MA(a) vMB(a) ·X (∀a ∈ Σ) , and XβA v βB .

– A matrix X ∈ SQA×QB is a backward simulation matrix from A to B if
αAX v αB , MA(a) ·X v X ·MB(a) (∀a ∈ Σ) , and βA v XβB .

The requirements on X are obtained by first translating Fig. 1 into matrices, and then
breaking them up into smaller matrices using Lem. 3.3. It is notable that the require-
ments are given in the form of linear inequalities, a format often used in constraint
solvers. Solving them is a topic of extensive research efforts that include [2, 6]. This
fact becomes an advantage in implementing search algorithms, as we see later.

We also note that forward and backward simulation matrices have different dimen-
sions. This difference comes from the different directions of arrows in Fig. 1.

Theorem 3.5 Let A and B be S-weighted automata. There is a bijective correspon-
dence between: 1) forward simulation matrices from A to B; and 2) forward Kleisli
simulations from XA to XB. The same holds for the backward variants. ut

In what follows we write vF,vB also between S-weighted automata. Thm. 3.5 yields:
A vF B if and only if there is a forward simulation matrix.

Here is our core result; the rest of the paper is devoted to its application.

9

Corollary 3.6 (soundness of simulation matrices) Let A and B be S-weighted au-
tomata. Existence of a forward (or backward) simulation matrix from A to B—i.e.
A vF B or A vB B—witnesses language inclusion L(A) v L(B).

Proof. ∃ (fwd./bwd. simulation matrix from A to B)
Thm. 3.5⇐⇒ ∃ (fwd./bwd. Kleisli simulation from XA to XB)
Thm. 2.12
=⇒ tr(XA) v tr(XB)

Thm. 2.10⇐⇒ L(A) v L(B) . ut
It is classic to represent nondeterministic automata by Boolean matrices. This corre-
sponds to the special case S = B (the Boolean semiring) of the current framework; and
a simulation matrix becomes the same thing as a (relational) simulation in [23].
Remark 3.7 The opposite of an S-weighted automatonA = (Q,Σ,M,α, β)—obtained
by reversing transitions and swapping initial/final states—can be naturally defined by
matrix transpose, that is, tA := (Q,Σ, tM, tβ, tα). It is easy to see that: if X is a fwd.
simulation matrix from A to B, then tX is a bwd. simulation matrix from tA to tB.

4 Forward and Backward Partial Execution

We have four different notions of simulation (Def. 2.11): fwd., bwd., fwd.-bwd., and
bwd.-fwd. Our view on these is as (possibly finitary) witnesses of language inclusion.

The combined ones (fwd.-bwd. and bwd.-fwd.) subsume the one-direction ones
(fwd. and bwd.)—simply take the identity arrow as one of the two simulations required.
Moreover, bwd.-fwd. is complete (Thm. 2.13). Despite these theoretical advantages,
the combined simulations are generally harder to find: in addition to two simulations,
we have to find an intermediate system too (Z in Def. 2.11). Furthermore, since lan-
guage inclusion for finite S+,×-weighted automata—models of probabilistic systems—
is known to be undecidable [5], existence of a bwd.-fwd. simulation is undecidable too.

Therefore in what follows we focus on the one-directional (i.e. fwd. or bwd.) sim-
ulations as proof methods for language inclusion. They have convenient matrix presen-
tations, too, as we saw in §3. However fwd. or bwd. simulations are not necessarily
complete, by a counterexample (Example A.1) or by complexity arguments (§5.1).

In this section we introduce for semiring-weighted automata their transformations—
called forward and backward partial execution—that increase the number of fwd./bwd.
simulation matrices. We also prove some correctness results.
Definition 4.1 (FPE, BPE) Forward partial execution (FPE) is a transformation of a
weighted automaton that “replaces some states with their forward one-step behaviors.”
Concretely, given an S-weighted automaton A = (Q,Σ,M,α, β) and a parameter
P ⊆ Q, the resulting automaton AFPE,P = (Q′, Σ,M ′, α′, β′) has a state space

Q′ =
{
X
∣∣∃x ∈ P. βx 6= 0S

}
+
{
(a, y)

∣∣∃x ∈ P.M(a)x,y 6= 0S
}
+ (Q \ P) , (5)

replacing each x ∈ P with its forward one-step behaviors—X or (a, y)—as new states.
The other data M ′, α′, β′ are suitably defined following the above intuition; see Ap-
pendix A.3. Possible patterns of transformations are illustrated in Fig. 2.

Backward partial execution (BPE) in contrast “replaces states in a parameter P ⊆
Q with their backward one-step behaviors.” For the same A as above, the resulting
automaton ABPE,P = (Q′, Σ,M ′, α′, β′) has a state space

Q′ =
{
•
∣∣ ∃x ∈ P. αx 6= 0S

}
+
{
(a, y)

∣∣ ∃x ∈ P.M(a)y,x 6= 0S
}
+ (Q \ P) ,

10

replacing each p ∈ P with its backward one-step behaviors—(a, y) with y a→ x, and •
if x is initial—as new states. M ′, α′, β′ are defined in Appendix A.3. See also Fig. 2.

•

◦ ◦

◦

◦ ◦

◦ ◦

◦
b,p

OO
a1,p1

__

a2,p2

??

b,p

__

b,p

??

a1,p1

OO
a2,p2

OO

� //� // • •

◦

◦ ◦

◦

◦

◦ ◦

a,r1
?? a,r2
__

b1,q1

OO
b2,q2

OO

a,1S

OO

b1,
q1·r1

??
b2,
q2·r2

__
� //

◦

•

◦

r

c,s
OO

� //

OO

“split backward” “merge backward” “eliminate dead end”

Forward Partial Execution

•

◦ ◦

◦

◦ ◦

◦ ◦

◦
b,p

OO

a1,p1
??

a2,p2
__

b,p ?? b,p__

a1,p1

OO
a2,p2

OO
� //� // • •

◦

◦ ◦

◦

◦

◦ ◦

a,r1

__

a,r2

??

b1,q1

OO
b2,q2

OO

a,1S

OO

b1,
q1·r1

__
b2,
q2·r2

??

� //

◦

•

◦

r

c,s
OO

� //OO

“split forward” “merge forward” “eliminate dead end”

Backward Partial Execution

Fig. 2. Fwd./bwd. partial execution (FPE, BPE), pictorially. Black nodes need to be in P

Roughly speaking, FPE replaces a concrete state p ∈ P with an abstract state, such
as (a, q) inQ′ of (5) that is thought of as a description “a state that makes an a-transition
to q.” The idea comes from partial evaluation of a program; hence the name.

goal: L(A) v L(B) A B
by vF FPE BPE
by vB BPE FPE

The use of FPE/BPE is as follows: we aim to
establish L(A) v L(B); depending on whether we
search for a forward or backward simulation matrix,
we apply one of FPE and BPE to each of A and B, according to the above table.

We shall now state correctness properties of this strategy; proofs are in Appendix A.4.
Soundness means that discovery of a simulation after transformation indeed witnesses
the language inclusion for the original automata. The second property—we call it ade-
quacy—states that simulations that are already there are preserved by partial execution.

Theorem 4.2 (soundness of FPE/BPE) LetP, P ′ be arbitrary subsets. Each of the fol-
lowing implies L(A) v L(B).
1. AFPE,P vF BBPE,P ′ 2. ABPE,P vB BFPE,P ′ ut

Theorem 4.3 (adequacy of FPE/BPE) Let P, P ′ be arbitrary subsets. We have:
1. A vF B ⇒ AFPE,P vF BBPE,P ′ 2. A vB B ⇒ ABPE,P vB BFPE,P ′ . ut

We also show that a bigger parameter P yields a greater number of simulations.
In implementation, however, a bigger P generally gives us a bigger state space which
slows down search for a simulation, resulting in a trade-off situation.

Proposition 4.4 (monotonicity) Assume P1 ⊆ P ′1 and P2 ⊆ P ′2. We have:
1. AFPE,P1

vF BBPE,P2
⇒ AFPE,P ′1

vF BBPE,P ′2 ,
2. ABPE,P1 vB BFPE,P2 ⇒ ABPE,P ′1

vB BFPE,P ′2 . ut
In fact we have a coalgebraic characterization of FPE, too, as a partial application

of the functor 1+Σ× (). This characterization generalizes to a large class of (T, F)-
systems, and the above correctness results can be proved generally by categorical ar-
guments. See Appendix A.5 for details. Capturing BPE categorically is still open—it
seems that BPE exists somewhat coincidentally, for the specific functorF = 1+Σ×()
for which an opposite automaton is canonically defined (cf. Rem. 3.7).

11

For S = S+,× or Smax,+, we can easily see that the complement problem of lan-
guage inclusion between finite S-weighted automata is semi-decidable. Since language
inclusion itself is undecidable [5, 22], language inclusion is not semidecidable either.
Because existence of a simulation matrix is decidable, it can be the case that however
many times we apply FPE or BPE, simulation matrices do not exist while language
inclusion holds. A concrete example is found in Example A.2.

5 Simulation Matrices for Probabilistic Systems by S = S+,×

In §5 we focus on S+,×-weighted automata which we identify as (purely) probabilistic
automata (cf. Example 2.2). In §5.1 our method by simulation matrices is compared
with other notions of probabilistic simulation; in §5.2 we discuss our implementation.

5.1 Other Simulation Notions for Probabilistic Systems

×Example
A.1

× [12]

lang. incl. vFB

vHJ

vJL vF or vB

(i.e. by sim. matrices)

Various simulation notions have been
introduced for probabilistic systems, ei-
ther as a behavioral order by itself or as
a proof method for language inclusion.
Jonsson and Larsen’s one [18] (denoted by vJL) is well-known; it is shown in [12] to
be a special case of Hughes and Jacobs’ coalgebraic notion of simulation [16] (vHJ),
which in turn is a special case of fwd.-bwd. (Kleisli) simulation (vFB, Def. 2.11).
Comparison of all these notions (observed in [12]) is as depicted above; it follows from
Thm. 2.12 that all these simulation notions are sound with respect to language inclusion.

We note that language inclusion between finite S+,×-weighted automata is unde-
cidable [5] while language equivalence can be determined in polynomial time [19]. The
former result can account for the fact that there seem to be not many proof methods
for probabilistic/quantitative language inclusion. For example, probabilistic simulation
in [3] is possibilistic simulation between systems with both probabilistic and nondeter-
ministic choice and not a quantitative notion like in the current study.

We also note that given finite-state S+,×-weighted automata A and B, if A vF B
or not is decidable: existence of a solution X of the linear constraints in Def. 3.4 can be
reduced to linear programming (LP) problems, and the latter are known to be decidable.
The same applies to vB too.

Probabilistic systems are commonly modeled using the monad D (see (2))—with
an explicit normalization condition

∑
x d(x) ≤ 1—instead ofMS+,× . However there

is no need to impose normalization on simulations: sometimes only “non-normalized”
simulation matrices are found (Example A.3) and they are still sound.

5.2 Implementation, Experiments and Discussions

Our implementation consists of two components: +×-sim and +×-PE .
– The program +×-sim (implemented in C++) computes if a forward or backward

simulation matrix X between S+,×-weighted automata exists, and returns X if it
does exist. It first combines the constraints in Def. 3.4 into a single linear inequality
Ax ≤ b and solves it with a linear programming solver glpk [1]. We note that
the matrix A is sparse, having n + anm + m rows, nm columns and at most
2nm+ a(n2m+ nm2) non-zero entries.

12

– The program +×-PE (implemented in OCaml) takes an automatonA and d ∈ N as
input, and returnsAFPE,P (orABPE,P , by choice) where P is chosen, by heuristics,

to be P = {x | x
d︷ ︸︸ ︷

→ · · · →X} (or P = {x | •
d︷ ︸︸ ︷

→ · · · →x}, respectively).

The two programs are alternately applied to given automata, for d = 1, 2, . . . , each time
incrementing the parameter d for +×-PE . The experiments were on an Ubuntu Linux
laptop with a Core i5 2.53 GHz processor (4 cores) and 4 GB RAM.

Grades Protocol The grades protocol is introduced in [19] and is used there as a
benchmark: the protocol and its specification are expressed as probabilistic programs
P and S; they are then translated into (purely) probabilistic automata AP and AS by a
game semantics-based tool APEX [20]. By establishing L(AP) = L(AS), the proto-
col is shown to exhibit the same behaviors as the specification—hence is verified. The
protocol has two parameters G and S.

param. AP AS direction, time space
G S #st. #tr. #st. #tr. |Σ| fwd./bwd. (sec) (GB)
2 8 578 1522 130 642 11 APvFAS 1.77 1.21

APwBAS 1.72 1.22
2 10 1102 2982 202 1202 13 APvFAS 9.42 4.05

APwBAS 9.25 4.09
2 12 1874 5162 290 2018 15 APvFAS 38.60 11.51

APwBAS 38.34 11.63
3 8 1923 7107 243 2163 20 APvFAS 44.43 12.26

APwBAS 44.11 12.64
4 6 1636 7468 196 1924 23 APvFAS 30.28 10.39

APwBAS 29.94 10.49

Table 1. Results for the grades protocol [19]

In our experiment we proved L(AP) =
L(AS) by establishing two-way language
inclusion (v andw). The results are shown
in Table. 1. For all the choices of param-
eters G and S, our program +×-sim was
able to establish, without applying +×-
PE : AP vF AS (but not vB) for the v
direction; and AP wB AS (but not wF)
for the w direction. In the table, #st. and
#tr. denote the numbers of states and tran-
sitions, respectively, and |Σ| is the size of
the alphabet. All these numbers are determined by APEX .

The table indicates that space is a bigger problem for our approach than time.
In [19] four algorithms for checking language equivalence between S+,×-weighted
automata are implemented and compared: two are deterministic [9, 27] and the other
two are randomized [19]. These algorithms can process bigger problem instances (e.g.
G = 2, S = 100 in ca. 10 sec) and, in comparison, the results in Table 1 are far from
impressive. Note however that our algorithm is for language inclusion—an undecidable
problem, unlike language equivalence that is in P, see §5.1—and hence is more general.

param. AP AS direction time space d
n c pf #st. #tr. #st. #tr. |Σ| fwd./bwd. (sec) (GB)

5 1 9
10 7 44 7 56 18 APvFAS 52.48 0.01 2

APvBAS 0.01 0.01 2
7 1 3

4 9 88 9 118 26 APvFAS 0.15 0.03 2
APvBAS 0.02 0.01 2

10 2 4
5 12 224 12 280 54 APvFAS 802.47 0.35 2

APvBAS 0.05 0.03 2
20 6 4

5 22 1514 22 1696 238 APvFAS T/O 2
APvBAS 1.32 0.78 2

30 6 4
5 32 4732 32 5112 550 APvFAS S/F

APvBAS 11.84 5.99 2

Table 2. Results for the Crowds protocol

Crowds Protocol Our second exper-
iment calls for checking language in-
clusion, making the algorithms studied
in [19] unapplicable. We verified some
instances of the Crowds protocol [26]
against a quantitative anonymity speci-
fication called probable innocence [21].
We used a general trace-based verifi-
cation method in [15] for probable in-
nocence: language inclusion L(AP) v
L(AS), from the model AP of a proto-
col in question to AP’s suitable modification AS, guarantees probable innocence.

13

The Crowds protocol has parameters n, c and pf . In fact, for this specific protocol, a
sufficient condition for probable innocence is known [26] (namely n ≥ pf

pf−1/2 (c+1));
we used parameters that satisfy this condition. We implemented a small program that
takes a choice of n, c, pf and generates an automaton AP; it is then passed to another
program that generates AS.

The results are in Table. 2. For each problem instance we tried both vF and vB.
The last column shows the final value of the parameter d for +×-PE —i.e. how many
times partial execution (§4) was applied.

The entry “S/F” designates that +×-PE was killed because of segmentation fault
caused by an oversized automaton. “T/O” means that alternate application of +×-
sim and +×-PE did not terminate within a time limit (one hour).

We observe that backward simulation matrices were much faster to be found than
forward ones. This seems to result from the shapes of the automata for this specific
problem; after all it is an advantage of our fwd./bwd. approach that we can try two
different directions and use the faster one. Space consumption seems again serious.

6 Simulation Matrices for Smax,+-Weighted Automata
In §6 we discuss Smax,+-weighted automata, in which weights are understood as (best-
case) profit or (worst-case) cost (see Example 2.2). Such automata are studied in [7]
(called Sum-automata there). In fact we observe that their notion of simulation—formulated
in game-theoretic terms and hence called G-simulation here—coincides with fwd. sim-
ulation matrix. This observation is in §6.1; in §6.2 our implementation is presented.

6.1 G-Simulation by Forward Simulation Matrices
In this section we restrict to finite-state automata, in which case we can also dispose
of the weight∞. What we shall call G-simulation is introduced in [7], and its sound-
ness with respect to weighted languages over infinite-length words Σω → [−∞,∞) is
proved there. Here we adapt their definition to the current setting of finite-length words.

Definition 6.1 (vG) Let A = (QA, Σ,MA, αA, βA) and B = (QB, Σ,MB, αB, βB)
be finite-state Smax,+-weighted automata. A finite simulation game from A to B is
played by two players called Challenger and Simulator: a strategy for Challenger is a
pair (ρ1 : 1 → QA, τ1 : (QA × QB)+ → 1 + Σ × QA) of functions; a strategy for
Simulator is a pair (ρ2 : QA → QB, τ2 : (QA ×QB)+ ×Σ ×QA → QB).

A pair (p0a1 . . . anpn, q0a1 . . . anqn) of runs on A and B is called the outcome of
strategies (ρ1, τ1) and (ρ2, τ2) if:

– ρ1(•) = p0, ρ2(p0) = q0 and τ1((p0, q0) . . . (pn, qn)) = X.
– τ1

(
(p0, q0) . . . (pi, qi)

)
= (ai+1, pi+1) and τ2

(
(p0, q0) . . . (pi, qi), (ai+1, pi+1)

)
=

qi+1, for each i ∈ [0, n− 1].
A strategy (ρ1, τ1) for Challenger is winning if for any strategy (ρ2, τ2) for Simulator,
their outcome (r1, r2) satisfies L(A)(r1) > L(B)(r2). Here the weight L(A)(r) of a
run r is defined in the obvious way.

Finally, we write A vG B if there is no winning strategy for Challenger.
Theorem 6.2 Let A and B be finite-state Smax,+-weighted automata. Assume that A
has no trap states, that is, every state has a path to X whose weight is not −∞. Then,
A vF B if and only if A vG B. ut

14

The extra assumption can be easily enforced by eliminating trap states through back-
ward reachability check. This does not change the (finite) weighted language.

mean payoff
game

A vG B A vF B

linear inequalities
over Smax,+

[7]�� By def. ��
ks [2] +3

ks Thm. 6.2 +3
Now the situation is as shown on the right. It fol-

lows from [7] that the question if A vG B holds or
not is reduced to a mean payoff game [10], whose de-
cision problem is in NP ∩ co-NP and has a pseudo
polynomial-time algorithm [28]. Moreover it is known
that the decision problem of mean payoff games is equivalent to the feasibility problem
of linear inequalities over Smax,+ [2]. For the latter an algorithm is proposed in [6] that
is shown in [4] to be superpolynomial.

Similarly to S+,×-weighted automata, language inclusion between Smax,+-weighted
automata is known to be undecidable [22]. We note that, by Thm. 6.2, applying FPE or
BPE (§4) increases the likelihood of vG in the sense of Thm. 4.3. We additionally note
that, by exploiting symmetry of fwd. and bwd. simulation matrices (Rem. 3.7), we can
define “backward G-simulation” as a variation of Def. 6.1.

6.2 Implementation, Experiments and Discussions

We implemented two programs: max+-sim and max+-PE .

– We have seen that finding simulation matrices can be reduced to some problems that
have known algorithms. Since we did not find actual software available, we imple-
mented (in C++) the algorithm in [6] as the program max+-sim . It transforms the
constraints in Def. 3.4 into an inequality Ax ≤ Bx, which in turn is made into a
linear equality A′x′ = B′x′ by adding slack variables. The last equality is solved
by the algorithm in [6].

– max+-PE is as in §5. It simply uses the whole state space as the parameter P .
Experiments were done on an Ubuntu Linux laptop with a Core 2 duo processor

(1.40 GHz, 2 cores) and 2 GB RAM. There we faced a difficulty of finding a benchmark
example: although small examples are not hard to come up with by human efforts, we
could not find a good example that has parameters (like G,S in Table 1) and allows for
experiments with problem instances of a varying size.

We therefore ran max+-sim for:
– the problem if A vF A for randomly generated A, and
– the problem if A vF B for randomly generated A,B,

and measured time and memory consumption. Although the answers are known by
construction (positive for the former, and almost surely negative for the latter), actual
calculation via linear inequality constraints gives us an idea about resource consumption
of our simulation-based method when it is applied to real-world problems.

The outcome is as shown in Fig. 3. The parameter p is the probability with which an
a-transition exists given a source state, a target state, and a character a ∈ Σ. Its weight is
chosen from {0, 1, . . . , 16} subject to the uniform distribution. “Same” means checking
A vF A and “difference” means checking A vF B (see above). The two problem
settings resulted in comparable performance.

We observe that space consumption is not so big a problem as in the S+,× case
(§5.2). Somehow unexpectedly, there is no big performance gap between the sparse case
(p = 0.1) and the dense case (p = 0.9); in fact the sparse case consumes slightly more

15

memory. Consumption of both time and space grows faster than linearly, which poses
a question about the scalability of our approach. That said, our current implementation
of the algorithm in [6] leaves a lot of room for further optimization: one possibility is
use of dynamic programming (DP). After all, it is an advantage of our approach that
a simulation problem is reduced to linear inequality constraints, a subject of extensive
research efforts (cf. §5.1 and §6.1).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 30 40 50 60 70 80 90 100 110 120 130

ti
m

e
 c

o
n

s
u

m
p

ti
o

n
 (

s
)

the number of states

p=0.1,same
p=0.9,same

p=0.1,different
p=0.9,different

 0

 5

 10

 15

 20

 25

 30 40 50 60 70 80 90 100 110 120 130

m
a

x
 s

p
a

c
e

 c
o

n
s
u

m
p

ti
o

n
 (

M
B

)

the number of states

p=0.1,same
p=0.9,same

p=0.1,different
p=0.9,different

Fig. 3. Time and max space consumption for max+-sim

7 Conclusions and Future Work

We introduced simulation matrices for weighted automata. While they are instances
of (categorical) Kleisli simulations, their concrete presentation by matrices and linear
inequalities yields concrete algorithms for simulation-based quantitative verification.

There are some directions in which the current matrix-based simulation framework
can be further generalized. Generalizing F from 1+Σ×() to any polynomial functor
is mostly straightforward, as we noted after Lem. 3.3. We have not done that mainly for
the space reason. Generalizing T fromMS (for semiring-weighted branching) to others
seems more challenging. For example, in [7] weights can be given from an algebraic
structure S in which an additive unit 0S does not satisfy 0S ×S x = 0S . In this case
operations like matrix multiplication becomes hard to define.

Another direction is to incorporate infinite traces, which is done in [7]. In fact our
current coalgebraic backend [11] fails to do so; the work [8] will be useful here. Finally,
further optimization of our implementation is obvious future work.
Acknowledgments Thanks are due to Shota Nakagawa and the anonymous referees
for useful discussions and comments. The authors are supported by Grants-in-Aid for
Young Scientists (A) No. 24680001, JSPS.

References

1. The GNU linear programming kit, http://www.gnu.org/software/glpk
2. Akian, M., Gaubert, S., Guterman, A.E.: Tropical polyhedra are equivalent to mean payoff

games. International Journal of Algebra and Computation 22(1) (2012)
3. Baier, C., Hermanns, H., Katoen, J.P.: Probabilistic weak simulation is decidable in polyno-

mial time. Inf. Process. Lett. 89(3), 123–130 (2004)
4. Bezem, M., Nieuwenhuis, R., Rodrı́guez-Carbonell, E.: Exponential behaviour of the

butkovic-zimmermann algorithm for solving two-sided linear systems in max-algebra. Dis-
crete Applied Mathematics 156(18), 3506–3509 (2008)

16

5. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of fixed di-
mension. Theory Comput. Syst. 36(3), 231–245 (2003)

6. Butkovic, P., Zimmermann, K.: A strongly polynomial algorithm for solving two-sided linear
systems in max-algebra. Discrete Applied Math. 154(3), 437–446 (2006)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties for quan-
titative languages. Logical Methods in Computer Science 6(3) (2010)

8. Cı̂rstea, C.: Maximal traces and path-based coalgebraic temporal logics. Theor. Comput. Sci.
412(38), 5025–5042 (2011)

9. Doyen, L., Henzinger, T.A., Raskin, J.F.: Equivalence of labeled markov chains. Int. J.
Found. Comput. Sci. 19(3), 549–563 (2008)

10. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International
Journal of Game Theory 8(2), 109–113 (1979)

11. Hasuo, I.: Generic forward and backward simulations. In: Baier, C., Hermanns, H. (eds.)
CONCUR. Lect. Notes Comp. Sci., vol. 4137, pp. 406–420. Springer (2006)

12. Hasuo, I.: Generic forward and backward simulations II: Probabilistic simulation. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR. LNCS, vol. 6269, pp. 447–461. Springer (2010)

13. Hasuo, I., Jacobs, B.: Context-free languages via coalgebraic trace semantics. In: Fiadeiro,
J.L., Harman, N., Roggenbach, M., Rutten, J.J.M.M. (eds.) CALCO. Lecture Notes in Com-
puter Science, vol. 3629, pp. 213–231. Springer (2005)

14. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Meth-
ods in Computer Science 3(4) (2007)

15. Hasuo, I., Kawabe, Y., Sakurada, H.: Probabilistic anonymity via coalgebraic simulations.
Theor. Comput. Sci. 411(22-24), 2239–2259 (2010)

16. Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1-2), 71–108
(2004)

17. Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and observations
(2012), Draft of a book (ver. 2.0), available online

18. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS.
pp. 266–277. IEEE Computer Society (1991)

19. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Language equivalence
for probabilistic automata. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. Lecture Notes in
Computer Science, vol. 6806, pp. 526–540. Springer (2011)

20. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: Algorithmic probabilistic
game semantics—playing games with automata. Formal Methods in System Design 43(2),
285–312 (2013)

21. Konstantinos, C., Catuscia, P.: Probable innocence revisited. Theoretical Computer Science
367(1), 123–138 (2006)

22. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. In: Kuich, W. (ed.) ICALP. Lecture Notes in Computer Science, vol. 623, pp.
101–112. Springer (1992)

23. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. Untimed systems. Inf.
Comput. 121(2), 214–233 (1995)

24. Pin, J.E.: Tropical semirings. Idempotency (Bristol, 1994) pp. 50–69 (1998)
25. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. Electr. Notes Theor.

Comput. Sci. 29, 259–274 (1999)
26. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. Inf. Syst.

Secur. 1(1), 66–92 (1998)
27. Tzeng, W.G.: A polynomial-time algorithm for the equivalence of probabilistic automata.

SIAM J. Comput. 21(2), 216–227 (1992)
28. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Theor. Comput.

Sci. 158(1&2), 343–359 (1996)

17

A Appendix

A.1 Examples and Counterexamples

Example A.1 The following S+,×-weighted automata exhibit L(A) v L(B), but there
is no forward or backward simulation from A to B—as is shown by the fact that there
is no X that satisfies the requirements in Def. 3.4. Hence this pair is a counterexample
for the completeness of vF and that of vB. In contrast, there exists a simulation by
Jonsson and Larsen [18] between them.

A

x0

x1

x2

x3 X

B

y0

y1

y2

y3 X??

a, 12

??

b, 12
��

a,1

??

a,1

��a, 12

__

1
2 //

??

a, 12

??

b, 12
��

a,1

??

a,1

��

a, 12

��

1
2 //

Language inclusion (in fact language equivalence) is shown as follows. For each
word w ∈ Σ∗,

L(A)(w) = L(B)(w) =

{
1
4

(
1
2

)n
(w = aaa2n or baa2n)

0 (otherwise) .

Example A.2 The following S+,×-weighted automata exhibit L(A) v L(B), but a
forward simulation does not exist no matter how many times FPE is applied to A.

A

◦

X B

◦ ◦

◦

◦◦

X

◦ ◦
1

OOa, 12
!!

1
2

OO

2
3

TT

1
3

EE

a,1
//

a, 14

oo

a, 14

//
a,1
oo

a,1

OO

3
4

EE
3
4

YY

Example A.3 The following S+,×-weighted automata exhibit L(A) v L(B). Neither
forward nor backward Kleisli simulation exists between them if we represent them as
(D, 1+Σ×())-systems while both can be found if we represent as (MS , 1+Σ×())-
systems.

A

x0

x1

X

B
y0X

ee

a, 18

EE

a, 28

OO

a, 38

��

a, 48
��

2
8

ii

1
8

uu
99 a, 58gg

3
8oo

18

The only X satisfying the inequalities in Def. 3.4.1 is X =
(
1 1
)
, and the only X

satisfying the inequalities in Def. 3.4.2 is X =

(
1
2

)
.

A.2 Action of 1 +Σ × () on Kleisli arrows

We have used an operation 1 + Σ × () acting on Kleisli arrows. It is defined as the
functor 1+Σ×() on Sets lifted to the Kleisli categoryK`(MS); see [14] for details.
Here we describe it in concrete terms.

Definition A.4 For a Kleisli arrow f : X→p Y , its lifting 1 + Σ × f : 1 + Σ × X→p
1 +Σ × Y is defined as follows:

(1+Σ×f)(∗)(t) =

{
1S (t = ∗)
0S (otherwise)

(1+Σ×f)(a, x)(t) =

{
f(x)(y) (t = (a, y))

0S (otherwise)

Lem. 3.3 follows immediately from this concrete description.

A.3 Formal Definitions of Forward/Backward Partial Execution

We formally describe Def. 4.1.

Definition A.5 (FPE, BPE) Forward partial execution (FPE) is a transformation of a
weighted automaton that “replaces some states with their one-step behaviors.” Precisely,
given an S-weighted automaton A = (Q,Σ,M,α, β) and a parameter P ⊆ Q, the
resulting automaton AFPE,P = (Q′, Σ,M ′, α′, β′) has a state space

Q′ =
{
X
∣∣∃x ∈ P. βx 6= 0S

}
+
{
(a, y)

∣∣∃x ∈ P.M(a)x,y 6= 0S
}
+ (Q \ P) ,

replacing each p ∈ P with its one-step behaviors (X or (a, q)) as new states. The other
data M ′, α′, β′ are defined as follows.

M ′(a)(a,x),X = βx M ′(a)(a,x),(a′,y) =M(a′)x,y M ′(a)(a,x),x = 1S
M ′(a)x,X =

(
M(a)β

)
x

M ′(a)x,(a′,y) = (M(a)M(a′))x,y
M ′(a)x,y =M(a)x,y M(a)u,v = 0S (otherwise)

α′X = αβ α′(a,x) = (αM(a))x α′x = αx

β′X = 1S β(a,x) = 0S β′x = βx

Backward partial execution (BPE) in contrast “replaces states in a parameter P ⊆
Q with their backward one-step behaviors.” For the same A as above, the resulting
automaton ABPE,P = (Q′, Σ,M ′, α′, β′) has a state space

Q′ =
{
•
∣∣ ∃x ∈ P. αx 6= 0S

}
+
{
(a, y)

∣∣∃x ∈ P.M(a)y,x 6= 0S
}
+ (Q \ P) ,

19

replacing each p ∈ P with its backward one-step behaviors—(a, q) with q a→ p, and •
if p is initial—as new states. The definitions of M ′, α′, β′ are as follows.

M ′(a)•,(a,y) = βy M ′(a)(a′,x),(a,y) =M(a′)x,y M ′(a)x,(a,x) = 1S
M ′(a)•,y =

(
αM(a)

)
y

M ′(a)(a′,x),y = (M(a′)M(a))x,y
M ′(a)x,y =M(a)x,y M(a)u,v = 0S (otherwise)

α′• = 1S α(a,x) = 0S α′x = αx

β′• = αβ β′(a,x) = (M(a)β)x β′x = βx

A.4 Correctness of Forward/Backward Partial Execution

Lemma A.6 For each subset P , we have the following.
1. A vB AFPE,P 2. AFPE,P vF A 3. A vF ABPE,P 4. ABPE,P vB A

Proof. 1. Let A = (Q,Σ,M,α, β) and AFPE,P = (Q′, Σ,M ′, α′, β′). We define X ∈
SQ×Q

′
as follows:

Xx,X = βx (x ∈ P), Xx,(y,a) =M(a)x,y (x ∈ P),
Xx,x = 1S (x /∈ P), Xu,v = 0S (otherwise)

Then, this X is a backward simulation matrix from A to AFPE,P

The items 2. , 3. and 4. can be proved similarly. ut

Proof of Thm. 4.2 1. From Prop. A.6.1, A vB AFPE,P vF BBPE,P ′ vB B. Hence
from Cor. 3.6, L(A) v L(AFPE,P) v L(BBPE,P ′) v L(B) holds.
The item 2. can be proved similarly. ut

Proof of Thm. 4.3 1. From Prop. A.6.2, AFPE,P vF A vF

B vF BBPE,P ′ . BecausevF satisfies transitivity rule (see the
diagram on the right where F = 1 + Σ × ()), this implies
AFPE,P vF BBPE,P ′ .
The item 2 can be proved similarly. ut

FX
v

FX ′
v

�Ff ′oo FY�Ffoo

X

_cOO

v
X

_
c′
OO

v
f ′

�oo Y

_d
OO

f
�oo

{•}
s OO _

s′
OO tOO

A.5 Categorical Forward Partial Execution

Here we describe FPE in §4 in categorical terms of (T, F)-systems, and prove its cor-
rectness results (namely soundness and adequacy) in this general setting.

Definition A.7 Forward partial execution (FPE) for (T, F)-systems is a transformation
that takes a (T, F)-system X = (X, s, c) and a parameter X1 ⊆ X as inputs and
returns a (T, F)-system XFPE,X1 = (F (X) +X2, (c1 + id)� s, F (c1 + id)� [id, c2]).
(X = X1 + X2, c1 = c � κ1, and c2 = c � κ2 where κ1 and κ2 are injections.
Moreover, F : K`(T) → K`(T) is a lifted functor of F : Sets → Sets (see [17] for
concrete definition)).

Lem A.8, Thm. A.9, Thm. A.10, and Prop. A.11 are categorical analogies of Lem. A.6,
Thm. 4.2, Thm. 4.3, and Prop. 4.4 respectively.

20

Proposition A.8 For each subset X1, we have the following.
1. X vB XFPE,X1 . 2. XFPE,X1 vF X .

Proof. 1. We define g : X1 +X2→p F (X) +X2 as g = c1 + id. Then,

F (g)� c = F (c1 + id)� [c1, c2]

= F (c1 + id)� [id, c2]� (c1 + id)

= (F (c1 + id)� [id, c2])� g
g � s = (c1 + id)� s .

Hence g is a backward simulation from X to XFPE.
X1

+
X2

F

(
X1

+
X2

)

F (X)
+
X2

F

(
X1

+
X2

)
F

(
F (X)

+
X2

)

\c1

MM

bc2

PP

�c1 //

�id //

Nid

FF

fc2

RR

�c1 //

�id //_c1

OO

_id

OO

The item 2. can be proved similarly (g in the proof of the item 1. is also a forward
simulation from XFPE to X). ut

Theorem A.9 (soundness of FPE, categorically) LetX1, Y1 be arbitrary subsets. Each
of the following implies tr(X) v tr(Y).
1. AFPE,X1 vF Y 2. A vB BFPE,Y1 ut
Theorem A.10 (adequacy of FPE, categorically) LetX1, Y1 be arbitrary subsets. We
have:
1. X vF Y ⇒ XFPE,X1

vF Y 2. X vB Y ⇒ X vB BFPE,Y1
. ut

Proposition A.11 (monotonicity, categorically) AssumeX1 ⊆ X ′1 andX2 ⊆ X ′2. We
have:
1. XFPE,X1

vF Y ⇒ XFPE,X′1
vF Y , 2. X vB YFPE,Y2

⇒ X vB YFPE,Y ′2 . ut

A.6 Proof of Thm. 6.2

Before proving Thm.6.2, we review the notions of Limavg automaton [7] and mean
payoff game [10], which is used in the proof of Thm. 6.2.

Definition A.12 A Limavg automaton ALimavg = (Q,Σ,M, q0) consists of a finite
state spaceQ, a finite alphabetΣ, transition matricesM : Σ → [−∞,∞)Q×Q, and the
initial state q0 ∈ Q. For an infinite word w = a0a1 · · · ∈ Σω , ALimavg assigns a value
L(ALimavg)(w) := supq1q2···∈Q∞ liminfN→∞

1
N

∑N
i=0M(ai)qi,qi+1

G-simulation for Limavg automaton can be defined similarly as Def. 6.1.

Definition A.13 A mean payoff game is a game played by two players Min and Max
on a parity graph G = (QMin, QMax, qI , E, γ) consisting of states of Min QMin, states
of Max QMax, the initial state qI ∈ QMin, edges E = QMin ×QMax +QMax ×QMin,
and a weight function γ : E → R. A strategy for Min and Max are functions τMin :
(QMin × QMax)

∗ × QMin → QMax and τMax : (QMin × QMax)
+ → QMin respec-

tively. An infinite run p0q0p1q1 . . . on G is the outcome of τMin and τMax if p0 = qI ,
p0, p1, · · · ∈ QMin, q0, q1, · · · ∈ QMax, and for any i ≥ 1, τMin(p0q0 . . . qi−1pi) = qi
and τMin(p0q0 . . . piqi) = pi+1. A strategy τMax for Max is winning if for any strategy
τMin for Min, their outcome r0r1r2r3 . . . satisfies liminfN→∞

1
N

∑N
i=0

(
γ(ri, ri+1)

)
≥

0.

21

Using these notions, Thm. 6.2 is derived as follows.

1. There exists a linear inequality Ax ≤ Bx in Smax,+ such that forward Kleisli
simulation from A to B exists if and only if Ax ≤ Bx has a non-trivial (i.e.
x 6= −∞) solution.

2. ([2]) There exists a mean payoff game MP such that existence of a non-trivial
solution in Ax ≤ Bx is equivalent to the existence of winning strategy for Max in
MP .

3. There exists a Limavg automatonALimavg and BLimavg such that G-simulation from
A to B exists if and only if G-simulation from ALimavg to BLimavg exits.

4. ([7]) G-simulation from ALimavg to BLimavg exists if and only if there exists a win-
ning strategy for Max inMP .

Proof of Thm. 6.2 Let A = (QA, Σ,MA, αA, βA) and B = (QB, Σ,MB, αB, βB).
1 : By definition, forward simulation matrix is a matrix X that satisfies below:

αA ≤ αBX ∧ ∀a ∈ Σ.XMA(a) ≤MB(a)X ∧ XβA ≤ βB . (6)

Adding a new variable x?,?, such X exists iff there exist non-trivial X ′ and z satisfying

αA + x?,? ≤ αBX ′ ∧ ∀a ∈ Σ.X ′MA(a) ≤MB(a)X ′ ∧ X ′βA ≤ βB + x?,? . (7)

(Only if part is easy. Assume non-trivial X ′ and z satisfying (7) exist. If x?,? 6= −∞,
then X = X ′ − x?,? satisfies (6). If x?,? = −∞, by the assumption that A has no trap
state, all entries ofX ′ are−∞, henceX ′ and x?,? are trivial solution. This contradicts.)
2 : From [2] and that x?,? 6= −∞ if (7) has a non-trivial solution, a non-trivial solution
of (7) exists if and only if there is a winning strategy for player Max in a mean payoff
game played on a graph G = (QMin, QMax, qI , E, γ) such that

QMin = {x?,?}+ {xj,i | j ∈ QB, i ∈ QA} ,
QMax = QA +Σ ×QB ×QA +QB ,

qI = x?,?

E = E1 + E2 s.t. E1 ⊆ QMin ×QMax, E2 ⊆ QMax ×QMin and
E1 = {(x?,?, i) | (αA)i 6= −∞}}+ {(xj,i, (a, j, i′)) |MA(a)i,i′ 6= −∞}

+ {(xj,i, j) | (βA)i 6= −∞}
E2 = {(i, xj,i) | (αB)j 6= −∞}+ {((a, j, i), xj′,i) |MB(a)j,j′ 6= −∞}

+ {(j, x?,?) | (βB)j 6= −∞} ,

γ(x?,?, i) = −(αA)i, γ(xj,i, (a, j, i
′)) = −MA(a)i,i′ , γ(xj,i, j) = −(βA)i

γ(i, xj,i) = (αB)j , γ((a, j, i), xj′,i) =MB(a)j,j′ , γ(j, x?,?) = (βB)j .

22

where i ∈ QA, j ∈ QB. This game is equal to a mean payoff gameMP played on a
graph G′ = (Q′Min, Q

′
Max, q

′
I , E

′, γ′) such that

Q′Min = ({?}+QA)× ({?}+QB) ,

Q′Max = ({?}+QA)× ({?}+QB)× ({?}+ {!}+Σ) ,

q′I = (?, ?) ,

E′ = E1 + E2 s.t. E1 ⊆ QMin ×QMax, E2 ⊆ QMax ×QMin and
E1 = {((?, ?), (i, ?, ?)) | (αA)i 6= −∞}}+ {((i, j), (i′, j, a)) |MA(a)i,i′ 6= −∞}

+ {((i, j), (?, j, !)) | (βA)i 6= −∞}
E2 = {((i, ?, ?), (i, j)) | (αB)j 6= −∞}+ {((i, j, a), (i, j′)) |MB(a)j,j′ 6= −∞}

+ {((?, j, !), (?, ?)) | (βB)j 6= −∞} ,

γ((?, ?), (i, ?, ?))=−(αA)i, γ((i, j), (i′, j, a))=−MA(a)i,i′ , γ((i, j), (?, j, !))=−(βA)i
γ((i, ?, ?), (i, j))=(αB)j , γ((i, j, a), (i, j′))=MB(a)j,j′ , γ((?, j, !), (?, ?))=(βB)j .

3 : LetALimavg and BLimavg be Limavg automata such thatALimavg = ({?}+QA, {?}+
{!}+Σ,M ′A, ?) and BLimavg = ({?}+QB, {?}+{!}+Σ,M ′B, ?). (HereM ′A(a)x,y =
MA(a)x,y (a ∈ Σ, x, y 6= ?),M ′A(?)?,y = (αA)y ,M ′A(!)x,? = (βA)x and (M ′A(a))x,y =
−∞ otherwise. M ′B is defined similarly.) We prove that a winning strategy for Chal-
lenger exists in a game played on A and B if and only if it exists in a game played
on ALimavg and BLimavg. Only if part is easy: by repeating winning strategy on A and
B,challenger can also win the game on ALimavg and BLimavg. Assume that there ex-
ists a winning strategy τ for Challenger in the game played on ALimavg and BLimavg.
From [10], we can assume that τ is positional (i.e. τ((p0, q0) . . . (pi, qi)) only depends
on (pi, qi)). Because A has no trap state and A and B are finite, there exists r ∈ R
such that for each q ∈ QA, there is a path πq to the final state in A such that for
all path π from an arbitrary state to the final state in B on the same word, difference
between the summation of weights on πq and π is less than r. Using this r, we de-
fine strategy (ρ1, τ1) for Challenger. Because τ is a winning strategy, p0 such that
τ(?, ?) = (?, p0) exists. We define ρ1(•) as p0. Furthermore, we define τ1 as fol-
lows: τ1((p0, q0) . . . (pi, qi)) = τ((?, ?)(p0, q0) . . . (pi, qi)) until difference between
the summation of weights on p0 . . . pi and q0 . . . qi exceeds r, and after that, go πq
according to the state q where Challenger is at that time. Strategy τ constructed in a
such manner is a winning strategy for Challenger in the game played on ALimavg and
BLimavg), and taking a path πi according to the state i where Challenger is at that time.
4 : From [7], G-simulation from ALimavg to BLimavg exists if and only if there exists a
winning strategy for Max in a mean payoff gameMP . ut

