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Chapter 1

Introduction

A lot to write here

1.1 Notations

The sets of natural numbers (by which we mean nonnegative integers in this
book), positive integers, integers, rationals, are reals are denoted by N,Z>0,Z,Q,
and R, respectively.

The class of all ordinals is denoted by Ord. For set-theoretic preliminaries
on ordinals etc., see e.g. [7].

The application of a function f : X → Y to its argument x ∈ X is denoted
usually by f(x), but sometimes by fx, omitting parentheses. The set of func-
tions of the type X → Y is denoted by Y X and called the function space from
X to Y .

1.2 Examples I: Model Checking Transition Sys-
tems

We start with some examples that motivate our study of model checking in
abstract lattice-theoretic terms.

1.2.1 Transition Systems

Definition 1.2.1 (transition system). A transition system is a pair S = (X,R)
of a set X of states and a binary relation R ⊆ X×X called a transition relation.
Each pair (x, x′) ∈ R is called an edge, and we often write x → x′ if there is
such an edge. In this case, we say that x′ is a successor of x.

A (directed) path in S is a (finite or infinite) sequence x0x1 . . . such that
xi → xi+1 for each i. A path is also denoted by x0 → x1 → · · · .

For a finite path x0x1 . . . xn, its length is n+ 1.

In the literature, the term transition system can be used as a general term
and refer to a much wider class of mathematical models that have states and
transitions. In this case, labeled transition systems, Markov chains, quantum
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4 1 Introduction

Markov decision processes, etc. are all examples of “transition systems.” In-
stead, in this book, we use the term for the specific meaning of Definition 1.2.1.

Remark 1.2.2. Note that Definition 1.2.1 is nothing but the common notion
of (directed) graph. We adopt the name with the model checking applications
in mind.

Example 1.2.3. An example of a transition system is in ??. It happens
to be a finite graph (X is a finite set), but it has infinite paths, such as
x(2)x(3)x(2)x(3) . . . . Note that, in general, we do not restrict to finite graphs.

1.2.2 Model Checking Problems and Algorithms

We shall exhibit three typical examples of problems in model checking. We
discuss algorithms too.

1.2.2.1 What Is Model Checking?

In the literature, the term model checking refers to a problem of the following
format.

Input: – A system model M, typically given by a state-based dynamical
system such as a transition system (Definition 1.2.1) or some symbolic
expression that denotes such a system, and

– a specification φ, i.e. a property desired ofM, typically given in some
symbolic formalism. Typical examples are temporal logic formulas,
automata, etc.

Output: Whether M satisfies φ (often denoted by M |= φ), or not. If it
does, we would like a formal proof for the satisfaction; if it does not, a
counterexample—a concrete evidence for violation, such as an execution
trace ofM—is desired.

The “model checking” problems in this section look different from the above,
and the reader may wonder if they are not too simple. They are so-called safety
and reachability problems, and there is no symbolic formalism involved on the
specification side.

We justify our study of simpler safety and reachability problems as follows.
Firstly, safety and reachability specifications are typical specifications of real-

world significance. Many symbolic formalisms for specification accommodate
those.

Secondly, algorithms for these problems serve as a foundation for more
general model checking problems. In fact, model checking for more compli-
cated specifications—such as recurrence (“reach P infinitely often”), persistence
(“reach P and stay there”), and reach-avoid (“reach P while avoiding Q”)—gets
reduced to checking safety and reachability, either in terms of algorithms or in
terms of theoretical foundations.

1.2.2.2 Problem I-I: Demonic Safety

Let us consider the following demonic safety problem:

Input: – A transition system S = (X,R)
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Algorithm 1 A “find the perpetually safe states” algorithm for demonic safety.
When the n-th iteration starts, Z is the set of states from which all paths of
length ≤ n stay in P

1: Y ← X
2: Z ← P
3: while Z ̸= Y do
4: Y ← Z
5: Z ← P ∩ {x ∈ X | ∀y ∈ X. (x→ y implies y ∈ Y )}
6: return if I ⊆ Y

Algorithm 2 A “find the states that can eventually go unsafe” algorithm for
demonic safety. When the n-th iteration starts, Z is the set of states from which
there is a path to X \ P of length ≤ n

1: Y ← ∅
2: Z ← X \ P
3: while Z ̸= Y do
4: Y ← Z
5: Z ← (X \ P ) ∪ {x ∈ X | ∃y ∈ X. (x→ y and y ∈ Y )}
6: return if Y ⊆ X \ I

– A set I ⊆ X of initial states
– A set P ⊆ X of safe states

Output: Whether the following holds or not:

for an arbitrary initial state x ∈ I, any path from x stays in P
all the time.

We say “demonic” safety since we require safety for any path—we assume that
the choice of successors is by the demonic environment and it will make choices
in harm’s way.

This problem can be solved by many algorithms. Some of them are shown
in Algorithms 1 to 3. They are different algorithms—we expect that they have
different performance on different transition problem instances. It is, however,
also clear that they share a similar structure.

Later in Chapter 3 we present an abstract framework for model checking
safety properties. There we will present a series of theoretical results that derive

Algorithm 3 A “find all the states reachable from I” algorithm for demonic
safety. When the n-th iteration starts, Z is the set of states from which there
is a path from some x ∈ I of length ≤ n

1: Y ← ∅
2: Z ← I
3: while Z ̸= Y do
4: Y ← Z
5: Z ← I ∪ {y ∈ X | ∃x ∈ X. (x→ y and x ∈ Y )}
6: return Y ⊆ P



6 1 Introduction

Algorithm 4 A “find the states that can reach P” algorithm for angelic reach-
ability. When the n-th iteration starts, Z is the set of states from which there
is a path of length ≤ n that reaches P

1: Y ← ∅
2: Z ← P
3: while Z ̸= Y do
4: Y ← Z
5: Z ← P ∪ {x ∈ X | ∃y ∈ X. (x→ y and y ∈ Y )}
6: return if I ⊆ Y

Algorithm 5 A “find the states that that never reaches P” algorithm for angelic
reachability. When the n-th iteration starts, Z is the set of states from which
all paths of length ≤ n stay in X \ P
1: Y ← X
2: Z ← X \ P
3: while Z ̸= Y do
4: Y ← Z
5: Z ← (X \ P ) ∩ {x ∈ X | ∀y ∈ X. (x→ y implies y ∈ Y )}
6: return if Y ⊆ X \ I

the variations in Algorithms 1 to 3.

1.2.2.3 Problem I-II: Angelic Reachability

Now let us consider the following angelic reachability problem:

Input: – A transition system S = (X,R)
– A set I ⊆ X of initial states
– A set P ⊆ X of target states

Output: Whether the following holds or not:

for an arbitrary initial state x ∈ I, there is a path from x that
reaches P eventually.

We say “angelic” reachability since we need only one path to reach P . Intu-
itively, the choice of successors is made by us and we can steer the choices in a
way we desire.

It is important to note that the angelic reachability problem is not the
negation of demonic safety. Indeed many parts of the definitions look dual to
their counterparts: “exists a path” vs. “for all paths,” “stay in P” vs. “reach P
eventually,” etc. This seeming duality breaks once we look at the treatment of
initial states: in both problems, we require that all initial states x ∈ I possess
the desired property.

Much like for demonic safety (Section 1.2.2.2), there are a few conceivable
algorithms for this problem. See Algorithms 4 and 5.

Another possible algorithm for angelic reachability is shown in Algorithm 6.
It is different from the previous two (Algorithms 4 and 5) in that it operates in a
forward manner: starting from an initial states, it enumerates all the reachable
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Algorithm 6 A “pointwise forward” algorithm for angelic reachability. It
checks the reachability to P for each x0 ∈ I, and takes the conjunction.

1: b← true
2: for all x0 ∈ I do
3: Y ← ∅
4: Z ← {x0} ▷ reachable states discovered so far
5: while Z ̸= Y do
6: Y ← Z
7: Z ← {x0} ∪ {y ∈ X | ∃x ∈ X. (x→ y and x ∈ Y )}
8: b′ ← whether Y ∩ P ̸= ∅
9: b← b ∧ b′

10: return b

states from it. In fact, Algorithm 6 may be the first algorithm many would
come up with.

However, Algorithm 6 does not seem optimal. It seems to do many redundant
tasks, for example in the following transition system.

By running the for-all loop, the task of analyzing the main part of the system
(on the right) is repeated many times. worst-case complexity

analysis to show that
this algorithm is indeed
suboptimal

In the abstract framework we present later in Chapter 3, we will

– use the same theoretical results as we use for demonic safety (Section 1.2.2.2)
to derive the variations of algorithms, and

– shed a theoretical light on why the pointwise algorithm (Algorithm 6) is
suboptimal. We will observe that the pointwise algorithm is derived in a
theoretically awkward manner.

Make a remark on
“don’t have to touch
these guys any more”
optimization.1.3 Examples II: Model Checking Markov Chains

1.3.1 Markov Chains

Markov chains (MCs) are the simplest class of probabilistic systems. We restrict
to those with discrete transition kernels, in order to avoid measure-theoretic
complications.

Definition 1.3.1 (the distribution construction D). Let X be a countable set.
The set D(X) denotes the set of discrete probability distributions over X, that
is,

D(X)
def
=

{
δ : X → [0, 1]

∣∣ ∑
x∈X

δ(x) = 1
}
.
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As a transition system is a set with nondeterministic transitions (Defini-
tion 1.2.1), a Markov chain is a set with probabilistic transitions.

Definition 1.3.2 (Markov chain). A Markov chain (MC) is a pair S = (X, δ)
of a counbable set X of states and a function δ : X → D(X) called a transition
kernel.

The condition says In a path x0 → x1 → · · · → xn,

Definition 1.3.3. In the setting of Definition 1.3.2, a path in S is a finite
sequence x0 → x1 → · · · → xn such that δ(xi)(xi+1) > 0 for each i ∈ [0, n− 1],
that is, such that each transition happens with a non-zero probability. The
length of a path is defined similarly to Definition 1.2.1.

Each path x0 → x1 → · · · → xn comes with its (path) probability defined in
the following natural manner:

δ(x0 → x1 → · · · → xn)
def
= δ(x0)(x1) · δ(x1)(x2) · · · · · δ(xn−1)(xn).

We restrict ourselves to finite paths since, once we consider infinite paths,
the set of paths is uncountable and we need measure theory. For our examples
regarding safety and reachability, it suffices to deal with finite paths.

1.3.2 Safety and Reachability

The problems we are interested in are best formulated using the following quan-
titative notion of predicate.

Definition 1.3.4 (fuzzy predicate). A fuzzy predicate over a set X is a function
p : X → [0, 1], i.e. an element p ∈ [0, 1]X of the function space.

Remark 1.3.5. When X is an uncountable set, it is natural to assume some
measure-theoretic structure on X and to require measurability of p. We do not
do so for simplicity; we are interested in countable X anyway.

... to be continued. Show an iteration algorithm and show that it may not
terminate. Fixed point characterization, solving it, value iteration. Hint op-
timistic value iteration.



Chapter 2

Fixed Points in Complete
Lattices

(Some leader here)

We assume the familiarity with basic order theory. See e.g. [6].

2.1 Complete Lattices

2.1.1 Posets

A partially ordered set (poset in short) is, as usual, a set X equipped with a
binary relation ⊑ ⊆ X ×X that is subject to the following axioms:

– reflexivity (x ⊑ x for each x ∈ X),

– transitivity (x ⊑ y and y ⊑ z imply x ⊑ z, for each x, y, z ∈ X), and

– anti-symmetry (x ⊑ y and y ⊑ x imply x = x, for each x, y ∈ X).

Such a relation ⊑ is called a partial order or simply an order. When the axioms
other than anti-symmetry are satisfied, it is called a preorder.

Notation 2.1.1 (⊑ for partial orders). We use the symbol⊑ as the metavariable
for partial orders. Accordingly, we will be using

d
and

⊔
for inf’s and sup’s,

etc.
Many references use ≤ as a metavariable for partial orders. We do not do

so, since it causes confusion with some common concrete partial orders, such as
the one between real numbers. See ??.

Monotone functions are those which preserve order.

Definition 2.1.2 (monotone function). Let (X,⊑X) and (Y,⊑Y ) be posets,
and f : X → Y be a function. We say f is monotone if, for each x, x′ ∈ X,
x ⊑X x′ implies f(x) ⊑Y f(x′).

2.1.2 Infimums and Supremums

Definition 2.1.3 (infimum
d
S, supremum

⊔
S). Let (X,⊑) be a poset, and

S ⊆ X be a subset of X.

9



10 2 Fixed Points in Complete Lattices

Figure 2.1: the infimum
d

S of S ⊆ X

We say that x ∈ X is the infimum (or inf in shoft) of S if 1) x is a lower
bound of S (meaning x ⊑ s for each s ∈ S), and 2) x is the greatest among
such, meaning, for each y ∈ X,(

y ⊑ s for each s ∈ S
)

implies y ⊑ x.

An infimum of S, if it exists, is necessarily unique in a poset (X,⊑). The
infimum of S is denoted by

d
S.

Symmetrically, we say that x ∈ X is the supremum (sup in shoft) of S if 1)
x is an upper bound of S (meaning s ⊑ x for each s ∈ S), and 2) x is the least
among such, meaning, for each y ∈ X,(

s ⊑ y for each s ∈ S
)

implies x ⊑ y.

A supremum of S, if it exists, is necessarily unique in a poset (X,⊑) (Exer-
cise 2.1). The supremum of S is denoted by

⊔
S.

The notion of infimum is illustrated in Figure 2.1.
The above definition of infimums and supremums can be equivalently de-

scribed by the following “universal properties” (also called “universalities”).
The double lines here denote two-way implications: the top condition implies
the bottom one; and vice versa.

y ⊑ s for each s ∈ S

y ⊑
d

S
(2.1)

s ⊑ y for each s ∈ S⊔
S ⊑ y

(2.2)

One can derive from the universal property, for example, that
⊔

S is indeed an
upper bound of S:⊔

S ⊑
⊔
S by reflexivity, thus

s ⊑
⊔
S for each s ∈ S, using (2.2) upwards, taking

⊔
S as y.

The characterizations in (2.1) and (2.2) are important: they naturally pave
the way to the categorical generalization of inf’s and sup’s (namely limits and
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colimits); moreover, one often finds them to be the most useful form of the defini-
tion when it comes to proving properties. See e.g. Propositions 2.1.8 and 2.1.18.

We formally state the characterizations in (2.1) and (2.2) for the record.

Proposition 2.1.4. Let (X,⊑) be a poset, S ⊆ X, and x ∈ X.

1. The element x is the infimum
d

S if and only if the following hold:

y ⊑ s for each s ∈ S

y ⊑ x
for each y ∈ X.

2. The element x is the supremum
⊔

S if and only if the following hold:

s ⊑ y for each s ∈ S

x ⊑ y
for each y ∈ X. 2

Proposition 2.1.5 (⊤,⊥ in a complete lattice). A complete lattice (L,⊑) has
the greatest and least elements, commonly denoted by ⊤ and ⊥. The greatest
element ⊤ is described as both

d
∅ and

⊔
L; the least element ⊥ is described as

both
⊔
∅ and

d
L.

Notation 2.1.6 (binary infimum and supermum ⊓,⊔). Let (X,⊑) be a poset,
and x, y ∈ X. We write x⊓ y for

d
{x, y}. Similarly, we write x⊔ y for

⊔
{x, y}.

2.1.3 Complete (Semi)lattices

Definition 2.1.7 (complete (semi)lattice). A poset (L,⊑) is called a complete
lattice if, for each subset S ⊆ L, its infimum

d
S and its supremum

⊔
S exist.

A poset (L,⊑) is called a complete meet-semilattice (or complete
d
-semilattice)

if
d
S exists for each S ⊆ L. Similarly, (L,⊑) is called a complete join-

semilattice (or complete
⊔
-semilattice) if

⊔
S exists for each S ⊆ L.

It turns out that a complete semilattice is necessarily a complete lattice—see
the proposition below.

Proposition 2.1.8 (complete semilattices are complete lattices). In a complete⊔
-semilattice (L,⊑), each subset S ⊆ L has its infimum

d
S.

Symmetrically, in a complete
d
-semilattice (L,⊑), each subset S ⊆ L has

its supremum
⊔
S.

Proof. We prove the first statement. The rest is shown symmetrically.
Let S ⊆ L be an arbitrary subset. We let S↓ be the set of its lower bounds,

that is,
S↓ := {y ∈ L | y ⊑ s for each s ∈ S}.

Since S↓ ⊆ L is a subset of L, it has its supremum
⊔

S↓ in the complete
⊔
-

semilattice (L,⊑). We claim that
⊔

S↓ is the infimum of S.
To prove the claim, it suffices to show the two-way implications in the char-

acterization in (2.1), that is, we need to show

y ⊑ s for each s ∈ S

y ⊑
⊔

S↓ . (2.3)
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For the downward implication in (2.3),

y ⊑ s for each s ∈ S

=⇒ y ∈ S↓ by def. of S↓

=⇒ y ⊑
⊔
S↓ since

⊔
S↓ is an upper bound of S↓.

For the upward implication in (2.3), we first observe that⊔
S↓ ⊑ s for each s ∈ S. (2.4)

Indeed,
⊔
S↓ ⊑ s is equivalent to

t ⊑ s for each t ∈ S↓

by (2.2), and the latter holds by the definition of S↓.
Now we have

y ⊑
⊔
S↓

=⇒ y ⊑ s for each s ∈ S by (2.4) and transitivity,

which shows the upward implication in (2.3). 2

We use the following construction of complete lattices in many examples.
Its proof is easy (Exercise 2.5).

Proposition 2.1.9 (complete lattice-valued function space). Let L be a com-
plete lattice, and X be a set. The function space

LX := {k : X → L}

is again a complete lattice, by the pointwise order ⊑LX that is defined by

k ⊑LX l ⇐⇒ k(x) ⊑L l(x) for each x ∈ X. 2

Example 2.1.10. 1. The two-element set 2
def
= {0, 1}, with the order 0 ⊑ 1,

is a complete lattice.

2. The singleton 1 = {0}, with the trivial order 0 ⊑ 0, is a complete lattice.

Example 2.1.11. 1. The unit interval [0, 1] := {r ∈ R | 0 ≤ r ≤ 1} is the
set of real numbers between 0 and 1. Taking its usual order ≤ as ⊑, the
poset ([0, 1],⊑) is a complete lattice.

2. Reversing the order in the last example, i.e. letting ⊑′ := ≥, the poset
([0, 1],⊑′) = ([0, 1],≥) is a complete lattice, too. Note that, in general,
the dual of a poset (obtained by reversing the order) is again a poset.
Moreover, the dual of a complete lattice is again a complete lattice.

3. The set R with the usual order ≤ is not a complete lattice. For example,
it does not have the greatest or least element (cf. Proposition 2.1.5).

4. Any (bounded) closed interval [a, b] := {r ∈ R | a ≤ r ≤ b} is a complete
lattice. It is isomorphic to the unit interval [0, 1], via a suitable order-
preserving bijection.
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5. An interval, if it is not closed, is not a complete lattice with respect to the
usual order ≤. Examples are [a, b), (a, b], (−∞, b], etc., where a, b ∈ R.

Example 2.1.12. 1. For any set X, the powerset P(X) := {S ⊆ X} to-
gether with the inclusion order

S ⊑ T
def⇐⇒ S ⊆ T,

is a complete lattice. Its supremum
⊔

is computed by set-theoretic union⋃
; its infimum

d
is computed by set-theoretic intersection

⋂
.

2.

Introduce 2X as the set of predicates. Say that it is isomorphic to
P(X) but we do not use the notations interchangeably. They are in-
stances of different constructs in a general setting, and they happen to
coincide in this specific case of subsets and Boolean predicates. (No-
tational convention) Say that, however, we exploit the isomorphism
when we describe an element of 2X . For example, letting f : X → Y
be a function and q : Y → 2 be a Boolean predicate over Y , the
Boolean predicate q ◦ f : X → 2 is often denoted by the corresponding
subset {x ∈ X | f(x) ∈ q}.

3. A topological space is a pair (X,O) of a set X and a system O ⊆ P(X) of
open sets, where the latter is subject to the following axioms:

(a) ∅ ∈ O, X ∈ O;
(b) O is closed under finite intersection: for any n ∈ N and S1, . . . , Sn ∈
O, we have their (set-theoretic) intersection belonging to O, that is,
S1 ∩ · · · ∩ Sn ∈ O.

(c) O is closed under arbitrary union: for any index set I (that can be
infinite) and any I-indexed family (Si)i∈I of open sets (i.e. Si ∈ O
for each i ∈ I), we have

⋃
i∈I Si ∈ O.

(This is a definition by systems of open sets. Equivalent definitions can
be given by neighborhoods, closed sets, etc.)

Topological spaces play important roles in many topics of theoretical com-
puter science and logic; see e.g. [?,14,16]. One possible intuition is as fol-
lows: an open set (i.e. an element T ∈ O) is an event observable by finitary
means. Then the above three axioms admit natural interpretation:

– the axiom 3a means that ∅ and the whole spaceX are both observable
(“always false” and “always true”);

– the axiom 3b means that the event S1 ∩ · · · ∩ Sn ∈ O is finitarily
observable, by the finite combination of observations of S1, . . . , Sn

(infinite intersections
⋂

i∈I Si are prohibited since the combination
becomes infinite); and

– the axiom 3c means that the event
⋃

i∈I Si by getting lucky, i.e. by
a fortunate choice of a suitable choice of i and then conducting the
corresponding finitary observation of Si. (Therefore the intuition
here assumes angelic nondeterminism.)
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Given a topological space (X,O), the family O of open sets ordered by
the inclusion order ⊑ := ⊆, is a complete lattice. Indeed, O is closed
under set-theoretic union

⋃
, which equips O with supermums. (One can

use Exercise 2.8 for a precise argument, taking L = P(X) and L′ = O.)
Then, by Proposition 2.1.8, O is a complete lattice.

The infimum
d

i∈I Si in O is in general different from the set-theoretic
intersection

⋂
i∈I Si: following the proof of Proposition 2.1.8, we have

d
i∈I Si =

⋃
{T ∈ O | T ⊆ Si for each i ∈ I} =

⋃
{T ∈ O | T ⊆

⋂
i∈I Si}.

See Exercise 2.6.

Example 2.1.13. Thanks to Proposition 2.1.9, the following function spaces
(among others) are complete lattices with the pointwise order. Here X is an
arbitrary set.

– (From Example 2.1.10) 2X , with 2 = {⊥ ⊑ ⊤}. This is isomorphic to the
powerset lattice P(X) (Example 2.1.12).

– (From Example 2.1.11) [0, 1]X . An element of this set (a function k : X →
[0, 1]) is called a (1-bounded) fuzzy predicate.

– (From Example 2.1.12) OX for any topological space (Y,O).

Some measure-theoretic examples? See [?,?]

2.1.4 Morphisms of Complete (Semi)lattices

By Proposition 2.1.8, a poset is a complete lattice if and only if it is a complete
(
d
- or

⊔
-)semilattice. Their difference appears, however, when we talk about

morphisms (i.e. structure-preserving maps) between them.

Definition 2.1.14 (morphism of complete (semi)lattices). Let (L,⊑L) and
(M,⊑M ) be complete lattices, and f : L→M be a function.

– We say f is a
d
-preserving map (or amorphism of complete

d
-semilattices)

if, for each S ⊆ L, f(
d

L S) =
d

M f(S). Here f(S) := {f(s) | s ∈ S}.
– Similarly, f is a

⊔
-preserving map (or amorphism of complete

⊔
-semilattices)

if, for each S ⊆ L, f(
⊔

L S) =
⊔

M f(S).

– We say f is a morphism of complete lattices if f is both
d
-preserving and⊔

-preserving.

Note that the notions of
d
- and

⊔
-preserving map can be defined more

generally between posets (instead of between complete lattices). In this case,
preservation of infimums/supremums means preservation of those which exist.
See Proposition 2.1.18.

Definition 2.1.15 (categories of complete lattices). We define three categories
CLat⊔,CLatd,CLat as follows. They all have complete lattices as objects.

– In CLatd, complete lattices are regarded as complete
d
-semilattices.

Therefore the arrows are their morphisms, namely
d
-preserving maps.

– In CLat⊔, complete lattices are regarded as complete
⊔
-semilattices, and

the arrows are
⊔
-preserving maps.
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– In CLat, arrows are morphisms of complete lattices (i.e. both
d
- and⊔

-preserving).

In our application to model checking, we often use
d
-preserving maps,

⊔
-

preserving maps, and monotone maps. The use of morphism of complete lattices
is rare.

The following basic property is worth noting. Its proof is somewhat similar
to that for Proposition 2.1.8 and is a good exercise. Its categorical generalization
is Freyd’s adjoint functor theorem which we will discuss in Chapter 5. finer pointer

Theorem 2.1.16 (adjunction between complete lattices). Let (L,⊑L) and
(M,⊑M ) be complete lattices.

L

f
**

⊥ M
g

ii (2.5)

1. Let f : L → M be a
⊔
-preserving map. Then there exists a function

g : M → L that is
d
-preserving and satisfies

x ⊑L g(y)

f(x) ⊑M y
for each x ∈ L, y ∈M . (2.6)

2. Conversely, let g : M → L be a
d
-preserving map. Then there exists a

function f : L → M that is
⊔
-preserving and satisfies the same property

as (2.6).

Proof. We show the first statement; the second one is shown symmetrically.
Given such f , we let g : M → L be defined as follows: for each y ∈M ,

g(y) :=
⊔
{x ∈ L | f(x) ⊑ y}, (2.7)

that is, by first collecting all those x that are carried by f to some element
below y, and then taking their supremum.

We first show that g as defined in (2.7) satisfies the two-way implications
in (2.6). The upward direction is easy:

f(x) ⊑ y

=⇒ x ∈ {x ∈ L | f(x) ⊑ y}
=⇒ x ⊑

⊔
{x ∈ L | f(x) ⊑ y} = g(y).

For the downward direction, we first note that f(g(y)) ⊑ y holds for each y ∈ Y
(this is an important property—see Proposition 2.1.18.2). Indeed,

f(g(y)) = f
(⊔
{x ∈ L | f(x) ⊑ y}

)
by def. of g

=
⊔
{f(x) | x ∈ L, f(x) ⊑ y} f is

⊔
-preserving

⊑ y.

This is used in the following.

x ⊑ g(y)

=⇒ f(x) ⊑ f(g(y)) since f is monotone (Exercise 2.4)
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Figure 2.2: adjunction between posets

=⇒ f(x) ⊑ y by f(g(y)) ⊑ y and transitivity.

This establishes the two-way implications in (2.6).
It remains to show that g in (2.7) is

d
-preserving. In fact, this is a general

property of a function g satisfying (2.6)—see Definition 2.1.17 and Proposi-
tion 2.1.18.1a later. This conclude the proof.

Situations such as (2.5) are commonly called Galois connections; the notion
is formally defined below for the record. Its use is actively pursued in the field
of abstract interpretation [4]. It is a special case of the categorical notion of
adjunction [13, Chapter IV], restricted from categories to posets; see Chapter 5.better pointer
In this book, therefore, Galois connections will be often called adjunctions, too.

Here is some general theory of Galois connections. It can be thought of as
an exercise of lattice-theoretic reasoning; it will also prepare readers for a fully
category-theoretic treatment of adjunctions, found e.g. in [13, Chapter IV].

Definition 2.1.17 (adjunction (Galois connection) between posets). Let (X,⊑X

) and (Y,⊑Y ) be posets, and f : X → Y and g : Y → X be monotone maps. We
say that f is the left adjoint to g if the following two-way implications hold for
each x ∈ X, y ∈ Y .

x ⊑X g(y)

f(x) ⊑Y y
(2.8)

We say the following for the same mathematical condition, too: g is the right
adjoint to f ; f and g form an adjunction between posets; f and g form a Galois
connection. All these conditions are denoted by f ⊣ g, or

X

f
))⊥ Y .

g

jj (2.9)

Implicit in the above description is the uniqueness of (left and right) adjoints.
See Exercise 2.7.

One can think of an adjunction as a notion of pseudo-inverse: f and g go in
the opposite directions; while they do not quite constitute proper inverses (being
proper inverses would mean that g ◦ f = idX and f ◦ g = idY ), they do respect
order on both sides in the sense of (2.8). The last is illustrated in Figure 2.2.

Here are some general properties of adjunctions between posets. They gen-
eralize smoothly to adjunctions between categories (Chapter 5). Item 1a can
be seen as a converse of Theorem 2.1.16. Items 1b and 2 are converse to each
other.

Proposition 2.1.18. 1. Let f : X → Y and g : Y → X form an adjunction
f ⊣ g, as in Definition 2.1.17.
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(a) The monotone function f is
⊔
-preserving. That is, for each S ⊆

X, if
⊔

X S exists in X, then
⊔

Y f(S) exists too, and moreover
f(
⊔

X S) =
⊔

Y f(S).

Symmetrically, g is
d
-preserving.

(b) We have idX ⊑ g ◦ f with respect to the pointwise order between
functions of the type X → X. That is, for each x ∈ X, we have
x ⊑X g(f(x)).

Symmetrically, we have f ◦ g ⊑ idY with respect to the pointwise
order between functions of the type Y → Y . That is, for each y ∈ Y ,
we have f(g(y)) ⊑Y y.

2. Let f : X → Y and g : Y → X be monotone maps between posets, and
assume that idX ⊑ g ◦ f and f ◦ g ⊑ idY hold with respect to the same
pointwise order as in Item 1b. Then f and g form an adjunction (f ⊣ g).

Proof. For Item 1a, we prove its first statement. The second is shown symmetri-
cally. Its proof exemplifies the power of the characterization (2.2) of supremums.
The proof can be succinctly presented as follows.⊔

f(S) ⊑ y

f(s) ⊑ y for each s ∈ S

s ⊑ g(y) for each s ∈ S
f ⊣ g⊔

S ⊑ g(y)

f(
⊔
S) ⊑ y

f ⊣ g

Let us spell out the details. Let S ⊆ X be an arbitrary subset. It suffices to
show the following:

f(s) ⊑ y for each s ∈ S

f(
⊔

S) ⊑ y
; (2.10)

that is, that f(
⊔
S) satisfies the universality of

⊔
f(S) in (2.2) (see also Propo-

sition 2.1.4). Here we have also used the definition f(S) = {f(s) | s ∈ S}.
The two-way implications (2.10) are shown as follows, crucially relying on (2.8).

f(s) ⊑ y for each s ∈ S

⇐⇒ s ⊑ g(y) for each s ∈ S by f ⊣ g, see (2.8)

⇐⇒
⊔
S ⊑ g(y) by the universality of

⊔
S in (2.2)

⇐⇒ f(
⊔
S) ⊑ y by f ⊣ g, see (2.8).

This proves f(
⊔
S) =

⊔
f(S).

Item 1b is easy: in the bottom of (2.8), we have f(x) ⊑Y f(x) by reflexivity,
thus by (2.8) we have x ⊑X g(f(x)). The other half is similar.

For Item 2, we show the two-way implications in (2.8), assuming idX ⊑ g ◦ f
and f ◦ g ⊑ idY . The downward implication is shown as follows.

x ⊑X g(y)

=⇒ f(x) ⊑Y f(g(y)) since f is monotone, cf. Exercise 2.4

=⇒ f(x) ⊑Y y f(g(y)) ⊑Y y (by assumption), and by transitivity.

The upward direction is shown symmetrically. 2
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2.2 Fixed Points in Complete Lattices
Make subsections sec-
tions We have discussed, in ??, 1) the significance of fixed points in theoretical

computer science as a study of infinitary behaviors by finitary means, and 2)
different settings that provide necessary fixed points. In this chapter, we will
study the third setting in the list of ??, namely the order-theoretic setting
with complete lattices and monotone maps. We will exhibit two different char-
acterizations of extremal fixed points in the setting: the Knaster–Tarski and
Cousot–Cousot theorems. They yield different reasoning principles for those
fixed points.

In what follows, we discuss these two characterizations. Their generalization
to the categorical setting (the last in the list) will be discussed in Chapter 5.

2.2.1 The Knaster–Tarski Theorem

Let (L,⊑) be a complete lattice, and f : L→ L be a function. There are many
preservation properties of f that one can think of—f can be

d
-preserving, in

which case we have f(⊤) = ⊤ for the greatest element ⊤ =
d
∅ ∈ L (Propo-

sition 2.1.5). This means that, for
d
-preserving f , its greatest fixed point is

trivially ⊤. Similarly, for
⊔
-preserving f , its least fixed point is ⊥.

It turns out that f being (only) monotone is enough for ensuring existence
of fixed points. This axiomatization covers many examples in which f has
nontrivial least and greatest fixed points.

Theorem 2.2.1 (Knaster–Tarski). Let (L,⊑) be a complete lattice, and f : L→
L be a monotone function. Then the following hold.

1. The set

Pre(f) := {x ∈ L | f(x) ⊑ x}

of prefixed points of f is a complete lattice with respect to the order ⊑ in-
herited from L. Moreover, its infimum

d
Pre(f) coincides with the infimumd

L of L (
d

Pre(f) is “computed in L”).

2. The least prefixed point, which exists by the above, is a fixed point; it is
therefore the least fixed point (lfp, denoted by µf). Thus we obtain

µf =
d
{x ∈ L | f(x) ⊑ x}.

3. Symmetrically, the set

Post(f) := {x ∈ L | x ⊑ f(x)}

of postfixed points of f is a complete lattice with respect to the order
⊑ inherited from L. Moreover, its supremum

⊔
Post(f) coincides with the

supremum
⊔

L of L (
⊔

Post(f) is “computed in L”).

4. The greatest postfixed point, which exists by the above, is a fixed point; it
is therefore the greatest fixed point (denoted by νf). Thus we obtain

νf =
⊔
{x ∈ L | x ⊑ f(x)}.
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5. Furthermore, the set

Fix(f) := {x ∈ L | f(x) = x}

of all fixed points of f is a complete lattice with respect to the order ⊑
inherited from L.

In the following proof, we explicitly distinguish inf’s and sup’s taken in
different posets (such as

⊔
L vs.

⊔
Pre(f)). Blurring the distinction is often a

source of confusion.

Proof. For Item 1, we first show that the set Pre(f) of prefixed points are closed
under infimum

d
L of L, that is for each S ⊆ Pre(f),

d
L S ∈ Pre(f).

Indeed,

f(
d

L S) ⊑
d

L{f(x) | x ∈ S} since f is monotone, Exercise 2.3

⊑
d

L{x | x ∈ S} S ⊆ Pre(f) so f(x) ⊑ x for x ∈ S

=
d

L S.

This infimum
d

L S—it is computed in L and it happens to be in Pre(f)—is
easily seen to be the infimum

d
Pre(f) S in the poset (Pre(f),⊑) (Exercise 2.8).

Therefore (Pre(f),⊑) is a complete
d
-semilattice, and thus is a complete lattice

by Proposition 2.1.8. This concludes the proof of Item 1.
In Item 1, while we have

d
L =

d
Pre(f), supremums

⊔
L and

⊔
Pre(f) may

not coincide. The latter is described as in the proof of Proposition 2.1.8 using
Pre(f) and

d
Pre(f), and has little to do with

⊔
f . For example,

⊔
L ∅ = ⊥; if it

were
⊔

L ∅ =
⊔

Pre(f) ∅, then we would have f(⊥) = ⊥, forcing every monotone

function to be ⊥-preserving (which is not the case).
For Item 2, let x0 :=

d
Pre(f), the infimum of all prefixed points. (We have

seen that it does not matter if
d

denotes
d

L or
d

Pre(f).) By Item 1, we have

x0 ∈ Pre(f); thus x0 is the least prefixed point. We need to show that x0 is in
fact a fixed point. Now consider f(x0) ∈ L; we have

f(x0) ⊑ x0 by x0 ∈ Pre(f), and

f(f(x0)) ⊑ f(x0) since f is monotone.

Therefore f(x0) ∈ Pre(f) is a prefixed point. By the definition of x0 as the least
element of Pre(f), we have x0 ⊑ f(x0). Combining with the fact that x0 is a
prefixed point, we obtain x0 = f(x0). This fixed point x0 is the least one: it is
the least prefixed point; and all fixed points are prefixed points as well.

Items 3 & 4 are shown symmetrically to the above.
For Item 5, let S ⊆ Fix(f). It suffices, in view of Proposition 2.1.8, to show

that the infimum
d

Fix(f) S exists in Fix(f).
Towards the goal, we consider the subset

(
d

L S)↓ := {x ∈ L | x ⊑
d

L S}

of L. See Figure 2.3. Note that the infimum
d

L S exists in a complete lattice L;
however it is not necessarily a fixed point of f . It is easily shown that

d
Fix(f) S
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Figure 2.3: the set (
d

L S)↓

must be below
d

L S if the former exists (Exercise 2.8); therefore we look ford
Fix(f) S in the set (

d
L S)↓.

One can easily show that the set (
d

L S)↓ is a complete lattice. Indeed, it is
clear that all inf’s and sup’s of a subset S′ ⊆ (

d
L S)↓, computed in L, land in

(
d

L S)↓. Thus they are inf’s and sup’s in (
d

L S)↓ as well (cf. Exercise 2.8).

We shall now show that f : L → L restricts to (
d

L S)↓, that is, for any
x ∈ (

d
L S)↓, we have f(x) ∈ (

d
L S)↓. Indeed, we have

x ⊑
d

L S by x ∈ (
d

L S)↓,

f(x) ⊑ f(
d

L S) ⊑
d

L f(S) by f : monotone and Exercise 2.3, and

f(x) ⊑
d

L S since S ⊆ Fix(f) and thus f(S) = {f(s) | s ∈ S} = S.

Therefore we have established that 1) (
d

L S)↓ is a complete lattice, and 2)
f : (

d
L S)↓ → (

d
L S)↓ is a monotone function. We can apply Items 1–4 to this

setting; towards the discovery of
d

Fix(f) S, we turn specifically to the greatest

fixed point of f : (
d

L S)↓ → (
d

L S)↓. Let x0 be the greatest fixed point.

We claim that x0 ∈ Fix(f) is
d

Fix(f) S. It is a lower bound of S in Fix(f),

since x0 is in (
d

L S)↓. Let y ∈ Fix(f) be an arbitrary fixed point of f below
S. Then we have y ⊑

d
L S, thus y is a fixed point of f in (

d
L S)↓. By the

definition of x0 as the greatest, we conclude y ⊑ x0. 2

The above presentation of the Knaster–Tarski theorem slightly deviates from
the usual presentation. It is adapted to the current context (especially towards
the reasoning principles in Section 2.2.3), and thus puts more emphasis on Items
1–4 rather than on Item 5 (Item 5 is not very important for our purpose). Items 2
& 4 have a well-known categorical generalization called the Lambek lemma. See
e.g. [10, 15].

To summarize, the Knaster–Tarski theorem (as presented in Theorem 2.2.1)
characterizes

– the least fixed point µf as the least prefixed point,

– and symmetrically, the greatest fixed point νf as the greatest postfixed
point.

The following notational convention, like in the modal µ-calculus [2, 12], is
useful especially when fixed point operators are nested.
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Notation 2.2.2. The lfp µf of a function f is also denoted by µu. f(u), using
a variable u that does not occur in f . Similarly, the gfp νf is also denoted by
νu. f(u).

2.2.2 The Cousot–Cousot Theorem

Let us move on to the second characterization of the extremal (i.e. the least
and greatest) fixed points of f : L → L, where L is a complete lattice and f is
a monotone map. The characterization uses sequences—that can be very long,
over transfinite ordinals.

Definition 2.2.3 (Cousot–Cousot sequence). Let (L,⊑) be a complete lattice,
and f : L→ L be a monotone function. The bottom-up Cousot–Cousot sequence
is the (transfinite) sequence

x0 ⊑ x1 ⊑ x2 ⊑ · · · ⊑ xω ⊑ xω+1 ⊑ · · · ⊑ xα ⊑ · · · (2.11)

defined inductively as follows. Here α is an arbitrary ordinal and xα ∈ L for
each α ∈ Ord,

– (Base case) We let x0 := ⊥, where ⊥ =
⊔
∅ is the minimum element of L.

– (Step case) For a successor ordinal α = α′ + 1, we let xα′+1 := f(xα′).

– (Limit case) For a limit ordinal α, we let xα :=
⊔
{xβ | β < α}. Since L is

a complete lattice, such supremum exists.

The bottom-up Cousot–Cousot sequence (2.11) shall also be denoted as fol-
lows.

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ · · · ⊑ fω(⊥) ⊑ fω+1(⊥) ⊑ · · · ⊑ fα(⊥) ⊑ · · ·
(2.12)

Dually, the top-down Cousot–Cousot sequence is the sequence

⊤ ⊒ f(⊤) ⊒ f2(⊤) ⊒ · · · ⊒ fω(⊤) ⊒ fω+1(⊤) ⊒ · · · ⊒ fα(⊤) ⊒ · · · .
(2.13)

Its precise definition is as follows: x0 ⊒ x1 ⊒ · · · with 1) x0 := ⊤ =
d
∅, 2)

xα′+1 := f(xα′), and 3) xα :=
d
{xβ | β < α} for a limit ordinal α.

Lemma 2.2.4. In Definition 2.2.3, the bottom-up Cousot–Cousot sequence is
indeed increasing: α ≤ β implies fα(⊥) ⊑ fβ(⊥). Dually, the top-down Cousot–
Cousot sequence is indeed decreasing.

Proof. By transfinite induction on the ordinal β. 2

Theorem 2.2.5 (Cousot–Cousot [5]). Let (L,⊑) be a complete lattice, and
f : L→ L be a monotone function, as in Definition 2.2.3.

1. The bottom-up Cousot–Cousot sequence (2.12) stabilizes, that is, there ex-
ists an ordinal α0 such that fα0(⊥) = fα0+1(⊥) = · · · . Moreover, its limit
fα0(⊥) ∈ L is the least fixed point µf of f .

2. Dually, the top-down Cousot–Cousot sequence (2.13) stabilizes, that is,
there exists an ordinal α0 such that fα0(⊤) = fα0+1(⊤) = · · · . Moreover,
its limit fα0(⊤) ∈ L is the greatest fixed point νf of f .
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The theorem holds essentially because of the size limitation of L.

Proof. We prove Item 1; the proof of Item 2 is its dual.
We claim that there exists an ordinal α0 such that fα0(⊥) = fα0+1(⊥).

Assume not; then all the elements fα(⊥) in the sequence (2.12) must be distinct.
This yields an injection from the proper class Ord to a small set L, which should
not exist.

Once α0 is chosen so that fα0(⊥) = fα0+1(⊥) holds, it is easily shown that
fα0(⊥) = fβ(⊥) holds for each β such that α0 ≤ β (by induction on β). Thus
we have shown the stabilization of the sequence 2.12.

The limit fα0(⊥) is a fixed point of f :

f
(
fα0(⊥)

)
= fα0+1(⊥) by def. of fα0+1(⊥)
= fα0(⊥) by the choice of α0.

It remains to show that fα0(⊥) is the least fixed point. Let y be an arbitrary
fixed point, with y = f(y). We claim fα(⊥) ⊑ y for each ordinal α ∈ Ord.
This is easily proved by induction:

– (base case) f0(⊥) = ⊥ ⊑ y since ⊥ is the least element of L;

– (step case) assuming fα′
(⊥) ⊑ y, we have

fα′+1(⊥) = f
(
fα′

(⊥)
)
⊑ f(y) = y,

where we crucially used the monotonicity of f ;

– (limit case) assuing fβ(⊥) ⊑ y for each β such that β < α, we have

fα(⊥) =
⊔
{fβ(⊥) | β < α} ⊑ y.

Thus we have shown fα(⊥) ⊑ y for each α ∈ Ord; in particular, we have
fα0(⊥) ⊑ y. 2

We have now obtained two characterizations of extremal (i.e. the least and
the greatest) fixed points. The Cousot–Cousot characterization (Theorem 2.2.5)
is arguably more constructive: the construction of a Cousot–Cousot sequence is
iterative (such as ⊥, f(⊥), f2(⊥), . . . ); it eventually gives one an extremal fixed
point. The sequence is infinitely long in general, so this “construction” is not
really an algorithm. Nevertheless, in case the lattice L is finite, the sequence
is guaranteed to stabilize within finitely many steps. This is the case in some
examples later; see e.g. Section 4.4.

The Kleene fixed-point theorem, another sequence-based characterization of
fixed points, is probably better known in theoretical computer science (especially
in domain theory [1]). In the Kleene case, the stabilization of sequences such
as (2.12) is ensured not by the size of L (as in the above proof) but by the
“continuity,” or the size, of f . The Kleene theorem will be discussed later in
Section 2.2.4. The Kleene theorem plays an important role—more important
than the Cousot–Cousot theorem—in the generalization from complete lattices
to categories (Chapter 5).

2.2.3 Four Reasoning Principles

We have observed two different characterizations (Knaster–Tarski and Cousot–
Cousot) for each of the two extremal fixed points (the least and the greatest).



2.2 Fixed Points in Complete Lattices 23

Table 2.1: Fixed point approximation problems. “UA” is for underapproxima-
tion; “OA” is for overapproximation

(Common) Input A complete lattice L, a monotone function f : L→ L, and
an element x ∈ L

Output (LFP-OA) µf ⊑? x
(LFP-UA) x ⊑? µf
(GFP-OA) νf ⊑? x
(GFP-UA) x ⊑? νf

Table 2.2: Four reasoning priciples, for least and greatest fixed points, by
Knaster–Tarski and Cousot–Cousot

Knaster–Tarski Cousot–Cousot

least fixed point
µf

overapproximation:
f(y) ⊑ y implies µf ⊑ y

underapproximation:
fα(⊥) ⊑ µf for each α ∈ Ord

greatest fixed point
νf

underapproximation:
y ⊑ f(y) implies y ⊑ νf

overapproximation:
νf ⊑ fα(⊤) for each α ∈ Ord

From these characterizations, we derive four (= 2× 2) reasoning principles for
extremal fixed points. They are summarized in Table 2.2.

The four reasoning principles are rarely mentioned explicitly in the for-
mal verification literature; their systematic exposition, as we present below,
is also rare. Nevertheless, it is surprising how many concrete formal verifica-
tion techniques—whether they are for theorem proving or model checking—rely
essentiallly on these reasoning principles.

We start with formalizing approximation problems of fixed points. Typically,
fixed-point reasoning in formal verification aims at one of these problems.

Definition 2.2.6 (approximation of fixed points). The least fixed point over-
approximation (LFP-OA) problem is formulated as follows.

Input A complete lattice L, a monotone function f : L→ L, and
an element x ∈ L

Output µf ⊑? x, that is, if µf ⊑ x holds or not.

The least fixed point underapproximation (LFP-UA) problem is formulated
similarly: its input is the same as above; its output is if x ⊑ µf holds or not.

The same problems are formulated for greatest fixed points, too, giving rise
to the GFP-OA and GFP-UA problems. See Table 2.1 for a summary.

The following reasoning principles—summarized in Table 2.2—bridge the
characterizations in Sections 2.2.1 and 2.2.2 and the approximation problems in
Definition 2.2.6.

Corollary 2.2.7 (the Knaster–Tarski and Cousot–Cousot reasoning principles).
Let L be a complete lattice, and f : L→ L be a monotone function.

1. If y ∈ L satisfies f(y) ⊑ y, then µf ⊑ y holds.

2. For each ordinal α ∈ Ord, we have fα(⊥) ⊑ µf .
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3. If y ∈ L satisfies y ⊑ f(y), then y ⊑ νf holds.

4. For each ordinal α ∈ Ord, we have νf ⊑ fα(⊤).

Proof. We prove the first two items; the rest is symmetric.
For Item 1, the statement follows immediately from Theorem 2.2.1.2, that

is, that the least fixed point µf is in fact the least prefixed point.
For Item 2, the statement follows from Theorem 2.2.5, that is, that the least

fixed point µf is the limit of the increasing (transfinite) chain

⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ · · ·

from (2.12). 2

We present further consequences of Corollary 2.2.7. They directly connect
to the approximation problems in Definition 2.2.6.

Corollary 2.2.8 (verification and refutation by Knaster–Tarski and Cousot—
Cousot). Let L be a complete lattice, f : L → L be a monotone function, and
x ∈ L.
Make this if and only if

1. (For LFP-OA)

(a) (Verification) The existence of y ∈ L such that f(y) ⊑ y and y ⊑ x
verifies the LFP-OA problem µf ⊑? x:

f(y) ⊑ y y ⊑ x

µf ⊑ x
(LFP-OA-V)

Such y is called a Knaster–Tarski witness for µf ⊑ x.

(b) (Refutation) The existence of y ∈ L such that y ⊑ fα(⊥) (for some
ordinal α ∈ Ord) and y ̸⊑ x refutes the LFP-OA problem µf ⊑? x:

y ⊑ fα(⊥) y ̸⊑ x

µf ̸⊑ x
(LFP-OA-R)

Such y is called a Cousot–Cousot witness for µf ̸⊑ x.

Similarly, we have the following implications.

2. (For LFP-UA)

y ⊑ fα(⊥) x ⊑ y

x ⊑ µf
(LFP-UA-V)

f(y) ⊑ y x ̸⊑ y

x ̸⊑ µf
(LFP-UA-R)

3. (For GFP-OA)

fα(⊤) ⊑ y y ⊑ x

νf ⊑ x
(GFP-OA-V)

y ⊑ f(y) y ̸⊑ x

νf ̸⊑ x
(GFP-OA-R)

4. (For GFP-UA)

y ⊑ f(y) x ⊑ y

x ⊑ νf
(GFP-UA-V)

fα(⊤) ⊑ y x ̸⊑ y

x ̸⊑ νf
(GFP-UA-R)
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Proof. These are immediate consequences of Corollary 2.2.7. For example, in
Item 1b, assuming µf ⊑ x implies

y ⊑ fα(⊥) ⊑ µf ⊑ x,

where the second inequality is from Corollary 2.2.7. This contradicts with the
assumption y ̸⊑ x. 2

One can see in the last corollary that the Knaster–Tarski and Cousot–Cousot
reasoning principles are much like two sides of the same coin: when an approx-
imation problem is verified by one, then it is refuted by the other.

We will exhibit some examples of Knaster–Tarski and Cousot–Cousot wit-
nesses later in Section 3.1 and Chapter 4. The general tendency—when it comes
to verification—is that Knaster–Tarski witnesses are more useful than Cousot–
Cousot ones. That y is a Knaster–Tarski witness can be checked by only one
application of f ; we just have to compare y and f(y). This is unlike Cousot–
Cousot witnesses: computing fα(⊥) or fα(⊤) for a smaller α usually does not
bring much information; one usually has to go for rather big α’s, applying f to
⊥ or ⊤ many times. This is costly.

For a Knaster–Tarski witness y, note that finding a good candidate of y is
a different problem, and how to do so has not been discussed in the theory so
far. However, one can say that this is how the notion of Knaster–Tarski wit-
ness accommodates various search heuristics. There are various setting-specific
heuristics for finding a candidate y, and users are free to choose any of them;
once a choice of heuristics finds y, whether y is indeed a witness can be easily
checked by applying f once.

2.2.4 The Kleene Theorem

In the Cousot–Cousot theorem, in case f is not only monotone but also ω-
(co)continuous (it preserves the supremum/infimum of an ω-chain x0 ⊑ x1 ⊑
· · · or x0 ⊒ x1 ⊒ · · · ), then the Cousot–Cousot sequence converges at ω.
This is the Kleene theorem.

Exercises

Exercise 2.1. In Definition 2.1.3, show that a supremum of S is necessarily
unique if it exists. Show that it may not be unique if (X,⊑) is a preorder instead
of a poset.

Exercise 2.2. Prove Proposition 2.1.4.

Exercise 2.3. Let (L,⊑L) and (M,⊑M ) be complete lattices, and f : L→ M
be a monotone function. Show that the following inequalities hold, for each
S ⊆ L.

f(
d
S) ⊑

d
f(S) f(

⊔
S) ⊒

⊔
f(S)

Exercise 2.4. Let (X,⊑X) and (Y,⊑Y ) be posets, and f : X → Y be a function.
Show that, if f is

d
-preserving (or

⊔
-preserving), then it is monotone.

Exercise 2.5. Prove Proposition 2.1.9.
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Exercise 2.6. In Example 2.1.12, Item 3, find a family (Si)i∈I of open sets
for which the infimum

d
i∈I Si in O does not coincide with the set-theoretic

intersection
⋂

i∈I Si. (Hint: such a family is not rare—it can be found for
example in the set R of real numbers with the usual Euclidean topology.)

Exercise 2.7. In Definition 2.1.17, given g : Y → X, show that its left adjoint
is necessarily unique.

Exercise 2.8. Let (L,⊑) be a complete lattice, and L′ ⊆ L be a subset. Con-
sider the poset (L′,⊑) whose order is inherited from L; we are interested in
whether L′ is a complete lattice or not.

1. Prove the following: for each S ⊆ L′, if its infimum
d

L S in L happens to
be in L′, then it is the infimum

d
L′ S in L′.

2. Assume that both (L,⊑) and (L′,⊑) are both complete lattices. Show
that, for each S ⊆ L′, we necessarily have

d
L′ S ⊑

d
L S.

Exercise 2.9. Let f : X → Y be a function. We define three functions

2X

∃f

⊥ ""

∀f

⊥
==2Yf−1oo

between the complete lattices 2X and 2Y , by the following.

∃f (P )
def
= {f(x) | x ∈ P}

f−1(Q)
def
= {x | f(x) ∈ Q}

∀f (P )
def
= {y ∈ Y | ∀x ∈ X. (f(x) = y implies x ∈ P ) }

Show that, indeed, we have two adjuctions ∃f ⊣ f−1 and f−1 ⊣ ∀f . It follows
(from Proposition 2.1.18) that ∃f is

⊔
-preserving, ∀f is

d
-preserving, and f−1

is both
⊔
- and

d
-preserving.

(Extensions of the above observations are made in Section 3.5.2 for a “non-
deterministic function,” i.e. a binary relation R ⊆ X × Y , instead of a (deter-
ministic) function f : X → Y .)

Exercise 2.10. Prove ??.

Exercise 2.11. Prove ??

Exercise 2.12. In ??, we can use Theorem 2.1.16 for
d
-preserving 2. Describe

the left adjoint of 2.
Dually, describe the right adjoint of (

⊔
-preserving) 3.

(The former adjunction is studied in [9] in a general categorical setting. See
also [10, Chapter 6].)

Exercise 2.13. Let (L,⊑) be a complete lattice. Let Si ⊆ L be a subset, for
each index i ∈ I. Show that

d
i∈I (

d
Si) =

d (⋃
i∈I Si

)
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holds, where
⋃

i∈I Si denotes the set-theoretic union. (Hint: use Proposi-
tion 2.1.4 and reduce the claim to a property of the meta-level universal quan-
tification.)

Show, in particular, that

x ⊓ (
d
S) =

d
{x ⊓ s | s ∈ S}

holds for each x ∈ L and S ⊆ L.
Show that dual holds, too. That is,⊔

i∈I (
⊔
Si) =

⊔(⋃
i∈I Si

)
, x ⊔ (

⊔
S) =

⊔
{x ⊔ s | s ∈ S}.
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Chapter 3

Safety and Reachability

Some leader

3.1 Safety and Reachability in Terms of Fixed
Points

We organize basic safety and reachability problems as follows. Here, the in-
tuition is that i is an “initiality property” and p is a “desired property.” We
discuss their concrete examples in Sections 3.2 and 3.3.

Definition 3.1.1 ((co-)safety, (co-)reachability). The terms safety, reachability,
co-safety, and co-reachability properties refer to the (negations of) inequalities
in the formats shown in the table below. Here g : L→ L is a monotone map on
a complete lattice L, and i, p ∈ L

Table 3.1: (Co-)safety, (co-)reachability properties

safety co-safety

i ⊑ ν(p ⊓ g( )) i ̸⊑ ν(p ⊓ g( ))

reachability co-reachability

i ⊑ µ(p ⊔ g( )) i ̸⊑ µ(p ⊔ g( ))

It is often stated that safety and reachability are the negations of each other.
We do not take this view. Instead, we take a refined view and distinguish the
negation of safety (co-safety) from reachability.

Remark 3.1.2. An informal remark that may be useful here is that, when we
think of the “opposite” or “negation” of x ⊑ y, we might be thinking of either
x ⊒ y or x ̸⊑ y. These two are different, unless ⊑ is the total order.

3.2 Transition Systems Examples

Using transition systems (Section 1.3), we present two families of examples of
the four properties in Definition 3.1.1. The two families correspond to different
choices of (backward) predicate transformers, namely Bwd2 and Bwd3.

29
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3.2.1 From the Backward 2-Predicate Transformer Bwd2

Definition 3.2.1 (Bwd2). Let S = (X,R) be a transition system. We define
the function Bwd2 : 2X → 2X—we call it the backward 2-predicate transformer
induced by S—by the following. (Here we use the notational convention in
Example 2.1.12.2, identifying predicates X → 2 with subsets of X.)

Bwd2 : 2X −→ 2X , q 7−→
{
x ∈ X

∣∣ ∀y ∈ X. (x→ y implies y ∈ q)
}
.

The function Bwd2 : 2X → 2X is easily shown to be monotone.
Let g = Bwd2, and let i and p denote the sets of initial states and desired

states, respectively. Then the four properties in Definition 3.1.1 are interpreted
as follows.

Safety “From each initial state x ∈ i, every (finite or infinite) path from x
stays within p all the time.”

Indeed, it is easy to see by induction on n that(
p ⊓ Bwd2( )

)n
(⊤)

= {states x from which every path of length ≤ n stays in p}.
Now it is not hard to show that p⊓Bwd2( ) : L→ L is monotone and preserves
the infimum of the Kleene sequence (Section 2.2.4). Therefore we haverefine the pointer

ν(p ⊓ Bwd2( )) =
l

n<ω

(
p ⊓ Bwd2( )

)n
(⊤) by the Kleene theorem

= {states x from which every path stays in p}.

Co-Safety “There exists an initial state x ∈ i from which there is a path that
reaches X \ p.”

This is the negation of the safety property above. This might sound like a
“reachability property” as commonly understood. But we insist that this co-
safety property should be distinguished from a (proper) reachability property,
presented in Section 3.2.2 later, where every x ∈ i is required to reach p.

Reachability “For each initial state x ∈ i, every infinite path from x reaches
p eventually.”

This sounds different from a common “reachability property” for transition
systems (the latter will appear later in Section 3.2.2). The current reachability
property—it can be understood as a termination property under demonic non-
determinism, cf. Remark 3.2.3—requires that every path from x, if it has not
yet visited p, will eventually do so or come to a state with no successors.

To prove that the above interpretation indeed coincides with the general
fixed-point formulation i ⊑ µ(p ⊔ Bwd2( )) in Definition 3.1.1, it helps to
employ some abstract machinery we introduce later. It is therefore deferred to
Example 3.4.11.
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Co-Reachability “There exists an initial state x ∈ I that has an infinite path
that never reaches p.”

This is the negation of the above reachability property.

3.2.2 From the Backward 3-Predicate Transformer Bwd3

For the other class of examples from transition systems, we use the following
predicate transformer.

Definition 3.2.2 (Bwd3). Assume the setting of Definition 3.2.1. The backward
3-predicate transformer induced by S is defined by

Bwd3 : 2X −→ 2X , q 7−→
{
x ∈ X

∣∣ ∃y ∈ X. (y ∈ q and x→ y)
}
.

It is again easy to see that Bwd3 is monotone.
Let g = Bwd3, and let i and p be the same as in Section 3.2.1. The four

problems in Definition 3.1.1 are interpreted as follows.

Safety “From each initial state x ∈ i, there is an infinite path that stays in p
all the time.”

This is similar to the co-reachability property in Section 3.2.1 but the dif-
ference is that here we require “safety” for all initial states.

The proof that the above interpretation is correct is much like for the reach-
ability property in Section 3.2.1. It is therefore deferred to Example 3.4.12.

Co-Safety “There is an initial state x ∈ i from which every infinite path
reaches X \ p eventually.”

Reachability “From each initial state x ∈ i, there is a path that reaches p
eventually.”

This is a common reachability specification that ensures that every x ∈ I is
good in the sense of reaching p. To show that the above interpretation coincides
with the fixed-point formulation i ⊑ µ(p⊔Bwd3( )), we can show by induction
on n that (

p ⊔ Bwd3( )
)n

(⊥)
= {x | x has a path of length ≤ n that reaches p}.

It is not hard to see that p ⊔ Bwd3( ) preserves the supermum of the Kleene
sequence from ⊥ (Section 2.2.4). Therefore we have refine the pointer

µ(p ⊔ Bwd3( )) =
⊔
n<ω

(
p ⊔ Bwd3( )

)n
(⊥) by the Kleene theorem

= {states x with a path that reaches p}.
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Co-Reachability “There is an initial state x ∈ i that has no path that reaches
p eventually.”

Remark 3.2.3. The contrast between the two predicate transformers Bwd2

and Bwd3 in Sections 3.2.1 and 3.2.2 is observed in many contexts.

One is in normal modal logic (as suggested by the notations): Bwd2 uses
the box modality 2φ in normal modal logic (all successors must satisfy φ), while
Bwd3 uses the diamond modality 3φ (there must be a successor that satisfies
φ). See e.g. [3]. Indeed, later in Chapter 9, we formalize a general notion of
modality and derive predicate transformers systematically from modalities.

Another is the contrast between the demonic and angelic notions of nonde-
terminism. It appears in process theory, control theory, planning theory, etc.

– In demonic nondeterminism, the choice of a successor by the adversarial
environment, and we want to ensure safety or reachability no matter what
the environment does. This is modeled by Bwd2.

– In contrast, in angelic nondeterminism, the choice of successor by us on
the system side, and we can steer the system so that it exhibits a desired
safety or reachability property. This is modeled by Bwd3. In this setting,
checking safety or reachability should desirably yield a scheduler as well—
it tells which successor should be chosen.

We note that there is a well-known duality between 2 and 3, and thus
between Bwd2 and Bwd3. It will be formalized in Proposition 3.4.10.

3.3 Markov Chains Examples

We present some probabilistic examples here. They are defined for Markov
chains (Definition 1.3.2).

3.3.1 The Backward Average Predicate Transformer BwdAv

The following construct transforms, in a backward manner, a fuzzy predicate
(Definition 1.3.4) to another along a transition kernel δ. It has been studied in
the context of semantics and verification of probabilistic programs [?,?,?] and
in the context of dynamic programming [?]. In the latter, the construct is often
called the Bellman operator.

Definition 3.3.1 (BwdAv). Let S = (X, δ) be a Markov chain. We define the
function BwdAv : [0, 1]X → [0, 1]X—we call it the backward average predicate
transformer induced by S—by the following.

BwdAv : [0, 1]X −→ [0, 1]X , q 7−→ BwdAv(q),

BwdAv(q)(x)
def
=

∑
x′∈X

δ(x)(x′) · q(x′).

The fuzzy predicate BwdAv(q) assigns, to each state x ∈ X, the average value
of q in its successors x′. The average is weighted by the transition probabilities
δ(x)(x′).
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Question: any predicate tranformer for almost-sure reachability? I first
thought that Bwd2 might work but it does not since it fails for the “stay
here with 1/2, terminate with 1/2” example. The technique is probably
more related to the fairness theorem → find a good lattice-theoretic abstrac-
tion of fairness?

3.3.2 Safety and Reachability

We shall look at the instance of Definition 3.1.1, where g = BwdAv : [0, 1]X →
[0, 1]X is from Definition 3.3.1 and i, p ∈ [0, 1]X are fuzzy predicates. Further-
more, in order to avoid measure-theoretic complexities, we restrict p to be sharp
in the following sense.

Definition 3.3.2 (sharp predicate, χS). A fuzzy predicate p : X → [0, 1] is
sharp if it takes 0 or 1 as its values, that is, there is a predicate p̃ : X → 2 such
that

p =
(
X

p̃−→ 2 = {0, 1} −→ [0, 1]
)
.

A sharp predicate is therefore idenfied with a subset S ⊆ X of X. We write
χS : X → [0, 1] for this predicate. Concretely, χS is the characteristic function
of S: χS(x) is 1 if x ∈ S, and is 0 otherwise.

In what follows, we assume that p = χP , i.e. that it is a sharp predicate with
a safe/target set P ⊆ X.

1) Write the measure-theoretic general version, and 2) put a pointer to it

Safety (Assuming the sharpness of p = χP ) “for each state x ∈ X, the prob-
ability that a path from x stays in P all the time is at least i(x) ∈ [0, 1].”

The coincidence of this interpretation and the general formulation i ⊑ ν(p⊓
g( )) is established in Example 3.4.14, after we develop some abstract machin-
ery.

Co-Safety (Assuming the sharpness of p = χP ) “there is a state x ∈ X from
which the probability of staying in P all the time is strictly smaller than i(x).”

This is clearly equivalent to the following: “there is a state x ∈ X from
which the probability of reaching P some time is strictly larger than 1− i(x).”

Reachability (Assuming the sharpness of p = χP ) “for each state x ∈ X, the
probability that a path from x reaches P is at least i(x) ∈ [0, 1].”

To see the correctness of this interpretation, we observe that(
χP ⊔ BwdAv( )

)n
(⊥)

= Pr(P is reached from x with a path of length ≤ n).

This is easily proved by induction on n.
It is not hard to see that χP ⊔ BwdAv( ) preserves the supermum of the

Kleene sequence from ⊥ (Section 2.2.4). Therefore we have refine the pointer

µ
(
χP ⊔ BwdAv( )

)
=

⊔
n<ω

(
χP ⊔ BwdAv( )

)n
(⊥) by the Kleene theorem
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= Pr(P is reached from x with some path).

We used an obvious fact that, for a path to reach P , it has to do so within n
steps for some finite n.

Co-Reachability (Assuming the sharpness of p = χP ) “there is a state x ∈ X
from which the probability of reaching P is strictly smaller than i(x).”

This is clearly equivalent to the following: “there is a state x ∈ X such that,
the probability of staying outside P all the time is strictly larger than 1− i(x).”

3.4 Involutions in Safety and Reachability

In Sections 3.4 and 3.5, we exhibit two abstract techniques for transforming
safety and reachability properties into equivalent properties formulated in terms
of fixed points.

The first one, presented here, is intuitively about “negation.” Such intuitions
have already appeard in the examples in Sections 3.2 and 3.3.

Remark 3.4.1. Another advanced transformation, from reachability to a (non-
equivalent) fixed-point property, is by ranking. It is presented later in Chap-
ter 10.

3.4.1 Involution

Definition 3.4.2 (the opposite poset Lop). Let L = (L,⊑L) be a poset. The

opposite poset Lop of L is defined by Lop def
= (L,⊒L). That is,

x ⊑ y in Lop

y ⊑ x in L .

It is clear that (Lop)op = L.

The notion of complete lattice comes with a symmetry in the following sense.

Lemma 3.4.3. Let L be a complete lattice. Then so is Lop, where the infimums
and supremums are given by the supremums and infimums in L, respectively. 2

Definition 3.4.4 (involution). Let L be a poset. An involution is a monotone
function ¬ : Lop → L such that ¬ ◦ ¬ = idL, as in

L
¬ // Lop

¬
��

L.

Some remarks are in order. Firstly, a monotone function of the type f : Lop
1 →

L2 “reverses” the order, in the sense that

x ⊑ y in L1 implies f(y) ⊑ f(x) in L2.

Such a function is also called an antitone function from L1 to L2.
Secondly, in Definition 3.4.4, note that the two functions ¬ : L → Lop and

¬ : Lop → L refer to the same set-theoretic function (they carry each x to the
same ¬(x)). Endowing it with two types (L → Lop and Lop → L) is justified
by the following observation.
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Lemma 3.4.5. Let f : L1 → L2 be a monotone function. Then it is also a
monotone function f : Lop

1 → Lop
2 with the reversed orders. 2

The latter f is often denoted by fop for distinction.
Thirdly, since ¬ is converse to itself as a (set-theoretic) function, it is bijec-

tive. Therefore finding an involution on L is to find that L is the same shape
upside down.

Example 3.4.6. 1. Recall that 2 designates the two-element complete lat-

tice 0 ⊑ 1. The Boolean negation function ¬ : 2op → 2, given by ¬(x) def
=

1− x, is an involution.

2. Over the unit interval lattice [0, 1] (with the usual order between real

numbers), the function ¬(x) def
= 1− x is an involution.

3. These two involutions can be lifted to (fuzzy) predicates: we obtain two
involutions ¬ : (2X)op → 2X and ¬ : ([0, 1]X)op → [0, 1]X , defined by

(¬p)(x) def
= 1− p(x).

In the case of ¬ : (2X)op → 2X , through the identification of predicates
with subsets, ¬ is nothing but the complementation S 7→ X \ S.

4. One might wonder why the identity function shown below is not an in-
volution. It is not, since it is an antitone (instead of monotone) function
from Lop to L.

The following rule-based presentation for involutions is useful. Recall that
double lines mean implications both ways (if and only if).

Lemma 3.4.7. Let L be a poset and L : Lop → L be an involution. Then we
have the following rules valid.

x ⊑ y

¬y ⊑ ¬x and thus, by ¬ ◦ ¬ = id,
x ⊑ ¬y
y ⊑ ¬x ,

¬x ⊑ y

¬y ⊑ x
, etc.

Here x, y ∈ L, and the order ⊑ is in L (not in Lop). 2

3.4.2 Involutions and Fixed Points

Involutions turn many constructs upside down, including fixed points.

Lemma 3.4.8. Let L be a complete lattice, and ¬ : Lop → L be an involution.

1. For S ⊆ L, we have

¬(
⊔
S) =

d
{¬x | x ∈ S} and ¬(

d
S) =

⊔
{¬x | x ∈ S}.
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2. Let f : L→ L be a monotone function. We define the dual of f to be the
function

f¬¬ def
= ¬ ◦ f ◦ ¬ =

(
Lop ¬−→ L

f−→ L
¬−→ Lop

)
.

Then we have

¬(µf) = ν(f¬¬) and ¬(νf) = µ(f¬¬).

Proof. For Item 1, we exploit the characterization of
⊔
,
d

in Proposition 2.1.4.
For example, the following proves the equality ¬(

⊔
S) =

d
{¬x | x ∈ S}.

z ⊑ ¬y for each y ∈ S

y ⊑ ¬z for each y ∈ S
Lemma 3.4.7⊔

S ⊑ ¬z
z ⊑ ¬(

⊔
S)

Lemma 3.4.7

For Item 2, we prove that first equality; the second is similary. Let us first
show that ¬(µf) is a fixed point of f¬¬.

f¬¬(¬(µf)) = ¬(f(¬¬(µf))) = ¬(f(µf)) = ¬(µf) since f(µf) = µf .

Now we prove that it is the greatest. Assume x = f¬¬(x) (thus in particular
x ⊑ f¬¬(x)); we aim to show that x ⊑ ¬(µf).

x ⊑ f¬¬(x) = ¬f(¬x)
⇐⇒ f(¬x) ⊑ ¬x by Lemma 3.4.7

=⇒ µf ⊑ ¬x by Theorem 2.2.1

=⇒ x ⊑ ¬(µf) by Lemma 3.4.7.

Therefore ¬(µf) coincides with the greatest fixed point ν(f¬¬).

Using the above translations, we obtain the following dual presentation of
Table 3.1.

Proposition 3.4.9 (safety and reachability via involutions). In the setting of
Definition 3.1.1, assume further that ¬ : Lop → L is an involution. The follow-
ing properties are equivalent to those in Table 3.1.

Table 3.2: (Co-)safety, (co-)reachability properties, via involution

safety co-safety

µ
(
¬p ⊔ g¬¬( )

)
⊑ ¬i µ

(
¬p ⊔ g¬¬( )

)
̸⊑ ¬i

reachability co-reachability

ν
(
¬p ⊓ g¬¬( )

)
⊑ ¬i ν

(
¬p ⊓ g¬¬( )

)
̸⊑ ¬i

3.4.3 Transition System Examples

We start with the following basic observation. This “de Morgan-style” duality
between 2 and 3 is well-known.
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Proposition 3.4.10. For the predicate transformers Bwd2 and Bwd3 from
Definition 3.2.1 and 3.2.2, we have

(Bwd2)¬¬ = Bwd3 and (Bwd3)¬¬ = Bwd2.

The combination of Propositions 3.4.9 and 3.4.10 eases our analysis of some
safety/reachability instances from Sections 3.2.1 and 3.2.2. We present some
proofs that we left out there.

Example 3.4.11 (reachability for Bwd2). This is an example from Section 3.2.1.
We shall show that the property i ⊑ µ(p ⊔ Bwd2( )) indeed means “for each
initial state x ∈ i, every infinite path from x reaches p eventually.”

We let

p∞
def
= {x | every infinite path from x visits p} (3.1)

and prove
p∞ = µ(p ⊔ Bwd2( )).

The direction ⊒ is easy: p∞ is clearly a prefixed point of p ⊔ Bwd2( ) and we
can use the Knaster–Tarski theorem (Corollary 2.2.7).

To show the direction ⊑, we use the involution ¬ on 2X from Example 3.4.6.
By Lemma 3.4.7, it suffices to show

¬
(
µ(p ⊔ Bwd2( ))

)
⊑ ¬p∞.

By Lemma 3.4.8 and Proposition 3.4.10, it suffices to show

ν
(
¬p ⊓ Bwd3( )

)
⊑ ¬p∞.

We shall write pν
def
= ν

(
¬p ⊓ Bwd3( )

)
for the left-hand side. By (3.1), we

have

¬p∞ = {x | x has an infinite path from it that never visits p}.

Now let x ∈ ν
(
¬p ⊓ Bwd3( )

)
. By expanding the fixed point once, we have

x ∈ ¬p ⊓ Bwd3(pν), and thus 1) x ̸∈ p and 2) there is a successor x1 of x
that belongs to pν . We can continue this operation to find an infinite path
x = x0 → x1 → · · · that stays outside p. This establishes x ∈ ¬p∞ and
concludes the proof.

Example 3.4.12 (safety for Bwd3). This is an example from Section 3.2.2. Let
us prove that the concrete property

p∞
def
= {x ∈ X | x has an infinite path that stays in p}

coincides with ν(p ⊓ Bwd3( )). The proof goes much like in Example 3.4.11.
Indeed,

– p∞ is a postfixed point of p ⊓ Bwd2( ), which establishes p∞ ⊑ ν(p ⊓
Bwd3( )) by the Knaster–Tarski theorem; and

– any element x ∈ ν(p⊓Bwd3( )) yields an infinite path x = x0 → x1 → · · ·
that stays in p, by unfolding the fixed point. This proves that x ∈ p∞.
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3.4.4 Markov Chain Examples

We start with the following observation: BwdAv is dual to itself.

Proposition 3.4.13. For the predicate transformer BwdAv from Definition 3.3.1,
we have

(BwdAv)¬¬ = BwdAv.

Therefore, to the safety and reachability properties in Table 3.1 with g =
BwdAv, the dual properties in Table 3.2 are all equivalent, with g¬¬ = BwdAv.
We use this to confirm the interpretation of the safety property for BwdAv.

Example 3.4.14 (safety for BwdAv). We consider the safety property in Sec-
tion 3.4.4. Let p∞ : X → [0, 1] be the fuzzy predicate defined by

p∞(x)
def
= Pr

(
a path from x stays in P all the time

)
.

Our goal is to show

p∞ = ν(p ⊓ BwdAv( )).

Using the involution ¬ : [0, 1]X → [0, 1]X in Example 3.4.6 and then using
Lemma 3.4.8, this is equivalent to showing

¬p∞ = µ(¬p ⊔ BwdAv( )).

We argue as follows.

(¬p∞)(x)

= Pr(a path from x reaches X \ P eventually)

=
⊔

n<ω Pr(a path from x reaches X \ P within n steps)

=
(⊔

n<ω

(
¬p ⊔ BwdAv( )

)n
(⊥)

)
(x) (∗)

=
(
µ(¬p ⊔ BwdAv( ))

)
(x).

For the last equality we used the Kleene theorem (and that BwdAv is
⊔
-preserving);

for (*) we used that

Pr(a path from x reaches X \ P within n steps) =
((
¬p ⊔ BwdAv( )

)n
(⊥)

)
(x)

for each x ∈ X,

which we can show easily by induction.

3.5 Adjoints in Safety
Cite Bart’s Galois con-
nection paper

3.5.1 General Translation

It is observed in [11] that the safety problem, as formulated as in Definition 3.1.1,
allows another characterization when f has a right adjoint (cf. Definition 2.1.17).
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Proposition 3.5.1 (safety and adjoints). Let L be a complete lattice, f, g : L→
L be monotone maps, and i, p ∈ L. If f ⊣ g as in

L

f
))⊥ L,

g

ii

then we have

µ(i ⊔ f( )) ⊑ p ⇐⇒ i ⊑ ν(p ⊓ g( )).

Proof. We reason as follows.

µ(i ⊔ f( )) ⊑ p

⇐⇒ i ⊔ f(y) ⊑ y and y ⊑ p for some y ∈ L by Corollary 2.2.8

(∗)⇐⇒ i ⊑ y, f(y) ⊑ y, and y ⊑ p for some y ∈ L

⇐⇒ i ⊑ y, y ⊑ g(y), and y ⊑ p for some y ∈ L by f ⊣ g

(∗)⇐⇒ i ⊑ y and y ⊑ p ⊓ g(y) for some y ∈ L

⇐⇒ i ⊑ ν(p ⊓ g( )) by Corollary 2.2.8.

In (∗), we used the universality of ⊔,⊓ (Proposition 2.1.4).

Remark 3.5.2. The last observation in Proposition 3.5.1 is exploited in [11]
for devising an IC3/PDR-type algorithm, in which a positive witness (for verifi-
cation) and a negative witness (for refutation) are simultaneously searched for.
See ?? for more. ?

Remark 3.5.3. One might wonder if a characterization much like Proposi-
tion 3.5.1 is possible for reachability as well. However, the proof is built on a
delicate combination of µ vs. ν, ⊔ vs. ⊓, and left vs. right adjoints. It does not
seem to generalize easily to other combinations.

3.5.2 Transition System Examples

For the two predicate transformers Bwd2,Bwd3 for transition systems (Sec-
tion 3.2), we have the following adjunctions.

Proposition 3.5.4. Let S = (X,R) be a transition system, much like in Defi-
nition 3.2.1 and 3.2.2. We define the forward 2- and 3-predicate transformers
Fwd2,Fwd3 : 2X → 2X as follows.

Fwd2 : 2X −→ 2X , p 7−→
{
y ∈ X

∣∣ ∃x ∈ X. (x→ y and x ∈ p)
}
,

Fwd3 : 2X −→ 2X , p 7−→
{
y ∈ X

∣∣ ∀x ∈ X. (x→ y implies x ∈ p)
}
.

Then we obtain the following adjunctions: Fwd2 ⊣ Bwd2 and Bwd3 ⊣ Fwd3, as
in

2X
Fwd2

**
⊥ 2X ,

Bwd2

jj 2X
Fwd3

**
⊤ 2X .

Bwd3

jj
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Recall that x → y denotes (x, y) ∈ R (Definition 1.2.1). Therefore these
predicate transformers are indeed working in a forward manner, transforming
a predicate p on predecessors x into one on successors y. This observation can
also be seen as an extension of the adjunctions ∃f ⊣ f−1 ⊣ ∀f induced by
a (deterministic) function f , the adjunctions central in Lawvere’s categorical
modeling of quantifiers. See Exercise 2.9.

Proof. Easy, left as an exercise.Show one

What about other adjunctions for Bwd2,Bwd3? We can show that they do
not exist. Here we use Proposition 2.1.18.

Lemma 3.5.5. Assume the setting of Proposition 3.5.4.

1. Bwd2 has no right adjoint, since it is not
⊔
-preserving. For a concrete

example, consider a transition system x0 → x1, x0 → x2, and predicates
q1 = {x1}, q2 = {x2}.

2. Bwd3 has no left adjoint, since it is not
d
-preserving. For a concrete

example, we can use the same as above. 2

We also note the following easy observation: a de Morgan-style duality.

Lemma 3.5.6. In the setting of Proposition 3.5.4, we have

(Fwd2)¬¬ = Fwd3 and (Fwd3)¬¬ = Fwd2.

Comparing Proposition 3.5.4 with the formulations and characterizations of
safety and reachability (Tables 3.1 and 3.2), we find the following instances of
the safety translation lemma (Proposition 3.5.1).

Proposition 3.5.7. In the setting of Proposition 3.5.4, we have the following
equivalences around the safety property with respect to Bwd2, see Section 3.2.1.

i ⊑ ν(p ⊓ Bwd2( )) ks Proposition 3.5.1 +3
KS

Proposition 3.4.9
��

µ(i ⊔ Fwd2( )) ⊑ p
KS
Proposition 3.4.9
��

µ(¬p ⊔ Bwd3( )) ⊑ ¬i ks
Proposition 3.5.1

+3 ¬p ⊑ ν(¬i ⊓ Fwd3( ))

3.5.3 Markov Chain Examples

In the case of Markov chains, it turns out that Proposition 3.5.1 is useless per
se. This is because of the following observation.

Lemma 3.5.8. Let S = (X, δ) be a Markov chain, as in Definition 3.3.1. The
predicate transformer BwdAv has no left or right adjoint.

Proof. In view of Proposition 2.1.18, it suffices to show that BwdAv does not
preserve

⊔
or

d
.

To show this, the following minimal example will do. LetX = {x0, x1, x2} be
the state space with δ(x0)(x1) = δ(x0)(x2) = 1/2. Consider the fuzzy predicates
q, q′ ∈ [0, 1]X , given by q(x1) = 1, q(x2) = 0 and q′(x1) = 0, q′(x2) = 1. Then
the supremum q⊔q′ assigns 1 to both x1 and x2; this yields

(
BwdAv(q⊔q′)

)
(x0) =

1. However,
(
BwdAv(q)

)
(x0) = 1

(
BwdAv(q′)

)
(x0) = 1/2, showing that BwdAv

does not preserve
⊔
. The same example works for

d
. 2
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The above failure of
⊔
,
d
-preservation can be attributed to the following

observation:

max{a0, a1}+max{b0, b1} ≠ max{a0 + b0, a1 + b1}.

Indeed, the left-hand side is in general above the right-hand side, since the latter
misses some combinations such as a0 + b1.

A countermeasure is introduced in [11]:

L↓ f↓

⊤
// L↓

∃g

hh

L

OO
( )↓

OO

f
// L.

OO
( )↓

OO

(3.2)

Here,

– we extend a complete lattice L and embed it in the complete lattice of
lowersets L↓.

– The embedding L ↣ L↓ is so-called the free
⊔
-completion: it 1) equips

all supremums (although we assumed already that L has them), and 2)
lifts any monotone function h : L → L′, with the codomain L′ equipped
with all supremums, to a

⊔
-preserving one.

L↓

h̃ (
⊔
-pres.)

((
L

OO
( )↓

OO

h
// L′

– We apply the above universality of L ↣ L↓ to the function L
f→ L ↣

L↓ (bottom-left to bottom-right to top-right in (3.2)), obtaining a
⊔
-

preserving function f↓ : L↓ → L↓.

– Since f↓ is
⊔
-preserving, by Theorem 2.1.16, we obtain the right adjoint

g to f↓.

In fact, this countermeasure is an instance of a well-known categorical construc-
tion, namely the Yoneda embedding as a free cocompletion. (Here the Yoneda

embedding can take the form y : L → 2L
op

, instead of L → SetL
op

, since L is
a poset (i.e. 2-enriched). One can easily show that 2L

op ∼= L↓.) We revisit this
theory in Chapter 5.

3.6 Summary: Problem Formulations and Char-
acterizations

We summarize the problem formulations and their characterizations via various
translations. We also present their instances for transition systems and Markov
chains.

A summary of the general picture is shown in Table 3.3. Here “if ¬” desig-
nates the equivalences in the presence of an involution (Table 3.2). Additionally,
safety allows an adjoint presentation; this comes from Section 3.5.1.
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Table 3.3: General (co-)safety, (co-)reachability properties, summary

safety co-safety

i ⊑ ν(p ⊓ g( ))
if ¬⇐⇒ µ

(
¬p ⊔ g¬¬( )

)
⊑ ¬i

if f ⊣ g⇐⇒ µ(i ⊔ f( )) ⊑ p

i ̸⊑ ν(p ⊓ g( ))
if ¬⇐⇒ µ

(
¬p ⊔ g¬¬( )

)
̸⊑ ¬i

if f ⊣ g⇐⇒ µ(i ⊔ f( )) ̸⊑ p

reachability co-reachability

i ⊑ µ(p ⊔ g( ))
if ¬⇐⇒ ν

(
¬p ⊓ g¬¬( )

)
⊑ ¬i

i ̸⊑ µ(p ⊔ g( ))
if ¬⇐⇒ ν

(
¬p ⊓ g¬¬( )

)
̸⊑ ¬i

3.6.1 For Transition Systems

For transition systems, we have two backward predicate transformers of interest
(Bwd2,Bwd3), and the overall pictures for them are presented in Tables 3.4
and 3.5. Note that the adjoint translation only works for Bwd2.

3.6.2 For Markov Chains

For Markov chains, the two backward predicate transformer of our interest
(BwdAv) is self-dual (Proposition 3.4.13) and has no left or right adjoint (Lemma 3.5.8),
so the overall picture is simple. Its summary is shown in Table 3.6

3.7 Algorithms and Reasoning Principles

We have obtained fixed point characterizations of safety and reachability proper-
ties in Tables 3.3 to 3.6. All of them are about under- or over-approximating an
lfp or gfp, thus the reasoning principles in Corollary 2.2.8—from the Knaster–
Tarski and Cousot–Cousot theorems—readily apply.

3.7.1 Exact Algorithms

The algorithms in Section 1.3 compute the (least or greatest) fixed point in
question exactly by the Kleene iteration. These can be thought of as special
cases of the application of the reasoning principles in Corollary 2.2.8.

– In the case of (LFP-OA-V), the exact computation of the fixed point µf
amounts to finding y = fα0(⊥) for large enough α0. This particular way
of using the reasoning principle is complete: any x such that x ⊑ µf is
below this y.

The case of (GFP-UA-R) is similar.

– Similarly to the above, in the case of (GFP-UA-V), the exact computation
of the fixed point νf amounts to finding a complete y, namely the one given
by νf . Indeed, it is a post-fixed point (νf ⊑ f(νf)), and any x such that
x ⊑ νf is below this y.
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Table 3.4: (Co-)safety, (co-)reachability properties for transition systems and
Bwd2, summary

safety co-safety

i ⊑ ν(p ⊓ Bwd2( ))

⇐⇒ µ
(
¬p ⊔ Bwd3( )

)
⊑ ¬i

⇐⇒ µ(i ⊔ Fwd2( )) ⊑ p

⇐⇒ ¬p ⊑ ν(¬i ⊓ Fwd3( ))

i ̸⊑ ν(p ⊓ Bwd2( ))

⇐⇒ µ
(
¬p ⊔ Bwd3( )

)
̸⊑ ¬i

⇐⇒ µ(i ⊔ Fwd2( )) ̸⊑ p

⇐⇒ ¬p ̸⊑ ν(¬i ⊓ Fwd3( ))

reachability co-reachability

i ⊑ µ(p ⊔ Bwd2( ))

⇐⇒ ν
(
¬p ⊓ Bwd3( )

)
⊑ ¬i

i ̸⊑ µ(p ⊔ Bwd2( ))

⇐⇒ ν
(
¬p ⊓ Bwd3( )

)
̸⊑ ¬i

Table 3.5: (Co-)safety, (co-)reachability properties for transition systems and
Bwd3, summary

safety co-safety

i ⊑ ν(p ⊓ Bwd3( ))

⇐⇒ µ
(
¬p ⊔ Bwd2( )

)
⊑ ¬i

i ̸⊑ ν(p ⊓ g( ))

⇐⇒ µ
(
¬p ⊔ Bwd2( )

)
̸⊑ ¬i

reachability co-reachability

i ⊑ µ(p ⊔ Bwd3( ))

⇐⇒ ν
(
¬p ⊓ Bwd2( )

)
⊑ ¬i

i ̸⊑ µ(p ⊔ Bwd3( ))

⇐⇒ ν
(
¬p ⊓ Bwd2( )

)
̸⊑ ¬i

Table 3.6: (Co-)safety, (co-)reachability properties for Markov chains and
BwdAv, summary

safety co-safety

i ⊑ ν(p ⊓ BwdAv( ))

⇐⇒ µ
(
¬p ⊔ BwdAv( )

)
⊑ ¬i

i ̸⊑ ν(p ⊓ BwdAv( ))

⇐⇒ µ
(
¬p ⊔ BwdAv( )

)
̸⊑ ¬i

reachability co-reachability

i ⊑ µ(p ⊔ BwdAv( ))

⇐⇒ ν
(
¬p ⊓ BwdAv( )

)
⊑ ¬i

i ̸⊑ µ(p ⊔ BwdAv( ))

⇐⇒ ν
(
¬p ⊓ BwdAv( )

)
̸⊑ ¬i
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The case of (LFP-UA-R) is similar.

The exact computation of fixed points is generally feasible for finite-state tran-
sition systems, but not for infinite-state transition systems (consider an infinite
chain x0 → x1 → · · · ) or for Markov chains (in case δ(x0)(x0) = δ(x0)(x1) =
1/2, the reachability probability from x0 to x1 only converges to 1 asymptoti-
cally).More explicit principles,

martingales, examples.

3.7.2 Concrete Algorithms

We exhibit the relationship with the first examples in Chapter 1.
Firstly, on the demonic safety problem in Section 1.2.2.2:

– it is the safety problem for the predicate transformer Bwd2.

– Then Algorithm 1 is nothing but the Kleene iteration for the fixed point
ν(p ⊓ Bwd2( )), in the first characterization i ⊑ ν(p ⊓ Bwd2( )) in
Table 3.4.

– Algorithm 2 relies on the second “involution” characterization µ
(
¬p ⊔

Bwd3( )
)
⊑ ¬i.

– Algorithm 3 relies on the third “adjoint” characterization µ(i⊔Fwd2( )) ⊑
p.

– All these point to the possibility of yet another algorithm; it should rely
on the fourth characterization ¬p ⊑ ν(¬i ⊓ Fwd3( )).

Secondly, on the angelic reachability problem in Section 1.2.2.3:

– it is the reachability problem for the predicate transformer Bwd3.

– Then Algorithm 4 is nothing but the Kleene iteration for the fixed point
µ(p ⊔ Bwd3( )), in the first characterization i ⊑ µ(p ⊔ Bwd3( )) in
Table 3.5.

– Algorithm 5 relies on the second “involution” characterization ν
(
¬p ⊓

Bwd2( )
)
⊑ ¬i.

The pointwise forward algorithm (Algorithm 6) does not appear evidently
in Table 3.5. It can be derived in the following axiomatic way.

i ⊑ µ(p ⊔ Bwd3( ))

⇐⇒ {x0} ⊑ µ(p ⊔ Bwd3( )) for each x0 ∈ I

(∗)⇐⇒ {x0} ∩ µ(p ⊔ Bwd3( )) ̸= ∅ for each x0 ∈ I

⇐⇒ µ(p ⊔ Bwd3( )) ̸⊑ ¬{x0} for each x0 ∈ I,

and

µ(p ⊔ Bwd3( )) ⊑ ¬{x0}
⇐⇒ p ⊑ ν(¬{x0} ⊓ Fwd3( )) by Proposition 3.5.1 and Bwd3 ⊣ Fwd3 (Proposition 3.5.4)

⇐⇒ µ({x0} ⊔ Fwd2( )) ⊑ ¬p by Proposition 3.4.9 and Fwd2 = (Fwd3)¬¬.

In the above reasoning, restricting the initial predicate to a singleton allows the
reasoning step (∗). We are using this general fact:

Assume S is a singleton. Then S ⊆ T if and only if S ∩ T ̸= ∅. (3.3)
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After the step (∗), we can exploit the adjunction Bwd3 ⊣ Fwd3.
One can say that the above derivation of Algorithm 6 is somewhat awkward:

it relies on the fact (3.3) that is very specific to the lattice 2X ; thus it is unlikely
to generalize to other settings such as probabilistic. The derivation via singletons
also results in a pointwise algorithm, that seems suboptimal, as we discussed in
Section 1.2.2.3.
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Chapter 4

Fixed Points in Complete
Lattices: Examples

4.1 Extended Example: Modal µ-Calculus

Use Cousot–Cousot for illustration. Saturation within finite steps.
Use the syntax of POPL’16
Mention GFP-OA

4.2 Extended Example: Partical and Total Cor-
rectness of Programs with While Loops

(Address Tachio’s question at POPL’16)
Start first by small-step
partical correctness vs. total correctness
Two semantics of operational flavor: small-step and big-step
Adjunction between them
Mention GFP-OA

4.3 Extended Example: Reachability Analysis
by Ranking Functions

(Very different from invariants)

4.4 Example: Partition Refinement

Use Cousot–Cousot for illustration. Saturation within finite steps. Minimization
of DFA?

Mention GFP-OA
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Chapter 5

Fixed Points in Categories

As a generalization of Chapter 2, but talking about size. Add pointers from
Chapter 2 to this chapter.

– Coinduction

– Some related topics, only very briefly

• duality-based modal logics

2023/06/15: Revise the story!
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Chapter 6

Lattice-Theoretic Progress
Measures

The theory of [8], detailed
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Chapter 7

Fixed-Point Reasonig Up-to

Review the works by Pous, and integrate in the theory
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Chapter 8

Preliminaries II:
CLatd-Fibrations

[Komorida+, NGC Hagiya sp. issue] has got a good introduction

– In this paper, we focus on CLatd-fibrations

– Introduce first as indexed complete lattices

– The Grothendieck construction→ CLatd-fibration. Motivate them using
examples, such as Pred→ Set and Top→ Set

– Examples

• Lax slice categories with an ordered object Ω [?] (NB. This may look
similar to the codensity situation but is different)
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56 8 Preliminaries II: CLatd-Fibrations



Chapter 9

Fibrational Weakest
Preconditions as a
Foundation

– As a foundation used throughout the paper

– A monadic framework is studied in [?], where the theme is the compati-
bility with the Kleisli composition of computations. In this paper we do
not assume such a monad structure

– (Also discuss the strongest post-condition? See [?, Section 4.1])
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Chapter 10

Ranking functions—we
verify lfp specifications

– Spell out axiomatics in the setting of Chapter 3. Use well-foundedness.
Cite good references, such as Sriram’s

– submartingales from fibrations?

– (discuss relationships with Natsuki’s LICS’17 paper)
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Chapter 11

Codensity Lifting

– Important class of “observational” lifting. Generalizing the Kantorovich
lifting

– Relationship with ⊤⊤-lifting
– Duality with the Wasserstein lifting

– Use in quantiative algebraic reasoning? (Adamek LICS 2022)

61



62 11 Codensity Lifting



Chapter 12

Extracting games

– Yuichi’s codensity games?

– Quentin’s codensity games?

– Delayed/fair simulation?

– Buechi automata, parity automata?
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Chapter 13

(Co-)induction up-to

– Filippo’s results

– Mayuko’s IC3?
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Chapter 14

Predicate abstraction

– Natsuki’s timed automata

– Urbat et al., FSCD’21 (GSOS in a fibration)

– CEGAR
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Chapter 15

IA-FC coincidence

– Mayuko’s coincidence? [CONCUR’21]

– Coalgebraic trace semantics?
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