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Abstract. Coalgebras are categorical presentations of state-based systems. Inin-
vestigating parallel composition of coalgebras (realizingconcurrency), we ob-
serve that the same algebraic theory is interpreted in two different domains in a
nested manner, namely: in the category of coalgebras, and in the final coalgebra
as an object in it. This phenomenon is what Baez and Dolan have called themi-
crocosm principle, a prototypical example of which is “a monoid in a monoidal
category.” In this paper we obtain a formalization of the microcosm principle
in which such a nested model is expressed categorically as a suitable lax natural
transformation. An application of this account is a general compositionalityresult
which supports modular verification of complex systems.

1 Introduction

Design of systems withconcurrencyis nowadays one of the mainstream challenges in
computer science [19]. Concurrency is everywhere: with theInternet being the biggest
example and multi-core processors the smallest; also in a modular, component-based
architecture of a complex system its components collaborate in a concurrent manner.
However, numerous difficulties have been identified in getting concurrency right. For
example, a system’s exponentially growing complexity is one of the main obstacles.
One way to cope with it is amodularverification method in which correctness of the
whole systemC1 ‖ · · · ‖ Cn is established using correctness of each componentCi.
Compositionality—meaning that the behavior ofC ‖ D is determined by the behavior
of C and that ofD—is an essential property for such a modular method to work.

Coalgebras as systemsThis paper is a starting point of our research program aimed at
better understanding of the mathematical nature of concurrency. In its course we shall
usecoalgebrasas presentations of systems to be run in parallel. The use of coalgebras as
an appropriate abstract model of state-based systems is increasingly established [11,26];
the notion’s mathematical simplicity and clarity provide us with a sound foundation
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for our exploration. The following table summarizes how ingredients of the theory of
systems are presented as coalgebraic constructs.

system behavior-preserving map behavior

coalgebraically coalgebra
FX

X

morphism of coalgebras

FX
Ff
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X
f
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by coinduction
FX FZ

X
c

beh(c)
Z

∼=final
(1)

This view of “coalgebras as systems” has been successfully applied in the category
Sets of sets and functions, in which case the word “behavior” in (1) refers (roughly)
to bisimilarity. Our recent work [5,6] has shown that “behavior” can also refer to trace
semantics by moving fromSets to a suitable Kleisli category.

Compositionality in coalgebras We start with the following question: what is “com-
positionality” in this coalgebraic setting? Conventionally compositionality is expressed
as:C ∼ C′ andD ∼ D′ implies C ‖ D ∼ C′ ‖ D′, where the relation∼ denotes
the behavioral equivalence of interest. If this is the case the relation∼ is said to be a
congruence, with its oft-heard instance being “bisimilarity is a congruence.”

When we interpret “behavior” in compositionality as the coalgebraic behavior in-
duced by coinduction (see (1)), the following equation comes natural as a coalgebraic
presentation of compositionality.
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But a closer look reveals that the two “parallel compositionoperators”‖ in the equation
have in fact different types: the first oneCoalgF × CoalgF → CoalgF combines
systems (as coalgebras) and the second oneZ × Z → Z combines behavior (as states
of the final coalgebra).5 Moreover, the two domains are actually nested: the latter one
Z

∼=→ FZ is an object of the former oneCoalgF .

The microcosm principle What we have just observed is one instance—probably the
first one explicitly claimed in computer science—of themicrocosm principleas it is
called by Baez and Dolan [1]. It refers to a phenomenon that the same algebraic theory
(or algebraic “specification,” consisting of operations and equations) is interpreted twice
in a nested manner, once in a categoryC and the other time in its objectX ∈ C. This
is not something very unusual, because “a monoid in a monoidal category” constitutes

5 At this stage the presentation remains sloppy for the sake of simplicity. Laterin technical
sections the first composition operator will be denoted by⊗⊗⊗; and the second composition
operator will have the typeZ ⊗ Z → Z instead ofZ × Z → Z.



a prototypical example.

monoidal categoryC monoidX ∈ C

⊗ : C × C → C multiplication X ⊗ X
µ
→ X

I ∈ C unit I
η
→ X

I ⊗ X ∼= X ∼= X ⊗ I unit law
X X ⊗ X X

X

X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y ) ⊗ Z associativity law
X ⊗ X ⊗ X X ⊗ X

X ⊗ X X

(3)

Notice here that the outer operation⊗ appears in the formulation of the inner operation
µ. Moreover, to be precise, in the inner “equations” the outerisomorphisms should be
present in suitable places. Hence this monoid example demonstrates that, in such nested
algebraic structures, the inner structure depends on the outer. What is a mathematically
precise formalization of such nested models? Answering this question is a main goal of
this paper.

Such a formalization has been done in [1] when algebraic structures are specified
in the form ofopetopes. Here instead we shall formalize the microcosm principle for
Lawvere theories[18], whose role as categorical representation of algebraic theories
has been recognized in theoretical computer science.

L

1

C

⇓X
CAT

As it turns out, our formalization looks like the situation on the
right. HereL is a category (a Lawvere theory) representing an alge-
braic theory; an outer modelC is a product-preserving functor; and
an inner modelX is a lax natural transformation. The whole setting
is 2-categorical: 2-categories (categories in categories) serve as an appropriate basis for
the microcosm principle (algebras in algebras).

Applications to coalgebras: parallel composition viasync The categorical account
we have sketched above shall be applied to our original question about parallel com-
position of coalgebras. As a main application we prove ageneric compositionality the-
orem. For an arbitrary algebraic theoryL, compositionality like (2) is formulated as
follows: the “behavior” functorbeh : CoalgF → C/Z via coinduction preserves an
L-structure. This general form of compositionality holds if: C has anL-structure and
F : C → C lax-preserves theL-structure.

Turning back to the original setting of (2), these general assumptions read roughly
as follows: the base categoryC has a binary operation‖; and the endofunctorF comes
with a natural transformationsync : FX ‖ FY → F (X ‖ Y ). Essentially, thissync is
what lifts‖ on C to ‖ onCoalgF , hence “parallel composition viasync.” It is called a
synchronizationbecause it specifies the way two systems synchronize with each other.
In fact, for a fixed functorF there can be different choices ofsync (such as CSP-style
vs. CCS-style), which in turn yield different “parallel composition” operators on the
categoryCoalgF .

Related work Our interest is pretty similar to that of studies ofbialgebraic structures
in computer science (such as [3,12,14–16,27]), in the sensethat we are also concerned



about algebraic structures on coalgebras as systems. Our current framework is distin-
guished in the following aspects.

First, we handleequationsin an algebraic theory as an integral part of our ap-
proach. Equations such as associativity and commutativityappear explicitly as com-
mutative diagrams in a Lawvere theoryL. We benefit from this explicitness in e.g.
spelling out a condition for the generic associativity result (Theorem 2.4). In contrast,
in the bialgebraic studies an algebraic theory is presentedeither by an endofunctor
X 7→

∐

σ∈Σ X |σ| or by a monadT . In the former case equations are simply not present;
in the latter case equations are there but only implicitly.

Secondly and more importantly, by considering higher-dimensional, nested alge-
braic structures, we can now compose different coalgebras as well as different states of
the same coalgebra. In this way the current work can be seen asa higher-dimensional
extension of the existing bialgebraic studies (which focuson “inner” algebraic struc-
tures).

Organization of the paper We shall not dive into our 2-categorical exploration from
the beginning. In Section 2, we instead focus on one specific algebraic theory, namely
the one for parallel composition of systems. Our emphasis there is on the fact that
the sync natural transformation essentially gives rise to parallelcomposition‖, and
the fact that equational properties of‖ (such as associativity) can be reduced to the
corresponding equational properties ofsync.

These concrete observations will provide us with intuitionfor abstract categorical
constructs in Section 3, where we formalize the microcosm principle for an arbitrary
Lawvere theoryL. Results on coalgebras such as compositionality are provedhere in
their full generality and abstraction.

In this paper we shall focus onstrict algebraic structures on categories in order
to avoid complicated coherence issues. This means for example that we only consider
strict monoidal categories for which the isomorphisms in (3) are infact equalities. How-
ever, we have also obtained some preliminary observations on relaxed (“pseudo” or
“strong”) algebraic structures: see Section 3.3.

2 Parallel composition of coalgebras

2.1 Parallel composition viasync natural transformation

Let us start with the equation (2), a coalgebraic representation of compositionality. The
operator‖ on the left is of typeCoalgF × CoalgF → CoalgF . It is natural to re-
quire functoriality of this operation, making it abifunctor. A bifunctor—especially an
associative one which we investigate in Section 2.3—plays animportant role in various
applications of category theory. Usually such an (associative) bifunctor is called atensor
and denoted by⊗⊗⊗, a convention that we also follow. Therefore the “compositionality”
statement now looks as follows.
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The first question is: when do we have such a tensor⊗⊗⊗ on CoalgF ? In many appli-
cations of coalgebras, it is obtained by lifting a tensor⊗ on the base categoryC to
CoalgF .6 Such a lifting is possible in presence of a natural transformation

FX ⊗ FY
syncX,Y
−→ F (X ⊗ Y ), used in

FX

X
c ⊗⊗⊗

FY

Y
d :=

F (X ⊗ Y )

FX ⊗ FY

syncX,Y

X ⊗ Y
c ⊗ d

. (5)

We shall call thissync asynchronizationbecause its computational meaning is indeed a
specification of the way two systems synchronize. This will be illustrated in the coming
examples.

F (Z ⊗ Z) FZ

Z ⊗ Z

ζ⊗⊗⊗ζ

‖
Z

ζfinal

Once we have an outer parallel composition⊗⊗⊗, an inner
operator‖ which composes behavior (i.e. states of the final
coalgebra) is also obtained immediately by coinduction as
on the right. Compositionality (4) is also straightforwardby
finality: both sides of the equation are the unique coalgebramorphism fromc⊗⊗⊗d to the
final ζ. The following theorem summarizes the observations so far.

Theorem 2.1 (Coalgebraic compositionality)Assume that a categoryC has a tensor
⊗ : C × C → C and an endofunctorF : C → C has a natural transformation
syncX,Y : FX⊗FY → F (X⊗Y ). If moreover there exists a finalF -coalgebra, then:

1. The tensor⊗ on C lifts to an “outer” composition operator⊗⊗⊗ : CoalgF ×
CoalgF → CoalgF .

2. We obtain an “inner” composition operator‖: Z ⊗ Z → Z by coinduction.
3. Between the two composition operators the compositionality property (4) holds.

⊓⊔

We can put the compositionality property (4) in more abstract terms as “the functor
beh : CoalgF → C/Z preserves a tensor,” meaning that the diagram below left com-
mutes. Here a tensor⊗ on the slice categoryC/Z is given as on the right, using the
inner composition‖.

CoalgF × CoalgF

beh× beh

⊗⊗⊗

C/Z × C/Z
⊗

CoalgF
beh

C/Z

(

X
f

Z
,

Y
g

Z

)

⊗
7−→

X ⊗ Y
f ⊗ g

Z ⊗ Z
‖

Z

(6)

The point of Theorem 2.1 is as follows. Those parallel composition operators which
are induced bysync are well-behaved ones: good properties like compositionality come
for free. We shall present some examples in Section 2.2.

Remark 2.2 The view of parallel composition of systems as a tensor structure on
CoalgF has been previously presented in [13]. The interest there ison categorical

6 Note that we use boldface⊗⊗⊗ for a tensor onCoalgF to distinguish it from⊗ onC.



structures onCoalgF rather than on properties of parallel composition such as compo-
sitionality. In [13] and other literature an endofunctorF with sync (equipped with some
additional compatibility) is called amonoidal endofunctor.7

2.2 Examples

In Sets: bisimilarity is a congruence We shall focus on LTSs and bisimilarity as their
process semantics. For this purpose it is appropriate to takeSets as our base categoryC
andPω(Σ × ) as the functorF . We use Cartesian products as a tensor onSets. This
means that a composition of two coalgebras has the product ofthe two state spaces as
its state space, which matches our intuition. The functorPω in F is the finite powerset
functor; the finiteness assumption is needed for existence of a final F -coalgebra. It is
standard (see e.g. [26]) that a finalF -coalgebra captures bisimilarity via coinduction.

In considering parallel composition of LTSs, the followingtwo examples are well-
known ones.8

– CSP-style[7]: a.P ‖ a.Q
a
→ P ‖ Q. For the whole system to make ana-action,

each component has to make ana-action.
– CCS-style[21]: a.P ‖ a.Q

τ
→ P ‖ Q, assumingΣ = {a, b, . . . }∪{a, b, . . . }∪{τ}.

When one component outputs on a channela and another inputs froma, then the
whole system makes an internalτ move.

In fact, each of these different ways of synchronization canbe represented by a suitable
sync natural transformation.

Pω(Σ × X) × Pω(Σ × Y ) −→ Pω

`

Σ × (X × Y )
´

(u, v)
syncCSP

X,Y
7−→

˘

(a, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v
¯

(u, v)
syncCCS

X,Y
7−→

˘

(τ, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v
¯

By Theorem 2.1, each of these gives (different)⊗⊗⊗ on CoalgF , and‖ on Z; moreover
the behavior functorbeh satisfies compositionality. In other words: bisimilarity is a
congruence with respect to both CSP-style and CCS-style parallel composition.

Remark 2.3 As mentioned in the introduction, in some ways this paper canbe seen as
an extension of the bialgebraic studies started in [27]. However there is also a drawback,
namely the limited expressive power ofsync : FX ⊗ FY → F (X ⊗ Y ).

Our sync specifies the way an algebraic structure interacts with a coalgebraic one.
In this sense it is a counterpart of a distributive lawΣF ⇒ FΣ in [27] representing
operational rules, whereΣ is a functor induced by an algebraic signature. However
there are many common operational rules which do not allow representation of the

7 Later in Section 3 we will observe that a functorF with sync is a special case of alax L-
functor, by choosing a suitable algebraic theoryL. Such a functorF with sync is usually
called a monoidal functor (as opposed to alax monoidal functor), probably because it preserves
(inner) monoid objects; see Proposition 3.8.1.

8 Here we focus on synchronous interaction. Both CSP and CCS have an additional kind of
interaction, namely an “interleaving” one; see Remark 2.3.



form ΣF ⇒ FΣ; therefore in [27] the type of such a distributive law is eventually
extended toΣ(F × id) ⇒ FΣ∗. The class of rules representable in this form coincides
with the class of so-calledGSOS-rules.

At present it is not clear how we can make a similar extension for oursync; conse-
quently there are some operational rules which we cannot model by sync. One impor-
tant example is aninterleavingkind of interaction—such asa.P ‖ Q

a
→ P ‖ Q which

leaves the second component unchanged. This is taken care ofin [27] by the identity
functor (id) appearing on the left-hand side ofΣ(F × id) ⇒ FΣ∗. For oursync to
be able to model such interleaving, we can replaceF by the cofree comonad on it, as
is done in [13, Example 3.11]. This extension should be straightforward but detailed
treatment is left as future work.

In Kℓ(T ): trace equivalence is a congruenceIn our recent work [6] we extend
earlier observations in [10, 25] and show that trace semantics—including tracesetse-
mantics for non-deterministic systems and tracedistributionsemantics for probabilistic
systems—is also captured by coinduction when it is employed in a Kleisli category
Kℓ(T ). Applying the present composition framework, we can conclude that trace se-
mantics is compositional with respect to well-behaved parallel composition. The details
are omitted here due to lack of space.

2.3 Equational properties of parallel composition

Now we shall investigate equational properties—associativity, commutativity, and so
on—of parallel composition⊗⊗⊗, which we have ignored deliberately for simplicity of
argument. We present our result in terms of associativity; it is straightforward to trans-
fer the result to other properties like commutativity. The main point of the following
theorem is as follows: if⊗ is associative andsync is “associative,” then the lifting⊗⊗⊗ is
associative. The proof is straightforward.

Theorem 2.4 LetC be a category with a strictly associative tensor⊗,9 andF : C → C

be a functor withsync : FX ⊗ FY → F (X ⊗ Y ). If the diagram

FX ⊗ (FY ⊗ FZ)
FX ⊗ sync

id
FX ⊗ F (Y ⊗ Z)

sync
F (X ⊗ (Y ⊗ Z))

id
(FX ⊗ FY ) ⊗ FZ

sync⊗FZ
F (X ⊗ Y ) ⊗ FZ

sync
F ((X ⊗ Y ) ⊗ Z)

(7)

commutes, then the lifted tensor⊗⊗⊗ onCoalgF is strictly associative. ⊓⊔

The two identity arrows in (7) are available due to strict associativity of ⊗. In the next
section we shall reveal the generic principle behind the commutativity condition of (7),
namely a coherence condition on a lax natural transformation.

As an example,syncCSP and syncCCS in Section 2.2 are easily seen to be “asso-
ciative” in the sense of the diagram (7). Therefore the resulting tensors⊗⊗⊗ are strictly
associative.

9 As mentioned already, in this paper we stick tostrict algebraic structures.



3 Formalizing the microcosm principle

In this section we shall formalize the microcosm principle for an arbitrary algebraic
theory presented as a Lawvere theoryL. This and the subsequent results generalize the
results in the previous section. In particular, we will obtain a general compositionality
result which works for an arbitrary algebraic theory.

L

1

C

⇓X
CAT

As we sketched in the introduction, an outer model will be a
product-preserving functorC : L → CAT; an inner model inside
will be a lax natural transformationX : 1 ⇒ C. Here1 : L → CAT
is the constant functor which maps everything to the category 1 with
one object and one arrow (which is a special case of an outer model). Mediating 2-cells
for the lax natural transformationX play a crucial role as inner interpretation of alge-
braic operations. In this section we heavily rely on 2-categorical notions, about which
detailed accounts can be found in [4].

3.1 Lawvere theories

Lawvere theoriesare categorical presentations of algebraic theories. The notion is intro-
duced in [18] (not under this name, though) aiming at a categorical formulation of “the-
ories” and “semantics.” An accessible introduction to the notion can be found in [17].
Lawvere theories are known to be equivalent tofinitary monads. These two ways of
presenting algebraic theories have been widely used in theoretical computer science,
e.g. for modeling computation with effect [8, 22]. Recent developments (such as [24])
utilize the increased expressive power ofenrichedLawvere theories.

In the sequel, by anFP-categorywe refer to a category with (a choice of) finite prod-
ucts. AnFP-functoris a functor between FP-categories which preserves finite products
“on-the-nose,” that is, up-to-equality instead of up-to-isomorphism.

Definition 3.1 (Lawvere theory) By Nat we denote the category of natural numbers
(as sets) and functions between them. Therefore every arrowin Nat is a (cotuple of)
coprojection; an arrow inNatop is a (tuple of) projection.10

A Lawvere theoryis a small FP-categoryL equipped with an FP-functorH :
Natop→L which is bijective on objects. We shall denote an object ofL by a natu-
ral numberk, identifyingk ∈ Natop andHk ∈ L.

The categoryNatop—which is a free FP-category on the trivial category1—is there
in order to specify the choice of finite products inL. For illustration, we make some
remarks onL’s objects and arrows.

– An objectk ∈ L is ak-fold product1 × · · · × 1 of 1.
– An arrow inL is intuitively understood as an algebraic operation. That is,k → 1 as

ak-ary operation; andk → n as ann-tuple〈f1, . . . , fn〉 of k-ary operations. To be
precise, arrows inL also include projections (such asπ1 : 2 → 1) andtermsmade
up of operations and projections (such asm ◦ 〈π1, π2〉 : 3 → 1).

10 An arrowf : n → k in Nat can be written as a cotuple[κf(1), . . . , κf(n)] whereκi : 1 → k
is the coprojection into thei-th summand of1 + · · · + 1 (k times).



Conventionally in universal algebra, an algebraic theory is presented by analgebraic
specification(Σ,E)—a pair of a setΣ of operations and a setE of equations. A Law-
vere theoryL arises from such(Σ,E) as its so-calledclassifying category(see e.g. [9,
18]). An arrowk → n in the resulting Lawvere theoryL is ann-tuple([t1(

−→x )], . . . , [tn(−→x )])
of Σ-terms withk variables−→x , where[ ] denotes taking an equivalence class modulo
equations inE. An equivalent way to describe this construction is viasketches: (Σ,E)
is identified with an FP-sketch, which in turn inducesL as a free FP-category. See [2]
for details.

Our leading example is the Lawvere theoryMon for monoids.11 It arises as a classi-
fying category from the well-known algebraic specificationof monoids. This specifica-
tion has a nullary operatione and a binary onem; subject to the equationsm(x, e) = x,
m(e, x) = x, andm(x,m(y, z)) = m(m(x, y), z).

1
〈id,e〉

id

2
m

1
〈e,id〉

id

3
m×id

id×m

2
m

1 2
m

1

Equivalently, Mon is the freely generated FP-
category by arrows0

e
→ 1 and 2

m
→ 1 subject to the

commutativity on the right. These data (arrows and com-
mutative diagrams) form an FP-sketch (see [2]).

3.2 Outer models:L-categories

L
X
−→ Sets

2
m

1
7−→

X2

JmK

X

We start by formalizing an outer model. It is a category with an
L-structure, hence called anL-category. It is standard that a (set-
theoretic) model ofL—a setwith anL-structure—is identified with

an FP-functorL
X
→ Sets. Concretely, letX = X1 be the image of

1 ∈ L. Thenk ∈ L must be sent toXk due to preservation of finite products. Now the
functor’s action on arrows is what interpretsL’s operations inX, as illustrated above
right. Equations (expressed as commutative diagrams inL) are satisfied because a func-
tor preserves commutativity.

Turning back toL-categories, what we have to do here is to just replaceSets by
the categoryCAT of (possibly large and locally small) categories.

Definition 3.2 (L-categories,L-functors) A (strict) L-categoryis an FP-functorL
C
→

CAT. In the sequel we denote the imageC1 of 1 ∈ L by C; and the imageC(f) of an
arrow f by JfK.

An L-functorF : C → D—a functor preserving anL-structure—is a natural trans-

formation L

C

D

⇓F CAT .

Another way to look at the previous definition is to view anL-structure as “factor-
ization throughNatop → L.” We can identify a categoryC ∈ CAT with a functor
1 → CAT, which is in turn identified with an FP-functorNatop → CAT, because
Natop is the free FP-category on1. We say thatC has anL-structure, if this FP-
functor factors throughH : Natop → L (as below left). Note that the factorization is

11 The Lawvere theoryMon for the theory of monoids should not be confused with the category
of (set-theoretic) monoids and monoid homomorphisms (which is often denoted byMon as
well).



not necessarily unique, because there can be different waysof interpreting the algebraic

theory L in C. Similarly, a functorC
F
→ D is identified with a natural transforma-

tion 1 ⇓F CAT ; and then with Natop
⇓F CAT due to the 2-universality of

Natop as a free object. We say that thisF preserves anL-structure, if the last natural
transformation factors throughH : Natop → L (as below right).

Natop H

C

L

CAT

Natop H

⇓F

L

⇐

CAT

Example 3.3 The usual notion of strictly monoidal categories coincideswith L-categories
for L = Mon. A tensor⊗ and a unitI on a category arise as interpretation of the oper-
ations2

m
→ 1 and0

e
→ 1; commuting diagrams inMon such asm ◦ 〈id, e〉 = id yield

equational properties of⊗ andI.

3.3 Remarks on “pseudo” algebraic structures

As we mentioned in the introduction, in this paper we focus onstrict algebraic struc-
tures. This means that monoidal categories (in which associativity holds only up-to-
isomorphism, for example) fall out of our consideration. Extending our current frame-
work to such “pseudo” algebraic structures is one importantdirection of our future
work. Such an extension is not entirely obvious; we shall sketch some preliminary ob-
servations in this direction.

The starting point is to relax the definition ofL-categories from (strict) functors
L → CAT to pseudofunctors, meaning that composition and identities are preserved

only up-to-isomorphism. Then it is not hard to see that a pseudo functorMon
C
→ CAT

(which preserves finite products in a suitable sense) gives rise to a monoidal category.
Indeed, let us denote a mediating iso-2-cell for composition byCg,f : JgK ◦ JfK

∼=⇒ Jg ◦
fK. The associativity diagram (below left) gives rise to the two iso-2-cells on the right.

3in Mon
m×id

id×m

2
m

2
m

1

C
3in CAT

Jm×idK
⇒
∼=Cm,m×id

Jid×mK Jm◦(m×id)K=Jm◦(id×m)K

C
2

JmK

C
2

JmK

⇐
∼= Cm,id×m

C

(8)

The compositionC−1
m,id×m • Cm,m×id is what gives us a natural isomorphismα : X ⊗

(Y ⊗ Z)
∼=→ (X ⊗ Y ) ⊗ Z. Moreover, the coherence condition on such isomorphisms

in a monoidal category (like the famous pentagon diagram; see [20]) follows from the
coherence condition on mediating 2-cells of a pseudo functor (see [4]).

So far so good. However, at this moment it is not clear what is acanonical con-
struction the other way round, i.e. from a monoidal categoryto a pseudo functor.12 In
the present paper we side-step these 2-categorical subtleties by restricting ourselves to
strict, non-pseudo functors.

12 For example, given a monoidal categoryC, we need to define a functorJm ◦ (m × id)K =
Jm ◦ (id × m)K in (8). It’s not clear whether it should carry(X, Y, Z) to X ⊗ (Y ⊗ Z), or to
(X ⊗ Y ) ⊗ Z.



3.4 Inner models:L-objects

We proceed to formalize an inner model. It is an object in anL-category which it-
self carries an (inner)L-structure, hence is called anL-object. A monoid object in a
monoidal category is a prototypical example. We first present an abstract definition;
some illustration follows afterwards.

Definition 3.4 (L-objects) An L-objectX in an L-categoryC is a lax natural trans-
formationX : 1 ⇒ C (below left) which is “product-preserving”: this means that the
compositionX ◦ H (below right) is strictly, non-lax natural. Here1 : L → CAT
denotes the constant functor to the trivial one-object category1.

L

1

C

⇓X
CAT Natop H

L

1

C

⇓X
CAT

Such a nested algebraic structure—formalized as anL-object in anL-category—shall
be called amicrocosm modelfor L.

k

in Natop

πi

1

1

in CAT
Xk=(X,...,X)

= C
k

JHπiK
=πi

1
X1=X

C

Let us now illustrate the definition. First,X ’s

component at1 ∈ L is a functor1
X1→ C which is

identified with an objectX ∈ C. This is the “car-
rier” object of this inner algebra. Moreover, any

other component1
Xk→ C

k must be thek-tuple (X, . . . ,X) ∈ C
k of X ’s. This is be-

cause of (strict) naturality ofX ◦ H (see above right): for anyi ∈ [1, k] the composite
πi ◦ Xk is required to beX1.

2

in L

m

1

1

in CAT
X2=(X,X)

⇓
Xm

C
2

JmK=⊗

1
X

C

The (inner) algebraic structure onX arises in the
form of mediating 2-cells of thelax natural trans-

formation. For each arrowk
f
→ n in L, lax natu-

rality of X requires existence of a mediating 2-cell
Xf : JfK ◦ Xk ⇒ Xn. The diagram (above right) shows the situation when we set
f = m, a binary operation. The natural transformationXm can be identified with an
arrowX ⊗ X

µ
→ X in C, which gives an inner binary operation onX.

Xg◦f =

1
⇓

Xf

C
l

JfK

1
⇓

Xg

C
k

JgK

1 C
n

How do such inner operations onX satisfy equations as
specified inL? The key is the coherence condition13 on medi-
ating 2-cells: it requiresXid = id concerning identities; and
Xg◦f = Xg • (JgK ◦ Xf) concerning composition (as on the
right). The following example illustrates how such coherence
induces equational properties.

Example 3.5 A monoid object in a strictly monoidal category is an exampleof anL-
object in anL-category. Here we takeL = Mon, the theory of monoids.

For illustration, let us here derive associativity of multiplicationX⊗X
µ
→ X. In the

current setting the multiplicationµ is identified with a mediating 2-cellXm as above.

13 This is part of the notion of lax natural transformations; see [4].



The coherence condition yields the two equalities (∗) below.

3

in L

id×m m×id

2
m

2
m

1

1

in CAT

⇓
Xid×m

C
3

Jid×mK

1
⇓
Xm

C
2

JmK

1 C

(∗)
=

1
⇓

Xm◦(id×m)
=Xm◦(m×id)

C
3

1 C
1

(∗)
=

1 ⇓
Xm×id

C
3

Jm×idK

1
⇓
Xm

C
2

JmK

1 C

Now it is not hard to see that: the composed 2-cell on the left corresponds toX3 X×µ
→

X2 µ
→ X; and the one on the right corresponds toX3 µ×X

→ X2 µ
→ X. The equalities

(∗) above prove that these two arrowsX3
⇉ X are identical.

3.5 Microcosm structures in coalgebras

In this section we return to our original question and apply the framework we just
introduced to coalgebraic settings. First we present some basic results, which are used
later in our main result of general compositionality. The constructs in Section 2 (such
assync) will appear again, now in their generalized form. Some details and proofs are
omitted here due to lack of space. They will appear in the forthcoming extended version
of this paper, although the diligent reader will readily work them out.

Let C be anL-category, andF : C → C be a functor. We can imagine that, for
the categoryCoalgF to carry anL-structure,F needs to be somehow compatible with
L; it turns out that the following condition is sufficient. It is weaker thanF ’s being an
L-functor (see Definition 3.2).

Definition 3.6 (Lax L-functor) A functorF : C → D betweenL-categories is said to

be alaxL-functorif it is identified with14 some lax natural transformationL
C

D

⇓F CAT

which is product-preserving (i.e.F ◦ H is strictly natural; see Definition 3.4).

2

in L

m

1

C
2

in CAT
(F,F )

⊗ ⇓
Fm

C
2

⊗

C
F

C

Lax L-endofunctors are natural generalization of func-
tors with sync as in Section 2. To illustrate this, look at
the lax naturality diagram on the right for a binary op-
erationm. Here we denote the outer interpretationJmK
by ⊗. The2-component isF2 = (F, F ) because the lax natural transformationF is
product-preserving. The mediating 2-cellFm can be identified with a natural transfor-
mationFX⊗FY → F (X⊗Y ); this is what we previously calledsync. Moreover,Fm

(as generalizedsync) is automatically compatible with equational properties (as in The-
orem 2.4); this is because of the coherence condition on mediating 2-cells like “Fg◦f is
a suitable composition ofFg afterFf .”

The following results follow from a more general result concerning the notion of
inserters, namely: whenG is an oplaxL-functor andF is a laxL-functor, then the
inserterIns(G,F ) is anL-category.

14 Meaning:F : C → D is the1-component of such a lax natural transformationC ⇒ D.



Proposition 3.7 1. Let C be anL-category andF : C → C be a laxL-functor.

ThenCoalgF is anL-category; moreover the forgetful functorCoalgF

U
→ C is a

(strict, non-lax)L-functor.
2. Given a microcosm modelX ∈ C for L, the slice categoryC/X is anL-category;

moreover the functorC/X
dom
−→ C is anL-functor. ⊓⊔

Note thatCoalgF being anL-category means not only that operations are interpreted
in CoalgF but also that all the equational properties specified inL are satisfied in
CoalgF . Therefore this result generalizes Theorem 2.4.

Concretely, an operationf : k → 1 in L is interpreted inCoalgF andC/X as
follows, respectively.

„ FX1

X1

c1 , . . . ,
FXk

Xk

ck

«

7→

F JfK(
−→
X )

JfK(
−−→
FX)

(Ff)−→X

JfK(
−→
X )

JfK(−→c )

„ Y1
y1

X
, . . . ,

Yk
yk

X

«

7→

JfK(
−→
Y )

JfK(−→y )

JfK(
−→
X )
Xf

X

Compare these with (5) and (6); these make an essential use ofFf andXf which gener-
alizesync and‖ in Section 2, respectively.

Proposition 3.8 1. A laxL-functor preservesL-objects. Hence so does anL-functor.
2. A final object of anL-categoryC, if it exists, is anL-object. The innerL-structure

is induced by finality. ⊓⊔

We can now present our main result. It generalizes Theorem 2.1, hence is a gener-
alized version of the “coalgebraic compositionality” equation (4).

Theorem 3.9 (General compositionality)Let C be anL-category andF : C → C

be a laxL-functor. Assume further thatζ : Z
∼=→ FZ is the final coalgebra. Then the

functorbeh : CoalgF → C/Z is a (non-lax)L-functor. It makes the following diagram
of L-functors commute.

CoalgF

beh

U

C/Z

domC ⊓⊔

The proof is straightforward by finality. HereCoalgF is anL-category (Proposition 3.7.1).
So isC/Z because:ζ ∈ CoalgF is anL-object (Proposition 3.8.2);Z = Uζ is anL-
object (Propositions 3.8.1 and 3.7.1); henceC/Z is anL-category (Proposition 3.7.2).

We have also observed some facts which look interesting but are not directly needed
for our main result (Theorem 3.9). They include: the category L-objC of L-objects inC
and morphisms between them forms the lax limit of a diagramC : L → CAT; the sim-
plicial category∆ is the “universal” microcosm model forMon (cf. [20, Proposition
VII.5.1]). The details will appear in the forthcoming extended version.



4 Conclusions and future work

In this paper we have observed that the microcosm principle (as called by Baez and
Dolan) brings new mathematical insights into computer science. Specifically, we have
looked into parallel composition of coalgebras, which would serve as a mathematical
basis for the study of concurrency. As a purely mathematicalexpedition, we have pre-
sented a 2-categorical formalization of the microcosm principle, where an algebraic
theory is presented by a Lawvere theory. Turning back to our original motivation, the
formalization was applied to coalgebras and yielded some general results which ensure
compositionality and equational properties such as associativity.

There are many questions yet to be answered. Some of them havebeen already
mentioned, namely: extending the expressive power ofsync (Remark 2.3), and a proper
treatment of “pseudo” algebraic structures (Section 3.3).

On the application side, one direction of future work is to establish a relationship
betweensync and(syntactic) formatsfor process algebras. Oursync represents a certain
class of operational rules; formats are a more syntactic wayto do the same. Formats
which guarantee certain good properties (such as commutativity, see [23]) have been
actively studied. Such a format should be obtained by translating e.g. a “commutative”
sync into a format.

On the mathematical side, one direction is to identify more instances of the micro-
cosm principle. Mathematics abounds with the (often implicit) idea of nested algebraic
structures. To name a few: a topological space in a topos which is itself a “generalized
topological space”; a category of domains which itself carries a “structure as a do-
main.” We wish to turn such an informal statement into a mathematically rigorous one,
by generalizing the current formalization of the microcosmprinciple. As a possible first
step towards this direction, we are working on formalizing the microcosm principle for
finitary monads which are known to be roughly the same thing asLawvere theories.

Another direction is a search forn-folded nested algebraic structures. In the current
paper we have concentrated on two levels of interpretation;an example with more levels
might be found e.g. in an internal category in an internal category.
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