Programming with Infinitesimals:
A WHILE -Language for Hybrid System Modeling

Kohei Suenagaand Ichiro Hasud

1 JSPS Research Fellow, Kyoto University, Japan
2 University of Tokyo, Japan

Abstract. We add, to the common combination of aHWE-language and a
Hoare-style program logic, a constatttthat represents an infinitesimal (i.e. in-
finitely small) value. The outcome is a framework for modeling and vetitina

of hybrid systemshybrid systems exhibit both continuous and discrete dynamics
and getting them right is a pressing challenge. We rigorously define thensies

of programs in the language obnstandard analysjon the basis of which the
program logic is shown to be sound and relatively complete.

1 Introduction

Hybrid systemsre systems that deal with both discrete and continuous dhty
have rapidly gained importance since more and more physisgéms—cars, airplanes,
etc.—are controlled with computers. Their sensors will pevphysical, continuous
data, while the behavior of controller software is goverbgdliscrete data. Those in-
formation systems which interact with a physical ambiemeenaore generally called
cyber-physical systems (CP8ybrid systems are an important building block of CPSs.

Towards the goal of getting hybrid systems right, the redeafforts have been
mainly from two directionsControl theory—originally focusing on continuous data
and their control e.g. via integration and differentiatieis currently extending its
realm towards hybrid systems. The de facto standavdiBNK tool for hybrid system
modeling arises from this direction; it employs the blocagiam formalism and offers
simulation functionality—aiming aestingrather tharverification The current work is
one of the attempts from the other direction—fromfibienal verificationcommunity—
that advance from discrete to continuous.

Hybrid systems exhibit two kinds of dynamics: continudiasv and discretgump.
Hence for a formal verification approach to hybrid systerns,dhallenge is: 1) to in-
corporate flow-dynamics; and 2) to do so at the lowest passilt, so that the discrete
framework smoothly transfers to hybrid situations. A lalgely of existing work in-
cludes differential equations explicitly in the syntaxe ¢be discussion of related work
below. What we propose, instead, is to introduce a congtafdar aninfinitesimal(i.e.
infinitely small) value andurn flow into jump With dt, the continuous operation of in-
tegration can be represented bytei 1e loop, to which existing discrete techniques like
Hoare-style program logics readily apply. For a rigoroustramatical development we
employnonstandard analysis (NSAgautifully formalized by Robinson.

* We are greteful to Naoki Kobayashi and Toshimitsu Ushio for helpfdussions.

Concretely, in this paper we take the common combination\&f-aLE-language,
a first-order assertion language and a Hoare logic (e.geirektbook [10]); and add
a constantit to obtain a modeling and verification framework for hybridg®ms. Its
three ingredients are called MLE®, AssN* and HOARE™. These are connected by
denotational semantics defined in the language of NSA. Weepsoundness and rela-
tive completeness of the logicdARE®. Underlying the technical development is the
idea of what we calsectionwise executigillustrated by the following example.

Example 1.1 Let ceapse b€ the following programe= denotes the syntactic equality.
Celapse = [t:=0; whilet<1ldot:=t+dt |

The value designated fa is infinitesimal; therefore thehile loop will not terminate
within finitely many steps. Nevertheless it is intuitive tgect that after an “execution”
of this program (which takes an infinitely long time), theuabft should be infinitely
close tol. How can we turn this intuition into a mathematical argurffent

Our idea is to think abousectionwise executiorFor each natural numberwe
consider the-th sectionof the progranteiapse, denoted byejapse|i- CONCretelyeeiapse|:
is defined by replacing the infinitesim@l in cejapse DY 24%1

Celapse|i = [t:=0; whiletgldot::t+$] .
Informally ceiapse|i is the “i-th approximation” of the originateapse.
A sectioncelapse|; does terminate within finite steps and yields- H%l as the value
of t. Now we collect the outcomes of sectionwise executions daiima sequence

(1+1,1+3, 1+4, ..., 145, ..))

which is thought of as an incremental approximation of thealoutcome of the origi-
nal progrant.iapse. INdeed, in the language of NSA, the sequence represayjseareal
numberr that is infinitely close td.

We note that, as is clear from this example, a program ef\M#® is not executable
in general. We would rather regard MN.E®® as a modeling language for hybrid sys-
tems, with a merit of being close to a common programmingestyl

The idea ofturning flow into jumpwith dt and NSA seems applicable to other
discrete modeling/verification techniques thanile-language and Hoare logic. We
wish to further explore this potentiality. Adaptation of rmadvanced techniques for
deductive program verification—such as invariant genemadiad type systems—to the
presence ofit is another important direction of future work.

Due to the lack of space all the proofs are deferred to thendetd version [9].

Related workThere have been extensive research efforts towards hyysidras from
the formal verification community. Unlike the current worlhere we turn flow into
jump viadt, most of them feature acute distinction between flow- andbjatynamics.
Hybrid automator{1] is one of the most successful approaches to verificatfon o
hybrid systems. A number of model-checking algorithms Haeen invented for auto-
matic verification. The deductive approach in the currenkwevia theorem-proving in

HoaRE®*—has an advantage of handling parameters (i.e. universatitiges or free
variables that range over an infinite domain) well; modelckieg in such a situation
necessarily calls for some abstraction technique. OuclbigiARE® is compositional
too: a property of a whole system is inferred from the onessofonstituent parts.

Deductive verification of hybrid systems has seen greatrasbraent through a re-
cent series of work by Platzer and his colleagues, inclufbng]. Their formalism is
variations ofdynamic logi¢ augmented with differential equations to incorporate flow
dynamics. They have also developed advanced techniques anautomated theorem
proving, resulting in a sophisticated tool called KeYmg&ijaWe expect our approach
(namely incorporating flow-dynamics vie) offer a smoother transfer of existing dis-
crete verification techniques to hybrid applications. Aiddially, our preliminary ob-
servations suggest that some of the techniques developBthtaer and others can be
translated into the techniques that work in our framework.

The use of NSA as a foundation of hybrid system modeling ispmnoposed for
the first time; see e.g. [2, 8]. Compared to these existingkywoe claim our novelty
is a clean integration of NSA and the widely-accepted pnogning style ofwhile-
languages, with an accompanying verification framework MARE®™.

2 A Nonstandard Analysis Primer

This section is mainly for fixing notations. For more detai® e.g. [4].

The type of statements “there existse N such that, for each > iy, ¢(¢) holds”
is typical in analysis. It is often put as “for sufficientlydge: € N.” This means: the set
{i € N | ¢(i) holds} C N belongs to the familyF, := {S C N | N\ S is finite}.

In NSA, the family 7y is extended to so-called anitrafilter F. The latter is a
convenient domain ofi*indexed truth values”: notably for each $etC N, exactly one
out of S andN \ S belongs taF.

Definition 2.1 (Ultrafilter) A filter is a family 7 C P(N) such that: 1)X € F and
X CUimpliesU € F;2) X NY € Fif X,Y € F. Anonempty filterF # (is said
to beproperif it does not contaird C N; equivalently, if 7 # P(N). An ultrafilter is
a maximal proper filter; equivalently, it is a filté¥ such that for eacly C N, exactly
one out ofS andN \ S belongs taF.

Afilter 7' can be always extended to an ultrafill€> F’; this is proved using Zorn’s
lemma. Since the familyF, is easily seen to be a filter, we have:

Lemma 2.2 There is an ultrafiltetF that containsF, = {S C N | N\ S is finite}.

Throughout the rest of the paper we fix sUEhlts properties to be noted: Fis closed
under finite intersections and infinite unions; 2) exactlg ohS or N\ .S belongs taF,
for eachS C N; and 3) ifS is such thalN \ S is finite, thenS € F.

We say % (z) holds for almost every € N” for the fact that the sefi | ¢(¢) holds}
belongs taF. For its negation we say “for negligibly mariy

Definition 2.3 (Hypernumber d € *D) For a sefD (typically it is N or R), we define
the set*D by *D := DY/ ~£. It is the set of infinite sequences @hmodulo the
following equivalence- =: we define(do, d1,...) ~# (dj,d,...) by

d; = d; “for almost everyi,” thatis, {i e N | d; = d,} € F.

An equivalence clas§(d;);en] ., € “D shall be also denoted byd;)ien] or (d;)ien
when no confusion occurs. An elemeadite *D is called ahypernumberin contrast
d € D is astandard numbemHypernumbers will be denoted in boldface lide

We say thatd;),cn is asequence representatiohd € *D if d = [(d;);]. Note that,
givend € *D, its sequence representation is not unique. There is a @hembedding
D — *D mappingd to [(d, d, . . .)]; the latter shall also be denoted &y

Definition 2.4 (Operations and relations on*D) An operationf : D* — D of any
finite arity k (such ast : R? — R) has a canonical “pointwise” extensign (*D)* —
“D. A binary relationk C D? (such as< on real numbers) also extendsRoC (*D)?.

FOLEien]s o (@ ien]) = (A, d D)) 0]
[(di)ien] R [(d})ien] Lty d; Rd, foralmostevery.

These extensions are well-defined sitices closed under finite intersections.

Example 2.5 (w and w—!) By w we denote the hypernumber = [(1,2,3,...)] €
*N. Itis bigger than (the embedding of) any (standard) naturaibem = [(n,n,...)],
since we haver < i for all except for finitely many. The presence wfshows that
N ¢ *NandR ¢ *R. Itsinversew™" = [(1, 3, %,...)] is positive 0 < w™!) but is
smaller than any (standard) positive real number 0.

These hypernumbersiafinite w andinfinitesimalw—'—uwill be heavily used.

For the sefB = {t,ff} of Boolean truth values we have the following. Therefore a
“hyper Boolean value” does not make sense.

Lemma 2.6 Assume thabd is a finite seD = {a4, ..., a,}. Then the canonical inclu-
sion mapD — *D is bijective. In particular we havé&B = B for B = {tt, ff’}. O

3 Programming Language WHILE %

3.1 Syntax

We fix a countable sé&ar of variables

Definition 3.1 (WHILE %, WHILE) The syntax of our target languageRN.E® is:

AExp> a == z|c,|ajaopay|dt|oo
wherez € Var, c, is a constant for € R, andaop € {+, —,-,"}
BExp > b = true|false|bi Aby|-b]|ar <as

Cmd> ¢ = skip|z:=a|cj;ca | if bthen ¢y else ¢p | while bdoc

An expression inAExp is said to bearithmetig one in BExp is Booleanand one
in Cmd is acommand The operator”b designates ¢ to the power oft” and will
be denoted by:*. The operator* is included as a primitive for the purpose of relative
completeness (Thm. 5.4). We will often denote the constaily r.

By WHILE, we denote the fragment of MVLE®® without the constantst andoc.

The language WILE is much like usual programming languages withtdle con-
struct, such a¥MP in the textbook [10]. Its only anomaly is a constantfor any
real number-: although unrealistic from the implementation viewpoihis fine be-
cause WAILE is meant to be a modeling language. Then our target languagesAt
is obtained by addingt andoo: they designate an infinitesimal~! and an infinitev.
The relations>, <, > and= are definable in WILE®: z > y asy < z; < as the
negation of>; and= as the conjunction of and>. So are all the Boolean connectives
such asv and=-, using— andA. We emphasize thatt is by itself a constant and has
nothing to do with a variablé. We could have used a more neutral notation like
however the notatiot turns out to be conveniently intuitive in many examples.

Definition 3.2 (Section of WHILE % expression) Let e be an expression of WLE®,
and: € N. Thei-th sectionof e, denoted by|;, is obtained by replacing each occur-
rence ofdt andoo in e by the constants; /(; 1y andc;, 1, respectively. Obviously|;

is an expression of WILE.

Example 3.3 (Train control) Our first examples model small fragments of the Euro-
pean Train Control System (ETCS); this is also a leading @kain [5]. The following
command:,.. models a train accelerating at a constant acceleratiantil the timee

is reached. The variableis for the train’s velocity; and is for its position.

Caccel ‘= [While t < edo cd,ive] where 1)
Cdrive 1= [t::t—l—dt; vi=v+a-dt; z::z+v~dt}

The following command:nxandsrake Models a train that, once its distance from the
boundarym gets within the safety distance starts braking with the forcé > 0.
However the check if the train is within the safety distarscgdne only every seconds.

CchkAndBrake = [While v > 0do (Ccorr§ Caccel)} where
Ceorr ‘= [t::(); if m — 2z < sthena:= —belsea::()]

@
Example 3.4 (Water-level monitor) Our second example is an adaptation from [1].
Compared to the above train example, it exhibits simpler-igwamics (the first deriva-

tive is already a constant) but more complex jump-dynamics.
There is a water tank with a constant dradnct per second). When e

the water levely gets lower thary cm the switch is turned on, which

eventually opens up the valve but only after a time lag of tacosids. |
While the valve is open, the water levglrises byl cm per second { it
Oncey reachesl0 cm the switch is turned off, which will shut th
valve but again after a time lag of two seconds. dram

In the following command,,.:.,, the variabler is a timer for a time lag. Thease
construct is an obvious abbreviation of nestéd... then ... else

(z:=0; y:=1; s:=1; v:=1;
while ¢t < tmax do {
r:=x+dt; t:=14 dt;
ifv=0theny:=y — 2 dt else y := y + dt;
Cwater 1= case {s=0Av=0Ay<5: s:=1; z:=0; ?3)
s=1ANv=0A2x>2: v =1
s=1ANv=1A10<y: s:=0; :=0;
s=0ANv=1Ax>2: v = 0;
else skip }}

3.2 Denotational Semantics

We follow [10] and interpret a command of MLE® as a transformer on memory
states. Our state stores hyperreal numbers such as thesisifimako—! = [(1, %, %, 9
hence is called ayperstate

Definition 3.5 (Hyperstate, state) A hyperstater is eithero = | (“undefined”) or a
functiono : Var — *R. A stateis a standard version of a hyperstate: name$tases
is eithers = | or a functions : Var — R.

We denote the collection of hyperstatesHigt; that of (standard) states ISt.

The definition of (hyper)state as a total function—rathenthgpartial function with
a finite domain—follows [10]. This makes the denotational aetits much simpler.
Practically, one can imagine there is a fixed default valag @3 for any variable.

The following definition is as usual.

Definition 3.6 (State update) Let o € HSt be a hyperstate; € Var andr € *R.

We define arupdated hyperstate [z — 7| as follows. Whero = L, we setl[z —

r] := L. Otherwise(o[z — 7])(z) := r; and fory # z, (o[z — 7])(y) := o (y).
An updated (standard) state[x — r] is defined analogously.

Definition 3.7 (Sequence representation)et (o;);en be a sequence of (standard) states.
It gives rise to a hyperstate—denoted[by;);en] or simply by(o;);en—in the follow-
ing way. We seto;)en := L if o, = L for almost alli. Otherwiseg| (0;);en] # L and
we set[(di)ien | (z) := [(0i(2))ien |, Where the latter is the hyperreal represented
by the sequencér;(z)); of reals. Fori € N such thatr; = L, the values;(z) is not
defined; in this case we use an arbitrary real number @¢dgr o;(x). This does not
affect the resulting hyperstate sinegx) is defined for almost alfl.

Let o € HSt be a hyperstate, an(d;);cn be a sequence of states. We $ay);cn
is asequence representatiar o if it gives rise too, that is, [(o—i)ieN] = o. In what
follows we shall often denote a sequence representatientnf (o |;);en. We empha-
size that givero € HSt, its sequence representati@n|;); is not unique.

The denotational semantics of MM.E®" is a straightforward adaptation of the usual
semantics of WILE, except for theshile clauses where we use sectionwise execution
(see Ex. 1.1). As we see later in Lem. 3.10, however, the iflsaaionwise execution
extends to the whole languageRE®.

Definition 3.8 (Denotational semantics for WHILE %) For expressions of WILE®,
their denotation

[a] : HSt — "R U{Ll} for a € AExp,
[o] : HSt — BU{L} for b € BExp, and
[] : HSt — HSt for c € Cmd

is defined as follows. Recall thdt means “undefined” (cf. Def. 3.5); th&t = {tt, ff'}
is the set of Boolean truth values; and tH&t= B (Lem. 2.6).
If & = L, we definefe] L := L for any expression. If o # L we define

[z]o = o(x) [er]Jo = r foreachr € R
[a1 aop az]lo := [ai]o aop [az]o

[at]o =wlt=[(1,%3...)] [oo]o =w=][(1,2,3,...)]
[true]loe =t [false]o :=1ff

[b1 Abo]lo = [bi]o A [b2]o [-b] = -([b]o)

[a1 < as]o = [a1]o < [az]o
[skip]o := o [z :=da]o :=0o[z— [do] [er; colo == [e2] ([er]o)
[ei]o if [b]o =t

if bth 1 =
[1 en ¢ else cofo {[[02]]0' it [blo =

[while bdo c]o := ([[(while b do c)|1]](cr|l))Z_GN , 4)

where(o|;)ien IS an arbitrary sequence representatioer gDef. 3.7)

Hereaop € {+, —, x,”} and < are interpreted oriR as in Def. 2.4. For each €
AExp U BExp, we obviously havde]o = L if and only if & = L. It may happen
that[c]o = L with o # L, due to nontermination afhile loops.
In the semantics afhile clauses (4), the sectidmhile b do ¢)|; is a command of
WHILE (Def. 3.2); andr|; is a (standard) state. Thus the sthtehile b do c)|; [(o;)
can be defined by the usual semanticstofle constructs (see e.g. [10]). That is,
[while ¥’ do ¢'Jo = o’ &Ly

—o=0'=1;

— there exists a finite sequenee= 0o, 01, ..., 0, = o’ such that{p'Jo,, = (5)
ff; and for eacly € [0,n). ([V']o; = tt & [']o; = 041); 0F

— such a finite sequence does not exist ahe: L.

By bundling these up for afl, and regarding it as a hyperstate (Def. 3.7), we obtain the
right-hand side of (4). The well-definedness of (4) is prowvedem. 3.9.

Lemma 3.9 The semantics afhile clauses (4) is well-defined, being independent of
the choice of a sequence representatioty); of the hyperstater. ad

In proving the lemmaitis crucial that: the det;, . . ., ,, } of variables that are relevant
to the execution of the command is finite and statically knowhmis would not be the
case with a programming language that allows dynamicatioreaf fresh variables.
We have chosen not to include the division operdtar WHILE®; this is to avoid
handling ofdivision by zeran the semantics, which is cumbersome but seems feasible.
Here is one of our two key lemmas. Its proof is by induction.

Lemma 3.10 (Sectionwise Execution Lemma).et e be any expression &W/HILE®;
o be a hyperstate; antb|;);cn be an arbitrary sequence representatioroofWe have

[elo = [([el(@]:)) en] -

Here the denotational semantifs|;] of a WHILE expressiore|; is defined in a usual
way (i.e. like in Def. 3.8; fowhile clauses see (5)). ad

Example 3.11 Considelc,. in EX. 3.3. For simplicity we fix the parametetgce;1 :=

[t:=0;e:=1;a:=1;v:=0; 2 := 0; Caccel | ItSi-th S€CtiONCsccei1|; has the obvi-
ous semantics. For any (standard) statg L, the real numbef[caccen|:]o) (z)—the

traveled distance—is easily calculated as

L o Aal DER2) L a2

1 1 2
s i il S L i+l T 26+DZ T 2 i+l
Therefore by (4), for any hyperstate # L, the hyperreal =

. 1=0
([caccenn] o) (2) is equal to i = %
1=
(L35 % a8)]
this is a hyperreal that is infinitely close tg2. t

Much like Ex. 1.1, one way to look at this sectionwise sent&it as an incremental
approximation. Here it approximates the solution- %t2 of the differential equation
z"" =1, obtained via the Riemann integral. See the above figure.

Remark 3.12 (Denotation ofdt) We fixedw—! as the denotation a@fc. However there
are more infinitesimals, such ésw)~! = (1, 5=, 2L, ...) with (rw)™! < w™'. The
choice ofdt’s denotation does affect the behavior of the following pemgcnonintegrable:
Cnonintegrable = [ac :=1; whilex #0doz:=x—dt] .
When we replacet by 14%1 the program terminates with= 0; hence by our semantics
the program yields a non- hyperstate withc — 0. However, replacingit by ﬁ
with 7 irrational, the program terminates for hand it leads to the hyperstate
In fact, indifference to the choice of an infinitesimal va(u®lated bycnonintegrable)
is a typical condition in nonstandard analysis, found eaghée characterization of dif-
ferentiability or Riemann integrability (see [4]). In trégnse the programonintegrable
is “nonintegrable”; we are yet to see if we can check inteidjtgly syntactic means.
The prograntaenintegrable C&N be modified into the one with more reasonable behav-
ior, by replacing the guard # 0 by 2 > 0. One easily sees that, while different choices
of dt’s denotation (e.gv ! vs. (mw) 1) still lead to different post-hyperstates, the dif-
ferences lie within infinitesimal gaps. The same is true bfte “realistic” programs
that we have looked at.

4 Assertion Language AssSN®

Definition 4.1 (AssN®, AssN) The syntax of our assertion language A\ is:

AExp> a u= z|c,|ajaopay|dt|oo (the same asin WILE™)

Fml > A = true|false| A3 ANAy | -A|a; <az]
Ve € *N.A | Vx € *R. A wherez € Var

An expression in the famil¥'ml is called an(assertion) formula

We introduce existential quantifiers as notational corieest 3z € *D. A =
-z € *D. = A, whereD € {N,R}.

By AssNwe designate the language obtained fromsA™ by: 1) dropping the
constantsit, oo; and 2) replacing the quantifievs € *N andVx € *R by vz € N and
Vx € R, respectively, i.e. by those which range over standard musab

Formulas of AssN™® are the Boolean expressions ofWE, augmented with quanti-
fiers. The quantifiewz € *N ranging over hypenatural numbers plays an important
role in relative completeness ofdARE® (Thm. 5.4).

It is essential that in AsN™ we have onlyhypeiquantifiers likevz € *R and not
standardquantifiers likevz € R. The situation is much like with the celebratedns-
fer principlein nonstandard analysis [4, Thm. 11.4.5]. There the vaidit a standard
formula is transferred to that of itg-transform*p; and in*y only hyperquantifiers,
and no standard quantifiers, are allowed to occur.

Remark 4.2 (Absence of standard quantifiers)The lack of standard quantifiers does
restrict the expressive power ofs&N*. Notably we cannot assert that two hypernum-
bersz, y are infinitely close, thatisfe € R. (¢ > 0 = —¢ < z —y < ¢).° However
this assertion is arguably unrealistic since, to check dtireg} a physical system, one
needs measurements of arbitrarily progressive accurdwy.ekamples ir§6 indicate
that AssN* is sufficiently expressive for practical verification sceas, too.

Definition 4.3 (Section of AssN™ expression) Lete be an expression of #sN™ (arith-

metic or a formula), and € N. Thei-th sectionof e, denoted by|;, is obtained by: 1)

replacing every occurrence ét andoc by the constant; /(;, 1) andc; 1, respectively;

and 2) replacing every hyperquantifier € *D by Vz € D. HereD € {N,R}.
Obviously a sectiom|; is an expression of ASN

Definition 4.4 (Semantics of &sSN™) We define the relatiorr = A (“o satisfiesA”)
between a hyperstate ¢ HSt and an AssN™ formulaA € Fml as usual.

3 By replacingve € R by Ve € *R we obtain a legitimate AsnN® formula, but it is satisfied
only when the two hypernumbeisy are equal.

Namely, ifo = | we definel = A for eachA € Fml. If o # L, the definition is
by the following induction on the construction df

o | true o [~ false

o= AL A Ay Ly A &koEA

oE=-A L 5 A

oFEa <a BN lai]o < [az]o where[a;]o is as defined in Def. 3.8
ocEVee DA & glr—d A foreachde*D (D€ {N,R})

Recall thato [z — d] denotes an updated hyperstate (Def. 3.6).
An AssN® formulaA € Fml is said to bevalid if o = A for anyo € HSt. We
denote this by= A. Validity of an AssNnformula is defined similarly.

Lemma 4.5 (Sectionwise Satisfaction Lemma).et A € Fml be anAssN® formula;
o be a hyperstate; anfb|;);cn be an arbitrary sequence representatioroofWe have

o=A ifandonlyif (o|; = Al; foralmostevery) ,

where the latter relatior= between standard states adssN formulas is defined in
the usual way (i.e. like in Def. 4.4). O

This is our second key lemma. We note that it fails once wenadiandard quantifiers
in AssN™. For example, letl := (3y € R.0 < y < z) ando be a hyperstate such
thato () = w=!. Then we haver|; = AJ; for everyi buto [~ A.

The validity of an AssN™ formula A, if A is (dt, oo)-free, can be reduced to that
of an AssNformula. This is theransfer principlefor AssN® which we now describe.

Definition 4.6 (x-transform) Let A be an AssNformula. We define its-transform
denoted by 4, to be the AsN* formula obtained from by replacing every occur-
rence of a standard quantifiér € D by the corresponding hyperquantifier € *D.

It is easy to see that: 1y A)|; = A for each Assnformula 4; 2) A = *(A|;) for each
AssN® formula A that is(dt, oo)-free—that is,dt or co does not occur in it. Then the
following is an immediate consequence of Lem. 4.5.

Proposition 4.7 (Transfer principle) 1. For eachAssNnformula 4, = A iff = *A.
2. For any @t,c0)-free AssN* formula A, the following are equivalent: g A|; for
eachi € N; b) = AJ; for somei € N; ¢) = A. O

5 Program Logic HOARE®

We now introduce a Hoare-style program logioARE® that is devised for the verifi-
cation of WHILE®™ programs. It derivesloare triples{A}c{B}.

Definition 5.1 (Hoare triple) A Hoare triple{ A}c{B} of HOARE® is a triple of ASSN™
formulasA, B and a WHILE®™ commandt.

A Hoare triple{ A}c{B} is said to bevalid—we denote this by= {A}c{B}—if,
for any hyperstater € HSt, o |= A implies[c]o = B.

As usual a Hoare tripl¢A}c{ B} assertpartial correctnessif the execution ot: start-
ing from o does not terminate, we haje]lo = L hence trivially[c]oc = B. The
formula A in {A}c{B} is called gprecondition B is apostcondition

The rules of HARE®™ are the same as usual; see e.g. [10].

Definition 5.2 (HOARE®) The deduction rules of BARE™ are as follows.

m (SkiIP) {Afaja] Jo = a{A} (AssIGN)
{A}er (O} {C}er{B) {ANbYer {B} {AA-b}e {B}
{A} c1;¢2 {B} (SEQ) {A} if b then c; else ¢z { B} (%)
{ANb}c{A} A=A {A}e{B}) EB =B
[AJwhile bdoc{A A b} (VHILE) {AYc{B} (ConseQ

In the rule (AssIGN), A[a/x] denotes the capture-avoiding substitutiom ér = in A.
Recall thaBExp of WHILE® is a fragment oF ml of AssN®. Therefore in the rules
(IF) and (WHILE), an expressioh is an AssN™ formula.

We write {A}c{B} if the triple { A}c{ B} can be derived using the above rules.

Soundness is a minimal requirement of a logic for verifigatithe proof makes an
essential use of the key “sectionwise” lemmas (Lem. 3.10Lamd. 4.5).

Theorem 5.3 (Soundness) {A}c{B} impliesi= {A}c{B}. O

We also have a “completeness” result. It is caliethtive completened8] since
completeness is only modulo the validity ofsa&N* formulas (namely those in the
(CoNsEQ) rule); and checking such validity is easily seen to be uittddxe. The proof
follows the usual method (see e.g. [10, Chap. 7]); namelyexalicit description of
weakest preconditions.

Theorem 5.4 (Relative completeness)= { A}c{ B} impliest {A}c{B}. O

6 Verification with H OARE®®

We present a couple of examples. Its details as well as sammas that aid finding
loop invariants will be presented in another venue, dueedabk of space.

Example 6.1 (Water-level monitor) For the progran,,.i., in Ex. 3.4, we would like
to prove that the water level stays between cm and12 cm. It is not hard to see,
after some trials, that what we can actually prove-i§true}cyater{1 —4-dt <y <
12 4+ 2 - at}. Note that the additional infinitesimal gaps like dt have no physical
meaning. In the proof, we use the following formwaas a loop invariant.

A = A; N Ag N A1 A As AN As

As = (s=0Vs=1) A (v=0Vov=1)

Ao = s=1ANv=1 = 1-4-dt<y<10

Ay = s=0Av=1 == 0<zx<2 AN 10<y<104+z+dt
Ay = s=0Av=0 = 5bH<y<l2+2-dt

Az = s=1ANv=0 = 0<x<2 A H—-2r-2-dt<y<b

Example 6.2 (Train control) Take the program nxandsrake i EX. 6.2; we aim at the
postcondition that the train does not travel beyond the dagmm, that is,z < m. For
simplicity let us first considet.onstchkandBrake := (€ := dt; CchkandBrake)- ThiS IS the
setting where the check is conducted constantly. Indeedamepoove that- {v? <
2b(2 — ™) } CeonstChkAndBrake {2 < m}, With a loop invariant? < 2b(z — m).

The invariant (and the precondition} < 2b(z — m) is what is derived in [5] by
solving a differential equation and then eliminating quffers. Using HOARE®™ we can
also derive it: roughly speaking, a differential equation] becomes a recurrence
relation in our NSA framework. The details and some generahhas that aid invariant
generation are deferred to another venue.

In the general case where> 0 is arbitrary, we can prove {v? < 2b(z —m — v -
€) }CchkAndBrake{z < m} in HOARE™.

An obvious challenge in verification with GARE® is finding loop invariants. It
is tempting—especially with “flow-heavy” systems, i.e. thagith predominant flow-
dynamics—to assert a differential equation’s solution asoga invariant. This does not
work: it is a loop invariant only modulo infinitesimal gapsfact not expressible in
AssnN® (Rem. 4.2). We do not consider this as a serious drawbackwimreasons.
Firstly, such “flow-heavy” systems could be studied, afierfeom the control theory
perspective that is continuous in its origin. The formalfiextion approach is supposed
to show its strength against “jump-heavy” systems, for Whilifferential equations are
hardly solvable. Secondly, verification goals are rarelp@Esise as the solution of a
differential equation: we would aim at< m in Ex. 6.2 but not at = %at?

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Pibl., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systeftsgeor. Comp. Sci.
138(1), 3—34 (1995)

2. Bliudze, S., Krob, D.: Modelling of complex systems: Systems adldatanachines. Fun-
dam. Inform. 91(2), 251-274 (2009)

3. Cook, S.A.: Soundness and completeness of an axiom systemdwam verification. SIAM
Journ. Comput. 7(1), 70-90 (1978)

4. Hurd, A.E., Loeb, P.A.: An Introduction to Nonstandard Real lsia. Academic Press
(1985)

5. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autéteasoning 41(2), 143—
189 (2008)

6. Platzer, A.: Differential-algebraic dynamic logic for differential-ddggc programs. J. Log.
Comput. 20(1), 309-352 (2010)

7. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem proveh{drid systems (system
description). In: Armando, A., Baumgartner, P., Dowek, G. (dd€AR. Lect. Notes Comp.
Sci., vol. 5195, pp. 171-178. Springer (2008)

8. Rust, H.: Operational Semantics for Timed Systems: A Non-stafggucbach to Uniform
Modeling of Timed and Hybrid Systems, Lect. Notes Comp. Sci., vol. 38péinger (2005)

9. Suenaga, K., Hasuo, |.: Programming with infinitesimals: AI\V¥-language for hybrid
system modeling. Extended version with proofs, available online (ApfilL20

10. Winskel, G.: The Formal Semantics of Programming LanguagBsPxéss (1993)

