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Abstract. Coalgebras are categorical presentations of state-based systémns. In
vestigating parallel composition of coalgebras (realizaogcurrency, we ob-
serve that the same algebraic theory is interpreted in two different deriram
nested manner, namely: in the category of coalgebras, and in the dalglebra
as an object in it. This phenomenon is what Baez and Dolan have called-the
crocosm principlea prototypical example of which is “a monoid in a monoidal
category.” In this paper we obtain a formalization of the microcosm priacip
in which such a nested model is expressed categorically as a suitableuaal na
transformation. An application of this account is a general compositiomabtylt
which supports modular verification of complex systems.

1 Introduction

Design of systems withoncurrencyis nowadays one of the mainstream challenges in
computer science [19]. Concurrency is everywhere: withitibernet being the biggest
example and multi-core processors the smallest; also in@tag component-based
architecture of a complex system its components collabdraf concurrent manner.
However, numerous difficulties have been identified in ggttoncurrency right. For
example, a system’s exponentially growing complexity i® @fi the main obstacles.
One way to cope with it is amodularverification method in which correctness of the
whole systenC; || --- || C, is established using correctness of each compofient
Compositionality—meaning that the behavior 6f || D is determined by the behavior
of C and that ofD—is an essential property for such a modular method to work.

Coalgebras as systemd his paper is a starting point of our research program ainhed a
better understanding of the mathematical nature of coroay: In its course we shall
usecoalgebrasas presentations of systems to be run in parallel. The usmatdebras as
an appropriate abstract model of state-based systemséasingly established [11,26];
the notion’s mathematical simplicity and clarity provide with a sound foundation
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for our exploration. The following table summarizes howriedjents of the theory of
systems are presented as coalgebraic constructs.

I system | behavior-preserving mdp  behavior
morphism of coalgebras by coinduction
FX rf FX—--->FZ
coalgebraically| coalgebra Fg ? Fﬂ\Y N final P @)
X X—F7Y Xﬁb:h(;)éz

This view of “coalgebras as systems” has been successfpjilieal in the category
Sets of sets and functions, in which case the word “behavior” inréfers (roughly)
to bisimilarity. Our recent work [5, 6] has shown that “belta¥ can also refer to trace
semantics by moving frorBets to a suitable Kleisli category.

Compositionality in coalgebras We start with the following question: what is “com-
positionality” in this coalgebraic setting? Conventidpalompositionality is expressed
as:C ~ C'andD ~ D' impliesC | D ~ C’ || D', where the relation~ denotes
the behavioral equivalence of interest. If this is the caserélation~ is said to be a
congruencewith its oft-heard instance being “bisimilarity is a congnce.”

When we interpret “behavior” in compositionality as the gmdiraic behavior in-
duced by coinduction (see (1)), the following equation cematural as a coalgebraic
presentation of compositionality.

FX || FY FX FY
beh( ot ‘ dr ) = beh( ct ) beh( dr ) 2
X Y X Y

But a closer look reveals that the two “parallel compositerators’| in the equation
have in fact different types: the first o@oalg, x Coalg, — Coalg; combines
systems (as coalgebras) and the secondbreZ — Z combines behavior (as states
of the final coalgebra).Moreover, the two domains are actually nested: the latter on
Z = FZ is an object of the former on€oalg ..

The microcosm principle What we have just observed is one instance—probably the
first one explicitly claimed in computer science—of timécrocosm principleas it is
called by Baez and Dolan [1]. It refers to a phenomenon tleaséme algebraic theory
(or algebraic “specification,” consisting of operationsl &gjuations) is interpreted twice

in a nested manner, once in a categ8rand the other time in its object € C. This

is not something very unusual, because “a monoid in a moho&eagory” constitutes

5 At this stage the presentation remains sloppy for the sake of simplicity. iratechnical
sections the first composition operator will be denoted&yyand the second composition
operator will have the typ€ ® Z — Zinstead ofZ x Z — Z.



a prototypical example.

monoidal categonf | | monoidX € C
®:CxC—C multiplication XX 54X
IecC unit JERND'¢
X2XRX<X
[@X2X=X®Il unit law v~ ®)
X
o XX®@X+X®X

XY ®2)=2(X®Y)® Z|associativity la v +
XX —X

Notice here that the outer operatignappears in the formulation of the inner operation
1. Moreover, to be precise, in the inner “equations” the oigemorphisms should be
presentin suitable places. Hence this monoid example demades that, in such nested
algebraic structures, the inner structure depends on ttez. &What is a mathematically
precise formalization of such nested models? Answerirgyghéestion is a main goal of
this paper.

Such a formalization has been done in [1] when algebraicitres are specified
in the form of opetopesHere instead we shall formalize the microcosm principle fo
Lawvere theorie$18], whose role as categorical representation of algelttaories
has been recognized in theoretical computer science.

As it turns out, our formalization looks like the situation the
right. HerelL is a category (a Lawvere theory) representing an alge-
braic theory; an outer modél is a product-preserving functor; and, *X@AT
an inner modelX is a lax natural transformation. The whole setting
is 2-categorical: 2-categories (categories in categpsieive as an appropriate basis for
the microcosm principle (algebras in algebras).

Applications to coalgebras: parallel composition viasync The categorical account
we have sketched above shall be applied to our original sureabout parallel com-
position of coalgebras. As a main application we progeaeric compositionality the-
orem For an arbitrary algebraic theofly, compositionality like (2) is formulated as
follows: the “behavior” functotbeh : Coalg, — C/Z via coinduction preserves an
L-structure. This general form of compositionality holdsGf has anlL-structure and
F : C — C lax-preserves th&-structure.

Turning back to the original setting of (2), these generabagptions read roughly
as follows: the base categofyhas a binary operatiofft and the endofunctaf comes
with a natural transformatiosync : FX || FY — F(X || Y). Essentially, thisync is
what lifts || on C to || on Coalg,, hence “parallel composition viginc.” It is called a
synchronizatiorbecause it specifies the way two systems synchronize with @éher.
In fact, for a fixed functot#' there can be different choices ©fnc (such as CSP-style
vs. CCS-style), which in turn yield different “parallel cpwsition” operators on the

categoryCoalg ..

Related work Our interest is pretty similar to that of studiestoélgebraic structures
in computer science (such as [3,12,14-16, 27]), in the Shaseve are also concerned



about algebraic structures on coalgebras as systems. @entéframework is distin-
guished in the following aspects.

First, we handlesquationsin an algebraic theory as an integral part of our ap-
proach. Equations such as associativity and commutatappear explicitly as com-
mutative diagrams in a Lawvere theokty We benefit from this explicitness in e.qg.
spelling out a condition for the generic associativity te§tiheorem 2.4). In contrast,
in the bialgebraic studies an algebraic theory is preseattebr by an endofunctor
X=1l,exn Xlol or by amonad’. In the former case equations are simply not present;
in the latter case equations are there but only implicitly.

Secondly and more importantly, by considering higher-disienal, nested alge-
braic structures, we can now compose different coalgelsraged as different states of
the same coalgebra. In this way the current work can be searhagher-dimensional
extension of the existing bialgebraic studies (which fooos‘inner” algebraic struc-
tures).

Organization of the paper We shall not dive into our 2-categorical exploration from
the beginning. In Section 2, we instead focus on one spedifebeaaic theory, namely
the one for parallel composition of systems. Our emphasisetlis on the fact that
the sync natural transformation essentially gives rise to paratl@inposition||, and
the fact that equational properties pf(such as associativity) can be reduced to the
corresponding equational propertiessofic.

These concrete observations will provide us with intuitfonabstract categorical
constructs in Section 3, where we formalize the microcosimcjple for an arbitrary
Lawvere theonjL. Results on coalgebras such as compositionality are progeslin
their full generality and abstraction.

In this paper we shall focus ostrict algebraic structures on categories in order
to avoid complicated coherence issues. This means for deatimgt we only consider
strict monoidal categories for which the isomorphisms in (3) afa@t equalities. How-
ever, we have also obtained some preliminary observationelaxed (“pseudo” or
“strong”) algebraic structures: see Section 3.3.

2 Parallel composition of coalgebras

2.1 Parallel composition viasync natural transformation

Let us start with the equation (2), a coalgebraic represientaf compositionality. The
operator|| on the left is of typeCoalg; x Coalg, — Coalg. It is natural to re-
quire functoriality of this operation, making itldfunctor. A bifunctor—especially an
associative one which we investigate in Section 2.3—playmsaortant role in various
applications of category theory. Usually such an (asswejgbifunctor is called #éensor
and denoted bw, a convention that we also follow. Therefore the “compositility”
statement now looks as follows.

FX FY FX FY
beh(c/r ® dt )—beh(c/r >H beh(cm > 4)
X Y X Y



The first question is: when do we have such a te@an Coalg? In many appli-
cations of coalgebras, it is obtained by lifting a tenspon the base categor to
Coalg.® Such a lifting is possible in presence of a natural transégiom

F(X®Y)
Syncy y . FX FY ASYNCx y
FX®FY — F(X®Y), usedin ¢t ® d = FX®QFY ()]
X Y te®d
X®Y

We shall call thisync asynchronizatiorbecause its computational meaning is indeed a
specification of the way two systems synchronize. This véllllustrated in the coming
examples.

Once we have an outer parallel composit®an inner
operator|| which composes behavior (i.e. states of the fingI(Z ®Z)- - - ?FZ
coalgebra) is also obtained immediately by coinduction &$° finaf | ¢
on the right. Compositionality (4) is also straightforwéy Z- o »Z
finality: both sides of the equation are the unique coalgatwghism frome® d to the
final ¢. The following theorem summarizes the observations so far.

Theorem 2.1 (Coalgebraic compositionality)Assume that a categofy has a tensor
® : Cx C — C and an endofunctof” : C — C has a natural transformation
syncyy : FX®FY — F(X®Y). If moreover there exists a finél-coalgebra, then:

1. The tensorg on C lifts to an “outer” composition operator® : Coalg; X
Coalg, — Coalg.
2. We obtain an “inner” composition operatdl: Z ® Z — Z by coinduction.
3. Between the two composition operators the compositityriaboperty (4) holds.
O

We can put the compositionality property (4) in more abgttaoms as “the functor
beh : Coalg, — C/Z preserves a tensor,” meaning that the diagram below left com
mutes. Here a tens@ on the slice categor/Z is given as on the right, using the
inner compositior]|.

beh X beh XY
Coalg x Coalg Deh X ben, C/ZxC/Z X v ® If®g
®l 1® <¢fa¢9>'—> ZQZ (6)
Coal c/z zZ Z Ml
&r beh / Z

The point of Theorem 2.1 is as follows. Those parallel contfmysoperators which
are induced byync are well-behaved ones: good properties like compositiynedme
for free. We shall present some examples in Section 2.2.

Remark 2.2 The view of parallel composition of systems as a tensor &iracon
Coalg; has been previously presented in [13]. The interest themnisategorical

® Note that we use boldfag® for a tensor orCoalg . to distinguish it froms on C.



structures orCoalg  rather than on properties of parallel composition such aspm
sitionality. In [13] and other literature an endofuncfomith sync (equipped with some
additional compatibility) is called monoidal endofunctof

2.2 Examples

In Sets: bisimilarity is a congruence We shall focus on LTSs and bisimilarity as their
process semantics. For this purpose it is appropriate e&f8aks as our base categoty
andP, (X x _) as the functo". We use Cartesian products as a tenso$ets. This
means that a composition of two coalgebras has the produbedfvo state spaces as
its state space, which matches our intuition. The fun@tpin F is the finite powerset
functor; the finiteness assumption is needed for existeheefioal F-coalgebra. It is
standard (see e.qg. [26]) that a fifélcoalgebra captures bisimilarity via coinduction.

In considering parallel composition of LTSs, the followitvgo examples are well-
known one$

— CSP-stylg7]: a.P || a.Q % P || Q. For the whole system to make araction,
each component has to makeaaction.

— CCS-styld21]:a.P || a.Q = P || Q, assumingZ = {a,b,... }U{a,b,... JU{r}.
When one component outputs on a channahd another inputs from, then the
whole system makes an intermamove.

In fact, each of these different ways of synchronizationlwanepresented by a suitable
sync natural transformation.

Po(XZ X X) x Pu(ExY)  — Pu (X x (X xY))
(u,0) oo {@@y) | @a) eun @y ev)
(u,v) = {(r () | (@,2) €un (@y) v}

By Theorem 2.1, each of these gives (differe@tpn Coalg ., and|| on Z; moreover
the behavior functobeh satisfies compositionality. In other words: bisimilarity &
congruence with respect to both CSP-style and CCS-styldlpbcomposition.

Remark 2.3 As mentioned in the introduction, in some ways this papernmaseen as
an extension of the bialgebraic studies started in [27]. el@xthere is also a drawback,
namely the limited expressive powergyhc: FX @ FY — F(X ®Y).

Our sync specifies the way an algebraic structure interacts with gebaaic one.
In this sense it is a counterpart of a distributive |a¥" = F X in [27] representing
operational rules, where’' is a functor induced by an algebraic signature. However
there are many common operational rules which do not allqwvesentation of the

" Later in Section 3 we will observe that a functBrwith sync is a special case of lax L-
functor, by choosing a suitable algebraic thefrySuch a functorF’ with sync is usually
called a monoidal functor (as opposed taxamonoidal functor), probably because it preserves
(inner) monoid objects; see Proposition 3.8.1.

8 Here we focus on synchronous interaction. Both CSP and CCS haveditioaal kind of
interaction, namely an “interleaving” one; see Remark 2.3.



form YF = FJX; therefore in [27] the type of such a distributive law is etetly
extended ta¥' (F' x id) = F'X*. The class of rules representable in this form coincides
with the class of so-calle@SOS-rules

At present it is not clear how we can make a similar extensiorfir sync; conse-
quently there are some operational rules which we cannoeiindsync. One impor-
tant example is amterleavingkind of interaction—such as.P || @ % P || @ which
leaves the second component unchanged. This is taken carg¢2] by the identity
functor (d) appearing on the left-hand side & F x id) = FX*. For oursync to
be able to model such interleaving, we can replacey the cofree comonad on it, as
is done in [13, Example 3.11]. This extension should be gittédrward but detailed
treatment is left as future work.

In KCe(T): trace equivalence is a congruenceln our recent work [6] we extend
earlier observations in [10, 25] and show that trace sems#tincluding tracesetse-
mantics for non-deterministic systems and trdistributionsemantics for probabilistic
systems—is also captured by coinduction when it is employed Kleisli category
Ke(T). Applying the present composition framework, we can codelthat trace se-
mantics is compositional with respect to well-behaved lfelreomposition. The details
are omitted here due to lack of space.

2.3 Equational properties of parallel composition

Now we shall investigate equational properties—assodigtizcommutativity, and so
on—of parallel compositio®, which we have ignored deliberately for simplicity of
argument. We present our result in terms of associatiuitig; $traightforward to trans-
fer the result to other properties like commutativity. Thaimpoint of the following
theorem is as follows: i& is associative ansync is “associative,” then the liftin® is
associative. The proof is straightforward.

Theorem 2.4 LetC be a category with a strictly associative tensaf andF : C — C
be a functor wittsync : FX @ FY — F(X ®Y). If the diagram

FX ® sync sync
FX®(FYQ®FZ) —S FXQFY®Z) —— F(X® (Y ®Z))
+id vid @)
FXQFY)QFZ — = F(XQY)®QFZ —— F(X®Y)® ~Z
(FX@FY)6FZ b FX©Y) @ FZ — e (X 9Y)© 2)
commutes, then the lifted tens®ron Coalg . is strictly associative. O

The two identity arrows in (7) are available due to strictaasativity of ®. In the next
section we shall reveal the generic principle behind theroatativity condition of (7),
namely a coherence condition on a lax natural transformatio

As an examplesync®SP and sync®©S in Section 2.2 are easily seen to be “asso-
ciative” in the sense of the diagram (7). Therefore the temyltensors® are strictly
associative.

9 As mentioned already, in this paper we stickstrdct algebraic structures.



3 Formalizing the microcosm principle

In this section we shall formalize the microcosm principbe &n arbitrary algebraic
theory presented as a Lawvere thetwyThis and the subsequent results generalize the
results in the previous section. In particular, we will dbta general compositionality
result which works for an arbitrary algebraic theory.

As we sketched in the introduction, an outer model will be a
product-preserving functdf : . — CAT; an inner model inside m
will be a lax natural transformatiol : 1 = C. Herel : L — CAT L — 2 ,CAT
is the constant functor which maps everything to the categavith
one object and one arrow (which is a special case of an outdehdlediating 2-cells
for the lax natural transformatiotX play a crucial role as inner interpretation of alge-
braic operations. In this section we heavily rely on 2-cateml notions, about which
detailed accounts can be found in [4].

3.1 Lawvere theories

Lawvere theorieare categorical presentations of algebraic theories. dtiemis intro-
duced in [18] (not under this name, though) aiming at a categldformulation of “the-
ories” and “semantics.” An accessible introduction to tieion can be found in [17].
Lawvere theories are known to be equivalenfitotary monads These two ways of
presenting algebraic theories have been widely used irrétieal computer science,
e.g. for modeling computation with effect [8, 22]. Recente&lepments (such as [24])
utilize the increased expressive powerofichedLawvere theories.

In the sequel, by aRP-categorywe refer to a category with (a choice of) finite prod-
ucts. AnFP-functoris a functor between FP-categories which preserves finiteymts
“on-the-nose,” that is, up-to-equality instead of up-goforphism.

Definition 3.1 (Lawvere theory) By Nat we denote the category of natural numbers
(as sets) and functions between them. Therefore every arrdMat is a (cotuple of)
coprojection; an arrow iilNat°? is a (tuple of) projectior?

A Lawvere theoryis a small FP-categor{. equipped with an FP-functoH :
Nat°P? —IL which is bijective on objects. We shall denote an objecL.dfy a natu-
ral numberk, identifyingk € Nat°® andHk € L.

The categoryNat°*—which is a free FP-category on the trivial categdryis there
in order to specify the choice of finite productslin For illustration, we make some
remarks oriL’s objects and arrows.

— An objectk € L is ak-fold productl x --- x 1 of 1.

— An arrow inL is intuitively understood as an algebraic operation. Thdt i— 1 as
ak-ary operation; an& — n as ann-tuple {f1,...,f,) of k-ary operations. To be
precise, arrows ifi. also include projections (such as : 2 — 1) andtermsmade
up of operations and projections (suchnas (m,m3) : 3 — 1).

®An arrow f : n — k in Nat can be written as a cotupl@ (1), . . . , k()] Wherer; : 1 — k
is the coprojection into theth summand of + - - - + 1 (k times).



Conventionally in universal algebra, an algebraic thearpresented by aalgebraic
specification X, E')—a pair of a set of operations and a sét of equations. A Law-
vere theonlL arises from suckiX, F) as its so-calledlassifying categorysee e.g. [9,
18]). An arrowk — n in the resulting Lawvere theotly is ann-tuple ([t (7)), . . ., [tn(Z)])
of Y-terms withk variablesz’, where[_] denotes taking an equivalence class modulo
equations inE. An equivalent way to describe this construction is skatches(X, E)

is identified with an FP-sketch, which in turn indudess a free FP-category. See [2]
for details.

Our leading example is the Lawvere thedon for monoids! It arises as a classi-
fying category from the well-known algebraic specificatarmonoids. This specifica-
tion has a nullary operationand a binary onen; subject to the equations(z, e) = z,
m(e,z) = x, andm(z, m(y, z)) = m(m(z,y), 2).

Equivalently, Mon is the freely generated FP- (de) (eid) id
category by arrow®) = 1 and2 = 1 subjecttothe 1 —>2¢—1 32
commutativity on the right. These data (arrows and comi;¥ J{% ‘dxm\g _ Jl’m
mutative diagrams) form an FP-sketch (see [2]). "

3.2 Outer models:L-categories

We start by formalizing an outer model. It is a category with a x
L-structure, hence called d-category It is standard that a (set- — Sits
theoretic) model of.—a setwith anL-structure—is identified with 7 =~ {M
an FP-functoiL, > Sets. Concretely, letX = X1 be the image of 1 X
1 € L. Thenk € L must be sent t&(* due to preservation of finite products. Now the
functor’s action on arrows is what interprdtss operations inX, as illustrated above
right. Equations (expressed as commutative diagrarh3 are satisfied because a func-
tor preserves commutativity.

Turning back tdlL-categories what we have to do here is to just repld®ets by

the categoryCAT of (possibly large and locally small) categories.

Definition 3.2 (LL.-categories,L-functors) A (strict) L-categoryis an FP-functoiL. it
CAT. In the sequel we denote the ima@e of 1 € L by C; and the imag€(f) of an
arrowf by [f].

An L-functor F' : C — D—a functor preserving ah-structure—is a natural trans-

C
. —
formation L. _uF XCAT .
D

Another way to look at the previous definition is to viewlasstructure as “factor-
ization throughNat°® — IL.” We can identify a categor € CAT with a functor
1 — CAT, which is in turn identified with an FP-funct@at°® — CAT, because
Nat? is the free FP-category oh. We say thatC has anlL-structure, if this FP-
functor factors throughf : Nat°® — L (as below left). Note that the factorization is

11 The Lawvere theorMon for the theory of monoids should not be confused with the category
of (set-theoretic) monoids and monoid homomorphisms (which is oftantdd byMon as
well).



not necessarily unique, because there can be different@fayterpreting the algebraic

theory L in C. Similarly, a functorC L D is identified with a natural transforma-
tion 1 ZuF X CAT ; and then with Nat°® 47 XCAT due to the 2-universality of
Nat°® as a free object. We say that tHiSpreserves afi.-structure, if the last natural
transformation factors througH : Nat°? — L (as below right).

Nat®® — L Nat®® —— L
e QJ&?l
Y

Example 3.3 The usual notion of strictly monoidal categories coincidéh IL-categories
for L = Mon. A tensor® and a unit/ on a category arise as interpretation of the oper-
ations2 % 1 and0 > 1; commuting diagrams itMlon such asn o (id, e) = id yield
equational properties of and!.

3.3 Remarks on “pseudo” algebraic structures

As we mentioned in the introduction, in this paper we focusstritt algebraic struc-
tures. This means that monoidal categories (in which aaseity holds only up-to-
isomorphism, for example) fall out of our considerationt&hding our current frame-
work to such “pseudo” algebraic structures is one import#irgction of our future
work. Such an extension is not entirely obvious; we shaltcdkeome preliminary ob-
servations in this direction.

The starting point is to relax the definition @fcategories from (strict) functors
L — CAT to pseuddunctors, meaning that composition and identities aregrres!

only up-to-isomorphism. Then it is not hard to see that a geéunctorMon & cAT
(which preserves finite products in a suitable sense) gigesto a monoidal category.
Indeed, let us denote a mediating iso-2-cell for compasitipCy ¢ : [g] o [f] = [g o
f]. The associativity diagram (below left) gives rise to the fso-2-cells on the right.

) A . [mxid]
. mXi 3 2
in Mon 37 nCAT C Con,mxid /= ¢
idwm]  |m fdxm] | Imo(m¥id)l=[meGdxm] | Im]  (8)
21 g2 — =2 C

[m]

The compositiorC;}idm o Ciy mxid IS what gives us a natural isomorphism X ®

(Y ®Z) = (X ®Y) ® Z. Moreover, the coherence condition on such isomorphisms
in a monoidal category (like the famous pentagon diagram2@]) follows from the
coherence condition on mediating 2-cells of a pseudo fur{ste [4]).

So far so good. However, at this moment it is not clear what éarzonical con-
struction the other way round, i.e. from a monoidal categorg pseudo functd? In
the present paper we side-step these 2-categorical sebthst restricting ourselves to
strict, non-pseudo functors.

12 For example, given a monoidal categdty we need to define a functdm o (m x id)] =
[m o (id x m)] in (8). It's not clear whether it should carfyX, Y, Z) to X ® (Y ® Z), or to
XeY)®Z.



3.4 Inner models:IL-objects

We proceed to formalize an inner model. It is an object inlacategory which it-
self carries an (inner).-structure, hence is called dnrobject A monoid object in a
monoidal category is a prototypical example. We first presemabstract definition;
some illustration follows afterwards.

Definition 3.4 (L-objects) An LL-object X in anlL-categoryC is a lax natural trans-
formationX : 1 = C (below left) which is “product-preserving”: this means tliae
compositionX o H (below right) is strictly, non-lax natural. Here : . — CAT
denotes the constant functor to the trivial one-objectgratel .

1 1
SUxX N o H X N
L T)CAT Nat® ———L T>CAT

Such a nested algebraic structure—formalized ak-&ject in anlL-category—shall
be called anicrocosm modebr L.

Let us now illustrate the definition. FirsK's  ijn Nat°® in CAT

component at € L is a functorl *} C which is R it Y
identified with an objecX e C. This is the “car- L il
rier” object of this inner algebra. Moreover, any 1 1—==xC

other component 5 C* must be thek-tuple (X,...,X) € C* of X's. This is be-
cause of (strict) naturality oK o H (see above right): for any < [1, k] the composite
m; o X}, is required to bex;.

The (inner) algebraic structure oXi arises inthe 4.  in CAT

form of mediating 2-cells offthéax natural trans- 9 IX:’:(X»X)(CQ
formation. For each arrot — n in L, lax natu- m I zx, +Iml=®
rality of X requires existence of a mediating 2-cell 1 1——C

Xs : [f] o Xx = X,. The diagram (above right) shows the situation when we set
f = m, a binary operation. The natural transformati&l, can be identified with an
arrow X ® X % X in C, which gives an inner binary operation éh

How do such inner operations o%i satisfy equations as .
1——C

specified inL? The key is the coherence condittdon medi- I %, <1
ating 2-cells: it requires(;q = id concerning identities; and Xgof = 1 —— C*
Xgof = Xg @ ([g] o X¢) concerning composition (as on the l g gjgﬂ

right). The following example illustrates how such cohex@n
induces equational properties.

Example 3.5 A monoid object in a strictly monoidal category is an exampfi@n -
object in anL-category. Here we take = Mon, the theory of monoids.

For illustration, let us here derive associativity of mplitation X ® X % X. Inthe
current setting the multiplicatiop is identified with a mediating 2-celX,,, as above.

13 This is part of the notion of lax natural transformations; see [4].



The coherence condition yields the two equalitigshielow.

inL in CAT
) 3 ) 11— 3 1— 3 1—— 3
dxm /oy mxid | %y b lidxm] () ¢l K, gt Imxidl
2 2 1——C? Ximo (id xm) l 1—— 2
mY Vm I Léf(m +Iml =Xmo(mxid) Il %(m 3m]
1 1——C 1— ¢! 1——C

a X Xpu
3 A5

Now it is not hard to see that: the composed 2-cell on the afiesponds toX

X2 % X: and the one on the right corresponds¥é “>5* X2 % X. The equalities
(*) above prove that these two arrodS = X are identical.

3.5 Microcosm structures in coalgebras

In this section we return to our original question and applg framework we just
introduced to coalgebraic settings. First we present soas&besults, which are used
later in our main result of general compositionality. Thesiucts in Section 2 (such
assync) will appear again, now in their generalized form. Some ifletend proofs are
omitted here due to lack of space. They will appear in thénfmining extended version
of this paper, although the diligent reader will readily wéinem out.

Let C be anlL-category, and? : C — C be a functor. We can imagine that, for
the categornCoalg . to carry anL-structure,F' needs to be somehow compatible with
L; it turns out that the following condition is sufficient. & weaker tharF"’s being an
L-functor (see Definition 3.2).

Definition 3.6 (Lax L-functor) A functor F' : C — D betweerlL-categories is said to

C
be alax L-functorif it is identified with'# some lax natural transformatioh ~v+ 2 CAT

D
which is product-preserving (i.€” o H is strictly natural; see Definition 3.4).

Lax L-endofunctors are natural generalization of func-jin 1,  in CAT )
_— — (F,F

tors withsync as in Section 2. To illustrate this, look at 2 2 —5 2
the lax naturality diagram on the right for a binary op- 4™ &y Mg, IO
erationm. Here we denote the outer interpretatipn] 1 C——>C

by ®. The2-component isF; = (F, F') because the lax natural transformatibnis
product-preserving. The mediating 2-cé}l, can be identified with a natural transfor-
mationF X ® F'Y — F(X ®Y); this is what we previously calleync. Moreover,F,,
(as generalizeslync) is automatically compatible with equational propertias i The-
orem 2.4); this is because of the coherence condition onatirgi2-cells like T is
a suitable composition ofy after F;.”

The following results follow from a more general result ceming the notion of
inserters namely: whenG is an oplaxL-functor andF' is a laxIL-functor, then the
inserterins(G, F) is anlL-category.

14 Meaning:F : C — D is thel-component of such a lax natural transformat®es- D.



Proposition 3.7 1. LetC be anL-category andf’ : C — C be a laxL-functor.

ThenCoalg is anlL-category; moreover the forgetful funct@oalg Y Cisa
(strict, non-lax)IL-functor.
2. Given a microcosm modél € C for L, the slice categor{/ X is anlL-category;

dom

moreover the functo€/X — C is anLL-functor. O

Note thatCoalg . being anL-category means not only that operations are interpreted
in Coalg but also that all the equational properties specified.iare satisfied in
Coalg .. Therefore this result generalizes Theorem 2.4.

Concretely, an operatiofi: £ — 1 in L is interpreted inCoalg, andC/X as
follows, respectively.

FI(X) [f(Y)
( FX, FX, > TF)x < Yi Vi ) ()
ter,., e ) = [f(FX) WL e ) e ray
IF1(X) X

Compare these with (5) and (6); these make an essential useaofl X7 which gener-
alizesync and|| in Section 2, respectively.

Proposition 3.8 1. A laxLL-functor preserves.-objects. Hence so does &nfunctor.
2. Afinal object of afL-categoryC, if it exists, is arlL-object. The innet.-structure
is induced by finality. O

We can now present our main result. It generalizes Theoréih2nce is a gener-
alized version of the “coalgebraic compositionality” etjoa (4).

Theorem 3.9 (General compositionality)Let C be anlL-category andF' : C — C
be a laxLL-functor. Assume further that: Z = FZ is the final coalgebra. Then the
functorbeh : Coalg, — C/Z is a (non-lax)L-functor. It makes the following diagram
of L-functors commute.

Coalg L C/z

U\C%m O

The proofis straightforward by finality. He@oalg ;. is anlL-category (Proposition 3.7.1).
So isC/Z because( € Coalg. is anlL-object (Proposition 3.8.2y7 = U( is anL-
object (Propositions 3.8.1 and 3.7.1); hefite is anlL-category (Proposition 3.7.2).
We have also observed some facts which look interestingrbutat directly needed
for our main result (Theorem 3.9). They include: the catgdoobj of L-objects inC
and morphisms between them forms the lax limit of a diagfani. — CAT; the sim-
plicial categoryA is the “universal” microcosm model fa¥Ion (cf. [20, Proposition
VII.5.1]). The details will appear in the forthcoming extisd version.



4 Conclusions and future work

In this paper we have observed that the microcosm princigecélled by Baez and
Dolan) brings new mathematical insights into computerrsme Specifically, we have
looked into parallel composition of coalgebras, which vebsérve as a mathematical
basis for the study of concurrency. As a purely mathemaségpédition, we have pre-
sented a 2-categorical formalization of the microcosm qipile, where an algebraic
theory is presented by a Lawvere theory. Turning back to oigiral motivation, the
formalization was applied to coalgebras and yielded somegé results which ensure
compositionality and equational properties such as astity.

There are many questions yet to be answered. Some of thembleavealready
mentioned, namely: extending the expressive poweyaf (Remark 2.3), and a proper
treatment of “pseudo” algebraic structures (Section 3.3).

On the application side, one direction of future work is ttab#ish a relationship
betweersync and(syntactic) format$or process algebras. Osync represents a certain
class of operational rules; formats are a more syntactic twajo the same. Formats
which guarantee certain good properties (such as commityagee [23]) have been
actively studied. Such a format should be obtained by teding) e.g. a “commutative”
sync into a format.

On the mathematical side, one direction is to identify mostances of the micro-
cosm principle. Mathematics abounds with the (often ini)lidea of nested algebraic
structures. To name a few: a topological space in a toposhwikiitself a “generalized
topological space”; a category of domains which itself iesrta “structure as a do-
main.” We wish to turn such an informal statement into a maudwécally rigorous one,
by generalizing the current formalization of the microcgsimciple. As a possible first
step towards this direction, we are working on formalizihg microcosm principle for
finitary monads which are known to be roughly the same thingeagvere theories.

Another direction is a search farfolded nested algebraic structures. In the current
paper we have concentrated on two levels of interpretasioexample with more levels
might be found e.g. in an internal category in an internaégaty.

Acknowledgments Thanks are due to Kazuyuki Asada, John Baez, Masahito Hasega
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