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Abstract

We introduce notions of simulation between semiring-weighted automata as models of
quantitative systems. Our simulations are instances of the categorical/coalgebraic no-
tions previously studied by Hasuo—hence soundness against language inclusion comes
for free—but are concretely presented as matrices that are subject to linear inequality
constraints. Pervasiveness of these formalisms allows us to exploit existing algorithms in:
searching for a simulation, and hence verifying quantitative correctness that is formu-
lated as language inclusion. Transformations of automata that aid search for simulations
are introduced, too. This verification workflow is implemented for the plus-times and
max-plus semirings. Furthermore, an extension to weighted tree automata is presented
and implemented.

1. Introduction

Quantitative aspects of various systems are more and more emphasized in recent ver-
ification scenarios. Probabilities in randomized or fuzzy systems are a classic example;
utility in economics and game theory is another. Furthermore, now that many com-
puter systems are integrated into physical ambience—realizing so-called cyber-physical
systems—physical quantities like energy consumption are necessarily taken into account.

1.1. Semiring- Weighted Automata

It is standard in the concurrency community to model such quantitative systems
by state-transition systems in which weights are assigned to their states and/or transi-
tions. The semantics of such systems varies, however, depending on the interpretation of
weights. If they are probabilities, they are accumulated by x along a path and summed
across different paths; if weights are (worst-case) costs, they are summed up along a path
and we would take max across different paths.

The algebraic structure of semirings then arises as a uniform mathematical language
for different notions of “weight,” as is widely acknowledged in the community. The
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subject of the current study is state-based systems with labeled transitions, in which
each transition is assigned a weight from a prescribed semiring S. We shall call them
S-weighted automata; and we are more specifically interested in the (weighted, finite)
language inclusion problem and a simulation-based approach to it.

1.2. Language Inclusion

Let A be an S-weighted automaton with labels from an alphabet 3. It assigns to each
word w € ¥* a weight taken from S—this is much like a (purely) probabilistic automaton
assigns a probability to each word. Let us denote this function by L(A): ¥* — S and call
it the (weighted) language of A by analogy with classic automata theory. The language
inclusion problem L(A) T L(B) asks if: L(A)(w) T L(B)(w) for each word w € ¥*,
where C is a natural order on the semiring S.

It is not hard to see that language inclusion L(A) C L(B) has numerous applications
in verification. In a typical scenario, one of A and B is a model of a system and the other
expresses specification; and L(A) C L(B) gives the definition of “the system meeting the
specification.” More concrete examples are as follows.

e S represents probabilities; A models a system; and B expresses the specification
that certain bad behaviors—identified with words—occur with a certain probability.
Then L(A) C L(B) is a safety statement: each bad behavior occurs in A at most
as likely as in B.

e S represents profit, A is a specification and B is a system. Then L(A) C L(B)
guarantees the minimal profit yielded by the system B.

e There are other properties reduced to language inclusion in a less trivial manner.
An example is probable innocence [35], a quantitative notion of anonymity. See [22].

1.8. Simulation

Direct check of language inclusion is simply infeasible because there are infinitely
many words w € ¥*. One finitary proof method—well-known for nondeterministic (i.e.
possibilistic) systems—is by (forward or backward) simulations, whose systematic study
is initiated in [31]. In the nondeterministic setting, a simulation R is a relation between
states of A and B that witnesses “local language inclusion”; moreover, from the coin-
ductive way in which it is defined, a simulation persistently witnesses local language
inclusion—ultimately yielding (global) language inclusion. This property—existence of
a simulation implies language inclusion—is called soundness.

1.4. Contribution: Weighted Forward/Backward Simulations by Matrices

In this paper we extend this simulation approach to language inclusion [31] to the
quantitative setting of semiring-weighted automata. Our notions of (forward and back-
ward) weighted simulation are not given by relations, but by matrices with entries from
a semiring S.

Use of matrices in automata theory is classic—in fact our framework instantiates to
that in [31] when we take as S the Boolean semiring. This is not how we arrived here;
conversely, the current results are obtained as instances of a more general theory of coal-
gebraic simulations [18, 21, 19]. There various systems are identified with a categorical
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construct of coalgebras in a Kleisli category; and forward and backward simulations are
characterized as lax/oplax morphisms between coalgebras. A generic soundness result
(with respect to language/trace inclusion) is also proved in the general categorical terms.

This paper is devoted to concrete presentations of these categorical notions by matri-
ces, and to their application to actual verification of quantitative systems. Presentation
by matrices turns out to be an advantage: a simulation is now a matrix X that satisfies
certain linear inequalities; and existence of such X—i.e. feasibility of linear inequalities—
is so common a problem in many fields that there is a large body of existing work that
is waiting to be applied. For example linear programming (LP) can be exploited for
the plus-times semiring for probabilities; and there are algorithms proposed for other
semirings such as the max-plus (tropical) one.

Our (mostly semiring-independent) workflow is as follows. A verification goal is
formulated as language inclusion L(A) C L(B), which we aim to establish by finding
a forward or backward simulation from A to B. Soundness of simulations follows from
the general result in [18]. A simulation we seek for is a matrix subject to certain linear
inequalities, existence of which is checked by various algorithms that exist for different
semirings. We implemented this workflow for the plus-times and max-plus semirings.

This simulation-based method is sound but not necessarily complete with respect
to language inclusion. Therefore we introduce transformations of weighted automata—
called (forward/backward) partial execution—that potentially create matrix simulations.
Via our equivalence results between our matrix simulation and some known ones (in-
cluding the one in [7]), the partial execution transformations potentially create those
simulations, too.

Compared to the earlier version [38] of this paper, the current version additionally
contains the following materials.

e Section 7 is added, where we exploit the coalgebraic theory behind and generalize
matrix simulation from weighted (word) automata to weighted tree automata. We
describe the definition of forward partial execution in categorical terms, too, so that
it transfers to weighted tree automata. We also have a preliminary implementation.

e We now have more extensive discussions of related work, including [3, 15, 8] of
which we were not aware before.

e We conducted experiments again with a faster machine, enlarging the size of prob-
lem instances that can be handled.

e We have some examples that were absent in the previous version [38].

e Concrete description of the procedure (forward/backward) partial execution is in-
cluded.

e Some proofs were omitted in [38] for space reasons; they are present here.

1.5. Organization of the paper

In Section 2 that is devoted to preliminaries, we define semiring-weighted automata,
characterize them in coalgebraic terms and recap the coalgebraic theory in [18]. These
are combined to yield the notion of simulation matrix in Section 3. In Section 4 partial
execution transformations of automata are described and proved correct. The framework
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obtained so far is applied to the plus-times and max-plus semirings, in Section 5 and Sec-
tion 6, respectively. There our proof-of-concept implementations (the code is found at
the first author’s webpage) and relationship to other known simulation notions are dis-
cussed, too. In Section 7 we generalize the framework so far from words to trees: the
generalization is straightforward—thanks to the coalgebraic backend—although linearity
of constraints, as well as backward partial execution, is lost. In Section 8 (and in earlier
sections) we discuss related work; in Section 9 we conclude.

2. Preliminaries

We review the generic theory of traces and simulations in [21, 18] that is based on
(T, F')-systems, which will eventually lead to the notion of simulation matrix in Section 3.

2.1. Semiring- Weighted Automata

The notion of semiring-weighted automaton is parametrized by a semiring S. For our
purpose of applying coalgebraic theory in [18, 21], we impose the following properties.

Definition 2.1 A commutative cppo-semiring is a tuple S = (5, +s,0s, X5, 1s, C) that
satisfies the following conditions.

e (S,+s,0s,xs,1s) is a semiring in which xg, in addition to +s, is commutative.

e A relation C is a partial order on S and (S,C) is w-complete, i.e. an increasing
chain sy C s1 C - -+ has a supremum.

e Any element s € S is positive in the sense that Os C s.
e Addition +s and multiplication X s are monotone with respect to C.

It follows from positivity and w-completeness that countable sum can be straightfor-
wardly defined in a commutative cppo-semiring S. We will use this fact throughout the

paper.

Example 2.2 (semirings S, x,Smax +,8) The plus-times semiring Sy x =
([0,0],4,0,%,1,<) is a commutative cppo-semiring, where + and X are usual
addition and multiplication of real numbers. This is the semiring that we will use for
modeling probabilistic branching. Specifically, probabilities of successive transitions are
accumulated using X, and those of different branches are combined with +.

The maz-plus semiring Smax,+ = ([—00, 00}, max, —o0, +, 0, <)—also sometimes called
the tropical semiring [33]—is also a commutative cppo-semiring. Here a number r €
[—00, 00] can be understood as (best-case) profit: they are summed up along a path,
and an optimal one (max) is chosen among different branches. Another possible under-
standing of r is as (worst-case) cost. The unit for the semiring addition max is given
by —o0; since it must also be a zero element of the semiring multiplication +, we define
(—o0) + 00 = —o0. In the two examples Sy « and Smax,+ We added oo so that they
become w-complete.

Finally, the Boolean semiring B = ({0,1},V,0,A,1, <) is an example that is qualita-
tive rather than quantitative.
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Definition 2.3 (S-weighted automaton, weighted language) Let S = (S5, +s,0s, Xs,
1s,C) be a commutative cppo-semiring. An S-weighted automaton A = (Q,%X, M, «, 3)
consists of a countable state space @, a countable alphabet X, transition matrices
M(a) € S@*Q for all a € %, the initial row vector o € S? and the final column vector

B e S<.

Let z,y € @ and a € X. We write a,, and (3, for the z-th entry of @ and 3, respectively,
and M(a)g,, for the (z,y)-entry of the matrix M(a). Note that these entries are all
elements of the semiring S.

An S-weighted automaton A = (Q,%,M,a,() yields a weighted language
L(A): ¥* — S. It is given by the following multiplication of matrices and vectors.

L(A)(w) == a-M(ay)- -+ -M(ax)-8  foreach w=aj---a, € X", (1)

We require a state space ) to be at most countably infinite. This is so that the matrix
multiplications in (1)—by addition and multiplication of S—are well-defined. Recall that
S has countable sum given by supremums of suitable w-chains.

Our interest is in establishing language inclusion between two weighted automata.

Definition 2.4 (language inclusion) We write L(A) C L(B) if, for each w € X*,
L(A)(w) C L(B)(w). The last C is the order of S.

2.2. Coalgebraic Modeling of Semiring-Weighted Automata

Here we characterize semiring-weighted automata as instances of a generic coalgebraic
model of branching systems—so-called (T, F)-systems with parameters T, F' [21, 18].

Definition 2.5 ((T, F)-system) Let T be a monad and F be a functor, both on the
category Sets of sets and functions. A (T, F)-system is a triple

X = (X, s:{e} 5TX, c: X 5>TFX)
of a set X (the state space), and functions s (the initial states) and c¢ (the dynamics).

This modeling is coalgebraic [24] in the sense that ¢ is so-called a T F-coalgebra. In
the definition we have two parameters T and F. Let us forget about their categorical
structures (a monad or a functor) for a moment and think of them simply as constructions
on sets. Intuitively speaking, T specifies what kind of branching the systems in question
exhibit; and F' specifies a type of linear-time behaviors. Here are some examples; in the
example F' =1+ 3 x (_) the only element of 1 is denoted by v (i.e. 1 = {V'}).

Ms S-weighted

T H “branching” F H “linear-time behavior”
P nondeterministic 1+2x () —v or % (whereac€X)
D probabilistic E+0) words over terminals (a € X))

& nonterminals, suited for CFG [20]

The above examples of a monad T—the powerset monad P, the subdistribution monad
D, and the S-multiset monad Mg for S—are described as follows.
PX={X'"|X'CX} DX={f: X101 ,cxflz)<1}

MsX ={f: X — S |supp(f) is countable} @
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Here supp(f) = {z € X | f(x) # 0s}. Countable support in M is a technical require-
ment so that composition ® of Kleisli arrows is well-defined (Definition 2.7).

It should not be hard to see that a (T, F')-system models a state-based system with 7-
branching and F-linear-time behaviors. For example, when T =P and F =1+ X x (_),
s: {#} — PX represents the set of initial states and ¢: X — P(1 4+ 3 x X) represents
one-step transitions—that v* € ¢(x) means z is accepting (x — V'), and (a,2’) € c(x)
means there is a transition x % 2/. Overall, a (P, 1+ ¥ x (_))-system is nothing but a
nondeterministic automaton.

Analogously we obtain the following, by the definition of Mg in (2).

Proposition 2.6 (weighted automata as (T, F)-systems) Let S be a commutative
cppo-semiring. There is a bijective correspondence between: 1) S-weighted automata
(Definition 2.3); and 2) (Ms,1 + X x (_))-systems whose state spaces are at most
countably infinite.

Concretely, an S-weighted automaton A = (Q,X, M, «, 5) gives rise to an (./\/157 1+
¥ x (7))-system X4 = (Q,s4,ca) defined as follows. sa: {8} = MsQ is given by
sa(®)(z) =agz; andcq: Q = Ms(1+XxQ) is given by ca(x) (V') = By and ca(x)(a,y) =
M(a)g,y. O

2.3. Coalgebraic Theory of Traces and Simulations

We review the theory of traces and simulations in [21, 18] that is based on (T, F')-
systems. In presentation we restrict to T'= Mg and F' =14 X x (_) for simplicity.

2.8.1. Kleisli Arrows

One notable success of coalgebra was a uniform characterization, in terms of the
same categorical diagram, of bisimulations for various kinds of systems (nondeterministic,
probabilistic, etc.) [24]. This works quite well for branching-time process semantics. For
linear-time semantics—i.e. trace semantics—it is noticed in [34] that so-called a Kleisli
category, in place of the category Sets, gives a suitable base category for coalgebraic
treatment. This idea—replacing functions X — Y with Kleisli arrows X + Y and
drawing the same diagrams—Iled to the development in [21, 18, 19] of an extensive theory
of traces and simulations. The notion of Kleisli arrow is parametrized by a monad T": a
T-Kleisli arrow X+ 7 Y (or simply X+ Y) is defined to be a function X — TV, hence
represents a “T-branching function from X to Y.”

We restrict to T' = Mg for simplicity of presentation. An M g-Kleisli arrow f: X+ Y
below is “an S-weighted function from X to Y.” In particular, foreach x € X and y € Y
it assigns a weight f(z)(y) € S.

Definition 2.7 (Kleisli arrow) Let X,Y be sets. An Mgs-Kleisli arrow (or simply a
Kleisli arrow) from X to Y, denoted by X —+ Y, is a function from X to MgY.
We list some special Kleisli arrows: nx, g © f and Jf.

e For each set X, the unit arrow nx: X - X is given by: n(z)(z) = ls; and
n(z)(z') = 0s for 2’ # x. Here Os and 1s are units in the semiring S.
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e For consecutive Kleisli arrows f : X + Y and g : Y + Z, their composition
g® f: X+ Z is given as follows:

(90 NEE) = Dyeomnron F@)W) xs 90)(E) -
Since supp(f(x)) is countable, the above sum in a cppo-semiring S is well-defined.

e For a (usual) function f: X — Y, its lifting to a Kleisli arrow Jf : X+ Y is given
by Jf =ny o f. Here we identified 1y : Y+ Y with a function ny : ¥ — MgY.

Categorically speaking: the first two (n and ©@) organize Kleisli arrows as a category
(the Kleisli category K€(Ms)); and the third gives a functor J: Sets — K¢(Mg) that is
identity on objects.

In Proposition 2.6 we characterized an S-weighted automaton A in coalgebraic terms.
Using Kleisli arrows it is presented as a triple

Xy = (Q, sa:{o} +—=Q, ca:Q—+—14+Y%xQ) . (3)

2.8.2. Generic Trace Semantics

In [21], for monads T with a suitable order, a final coalgebra in K¢(T') is identified. It
(somehow interestingly) coincides with an initial algebra in Sets. Moreover, the univer-
sality of this final coalgebra is shown to capture natural notions of (finite) trace semantics
for a variety of branching systems—i.e. for different T" and F. What is important for the
current work is the fact that the weighted language L(A) in (1) is an instance of this
generic trace semantics, as we will show in Theorem 2.11.

1+ % x (tr(c))

14X XX ———+4 - -"314+¥x¥"
%c = ﬁnal$J([niI, cons] 1)
Xo_ s (1)
%s tr(c)

We shall state the results in [21] on coalgebraic traces, restricting again to T'= M and
F =143 x (_) for simplicity. In the diagram (4) above, composition of Kleisli arrows
are given by @ in Definition 2.7; J on the right is the lifting in Definition 2.7; and nil
and cons are the obvious constructors of words in ¥*. The top arrow 1 + X x (tr(c)) is
the functor 1+ X x (_) on Sets, lifted to the Kleisli category K¢(M.s), and applied to
the Kleisli arrow tr(c); its concrete description is as follows. See [21] for more details.

Definition 2.8 For a Kleisli arrow f: X+ Y, itslifting 1+ X x f: 1+Xx X+ 1+XxY
is defined as follows:

f@)(y) (t=(a,y))

0s (otherwise) 0s (otherwise)

a+zxnw@{“ (=) U+EXﬁ@@@{

Theorem 2.9 (final coalgebra in K{(Ms)) Given any set X and any Kleisli arrow
c: X+ 143 x X, there exists a unique Kleisli arrow tr(c) that makes the top square in
the diagram (4) commute. O
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Definition 2.10 (tr(X)) Given an (Ms,1+ ¥ x (_))-system X = (X,s,c) (this is
on the left in the diagram (4)), its component ¢ induces an arrow tr(c): X - ¥* by
Theorem 2.9. We define tr(X') to be the composite tr(c) ® s (the bottom triangle in the
diagram (4)), and call it the trace semantics of X.

Theorem 2.11 (weighted language as trace semantics) Let A be an S-weighted
automaton. For X4 = (Q, sa,ca) induced by A in (3), its trace semantics tr(X4): {o}—+
¥* —identified with a function {8} — MgsX*, hence with a function ¥* — S—coincides
with the weighted language L(A): ¥* — S in (1). O

In the last theorem we need that »* is countable; this is why we assumed that X is
countable in Definition 2.3. Henceforth we do not distinguish L(A) and tr(X4): {e}+
.

2.3.8. Forward and Backward Kleisli simulations

In [18], the classic results in [31] on forward and backward simulations—for (nonde-
terministic) labeled transition systems—are generalized to (T, F')-systems. Specifically,
forward and backward simulations are characterized as laz/oplaz coalgebra homomor-
phisms in a Kleisli category; and soundness—their existence witnesses trace inclusion—is
proved once for all in a general categorical setting.

As before, we present those notions and results in [18] restricting to T' = Mg and
F=143Yx%x(_). fT=Pand F =143 x (_) they instantiate to the results in [31].

Definition 2.12 (Kleisli simulation) Let X = (X, s,¢) and Y = (Y,t,d) be (Mg, 1+
Y x (_))-systems (cf. Definition 2.5, Proposition 2.6 and (3)).

1. A forward (Kleisli) simulation from X to ) is a Kleisli arrow f : Y-+ X such that
sCfotandc® fC (14X x f)®d. See Figure 1.

2. A backward simulation from X to ) is a Kleisli arrow b : X + Y such that s®bC ¢
and (1+Xxb)®cCd®b.

3. A forward-backward simulation from X to ) consists of: a (T, F)-system Z; a
forward simulation f from X to Z; and a backward simulation b from Z to ).

4. A backward-forward simulation from X to ) consists of: a (T, F)-system Z; a
backward simulation b from X to Z; and a forward simulation f from Z to ).

We write X Cp YV, X Cg Y, X Cgg Y or X Cpg YV if there exists a forward,
backward, forward-backward, or backward-forward simulation, respectively.

(Generic) soundness is proved using the maximality of tr(c) in (4) among (op)lax
coalgebra homomorphisms, arguing in the language of enriched category theory [18].

Theorem 2.13 (soundness) Let X and Y be (Mg, 1+ X x (_))-systems. Each of the
following yields tr(X) C tr(Y): {}+ X* (cf. Definition 2.10).
1. XCp Y 2. XCg Y 3. X Cr Y 4. X Cpr Y O

Theorem 2.14 (completeness) The converse of soundness holds for backward-forward
simulations. That is: tr(X) C tr()) implies X Cgg ) . O
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Fx— 2y FxX —5 L Fry
c C d $C c %d
X<—|LY XL|—>Y
=) [
s t s t
{o} {o}
fwd. sim. bwd. sim.
FX— Y pz B py | x5 srz B by
c C e C d c C e c d
A A I A
X | A ! Y X ! A | Y
RN RS
{o} {o}

fwd.-bwd. sim. bwd.-fwd. sim.

Figure 1: Kleisli simulations (here F =1+ X x (_))

3. Simulation Matrices for Semiring-Weighted Automata

In this section we fix parameters T'= Mg and F' = 1+ X x (_) in the generic theory
in Section 2.3 and rephrase the coalgebraic framework in terms of matrices (whose entries
are taken from S). Specifically: Kleisli arrows become matrices; and Kleisli simulations
become matrices subject to certain linear inequalities. Such matrix representations ease
implementation, a feature we will exploit in later sections.

Recall that a Kleisli arrow A+ B is a function A — MgsB (Definition 2.7).

Definition 3.1 (matrix representation M;) Given a Kleisli arrow f: A+ B, its ma-
triz representation M; € SA*B is given by (My),., = f(z)(y).

In what follows we shall use the notations f and My interchangeably.

Lemma 3.2 Let f, f': A+ B and g: B-+» C be Kleisli arrows.

1. fC f if and only if My T My/. Here the former T is between Ms-Kleisli arrows,
and the latter order C is between matrices, defined entrywise.
2. Myoy = M;My, computed by matriz multiplication. (I

f 1+¥Xx f
The correspondence from A —+— Btol+ X x A —+ 1+ % x B— used in (4) and in
Figure 1—can be described using matrices, too.

Lemma 3.3 Let f : A+ B be a Kleisli arrow and My be its matriz representation.
Then the matriz representation M sy is given by

Il @ (IE ®Mf) c S(1+E><A)><(1+E><B) ,

where & and ® denote coproduct and the Kronecker product of matrices:
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: : O

This description of Mg generalizes from F' =1+ 3 x (_) to any polynomial functor F,
inductively on the construction of F'. In this paper the generality is not needed.

Using Lemma 3.2-3.3, we can present Kleisli simulations (Definition 2.12) as ma-
trices. Recall that a state space of a weighted automaton is assumed to be countable
(Definition 2.3); hence all the matrix multiplications in the definition below make sense.

Definition 3.4 (forward/backward simulation matrix) Let A= (Q4,%, M4, a4, 54)
and B = (Qg, %, Mg, as, f5) be S-weighted automata.

e A matrix X € S¥5%Q4 is a forward simulation matriz from A to B if

agCagX , X -My(a)TMgla)- X (Ma€X), and XS4 LC g .

e A matrix X € S94XQs ig a backward simulation matriz from A to B if

arXCag, Mygla)- XC X -Mg(a) (VaeX), and [4C XG5 .

The requirements on X are obtained by first translating Figure 1 into matrices, and
then breaking them up into smaller matrices using Lemma 3.3. It is notable that the
requirements are given in the form of linear inequalities, a format often used in constraint
solvers. Solving them is a topic of extensive research efforts that include [1, 6]. This fact
becomes an advantage in implementing search algorithms, as we see later.

We also note that forward and backward simulation matrices have different dimen-
sions. This difference comes from the different directions of arrows in Figure 1.

Theorem 3.5 Let A and B be S-weighted automata. There is a bijective correspondence
between: 1) forward simulation matrices from A to B; and 2) forward Kleisli simulations
from X4 to Xg. The same holds for the backward variants. |

In what follows we write Cg, Cg also between S-weighted automata. Theorem 3.5 yields:
A Cg B if and only if there is a forward simulation matrix.
Here is our core result; the rest of the paper is devoted to its application.

Corollary 3.6 (soundness of simulation matrices) Let A and B be S-weighted au-
tomata. Ezistence of a forward (or backward) simulation matriz from A to B—i.e.
A Cg B or A Cg B—uwitnesses language inclusion L(A) C L(B).

ProoF. 3 (fwd./bwd. simulation matrix from A to B)

T35 5 (fwd./bwd. Kleisli simulation from X4 to X)
Thm. 2.13 Thm. 2.11
= tr(X4) C tr(Xg) = L(A)C L(B) . O

It is classic to represent nondeterministic automata by Boolean matrices. This corre-
sponds to the special case S = B (the Boolean semiring) of the current framework; and
a simulation matrix becomes the same thing as a (relational) simulation in [31].
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Remark 3.7 The opposite of an S-weighted automaton A = (Q, X, M, «, )—obtained
by reversing transitions and swapping initial/final states—can be naturally defined by
matrix transpose, that is, ‘A := (Q, %, M, '3, %). Tt is easy to see that: if X is a forward
simulation matrix from A to B, then X is a backward simulation matrix from ‘A to B

4. Forward and Backward Partial Execution

In this section we introduce for semiring-weighted automata their transformations—
called forward and backward partial execution—that increase the number of forward or
backward simulation matrices. We also prove some correctness results.

4.1. Incompleteness of Matriz Simulations

We have four different notions of simulation (Definition 2.12): forward, backward,
forward-backward, and backward-forward. Our view on these is as (possibly finitary)
witnesses of language inclusion.

The combined ones (forward-backward and backward-forward) subsume the one-
direction ones (forward and backward)—simply take the identity arrow as one of the
two simulations required. Moreover, backward-forward is complete (Theorem 2.14). De-
spite these theoretical advantages, the combined simulations are generally harder to find:
in addition to two simulations, we have to find an intermediate system too (Z in Defi-
nition 2.12). Furthermore, since language inclusion for finite Sy . -weighted automata—
models of probabilistic systems—is known to be undecidable [5], existence of a backward-
forward simulation is undecidable too.

Therefore in what follows we focus on the one-directional (i.e. forward or backward)
simulations as proof methods for language inclusion. They have convenient matrix pre-
sentations, too, as we saw in Section 3. However forward or backward simulations are
not necessarily complete. We can see it from the following counterexample.

Example 4.1 (Cp and Cg are not complete) The following S, x-weighted automata
exhibit L(A) C L(B) (in fact L(A) = L(B)).

g

N\»—A

Indeed, for each word w € ¥*, we have

2n

(w = aaa®" or baa®")

i(3)"
L(A)(w) = L(B)(w) = { *'2
(A)w) (B)(w) 0 (otherwise) .
However there is no forward or backward simulation from A to B: one can show by direct
calculation that there is no X that satisfies the requirements in Definition 3.4. Hence
this pair is a counterexample for the completeness of Cg and that of Cg.
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It turns out that a simulation in the sense of Jonsson and Larsen [25] does exist from
A to B. See also Section 5.1 later, where we systematically compare our current notions
of simulation with existing ones.

The incompleteness of forward and backward simulations can be also deduced from
complexity arguments. See Section 5.1.

4.2. Forward and Backward Partial Execution for Semiring-weighted Automata
We shall define transformations, called FPE and BPE, that increase matrix simula-
tions for semiring-weighted automata. We prove some of its properties, too.

Definition 4.2 (FPE, BPE) Forward partial execution (FPE) is a transformation of
a weighted automaton that “replaces some states with their one-step behaviors.” Con-
cretely, given an S-weighted automaton A = (Q, X, M, a, 8) and a parameter P C @,
the resulting automaton Appe p = (Q', X, M', o/, 8') has a state space

= {V |3z e P.B, #0s}+{(a,y)|Fx € P.M(a)sy #0s} +(Q\P) , (5)

replacing each p € P with its one-step behaviors (v' or (a,q)) as new states. The other
data M’, o', 3’ are defined as follows. For the transition matrices M’:

M'(a)(a,z),v = Do M'(a)(a,z)(ary) = M@)oy M'(a)(a,2),2
M{a)y = (M@B), M@y = (M(@)M() M'(a).,

z,y

where a,a’ € X,z,y € Q. For all the other cases we define M'(a),,, = Os, where
u,v € Q'. For the initial and final vectors o’ and ', the definition is shown below.

o/// = af azaym) = (aM(a))x a% =
B, = 1s Bz = 0Os By = Bu

Backward partial execution (BPE) in contrast “replaces states in a parameter P C
@ with their backward one-step behaviors.” For the same A as above, the resulting
automaton Agpg p = (Q', 3, M’, o/, f’) has a state space

Q = {e|FrePa, #0s}+ {(a,y)|Fz € P.M(a)y. #0s}+(Q\P) , (6)

replacing each p € P with its backward one-step behaviors—(a, q) with ¢ % p, and e
if p is initial—as new states. The other data M’ o/, 3’ are defined as follows. For the
transition matrices M’:

M (@) (ay) = oy M'(a) (@ @), (ay) = M(a)ay M'(a)z,(a,z)
M'(a)ey = (aM(a)), M'(a)(a'2)y = (M(a")M(a))z,y M'(a)zy

where a,a’ € X,z,y € Q. For all the other cases we define M'(a),,, = Os, where
u,v € Q'. For the initial and final vectors o/ and f’, the definition is shown below.

’ ’
Qe = 15 Oé(a@) = 05 a, = O

B, = of Blawy = (M(a)B)a B, = B

Pictorially, the actions of FPE and BPE can be illustrated as in Figure 2. Roughly
speaking, FPE replaces a concrete state p € P with an abstract state, such as (a,q) in
Q' of (5) that is thought of as a description “a state that makes an a-transition to ¢.”
The idea comes from partial evaluation of a program; hence the name.

1s
M(a)g,y

1s
M(a)m,y
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(o]

o o
a,r a,T
o p/\ /az D2 Ial,ls I@,ls ’ /\’ 2 Ia,ls f
—

| 4 ® —

b b c,s
3 I bpp\ s ql QI AN I
of q1-m18 09272 o
“split backward” “merge backward” “eliminate dead end”

‘ Forward Partial Execution ‘

o Q (o] bo o [e]
b,pI b’plp/\y’p‘m b1, qu b, Q2I w Tl \ / q2°2 IC’S
P J o) —
al’p/\a%pz Iahls Iamls \/ I ) $
o o
“split forward” “merge forward” “eliminate dead end”

’ Backward Partial Execution ‘

Figure 2: Fwd./bwd. partial execution (FPE, BPE), pictorially. Black nodes need to be in P

4.8. Correctness of FPE and BPE

The use of FPE/BPE is as follows: we aim to establish L(A) C L(B); depending on
whether we search for a forward or backward simulation matrix, we apply one of FPE
and BPE to each of A and B, according to the above table (7).

goal: LLACLMB)|| A | B
by Cr FPE | BPE (7)
by Cg BPE | FPE

We shall now state correctness properties of this strategy. Soundness means that
discovery of a simulation after transformation indeed witnesses the language inclusion
for the original automata. The second property—we call it adequacy—states that sim-
ulations that are already there are preserved by partial execution.

Theorem 4.3 (soundness of FPE/BPE) Let P and P’ be arbitrary subsets of the
state spaces of A and B, respectively. Each of the following implies L(A) C L(B).

1. Arpe,p EF Bgpe,p/

2. Agpe,p EB Brpe,p O
Theorem 4.4 (adequacy of FPE/BPE) Let P and P’ be arbitrary subsets of the
state spaces of A and B, respectively. We have:

1. ACr B = Arpe,r CF Bgpe,p/

2. ACg B = Agpe,p EB Brpe,p’ 0

To prove these two theorems, we should first prove the following lemma.
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Lemma 4.5 For each subset P, we have the following.
1. ACR Arpg,p 2. ArpEpEFr A 3. ACr Agpe,p 4- Asrep EB A

Proor. 1. Let A = (Q,%, M,«a, ) and Arpe.p = (Q,X,M',a/,8"). We define X €
§@xQ" a5 follows:

Xm,/ = Bz (x € P)a X:c,(y,a) = M(a)m,y (:E € P)v
Xz =1s (x¢P), Xuw =0s (otherwise)

Then, this X is a backward simulation matrix from A to Arpe,p
The items 2., 3. and 4. are proved similarly. O

Proor oF THEOREM 4.3. 1. From Proposition 4.5.1, A Cg Arpe,p Cr Bgpe,p Cg B.
Hence from Corollary 3.6, L(A) C L(Arpg,p) T L(Bgpg,p) T L(B) holds.
The item 2. is proved similarly. O

Proor oF THEOREM 4.4. 1. From Proposition 4.5.2, Arpe p Cr A Cg B T Bepe,pr-
Because C is transitive (see the diagram below where F' = 1 + X x (_)), this implies

Arpe,p Cr Bgpe,p-

Fx e rx oy
ORI PR
X —f—X —f—Y
SL C 4 C jt
{e}
The item 2. is proved similarly. ([l

We also show that a bigger parameter P yields a greater number of simulations. In
implementation, however, a bigger P generally gives us a bigger state space which slows
down search for a simulation. Hence we are in a trade-off situation.

Proposition 4.6 (monotonicity) Assume P; C P{ and P, C P;. We have:
1. Arpe,p, CF Bepe,r, = Arpe,p; CF Bare ) »
2. Agpe,p, CB Brpe,p, = Aspe,r; CB BrpE,pj - U

For § = S x or Spax,+, we can easily see that the complement problem of language
inclusion between finite S-weighted automata is semi-decidable. Since language inclu-
sion itself is undecidable [5, 30], language inclusion is not even semidecidable. Because
existence of a simulation matrix is decidable, it can be the case that however many times
we apply FPE or BPE, simulation matrices do not exist while language inclusion holds.
A concrete example is found in the following example.

Example 4.7 (limitation of FPE) The following Sy »-weighted automata exhibit L(A) T
L(B), but a forward simulation does not exist no matter how many times FPE is applied
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to A.
A B, o,
4 4
a,l ,\ a,l
1 O<—1LO o) -
@q a,11 aq

8
Wl
ﬁ
Wi

It is possible to describe FPE on the coalgebraic level of abstraction. Besides pro-
viding an insight into the essence of the construction, it also allows for the application
of FPE to quantitative tree automata. In contrast, the definition of BPE seems to rely
on the fact that we can “reverse” word automata, and hence is hard to generalize e.g. to
tree automata. See Section 7.

5. Simulation Matrices for Probabilistic Systems by & = & «

In this section we focus on S x-weighted automata which we identify as (purely)
probabilistic automata (cf. Example 2.2). In Section 5.1 our method by simulation ma-
trices is compared with other notions of probabilistic simulation; in Section 5.2 we discuss
our implementation.

5.1.  Other Simulation Notions for Probabilistic Systems

lang. incl. CrB
Example
xampe [19]
CoL
Cr or Cp
CHy

(i.e. by sim. matrices)

Various simulation notions have been introduced for probabilistic systems, either as a
behavioral order by itself or as a proof method for language inclusion. Jonsson and
Larsen’s one [25] (denoted by Cyy1,) is well-known; it is shown in [19] to be a special case
of Hughes and Jacobs’ coalgebraic notion of simulation [23] (Cgy), which in turn is a
special case of forward-backward (Kleisli) simulation (Cgg, Definition 2.12). Comparison
of all these notions (observed in [19]) is as depicted above; it follows from Theorem 2.13
that all these simulation notions are sound with respect to language inclusion.

We note that language inclusion between finite Sy «-weighted automata is known to
be undecidable [5] while language equivalence can be determined in polynomial time [27].
The former result can account for the fact that there does not seem to be many proof
methods for probabilistic/quantitative language inclusion. For example, probabilistic
stmulation in [2] is possibilistic simulation between systems with both probabilistic and
nondeterministic choice and not a quantitative notion like in the current study.

We also note that given finite-state Sy -weighted automata 4 and B, if A Cg B
or not is decidable: existence of a solution X of the linear constraints in Definition 3.4
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can be reduced to linear programming (LP) problems, and the latter are known to be
decidable. The same applies to Cg too.

Probabilistic systems are commonly modeled using the monad D (see (2))—with
an explicit normalization condition ) d(x) < l—instead of Ms, . However there
is no need to impose normalization on simulations: sometimes only “non-normalized”
simulation matrices are found and they are still sound. Here is such an example.

Example 5.1 The following Sy -weighted automata exhibit L(A) T L(B). Neither
forward nor backward Kleisli simulation (in the categorical sense of Definition 2.12) exists
between them as long as we represent the automata A and B as (D, 1+X X (_))-systems.
However Kleisli simulations (forward and backward) are found once we represent .4 and
B as (Mg, 1+ % x (_))-systems.

Indeed, the only matrix X that is a forward simulation (Definition 3.4) is X = (1 1),

2
normalization condition imposed on the subdistribution monad D.

and the only backward simulation matrix is X = (1> Neither of these satisfies the

5.2. Implementation, Experiments and Discussions

Our implementation consists of two components: + x-simand +x-PE.

e The program -+ Xx-sim (implemented in C++) computes if a forward or backward
simulation matrix X between S, «-weighted automata exists, and returns X if it
does exist. It first combines the constraints in Definition 3.4 into a single linear
inequality Az < b and solves it with a linear programming solver glpk [17]. We
note that the matrix A is sparse because of the way the different constraints in
Definition 3.4 are combined. It has n 4+ anm + m rows, nm columns and at most
2nm + a(n?m 4+ nm?) nonzero entries.

e The program + x-PE (implemented in OCaml) takes an automaton .4 and d € N as

input, and returns Arpg p (or Agpg,p, by choice). Here P is chosen, by heuristics,
d d

tobe P={z|z> -+ >V} (or P={z|e> .- =z}, respectively).

The two programs are alternately applied to the given automaton, for d = 1,2, ..., each
time incrementing the parameter d for +x-PE. The experiments were on a MacBook
Pro laptop with a Core i5 processor (2.6 GHz, 2 cores) and 16 GB RAM.
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param. | Ap As direction, time space
G S| #st. #tr. | #st.  F#tr. | |X| | fwd./bwd. | (sec) (GB)
2 8 578 1522 130 642 | 11 ApCrAs 1.02 0.30
ApJdpAs 1.00 0.30
2 10 | 1102 2982 | 202 1202 | 13 ApCrAs 5.37 1.04
ApdpAs 5.30 1.05
2 12 | 1874 5162 | 290 2018 | 15 ApCrAs 22.21 2.91
ApIpAs 21.99 2.94
2 14 | 2942 8206 | 394 3138 | 17 ApCrAs 76.71 6.86
ApIpAs 76.03 6.94
2 16 | 4354 12258 | 514 4610 | 19 ApCrAs | 232.67 | 13.01
ApdsAs | 231.33 | 13.20
3 8 | 1923 7107 | 243 2163 | 20 ApCrAs 25.51 3.33
ApJIpAs 25.35 3.36
3 10 | 3803 14323 | 383 4183 | 24 ApCrAs | 167.68 | 12.21
ApJdpAs | 166.86 | 12.27
4 6 | 1636 7468 196 1924 | 23 ApCrAs 17.58 2.61
ApIpAs 17.34 2.64
4 8 | 4052 19076 | 356 4580 | 29 ApCrAs | 210.09 | 13.13
ApdpAs | 21258 | 13.12

Table 1: Results for the grades protocol [27]

5.2.1. Grades Protocol

The grades protocol is introduced in [27] and is used there as a benchmark: the pro-
tocol and its specification are expressed as probabilistic programs P and S; they are then
translated into (purely) probabilistic automata Ap and As by a game semantics-based
tool APEX [28]. By establishing L(Ap) = L(As), the protocol is shown to exhibit the
same behaviors as the specification—hence is verified. The protocol has two parameters
G and S.

In our experiment we proved L(Ap) = L(As) by establishing two-way language inclu-
sion (E and J). The results are shown in Table. 1. For all the choices of parameters G
and S, our program + x-sim was able to establish, without applying +x-PE: Ap Cg Asg
(but not Cg) for the C direction; and Ap Jg As (but not Jg) for the 1 direction. In
the table, #st. and #tr. denote the numbers of states and transitions, respectively, and
|| is the size of the alphabet. All these numbers are determined by APEX.

The table indicates that space is a bigger problem for our approach than time. In [27]
four algorithms for checking language equivalence between S, »-weighted automata are
implemented and compared: two are deterministic [37, 12] and the other two are random-
ized [27]. These algorithms can process bigger problem instances (e.g. G = 2,5 = 100
in ca. 10 sec) and, in comparison, the results in Table 1 are far from impressive. Note
however that our algorithm is for language inclusion—an undecidable problem, unlike
language equivalence that is in P, see Section 5.1—and hence is more general.

5.2.2. Crowds Protocol
Our second experiment calls for checking language inclusion, making the algorithms
studied in [27] unapplicable. We verified some instances of the Crowds protocol [35]
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param. Ap As direction time space | d
n ¢ py | #st. #tr. | #st. #tr. B | fwd./bwd. (sec) | (GB)
5 1 2 7 44 7 56 18 | AprCrAs 0.10 [ 0.02 | 2

ApCpAs | 0.04 | 0.01 | 2
7T 1 3 9 88 9 118 26 | ApCrAs 0.59 | 0.14 | 2

ApCpAs | 0.05 | 0.01 | 2
10 2 I 12 224 12 280 | 54| ApCrAs | 4263 | 3.86 | 2

ApCpAs | 0.07 | 0.01 | 2
20 6 2| 22 1514 | 22 1696 | 238 | ApCrAs | T/O

ApCpAs | 084 | 0.20 | 2
30 10 2| 32 4732 32 5112 | 550 | ApCrds | S/O

ApCpAs | 617 | 144 | 2
40 14§ 42 10742 | 42 11392 | 990 | ApCrAs | S/O

ApCpAs | 30.70 | 6.07 | 2
50 17 2| 52 20504 | 52 21560 | 1494 | ApCrAs | S/O

ApCpAs | 102.89 | 13.64 | 2

Table 2: Results for the Crowds protocol

against a quantitative anonymity specification called probable innocence [29]. We used
a general trace-based verification method in [22] for probable innocence: language in-
clusion L(Ap) T L(As), from the model Ap of a protocol in question to Ap’s suitable
modification As, guarantees probable innocence.

The Crowds protocol has parameters n, ¢ and py. In fact, for this specific protocol,
a sufficient condition for probable innocence is known [35] (namely n > pfli L 73 (c+1));
we used parameters that satisfy this condition. We implemented a small program that
takes a choice of n,c,ps and generates an automaton Ap; it is then passed to another
program that generates As.

The results are in Table. 2. For each problem instance we tried both Cg and Cg.
The last column shows the final value of the parameter d for +x-PE—i.e. how many
times partial execution (Section 4) was applied.

The entry “S/O” designates that +x-PE was killed because of stack overflow caused
by an oversized automaton. “T/O” means that alternate application of +x-simand
+x-PEdid not terminate within a time limit (one hour).

We observe that backward simulation matrices were much faster to be found than
forward ones. This seems to result from the shapes of the automata for this specific
problem; after all it is an advantage of our forward and backward approach that we
can try two different directions and use the faster one. Space consumption seems again
serious.

6. Simulation Matrices for Spyax,+-Weighted Automata

In this section we discuss Spax,+-weighted automata, in which weights are understood
as (best-case) profit or (worst-case) cost (see Example 2.2). Such automata are studied
in [7] (called Sum-automata there). In fact we observe that their notion of simulation—
formulated in game-theoretic terms and hence called G-simulation here—coincides with
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the notion of forward simulation matrix. This observation—that is presented in Sec-
tion 6.1—follows from the game-theoretic characterization in [1] of linear inequalities in
Smax,+- In Section 6.2 our implementation is presented.

6.1. G-Simulation by Forward Simulation Matrices

In this section we restrict to finite-state automata. In this case we can dispose of the
weight oo, and have [—o0, 00) as the domain of weights (see Example 2.2).

What we shall call G-simulation is introduced in [7], and its soundness with respect
to weighted languages over infinite-length words X% — [—00,00) is proved there. Here
we adapt their definition to the current setting of finite-length words; the adaptation is
concerned with termination v'.

Definition 6.1 (Cg) Let A = (Qa,%, Ma,au,84) and B = (Qp, 2, Mg, ag, Sg) be
finite-state Smax,+-weighted automata. A finite simulation game from A to B is played
by two players called Challenger and Simulator: a strategy for Challenger is a pair
(p1 1= Qua, 11 (QaxQB)X(EXQaAxQp)* — 1+E><QA) of functions; and a strategy
for Simulator is a pair (,02 QA = QB, T2 (QaAXQB)X(EXQAXQB) " XEXQa — QB).

A pair (poaj ...anpn,qoai - ..ang,) of runs on A and B is called the outcome of
strategies (p1,71) and (p2,72) if:

e p1(e) = po and p2(po) = qo where e is the unique element of the domain of p;.

(
. 7'1( (o, q0)(a1,p1,q1) - - (ai,pi,qi)) = (@jt1,pit1) for each i € [0,n — 1].
i 72( Po,qo)(a1,p1,q1) - - (@i, pi, @), (ai+1,Pi+1)) = ¢i41 for each i € [0,n — 1].
(

e 71((po,q0)(a1,P1,q1) - - - (A Py Gn)) = V.

A strategy (p1, 1) for Challenger is winning if for any strategy (p2, 72) for Simulator, their

outcome (r1,r2) exists and it satisfies L(A)(r1) > L(B)(rz). Here the weight L(.A)(r) of

a run r is defined in the obvious way, exploiting the structure of the semiring Spax, +-
Finally, we write A Cg B if there is no winning strategy for Challenger.

Theorem 6.2 Let A and B be finite-state Syax +-weighted automata. Assume that A
has no trap states, that is, every state has a path to v' whose weight is not —oc. Then,

ACr B if and only if A Cg B.

The extra assumption can be easily enforced by eliminating trap states through backward
reachability check. This does not change the (finite) weighted language.

The proof of Theorem 6.2 is sketched as follows. We first reduce G-simulation (be-
tween the original automata A, B on finite words) to G-simulation Cg™**8 between Limavg
automata, the original setting in [7] with infinite words. This reduction (that is the first
equivalence below) allows us to exploit the characterization in [7] of G-simulation in
terms of a mean payoff game, yielding the second equivalence below.

A EG B «— ALimavg Egmavg BLimavg <= Max wins in ggﬁ_;mavg Blimavg - (8)
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Conversely, starting from A Cg B, we use the fundamental result in [1] that characterizes
feasibility of inequalities in Spax,+ in terms of mean payoff games.

ALCg B <= a certain linear inequality is feasible <= Max wins in Q}LB . (9

Finally, we observe that the mean payoff games gfmmvg,gumavg in (8) and QE,B in (9) are
in fact the same, establishing A Cg B if and only if A Cq B.

In what follows we introduce necessary definitions and lemmas, eventually leading to
the proof of Theorem 6.2.

Definition 6.3 (Limavg automaton) A Limavg automaton C = (Q, X, M, qo) consists
of a finite state space @, a finite alphabet ¥, transition matrices M : ¥ — [~00, 00)@*?,
and the initial state ¢y € Q.

For an infinite word w = agay ... € ¥, the automaton C assigns a value L(C)(w)

that is calculated by L(C)(w) = supy,,, .. cgeminfy_ oo Zfio M(ai)g; qiss-

Lemma 6.4 Given an Smax, 4 -weighted automaton C = (Q,%, M, «, 8), we define a Li-
mavg automaton Cleavg — (Qleavg’ Eleavg’ Mleavg’*) by
QLimavg _ Q + {*} ,
ylimave — 3 4 {7} +{!}, and
M(a),, (a €S2,y %)

Mleavg(a)%y — Qy (a - ’x_ *)
Ba (a=ly=x)
—00 (otherwise) .

Let A = (Qa, X, Ma,aa,64) and B = (@B, 2, M, as,88) be Smax +-weighted au-
tomata; assume further that A has no trap states. Then we have

ACg B ALimavg Egmavg BLimavg ) O

Intuitively, the automaton C-™Ma"& is obtained from C by connecting the initial and final
states of C. More concretely, we add a new state x that represents both the initial and
final state in C, add transitions from x to states in C according to the initial vector «,
and add transitions from states in C to x according to the final vector 5.

The proof of the lemma is technical and deferred to Appendix Appendix A.1. The
basic idea is as follows. A winning strategy for the (finite) game for A Cg B yields that
for the other (infinite) game, by repeating the strategy. The other direction is similar,
except that trap states call for special care.

We shall now describe the second equivalence in (8). The notion of mean payoff game
is from [13].

Definition 6.5 (mean payoff game) A weighted bipartite graph G = (Qmin, QMax, 41, £, )
consists of a set Qurin of states for Min, a set Qnax Of states for Max, the initial state

qr € Qumin, & set E = Qumin X Qmax + Qmax X Qmin of edges, and a weight function
v:E—R.
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A mean payoff game is a game played by two players Min and Max on a weighted
bipartite graph G. A strategy for Min is a function Tyin : (Qmin X @Max)™ X QMin — @Max
and a strategy for Max is a function Tyax @ (Qmin X @Max)™ — Qmin- An infinite run
Poqop1q1 - -- on G (here p; € Quin and ¢; € Qmax) is the outcome of strategies Ty and
TMax if po = qr and for any @ > 1, Tnin(Poqo - - - ¢i—1Pi) = ¢ and Tmin(Poqo - - - PiGi) = Piy1-
A strategy Taax for Max is winning if for any strategy 7yax for Min, their outcome

. . 1 N
rorirars ... satisfies liminfn o0 % D i, (fy(m, T¢+1)) > 0.

Lemma 6.6 ([7]) Let & = (Q¢,X, Mg, q2) and F = (Qr, %, Mr,q%) be Limavg au-
tomata. We have € Cg F if and only if Max wins in the mean payoff game Ge 7, where
the game gg,]: = (QMin; QMaxa qr, Ev ’Y) 18 deﬁned by

Qmin = Qe X QF QMax = Qe x QF X X, ar = (qg,4%) ,
E={((p.q), (0, q,0)) | Mg(a)p # —co} + {((p,q,0), (p,d)) | Mr(a)gqy # -0} ,
’Y((pv Q), (p/a q, CL)) = —M¢ (a)ZLP’ and 7((])’ q, (l), (pv ql)) = M}'(a)q,q’ . O

We turn to the equivalences in (9). The following proposition is interesting for its own
sake, characterizing Cg for Spax,+-weighted automata in terms of mean payoff games.
We crucially rely on a result in [1].

Proposition 6.7 For a pair of Smax, +-weighted automata A and B, there exists a mean
payoff game QRB such that: A Cg B if and only if Maz wins in gfw.

PROOF. Let A= (Qu4,X, Ma,an,84) and B = (@Qp,%, Mg, ag, f5). By Definition 3.4,

a forward simulation matrix from A to B is a matrix X € Sﬁfxff““ that satisfies

ag <apX ANVaeX. XMy(a) < Mg(a)X N XBa<PBB. (10)
The result in [1] reduces:

e existence of a nontrivial (i.e. not —oo) solution of a linear inequality Ax < Bx,
where A, B are matrices over Spax,+ and x is a column vector of variables, to

e a mean payoff game.

We therefore need to transform (10) into the format Ax < Bx. In particular, arq and
B on both ends of (10) should be taken care of.

We shall prove that: there exists a matrix X that satisfies (10), if and only if, there
exist 2, , € Smax,+ and X’ € SIBXQa that satisfy @, # —oo and

max,-+
Tysoq <apX' A VaeX. X'My(a) < Mp(a)X' AN X'Ba<zy:B5. (11)

Note here that z, ,a 4 denotes the vector a4 multiplied by the scalar x, .. Here “multi-
plication” is by the semiring multiplication of Spax +, that is, addition of real numbers.

Indeed, if X satisfying (10) exists, then z, , = 0 and X’ = X satisfy (11). Conversely,
if . » € Smax,+ (Where z, , # —00) and X’ € Sﬁfxff"‘ satisfy (11), then X € Sﬁfgf““
defined by X, , = thz,p — ., satisfies (10). Here —x, . denotes subtraction of the real
number x, ,. It is well-defined and constitutes the inverse of (semiring-)multiplication

by Z, ., since z, , # —o0.
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It is straightforward to translate (11) into the format Ax < Bx. Then applying the
result [1] yields the following mean payoff game, Max’s winning in which is equivalent to
the feasibility of (11), hence to that of (10).

The game is played on a graph (]f\’B = (QF s Q¥ aF , EF ) 4F), where

Qf/[in ={zus} +{2gp | 1 € QB,p € Qa},
Qhtax = QU+ 2 X Qs X Qa+ Qs
] = Tur
EF = BY + B3 where EY C Qfin X Qax: B2 € Qlpax X Qi and
Ef = {(@a0) | (@a)p # —00}} + {(2gp: (2,0, D")) | Ma(a)p, # —00}
+{(@g,p: @) | (Ba)p # —o0}
B3 ={(p,24p) | (aB)g # —00} +{((a,:p), 2¢ p) | Mp(a)q,q # —00}
+{(g,244) | (BB)g # —0},

F(x*mp) = —(aa)p, 'VF(wq,p’ (a,q,p") = —Ma(a)ppr,

gl VF(xq,pv‘I) = —(Ba)p
’YF(py xq,p) = (aB)CJa VF((aa97p)vxq/,p) = MB(a)q,q’a VF(Qa$*,*) = (ﬂB)q-
This concludes the proof. O

Finally, we bridge the rightmost conditions in (8-9) and prove Theorem 6.2.

PROOF OF THEOREM 6.2. Let A= (Q4,%, Ma,a4,84) and B = (Qp,%, Mg, ag, B5).

By Lemma 6.4 and Lemma 6.6, A Cg B is equivalent to existence of a winning strat—
egy for Max in the mean payoff game played on a graph gjum’gum =(Q%,,,Q%...,¢%, EG v9).
It is defined by

Qfiin = ({x} + Q) x ({x} + Qp)
QMaX ({x} + Q) x ({(x} + Q) x {7} + {1} + ),
= (x

),
E= El + E2G s.t. Efr C Qﬁin X Qﬁax’EQG g Qﬁax X Qﬁin and

EF = {((x%), (p.% 7)) | (aa)p # —00}} + {((p,0), (¢, ¢,0)) | Ma(a)p, # —00}
(P 0), (%0, )) [ (Ba)p # —o0}

ES ={((p.% 7). (0,9) | (ap)q # —00} + {((p. 0, 0), (p.q)) | Mp(a)qq # —o0}
+{((x0,1), (%) [ (B)g # =0},

’YG((*a *)a (p> *, ?)) = 7(01./4);[77 PYG((pa q)’ (p/7 q, CL)) :7M.A(a)P»P’37G((p7 Q)a (*7 q, ')) = 7(ﬁA)P
(%) (0, 0)=(aB)g, Y0, 0,0), (,d)=Ms(a)gqs YE (50,1, (x,%)=(B5)q -

It is not hard to see that the last graph gj'mavg Blimavg 1S equivalent to Q}Z,B in Proposi-
tion 6.7: the former has extra states but they are all unreachable. O

Remark 6.8 (complexity) The decision problem of mean payoff games is known to
be in NP N co-NP [39]; it has a pseudo polynomial-time algorithm, too [39]. By [1]
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this problem is equivalent to the feasibility problem of linear inequalities in Spax 4. For
the latter problem, the algorithm proposed in [6] (for solving linear equalities) can be
utilized; this algorithm is shown in [4] to be superpolynomial. These results give upper
bounds for the complexity of Cg and Cg, by Theorem 6.2 and the subsequent lemmas.

Similarly to Sy «-weighted automata, language inclusion between Spax,-weighted
automata is known to be undecidable [30]. We note that, by Theorem 6.2, applying FPE
or BPE (Section 4) increases the likelihood of C¢ (in the sense of Theorem 4.4). We addi-
tionally note that, by exploiting symmetry of forward and backward simulation matrices
(Remark 3.7), we could define “backward G-simulation” as a variation of Definition 6.1.

6.2. Implementation, Experiments and Discussions

We implemented two programs: max-+-sim and max+-PE.

e We have seen that finding simulation matrices can be reduced to some problems
that have known algorithms. Since we did not find actual software available, we
implemented (in C++) the algorithm in [6] (for solving Smax,+-linear equalities) as
part of the program max+-sim. It transforms the constraints in Definition 3.4 into
an inequality Ax < Bx, which in turn is made into a linear equality A’x’ = B'x’
by adding slack variables. The last equality is solved by the algorithm in [6].

e max+-PEis as in Section 5. It simply uses the whole state space as the parameter
P.

Experiments were done on a MacBook Pro laptop with a Core i5 processor (2.6 GHz,
2 cores) and 16 GB RAM. There we faced a difficulty of finding a benchmark example:
although small examples are not hard to come up with by human efforts, we could not
find a good example that has parameters (like G, .S in Table 1) and allows for experiments
with problem instances of a varying size.

We therefore ran max+-sim for:

e the problem if A Cg A for randomly generated A, and
e the problem if A Cg B for randomly generated A, B,

and measured time and memory consumption. Although the answers are known by
construction (positive for the former, and almost surely negative for the latter), actual
calculation via linear inequality constraints gives us an idea about resource consumption
of our simulation-based method when it is applied to real-world problems.

The outcome is as shown in Figure 3. The parameter p is the probability with which
an a-transition exists given a source state, a target state, and a character a € X. Its
weight is chosen from {0,1,...,16} subject to the uniform distribution. “Same” means
checking A Cg A and “difference” means checking A Cg B (see above). The two problem
settings resulted in comparable performance.

We observe that space consumption is not so big a problem as in the S x case
(Section 5.2). Somehow unexpectedly, there is no big performance gap between the
sparse case (p = 0.1) and the dense case (p = 0.9); in fact the sparse case consumes
slightly more memory. Consumption of both time and space grows faster than linearly,
which poses a question about the scalability of our approach. That said, our current
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Figure 3: Time and max space consumption for max--sim

implementation of the algorithm in [6] leaves a lot of room for further optimization: one
possibility is use of dynamic programming (DP). After all, it is an advantage of our
approach that a simulation problem is reduced to linear inequality constraints, a subject
of extensive research efforts (cf. Section 5.1 and Section 6.1).

7. Matrix Simulation for Polynomial Functors

In the previous sections, we concentrated our attention on matrix simulations for
weighted (word) automata. They are special cases of (T, F')-systems where T is a multiset
monad over some semiring and F = 14X x (_ ). However, according to the general theory
developed in [21, 18], Kleisli simulation can be defined and its soundness can be proved
for more general (T, F')-systems.

In this section, we generalize the functor F' from 1 + ¥ X (_) (that we have been
using) to an arbitrary polynomial functor:

Fou= ()| AxE|]]FE (12)
i€l

Such a generalized (T, F)-system—where T is again a multiset monad—represents a
system called a weighted tree automaton. Here, the choice of F' determines the shape of
trees to which the automaton assigns a weight.

This section is organized as follows. In Section 7.1 we build on [18] and introduce the
notion of forward partial execution (FPE) on the coalgebraic level of abstraction. We
also prove its correctness (soundness and adequacy); the overall coalgebraic theory (i.e.
the one in [18] augmented with FPE) generalizes the one in Section 4 for weighted (word)
automata. The abstract theory thus obtained is applied in Section 7.2 to weighted tree
automata—i.e. (T, F)-systems with T being a multiset monad and F being a polyno-
mial functor. Much like for word automata, Kleisli simulations for tree automata are
represented by matrices, subject however to nonlinear inequality constraints. Finally in
Section 7.3 our proof-of-concept implementation is presented.
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7.1. Forward Partial Ezecution, Categorically

Definition 7.1 (FPE, categorically) Forward partial execution (FPE) for (T, F)-systems

is a transformation that takes: a (T, F)-system X = (X, s: {o}+ X, ¢: X+ FX) and
a parameter X7 C X as input; and returns a (7', F')-system Xrpg, x, -

The outcome Xrpg x, is defined as follows. Let c¢; and ¢y be the domain restrictions
of ¢ to X7 and Xs, respectively, via the coprojections x; : X;+ X. That is explicitly:

cg = cOkr : X1 FX and ¢ = cOky : Xob FX |

where ©® denotes composition of Kleisli arrows (Definition 2.7). We define Xs = X \ X3
(hence X = Xy + X»); the system Xrpg x, is now given by

F(X)+ X,
(o} — 1 X1 + X2 TN p(X) + X

id,c: F(e1+id
F(X)+ X» id,e2] (c1+id)

XepE X, =

F(X1 + Xa) F(F(X)+ Xa)

Here F: K{(T) — K{(T) is the canonical lifting of F' : Sets — Sets (see [24] for a
concrete definition).

For the last categorical generalization of FPE, we shall establish its correctness—
soundness, adequacy and monotonicity—much like in Section 4.3.

Theorem 7.2 (soundness of categorical FPE) Let Xy and Yy be arbitrary subsets
of the state spaces of X and Y, respectively. Each of the following implies tr(X) C tr(Y).

1. Xrpe,x, Cr YV
2. X Cg YrrE,y, O

Theorem 7.3 (adequacy of categorical FPE) Let X; and Yy be arbitrary subsets of
the state spaces of X and ), respectively. We have:

1. YXCr Y = Arpex, Cr YV
2. XCg Y = XL VrrEyy O

The last two theorems are immediate consequences of the following lemma. The last
is a categorical generalization of Lemma 4.5.

Lemma 7.4 For each subset Xy of the state space of X, we have:
1. X Ep AFrpe x,
2. XrPEx, Cr X

PrOOF. 1. We define g : X7 + Xo—+ F(X) + X3 by g = ¢1 + id. Then we have

F( ) F(Cl + ld) ® [Cl, CQ]
F(Cl + ld) [ld CQ] @ (61 + ld)
( (c1+id) ® 1d,02]) Og,
goOs=(c+id)©s.
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Note here that F(c; + id) ® [id, cz] is the dynamics of the system Xrpe x,. The above
equalities witness that ¢ indeed satisfies the inequalities required in the definition of
backward Kleisli simulation, a generalization of Definition 2.12 that is found in [18].
Hence g is a backward simulation from X to Xppg.

The item 2. is proved similarly: the same g that we used in the proof of the item 1.
is shown to be a forward simulation from Xgpg to X. [l

Finally, we present a monotonicity result. It generalizes Proposition 4.6.

Proposition 7.5 (monotonicity of categorical FPE) Assume X; C X| and Xy C
X4, We have:

L. Xepe,x, CF YV = Xepex; CF YV
2. XCg Vrre,y, = X CB Vrpe vy O

Categorical formalization of BPE is still open—it seems that BPE in Section 4 exists
somewhat coincidentally, for the specific functor F' =1+ % x (_) for which an opposite
automaton is canonically defined (cf. Remark 3.7).

7.2. Matrixz Simulations for Weighted Tree Automata

Here we exploit the general theory we have just obtained (by augmenting [18] with
FPE). We shall apply it to a class of systems that is more general than what we have been
dealing with in the previous sections (namely weighted (word) automata). Specifically,
we use the same monads for 7" but allow arbitrary polynomial functors for F. Such
systems are naturally identified with weighted tree automata, where a finite-depth tree,
instead of a finite word, gets a weight assigned.

We first define the notion of tree.

Definition 7.6 A ranked alphabet is a family ¥ = (3,,),en of countable sets that are
indexed by natural numbers called arities.

The set Tree(X) of (finite-depth) ¢rees over a ranked alphabet X is defined in the
obvious way. Concretely, Tree(X) is the smallest set such that: for each a € %,
to,t1,...,tn—1 € Tree(X) implies a(to, t1,...,tn—1) € Tree(X).

We introduce weighted tree automata, firstly in concrete terms.

Definition 7.7 (S-weighted tree automaton, weighted tree language) Let S =
(S,+s,0s, Xs, 1s,C) be a commutative cppo-semiring. An S-weighted tree automaton is
a quadruple A = (Q, X, M, «) consisting of a countable state space @, a ranked alphabet
¥ = (¥,)nen, transition matrices M(a) € S*?" for each a € ¥,,, and the initial row
vector a € S9.

An S-weighted tree automaton A = (Q,3, M, «) yields a weighted tree language
L(A) : Tree(X) — S. It is defined by L(A)(t) = « - ®(t)—the product of a row vector «
and a column vector ®(t)—where ® : Tree(X) — S? is defined as follows, by induction
on the depth of trees.

®(alto, tr,... tho1)) = M(a)(P(to) @ B(t1) ® - @ P(ty—1))  for each a € ;.
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The final column vector § in Definition 2.3 do not appear here; transition matrices M (a)
for a € ¥y play the corresponding role.

Language inclusion between two S-weighted tree automata is defined similarly to the
case with S-weighted automata.

Definition 7.8 (language inclusion) Let A and B be S-weighted tree automata. We
say the language of A is included in the language of B and write L(A) C L(B) if, for all
t € Tree(X), L(A)(t) T L(B)(t).

Similarly to S-weighted (word) automata (see Proposition 2.6), S-weighted tree au-
tomata are instances of (T, F')-systems.

Definition 7.9 (the functor Fy) It is standard that a ranked alphabet X gives rise to
a polynomial functor. It is given as follows and is denoted by FY.

Iy = H Y, x ()" : Sets — Sets .
neN

Proposition 7.10 (weighted tree automata as (7, F')-systems) Let S be a com-
mutative cppo-semiring. An S-weighted tree automaton A = (Q, (X,)nen, M, @) gives
rise to an (./\/lg7 Fy)-system X4 = (Q, sa,ca) defined as follows. The function s4: {e} —
MsQ is given by sa(e)(z) = ay; and ca: Q — Ms(FxQ) is given by

CA('r) (a’ (yO, Yiyenns y”—l)) = M(a)ﬂiv(yoyylwqyn—l)
where a € X,,. [l

The last identification allows us to apply the general results in [18, 21] to weighted
tree automata. One of the results characterizes coalgebraic trace semantics by a final
coalgebra in the Kleisli category K¢(Ms); it is easy to see that, for weighted tree au-
tomata, coalgebraic trace semantics is nothing but the weighted tree language concretely
defined in Definition 7.7.

The notions of forward and backward Kleisli simulation is defined in [18] in categorical
terms; and a (categorical) proof of their soundness against coalgebraic trace semantics
is presented. Much like in the previous sections, we shall now characterize Kleisli sim-
ulations for weighted tree automata by matrices; their soundness then follows from the
above mentioned categorical proof.

The following lemma is a generalization of Lemma 3.3. It introduces the matrix
representation of the action of the functor Fy on Kleisli arrows.

Lemma 7.11 Let f : A+ B be a Kleisli arrow in K{(Ms) and My be its matric
representation (see Definition 3.1). Then the malriz representation Mgf of the arrow

Fx.f is given by
Pls, @ Mp™) e SUBAxUIRE). (13)
neN

Here, for each n € N and X,, € S4*Bn (@, .y Xn) € SWUnen An)x(Unen Br) s defined

b
(] (@ Xn) _ {(Xn)z,y (x € Ap,y € By)

iyt z,y 0 (otherwise)
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that is a generalization of the binary operation ®. The matriz X" is defined by

X" =XX®  -0X . O

n

.. . . Rn ®n XN
We note that the matrix in (13) is equivalently expressed as €, o ( Mo M @& My )

[Zn]
In what follows, Definition 7.12 and Theorem 7.13 are parallel to Definition 3.4 and
Corollary 3.6, respectively.

Definition 7.12 (simulation matrix) Let A = (Q4,%, M4, a4)and B = (Qp,%, Mg, ag)
be S-weighted tree automata.

e A matrix X € S¥5%Q4 is a forward simulation matriz from A to B if

asCagX , and X-My(a) C Mp(a) - (X®™) foranyn € Nanda € X,.

e A matrix X € S94%XQs ig a backward simulation matriz from A to B if

asX Cap, and My(a) (X®")C X-Mpg(a) foranyn € Nanda€X,.

Similarly to the case of semiring weighted automata, we write A Cg B and A Cg B
if there exists a forward and backward matrix simulation from A to B, respectively.

Theorem 7.13 (soundness) Let A and B be S-weighted tree automata. Existence of a
forward or backward simulation matrix from A to B—i.e. A Cg B or A Cg B—witnesses
language inclusion L(A) C L(B).

PrROOF. Simulation matrices in Definition 7.12 coincide with Kleisli simulations in the
general theory of [18]. The latter is sound with respect to coalgebraic trace semantics [18,
21]; and the last coincides with the weighted tree language in Definition 7.7. O

We note that, differently from matrix simulations for semiring weighted automata
(Definition 3.4), the inequalities in Definition 7.12 are not necessarily linear. For example,

This nonlinearity poses an algorithmic challenge: many known algorithms for feasibility
of inequalities are restricted to linear ones. See Section 7.3 for further discussions.

In the remainder of this section, we present a concrete definition of forward partial
execution for weighted tree automata. It is an instance of Definition 7.1. Its soundness,
adequacy and monotonicity follow from the general results in Section 7.1.
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Definition 7.14 (FPE for weighted tree automata) Forward partial execution (FPE)
is transformation of a weighted tree automata such that: given an S-weighted tree au-
tomaton A = (Q,%, M, «) where ¥ = (¥,,),, and a parameter P C @, the resulting
automaton Arpg, p = (Q', X, M’, ) is as follows. It has a state space

Q/ = {(aa (y07y1a o ayn—l)) |a € Ena dz € P'M(a)x,(yo,yl,...,yn,l) 7£ OS} + (Q \ P) )
(14)

that replaces each state € P with its one-step behaviors (a, (yo,¥y1,--.,Yn—1)) as new
states. As for the transition matrices M’,

n—1
M’ = Ma; i i
(a)(av(ro,--.,mn_l))»((ao,(yS,--~7y9no,1))7~--,(an_17(y6“17---,y1$;1_1,1))) H) (al)mi’(ym""ymi_l)
Ml(a)(av(xowl,-uﬂcn—l))v(ﬂﬂo,ﬁcl7<~-»$n—1) =1s
M/
(a 2, (00, (U800 1) (am 1,5 1)

~ (M) @Mw))w,(

M'(a)a,y = M(a)z,y

-1 —1
(y8,...,y2n071),...,(y3 7...,y;nilil))

where a € ¥, a; € ¥y, and x,xi,y;- € Q. For all the other cases we define M'(a),,, =
0s. As for the initial vector o/, the definition is shown below.

O/(a,(a:g ..... Tn_1)) (aM(a))(xOv-wmn—l) ’ O‘fr; = Qg

We do not yet have a good definition of backward partial execution for weighted tree
automata, probably for the reason that we argued at the end of Section 7.1.

7.8. Implementation, Experiments and Discussions

We implemented, in OCaml, a program -+ X-treesim that searches for forward and
backward simulation matrices between two given S .-weighted tree automata. It first
combines the constraints in Definition 7.12 into a system of (possibly nonlinear) poly-
nomial inequalities, and tries to solve it with the FindInstance function of Mathemat-
ica [32].

We discuss the size of the system of inequalities to be solved. Assume that our goal
is to establish A Cg B. Let n be the number of states of A and m be that of B. (In
case our goal is A Cg B we swap n and m.) Let d be the maximum arity in the ranked
alphabet . Then the number of inequality constraints is at most Y, o || -m - n*; and
the degree of each polynomial inequality constraint is at most d.

Experiments were done on a MacBook Pro laptop with a Core i5 processor (2.6 GHz,
2 cores) and 16 GB RAM. In our experiments we let the program +x-treesim try to
establish A Cg A (or A Cg A) for a randomly generated tree automaton A.

Our current implementation turned out to be far from scalable: for the maximum
arity d = 2,3 and an automaton A with several states and transitions, the program
barely manages to establish the goal; it becomes hopeless for bigger problem instances.
This is in a sense as we expected: use of a general purpose algorithm like FindInstance
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in Mathematica would never be a performance advantage; in fact, FindInstance tends
to abort after tens of seconds, consuming a few MBs of memory, for reasons that we
cannot know. An obvious alternative is to use special purpose algorithms—Iike the ones
that are known in the field of convex optimization. This is left as future work.

8. Related Work

(Bi)simulation notions and (weighted) language equivalence/inclusion for quantita-
tive systems have been an active research topic in the field of formal verification and
concurrency. Some related work in this direction has already discussed in the earlier
sections, including [25, 7, 2, 27, 5]. Moreover, works like [23, 18, 22, 36] take a categori-
cal/coalgebraic approach.

Use of matrices as witnesses of quantitative language equivalence/inclusion is in fact
not uncommon. The rest of this section is devoted to the discussion of such works, and
their comparison to the current work. Overall, the current work is distinguished in the
following aspects.

e The categorical backend of Kleisli simulation that allows clean theoretical develop-
ments. The latter include: the duality between forward and backward simulation;
a general soundness proof; and generalization to tree automata (Section 7).

e Our simulations witness language inclusion, a problem that is harder than language
equivalence (see Section 5.1).

e Forward/backward partial execution (Section 4) that enhances effectivity of the
approach by matrix simulations.

e Actual implementation of the algorithms and experiments.

In [3], a notion called conjugacy between semiring weighted (word) automata is in-
troduced. It is an equivalence notion—it is a special case of Cg in the current work,
with the inequalities in Definition 3.4 replaced with equalities. The notion of conjugacy
comes with “completeness”: assuming that the weight semiring is so-called a division
ring, two automata are equivalent if and only if they are connected by some finite chain
of conjugacies.

The notion of simulation in [14] is essentially the same as conjugacy in [3] (it is
therefore an equivalence notion unlike the name). A simulation in [14] witnesses language
equivalence. In [14] a semiring S is called proper when: two S-weighted automata are
language equivalent if and only if they are connected by a finite chain of simulations.
The authors go on to study proper semirings: they present a necessary condition for a
semiring to be proper, and an example that is not proper (namely Smax,+)-

The results in [14] have been extended to weighted tree automata in [15]. Their sim-
ulation is a special case of ours (Definition 7.12) where inequalities are replaced with
equalities; soundness with respect to tree language equivalence is proved; and complete-
ness of a combined simulation (with an intermediate automaton, much like in our Cgg
and Cpg) is shown, under some assumptions.

Unlike the work discussed in the above, the works [8, 9, 11] study simulations given
by matrices in the context of fuzzy automata. Here simulation is an oriented notion and
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witnesses language inclusion (instead of language equivalence); its definition is essentially
the same as ours (Definition 3.4). A principal difference between [8] and the current work
is in the domain of weights: in [8] it is a structure called residuated lattice.

Algorithmic aspects of the simulation notion in [8] is pursued in [9], where an algo-
rithm for computing the greatest simulation is presented. Their algorithm works for a
general residuated lattice, unlike ours where linear inequalities are solved in semiring-
specific manners.

These results in [8, 9] are adapted in [11] to automata weighted in a semiring (instead
of a residuated lattice)—although some assumptions are imposed on a semiring and this
makes the semiring S » unqualified.

9. Conclusions and Future Work

We introduced simulation matrices for weighted automata. While they are instances
of (categorical) Kleisli simulations, their concrete presentation by matrices and linear in-
equalities yields concrete algorithms for simulation-based quantitative verification. Gen-
eralization to weighted tree automata follows immediately from the categorical theory
behind, too, although linearity is lost in general.

There are some directions in which the current matrix-based simulation framework
can be further generalized. Our idea of & «-weighted automata was that they are
probabilistic systems; when we wish to accommodate uncountable state spaces (for which
discrete probabilities are hardly meaningful), we would need suitable measure theoretic
machinery. In the context of the current work of traces and simulations, this will involve
replacing Sets with Meas (the category of measurable sets and measurable functions),
and matrix multiplication with Lebesgue integration. Trace semantics for probabilistic
automata in Meas has been studied e.g. in [10, 26].

In fact, use of Meas as a base category becomes necessary if we consider infinite trace
semantics—i.e. a language of accepted infinite words—even if a state space is countable
(i.e. discrete). This is simply because the set ¥* of all infinite words is not countable.
We are currently working on the soundness of matrix simulations against languages of
infinite words; details will be presented in another venue.

Further generalization of the current theory will be concerned with acceptance con-
ditions that are unique to infinite words. An example is the Biichi acceptance condition,
for which a simulation notion (for the nondeterministic setting) has been studied in [16].

Finally, further optimization of our implementation is obvious future work.
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Appendix A. Omitted Proofs

Appendiz A.1. Proof of Lem. 6.4

PROOF. We prove the contraposition of each direction.

Assume that A Zg B, i.e. there exists a winning strategy (p1,71) for Challenger in
a finite simulation game played on A and B. Then a strategy that repeats p; and 71 is
a winning strategy for Challenger in an infinite simulation game played on A28 and
BLimave  Hepce ALimave ZlémBVg Blimavg

Conversely, assume A-mave Zrlémavg Blimave  Then there exists a winning strategy 7
for Challenger in an infinite simulation game played on AY™2v& and BYmave, By [13],
without loss of generality, we may assume that 77° is a positional strategy; i.e. the value
of 77°((po, qo)(a1,p1,q1) - - - (@i, pi, i) only depends on p; and g;.

One might hope to use 77° itself as Challenger’s winning strategy for the finite game
for A Cg B. This does not work in general, since a resulting run may not come back to *.
Modification of 77° to force to visit x may make the strategy less advantageous. We shall
show that such modification is nevertheless feasible, by finding an upper bound r for “the
disadvantage that results from visiting +.” In the infinite game for ALmave Cmave plimave
a winning strategy can always additionally “save” the advantage r; and it will be spent
to visit *.

To each x € @4 we shall choose and assign an exit path mw,. Specifically, by the
assumption that A has no trap states, each state x € @4 has a finite path m, =
xbiuybs ... byuy, in A that “reaches the final state,” that is, the path satisfies

MA(bl)x,ul + MA(bQ)'ul,uz +ee MA(bn)umfl,um + (ﬁA)um # —00 .

Within the path 7, the advantages that Simulator can make are bounded: this fol-
lows from the assumptions that no weight in B is oo, and that B is finite state (so
that there are only finitely many choices of an initial state). Since there are only
finitely many * € @4, we can take a global upper bound r € R. To summarize,
the real number r is chosen so that: for each x € @4, for the choice of an exit
path mp = xby 1 Uz,1 022 - by (e) Uz m(x) @S described above, and for each path m =
Ybe1y1be2 - by m(a) Ym(e) in B on the same word by 1 b2 - .. by m(a), We have

MA(bzﬁl)IvuI,l + MA(bxvz)uIslﬁuiEﬂ +o M'A(brvm(r))uw,m(z)*l7uz‘m(m> + (ﬁA)uz,m(z) +r
> MB(bx,l)y,yl + MB(bx,Z)yl,yz +oeet MB(bz,m(w))ymmfl,ym(z) + (BB)yMz) :

(A1)

Using this » € R (“an upper bound for the cost of visiting x”), we shall construct

a strategy (p) : 1 = Qa7 : (QaA X Qp) X (Ex QaxQp)* - 1+XxQu) for
Challenger in the finite simulation game for A Cg B as follows. For a pair of runs

R = (poa ...a;pi,qoa ... a;q;) on A and B, we define the accumulated weights Sﬁ and
SE by

Sﬁ = (O‘A)P0+MA(Q1)F07P1 +- '+M-A(ai)m—1,pi and Sg = (aB)qo+MB(a1)q0,Q1+’ ’ '+M3(ai)qi—1,¢h .

While S < SE + r (i.e. the saving is not enough for the cost of visiting x), p} and 7{
are defined as follows. They do essentially the same thing as 77° does, except that 74
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terminates when « is visited.
pi(e) = 77°((%, %))
1 ((po, q0) (a1, p1,q1) - - - (as, i, 4i))

v (Tfo((p07QO)(a1,p1,Q1) e (ai,pi,Qi)) = (!,*))
Tfo((pm q)(a1,p1,q1) - .- (@i, pis qi)) (otherwise).

(A.2)
Assume that S% > SE 4 r is satisfied at a certain stage, say at the state p, € Q4 for
the first time. After that, 7{ is defined for each 1 < j < m(p,,) by:

T{((Poa QO)(alapla (J1) oo (anvpnv Qn)(bpn,laupn,lvyl) e (bpn,ja Up,, .55 yj))

(bp.,,j+15 Up,, j+1) (J < m(pn)) (A-3)
v (.7 = m(pn))
where 7, = pn by, 1Up, 10p, 2 -+ Dy m(pn) Up,m(pn) 1S the exit path for p, that we have
fixed in the above. Here 7 is headed to the exit along ), , no matter what Simulator’s
move y; is.

It remains to show that the strategy (p),7{) of Challenger’s is winning in the finite
game for A Cg B. In the case where the clause (A.3) is never invoked, we must have
that Tfo((po, q)(a1,p1,q1) - - (ai,pi,qi)) = (!, %) holds for some i. At such ¢ Challenger
must have an accumulated weight that is strictly bigger than Simulator does: by the
assumption that 77° is positional, the strategy 70° will just repeat what it has done, and
it will not win unless it is winning so far.

Finally, in the case where the clause (A.3) is invoked, the advantage that Simulator
makes between the time n 4+ 1 and n 4+ m(p,,) is at most by the definition of r. This
does not eat up the “saving” r.

Therefore we have shown that A Zg B. This concludes the proof. O
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