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Abstract

We devise a generic framework where a weakest precondition semantics, in the
form of indexed posets, is derived from a monad whose Kleisli category is en-
riched by posets. It is inspired by Jacobs’ recent identification of a categorical
structure that is common in various predicate transformers, but adds general-
ity in the following aspects: 1) different notions of modality (such as “may”
vs. “must”) are captured by Eilenberg-Moore algebras; 2) nested alternating
branching—like in games and in probabilistic systems with nondeterministic
environments—is modularly modeled by a monad on the Eilenberg-Moore cat-
egory of another.
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1. Introduction

Among various styles of program semantics, the one by predicate transform-
ers [2] is arguably the most intuitive. Its presentation is inherently logical,
representing a program’s behaviors by what properties (or predicates) hold be-
fore and after its execution. Predicate transformer semantics therefore form a
basis of program verification, where specifications are given in the form of pre-
and post-conditions [3]. It has also been used for refinement of specifications
into programs (see e.g. [4]). Its success has driven extensions of the original non-
deterministic framework, e.g. to the probabilistic one [5, 6] and to the setting
with both nondeterministic and probabilistic branching [7].

IAn earlier version of this paper [1] has been presented at the Twelfth International Work-
shop on Coalgebraic Methods in Computer Science (CMCS 2014), 5–6 April 2014, Grenoble,
France.
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A Categorical Picture. More recently, Jacobs in his series of papers [8, 9, 10] has
pushed forward a categorical view on predicate transformers. It starts with a
monad T that models a notion of branching. Then a program—henceforth called
a (branching) computation—is a Kleisli arrow X → TY ; and the the weakest
precondition semantics is given as a contravariant functor PK` : K`(T )op → A,
from the Kleisli category to the category A of suitable ordered algebras.

For example, in the basic nondeterministic setting, T is the powerset monad
P on Sets and A is the category CL∧ of complete lattices and

∧
-preserving

maps. The weakest precondition functor PK` : K`(T )op → CL∧ then carries a
function f : X → PY to

wpre(f) : PY −→ PX , Q 7−→ {x ∈ X | f(x) ⊆ Q} . (1)

Moreover it can be seen that: 1) the functor PK` factors through the comparison
functor K : K`(P) → EM(P) to the Eilenberg-Moore category EM(P); and 2)
the extended functor PEM has a dual adjoint S. The situation is as follows.

CL∧ S
,,

PEM
ll ⊥ (CL∨)op ∼= EM(P)op

K`(P)op Kop

99

PK̀ = PEM◦Kop

\\ (2)

Here the functor K carries f : X → PY to f† : PX → PY, P 7→
⋃
x∈P f(x). We

shall call this mapping f 7→ f† a superposed-state transformer semantics—it can
be understood as the strongest postcondition semantics in this specific instance
of T = P, but not necessarily in other instances. See Rem. 2.11.

Therefore the picture (2)—understood as the one below—identifies a general
categorical structure that underlies predicate transformer semantics. The dual
adjunction here (which is in fact an isomorphism in the specific instance of (2))
indicates a “duality” between (backward) predicate transformers and (forward)
superposed-state transformers.(

(backward) predicate
transformers

) S //

nn ⊥

(
(forward) superposed-state

transformers

)
(

(branching)
computations

) superposed-state
transformer semantics

66
weakest precondition

semantics,
predicate transformer

semantics

ff

(3)
Jacobs has identified other instances of (3) for: discrete probabilistic branch-
ing [8]; quantum logic [8]; and continuous probabilistic branching [9].1 See [10]
for an overview and also for additional instances. In all these instances the no-
tion of effect module—originally from the study of quantum probability [11]—
plays an essential role as algebras of “quantitative logics.”

1Different terminologies are used in [8] to describe the picture (3). See Rem. 1.1.
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Towards Generic Weakest Precondition Semantics. In [8, 9, 10] the picture (3)
is presented through examples, and its categorical axiomatics—that encompass
many different instances of the picture—have not been pursued as a main goal.2

Finding such axiomatics is the current paper’s aim. In doing so, moreover, we
acquire additional generality in two aspects: different modalities and nested
alternating branching.

To motivate the first aspect of generality, observe that the weakest pre-
condition semantics in (1) is the must semantics. The may variant looks as
interesting; it would carry a postcondition Q ⊆ Y to {x ∈ X | f(x) ∩ Q 6= ∅}.
The difference between the two semantics is much like the one between the
modal operators � and ♦.

On the second aspect, situations are abound in computer science where a
computation involves two heterogeneous layers of branching. Typically these
layers correspond to two distinct players with conflicting interests. Examples
are games, a two-player version of automata which are essential tools in various
topics including model-checking; and probabilistic systems where it is common to
include nondeterministic branching too for modeling the environment’s choices.
Further details will be discussed later in §4.

Predicates and Modalities from Monads. In this paper we present two categor-
ical setups that are inspired by [12, 13, 14]—specifically by their use of T1 as a
domain of truth values or quantities.

The first “one-player” setup is when we have only one layer of branching.
Much like in [8, 9, 10] we start from a monad T . Assuming that T is order-
enriched—in the sense that its Kleisli category K`(T ) is Posets-enriched—we
observe that:

• a natural notion of truth value arises from an object TΩ (where the object
Ω is typically the terminal one 1);

• and a modality (like “may” and “must”) corresponds to a choice of an
Eilenberg-Moore algebra τ : T (TΩ)→ TΩ.

The required data set (T,Ω, τ) shall be called a predicate transformer situation.
We prove that it induces a weakest precondition semantics functor K`(T )op →
Posets, and that it factors through K : K`(T )→ EM(T ), much like in (2). The
general setup addresses common instances like the original nondeterministic
one [2] and the probabilistic predicate transformers in [5, 6]. Moreover it allows
us to systematically search for different modalities, leading e.g. to a probabilistic
notion of partial correctness guarantee that does not seem well-known.

The other setup is the alternating, “two-player” one. It is much like a one-
player setup built on another, with two monads T and R and two “modalities”
τ and ρ. A potential novelty here is that R is a monad on EM(T ); this way we

2An exception is a unified treatment of branching weighted by a semiring R; see e.g. [10,
§3]. This, however, does not generalize to the probabilistic branching as it is.
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manage some known complications in nested branching, such as the difficulty
of combining probability and nondeterminism. We prove that the data set
(T,Ω, τ, R, ρ) gives rise to a weakest precondition semantics, as before. Its
examples include: a logic of forced predicates in games; and the probabilistic
predicate transformers in [7].

The general categorical axiomatics in this paper does not address all the
structures that are common in the known instances of (3). The most notable
point that is left out is the role of effect modules that is fundamental in [8].
Indeed, on the top-left corner of (3) we always have Posets that is much poorer
than structures like complete lattices or effect modules. We envisage a fully
general framework where Posets is replaced by a symmetric monoidal closed
category V—that can be instantiated by the category of effect modules, for
example—and we start with a monad T that is “V-enriched” in a suitable sense.
A “V-enriched” framework like this is left as future work. Another point that is
missing is that the left adjoint S in (3) is only obtained in case the base category
is Sets. See §2.5.

Remark 1.1 (the state-and-effect triangle). In Jacobs’ recent paper [8] the
categorical picture in (3) is called a state-and-effect triangle and described as
follows, using different terminologies.

(predicate transformers)
..

oo ⊥ (state transformers)

(base category)
state transformer

semantics

88

predicate transformer
semantics

gg
(4)

These terminologies have influences from quantum theory and need some expla-
nation.

• The word “state” in (4) should not be understood in the line of mem-
ory state in the semantics of an imperative programming language, the
latter being a function σ : Var → V that carries a variable to a value
(see e.g. [15]). The notion of state in (4) is rather like the notion of
mixed state—a probabilistic superposition

∑
i∈I ci|ϕi〉〈ϕi| of pure states

ϕi—that is often simply called state in quantum theory.

Indeed, in the instances of the general picture (3–4) presented in the cur-
rent paper, what is on the top-right corner is best understood as a “T -
mixture” or “T -superposition” of points—here T is a monad that models
branching. See Rem. 2.11.

• The word “effect” in “state-and-effect triangle” comes from the notion of
effect in quantum theory and has little to do with computational effect
in the theory of programming languages. In quantum theory, an effect is
a convex-linear map from (quantum) states to the values in the interval
[0, 1]; considering a value r ∈ [0, 1] as a “likelihood,” an effect plays the
role of a predicate in quantum theory (see e.g. [16]). Therefore in the
terminologies of the state-and-effect triangle (4), “effect” and “predicate”
should be deemed synonymous.
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In this paper we shall stick to the more programming language-oriented termi-
nologies in (3), since quantum logic does not play a big role here.

Organization of the Paper. In §2 we introduce our first “one-player” setup,
establish the triangle (3), and exhibit its examples. Many examples are based on
Sets; but a Giry-like monad for continuous probabilistic branching (on Meas)
is another example. We establish the left adjoint S in (3) only for the Sets-
based cases, though. In §3 we characterize the order-enrichment requirements
in the previous section in terms of algebraic operations. We rely on [17] there.

Our second “two-player” setup is first motivated in §4 through the exam-
ples of games and probabilistic systems, and is formally introduced in §5. Its
examples are described in §6 in detail. In §7 we conclude.

Additions and changes in this extended version, compared to the workshop
version [1], are as follows.

• In the picture (3) the top-right corner was called strongest post-condition
semantics in [1], a name that is not suited for all the examples. This name
was changed following Jacobs’ recent paper [8]. See Rem. 1.1.

• §3 is added. The additional material would hopefully aid concrete under-
standing of the abstract order-theoretic assumptions in the paper.

• An example for continuous probabilistic branching—based on the Giry
monad—is added. It is unique in this paper in that their base category is
the category Meas of measurable spaces, not Sets.

• The left adjoint S in (3) was totally missing in [1]. It is now present in
our framework, although only when the base category is Sets. See §2.5,
where we rely on a folklore result suggested by Bart Jacobs.

• Throughout the paper we added some (minor) results, explanations and
examples. They include §2.6 that is new, and Rem. 2.9.

The categorical proofs in §2.5–2.6 are somewhat heavy. They are deferred to the
appendix, so that they do not interrupt the main line of technical developments.

Notations and Terminologies. For a monad T , a T -algebra TX
a→ X shall

always mean an Eilenberg-Moore algebra for T , making the diagrams below
commute. For categorical backgrounds see e.g. [18, 19].

X
ηX //

id ((

TX
a��

X

T (TX)
Ta //

µX ��

TX
a��

TX
a
// X

(5)

Given a monad T on C, an arrow in the Kleisli category K`(T ) is denoted

by X p→ Y ; an identity arrow is denoted by id
K`(T )
X ; and composition of arrows

is denoted by g� f . These are to be distinguished from X → Y , idX and g ◦ f ,
respectively, in the base category C.
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2. Generic Weakest Preconditions, One-Player Setting

2.1. Order-Enriched Monad

We use monads for representing various notions of “branching.” These mon-
ads are assumed to have order-enrichment (v for, roughly speaking, “more op-
tions”); and this will be used for an entailment relation, an important element
of logic.

The category Posets is that of posets and monotone functions.

Definition 2.1. An order-enriched monad T on a category C is a monad to-
gether with a Posets-enriched structure of the Kleisli category K`(T ).

The latter means specifically: 1) each homset K`(T )(X,Y ) = C(X,TY ) carries
a prescribed poset structure; and 2) composition � in K`(T ) is monotone in each
argument. Such order-enrichment typically arises from the poset structure of
TY in the pointwise manner. In the specific setting of C = Sets such enrichment
can be characterized by substitutivity and congruence of orders on TX. See [17],
some of whose results are included in §3 for the record.

Remark 2.2. Note that the notion of order-enriched monad (Def. 2.1) is differ-
ent from that of Posets-enriched monad, an instance of V-enriched monad [20],
that would be a monad on a Posets-enriched category. Our examples of C
are Sets and Meas; and this constitutes a major difference from the domain-
theoretic framework developed in [21, 22, 23].

Below are some examples of order-enriched monads; with each of them the
order-enriched structure arises in the pointwise manner. Our intuition about
an order-enriched monad T is that it represents one possible branching type,
where ηX : X → TX represents the trivial branching with a unique option
and µX : T (TX) → TX represents flattening ‘branching twice’ into ‘branching
once’ (see [24]). In fact each of the first three examples below (T = L,P,D)
has the Kleisli category K`(T ) enriched by the category Cppo of pointed cpo’s
and continuous maps—not just by Posets—and hence is suited for generic
coalgebraic trace semantics [24].3

Example 2.3. 1. The lift monad L = 1 + ( ) on Sets—where the element
of 1 is denoted by ⊥—has a standard monad structure induced by co-
products. For example, the multiplication µL : 1 + 1 +X → 1 +X carries
x ∈ X to itself and both ⊥’s to ⊥. The set LX is a pointed dcpo with the
flat order (⊥ v x for each x ∈ X).
The lift monad L models the “branching type” of potential nontermina-
tion.

3Trace semantics based on the fourth example T = G does not follow from the same
order-theoretic construction. See [25] for an alternative measure-theoretic study.
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2. The powerset monad P on Sets models (possibilistic) nondeterminism.
Its action on arrows takes direct images: (Pf)U = {f(x) | x ∈ U}. Its
unit is given by singletons: ηPX = { } : X → PX, and its multiplication
is by unions: µPX =

⋃
: P(PX)→ PX.

3. The subdistribution monad D on Sets models discrete probabilistic branch-
ing. It carries a set X to the set of (probability) subdistributions over X:

DX :=
{
d : X → [0, 1]

∣∣ ∑
x∈X d(x) ≤ 1

}
; (6)

such d is called a subdistribution since the values need not add to 1.4

Given an arrow f : X → Y in Sets, Df : DX → DY is defined by
(Df)(d)(y) :=

∑
x∈f−1({y}) d(x). Its unit is the Dirac (or pointmass)

distribution: ηDX(x) = [x 7→ 1; x′ 7→ 0 (for x′ 6= x)]; its multiplication is
µDX(a) = [x 7→

∑
d∈DX a(d) · d(x)] for a ∈ D(DX).

The reason for using subdistributions, instead of (proper) distributions, is
that otherwise the order structure becomes trivial.

4. We shall also be using the “subprobability” variant G of the Giry monad [27],
on the category Meas of measurable spaces and measurable maps. This is
for general probabilistic branching (possibly over uncountable/continuous
spaces): note that the previous example D on Sets is not enough for con-
tinuous probability, since the support of d in (6) is easily shown to be at
most countable (see e.g. [26]).
The monad G is defined is as follows (see e.g. [25, 28] for further details).
Given a measurable space (X,ΣX),

GX :=
{
d : ΣX → [0, 1], a subprobability measure

}
,

where a subprobability measure is such that d(X) ∈ [0, 1] instead of
d(X) = 1. The set GX is equipped with the smallest measurable structure
that makes all evaluation maps measurable, that is concretely, with the
σ-algebra generated by the family{

{d ∈ GX | d(S) ≥ q}
∣∣∣ S ∈ ΣX , q ∈ Q

}
.

The other components of G’s monad structure is straightforward adap-
tation of those of D: its unit is given by Dirac distributions; and its
multiplication is given by the Lebesgue integral µGX(a)(x) =

∫
d
d(x)da. In

this paper we shall call the above monad G the continuous subdistribution
monad.

5. Another example is the quantum branching monad Q. It is introduced
in [29] for the purpose of modeling a quantum programming language

4To be precise, the sum
∑
x∈X d(x) in (6) over an arbitrary set X is defined by

sup{
∑
x∈X′ d(x) | X′ is a finite subset of X}. It is not hard to see that such a (discrete)

subdistribution d necessarily has a countable support, that is, |{x ∈ X | d(x) 6= 0}| = ℵ0. See
e.g. [26, Prop. 2.1.2].
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that obeys the design principle of “quantum data, classical control.” It
comes with an order-enrichment, too, derived from the Löwner partial
order between positive operators. The description of Q involves quantum
theoretic constructs that are not used elsewhere in the paper, hence is
deferred to [29].

2.2. PT Situation and Generic Weakest Precondition Semantics

We introduce our first basic setup for our generic weakest precondition se-
mantics. In our main examples we take Sets or Meas for the base category C,
and Ω = 1 (a singleton).

Definition 2.4 (PT situation). A predicate transformer situation (a PT sit-
uation for short) over a category C is a triple (T,Ω, τ) of

• an order-enriched monad T on C;

• an object Ω ∈ C; and

• an (Eilenberg-Moore) algebra τ : T (TΩ)→ TΩ that satisfies the following
monotonicity condition: for each X ∈ C, the correspondence

(Φτ )X : C(X,TΩ) −→ C(TX, TΩ) , i.e. K`(T )(X,Ω) −→ K`(T )(TX,Ω) ,

given by
(
X

p→ TΩ
)
7−→

(
TX

Tp→ T (TΩ)
τ→ TΩ

)
is monotone with respect to the order-enrichment of the Kleisli category
K`(T ) (Def. 2.1). Note here that Φτ : C( , TΩ)⇒ C(T , TΩ) is nothing
but the natural transformation induced by the arrow τ via the Yoneda
lemma.

The data τ is called a modality ; see the introduction (§1) and also §2.3 below.

The following lemma states that, given T , its multiplication µ gives a canon-
ical (but not unique) modality for T .

Lemma 2.5. If T is an order-enriched monad, (T,Ω, µΩ) is a PT situation.
Here µΩ is the Ω-component of the multiplication of the monad T .

Proof. We have only to check the monotonicity condition of µΩ in Def. 2.4.
It is easy to see that the following commutes.

C(X,TΩ)
(ΦµΩ

)X = µΩ◦T ( )
// C(TX, TΩ)

K`(T )(X,Ω)
( )�(idTX)∧

// K`(T )(TX,Ω)

Here (idTX)∧ : TX p→ X is the arrow that corresponds to the identity idTX in
C. The claim follows from the monotonicity of � (postulated in Def. 2.1). �

We shall derive a weakest precondition semantics from a given PT situation
(T,Ω, τ). The goal consists of:
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• a (po)set PK`(τ)(X) of predicates for each object X ∈ C, whose order v
represents an entailment relation between predicates; and

• an assignment, to each (branching) computation f : X → TY in C, a
predicate transformer

wpre(f) : PK`(τ)(Y ) −→ PK`(τ)(X) (7)

that is a monotone function.

Noting that a computation is an arrow f : X p→ Y in K`(T ) and combining the
two data above, we are aiming at a functor

PK`(τ) : K`(T )op −→ Posets . (8)

Such a functor is known as an indexed poset, a special case of indexed categories.
These “indexed” structures are known to correspond to “fibered” structures
(poset fibrations and (split) fibrations, respectively), and all these have been
used as basic constructs in categorical logic (see e.g. [30]). An indexed poset
like (8) therefore puts us on the firm footing of the categorical logic tradition.

Proposition 2.6 (the indexed poset PK`(τ)). Given a PT situation (T,Ω, τ),
the following defines an indexed poset PK`(τ) : K`(T )op → Posets.5

• On an object X ∈ K`(T ), PK`(τ)(X) := K`(T )(X,Ω) = C(X,TΩ).

• On an arrow f : X p→ Y , PK`(τ)(f) : C(Y, TΩ)→ C(X,TΩ) is defined by(
Y

q→ TΩ
)
7−→

(
X

f→ TY
Tq→ T (TΩ)

τ→ TΩ
)
.

Proof. We need to check: the monotonicity of PK`(τ)(f); and that the functor
PK`(τ) indeed preserves identities and composition of arrows. These will be
proved later, altogether in the proof of Thm. 2.14. �

A consequence of the proposition—specifically the functoriality of PK`(τ)—is
compositionality of the weakest precondition semantics: given two computations
f : X → TY , g : Y → TU and a postcondition r : U → TΩ, Prop. 2.6 automati-
cally ensures

PK`(τ)(g � f)(r) = PK`(τ)(f)
(
PK`(τ)(g)(r)

)
.

That is, the semantics of a sequential composition g � f can be computed step
by step.

5For brevity we favor the notation PK`(τ) over PK`(T,Ω, τ) that is more appropriate.
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2.3. Examples of PT Situations

For each of T = L,P,D,G in Example 2.3, we take Ω = 1 and the set T1 is
naturally understood as a set of “truth values” (an observation in [12, 13, 14]):

L1 =

[ (tt := ∗)

(ff := ⊥)
v

]
, P1 =

[ (tt := 1)

(ff := ∅)

v

]
, and D1 ∼= G1 ∼=

(
[0, 1], ≤

)
,

Here ∗ is the element of the argument 1 in L1, and the measurable structure of
G1 is the same as the standard Borel structure of the interval [0, 1]. Both L1
and P1 represent the Boolean truth values. In the D and G cases a truth value
is r ∈ [0, 1]; a predicate, being a function X → [0, 1], is hence a random variable
that tells the certainty with which the predicate holds at each x ∈ X.

We shall introduce modalities for these monads T and Ω = 1. The following
observation will be used.

Lemma 2.7. The category EM(T ) of Eilenberg-Moore algebra is iso-closed in
the category of functor T -algebras. That is, given an Eilenberg-Moore algebra
a : TX → X, an arrow b : TY → Y , and an isomorphism f : X

∼=→ Y such that
f ◦ a = b ◦ Tf , the arrow b is also an Eilenberg-Moore algebra.

Proof. Straightforward from diagram chasing. �

2.3.1. The Lift Monad L: τtotal and τpartial

We have the following two modalities. There are none other, which is easily
seen from the requirement that a modality (an Eilenberg-Moore algebra) is
compatible with the monad unit (5).

τtotal, τpartial : {⊥}+ {tt, ff} = L(L1) −→ L1 = {tt, ff} ,
τtotal : ⊥ 7→ ff , tt 7→ tt , ff 7→ ff ,

τpartial : ⊥ 7→ tt , tt 7→ tt , ff 7→ ff .

The one we obtain from multiplication µL1 is τtotal. The other modality τpartial—
whose monotonicity (Def. 2.4) is easy by case distinction—is nonetheless impor-
tant in program verification. Given q : Y → L1 and f : X → LY where f is
understood as a possibly diverging computation from X to Y , the predicate

PK`(τpartial)(f)(q) = τpartial ◦ Lq ◦ f : X −→ L1

carries x ∈ X to tt in case f(x) = ⊥, i.e., if the computation is diverging. This
is therefore a partial correctness specification that is common in Floyd-Hoare
logic (see e.g. [15]). In contrast, using τtotal, the logic is about total correctness.
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2.3.2. The Powerset Monad P: τ♦ and τ�
The monad multiplication µP1 yields a modality which shall be denoted by

τ♦. The other modality τ� is given via the swapping σ : P1
∼=→ P1:

P(P1)
τ� ��

Pσ
∼=
// P(P1)

τ♦��

P1 P1 ;
σ

∼=oo

explicitly,
τ♦{} = ff, τ♦{tt} = tt, τ♦{ff} = ff, τ♦{tt, ff} = tt;
τ�{} = tt, τ�{tt} = tt, τ�{ff} = ff, τ�{tt, ff} = ff.

(9)
In view of Lem. 2.5 and 2.7, we have only to check that the map τ� satisfies the
monotonicity condition in Def. 2.4. We first observe that, for h : X → P1 and
U ∈ PX,

(τ� ◦ Ph)(U) = ff ⇐⇒ ff ∈ (Ph)(U) ⇐⇒ ∃x ∈ U. h(x) = ff ,

where the first equivalence is by (9). Now assume that f v g : X p→ 1 and
(τ� ◦ Pg)(U) = ff. For showing τ� ◦ Pf v τ� ◦ Pg it suffices to show that
(τ� ◦ Pf)(U) = ff; this follows from the above observation.

The modalities τ♦ and τ� capture the may and must weakest precondi-
tions, respectively. Indeed, given q : Y → P1 and f : X → PY , we have
PK`(τ♦)(f)(q)(x) = tt if and only if there exists y ∈ Y such that y ∈ f(x)
and q(y) = tt (for the τ♦ modality); and PK`(τ�)(f)(q)(x) = tt if and only if
y ∈ f(x) implies q(y) = tt (for the τ� modality).

Moreover, we can show that τ♦ and τ� are the only modalities (in the sense
of Def. 2.4) for T = P and Ω = 1. Since the unit law in (5) forces τ{tt} = tt and
τ{ff} = ff, the only possible variations other than τ♦ and τ� are the following
τ1 and τ2 (cf. (9)):

τ1{} = tt , τ1{tt, ff} = tt ; τ2{} = ff , τ2{tt, ff} = ff .

Both of these, however, fail to satisfy the multiplication law in (5).

{{}, {ff}} � Pτ1 //
_⋃

P1 ��

{tt, ff}
_
τ1��

{ff} �
τ1
// ff 6= tt

{{}, {tt}} � Pτ2 //
_⋃

P1 ��

{tt, ff}
_
τ2��

{tt} �
τ2
// tt 6= ff

Remark 2.8 (predicate lifting). We note that, in the case of T = P, the
maps (Φτ )X : C(X,TΩ)→ C(TX, TΩ) (for each X) in Def. 2.4 can be identified
with a natural transformation 2( ) ⇒ 2P( ). The latter is commonly called a
predicate lifting of the functor P in the coalgebraic literature (see e.g. [31, 32]).
The name comes from the fibrational study of categorical logic: given a fibration
P
↓p
C and a functor F : C→ C on the base category, a predicate lifting is a functor

ϕ : P→ P such that (ϕ, F ) forms an endomorphism of fibration. See e.g. [33, 34].
Compared to the definition of predicate lifting that is usual in coalgebraic

modal logic—namely, as a natural transformation 2( ) ⇒ 2P( )—what our
notion of PT situation (Def. 2.4) additionally yields are the following.

11



• Monotonicity of 2( ) ⇒ 2P( ). Monotonicity is commonly assumed in the
coalgebraic literature, too, and it is in particular included in the original
fibrational definition of predicate lifting.

• Compatibility with the monad structure of P.

In fact the latter notion of predicate lifting of (not just a functor, but) a monad
is introduced in [35, §4], in a canonical manner that is based on the indexed
category-based formulation of categorical logic. We can readily check that the
maps Φτ in Def. 2.4 that we obtain from a PT situation satisfy the axioms
in [35, §4]; in particular we can take identities as the 2-cells θX and νX in [35].

Remark 2.9 (naturality of Φτ is in C, not in K`(T )). The map (Φτ )X : C(X,TΩ)→
C(TX, TΩ) in Def. 2.4 is natural in X ∈ C—this is a consequence of the Yoneda
lemma. We note that it does not necessarily imply naturality of

(Φτ )X : K`(T )(X,Ω) −→ K`(T )(TX,Ω) (10)

in X ∈ K`(T ), although we have C(X,TΩ) = K`(T )(X,Ω) and C(TX, TΩ) =
K`(T )(TX,Ω). Here, in (10), the last occurrence of T is understood as that of
the comonad on K`(T ) that arises from the Kleisli adjunction.

For a concrete counterexample, take C = Sets, T = P and the modality
τ�. We shall see the naturality of (10) fails along f : 1 p→ 1, ∗ 7→ ∅, in K`(P).
It is not hard to see that Pf : P1 p→ P1 is given by the function ηP1 ◦ µ1 ◦
Pf : P1 → P(P1); the latter carries ∅ to {∅} and {∗} to {∅}. The naturality
of (10) requires that the following diagram commute.

in K`(P) 1 in Sets K`(P)(1, 1)
Φτ //

( )�f
��

K`(P)(P1, 1)

( )�Pf
��

1

_f
OO

K`(P)(1, 1)
Φτ // K`(P)(P1, 1)

However this is not the case:

(∗ 7→ {∗} = tt) � //
_
��

(∅ 7→ tt, {∗} 7→ tt)
_
��

(∗ 7→ ∅ = ff)
� // (∅ 7→ tt, {∗} 7→ ff) 6= (∅ 7→ tt, {∗} 7→ tt) .

2.3.3. The Subdistribution Monad D: τtotal and τpartial

The modality τtotal : D[0, 1] → [0, 1] that arises from the multiplication µD1
is such that: given q : Y → D1 and f : X → DY , we have

PK`(τtotal)(f)(q)(x) =
∑
y∈Y

q(y) · f(x)(y) .

This is precisely the expected value of the random variable q under the distri-
bution f(x); thus τtotal yields the probabilistic predicate transformer of [5, 6].

12



In parallel to the powerset monad case, we have an isomorphism σ : D1
∼=→

D1, p 7→ 1−p. Another modality τpartial : D[0, 1]→ [0, 1] then arises by τpartial :=
σ ◦ τtotal ◦ Dσ, that is,

D(D1)
τpartial ��

Dσ
∼=
// D(D1)

τtotal��

D1 D1 ,
σ

∼=oo

which is much like in (9). To put it explicitly,

τpartial(d) =
(
1−

∑
r∈[0,1] d(r)

)
+
∑
r∈[0,1] r · d(r) and

PK`(τpartial)(f)(q)(x) =
(
1−

∑
y∈Y f(x)(y)

)
+
∑
y∈Y q(y) · f(x)(y) .

In the second line, the value 1−
∑
y∈Y f(x)(y)—the probability of f ’s divergence—

is added to the τtotal case. Therefore the modalities τpartial and τtotal, much like
in the case of T = L, carry the flavor of partial and total correctness guarantee.
In the context of probabilistic predicate transformers (also called expectation
transformers), those which arise from τpartial are commonly called liberal ones.
See e.g. [23].

To see that τpartial is indeed a modality is easy: we use Lem. 2.7; and the
monotonicity can be deduced from the following explicit presentation of τpartial ◦
Dp for p : X → D1 = [0, 1]. For each d ∈ DX,

(τpartial ◦ Dp)(d) = τpartial

[
r 7→

∑
x∈p−1({r}) d(x)

]
r∈[0,1]

=
(
1−

∑
r∈[0,1]

∑
x∈p−1({r}) d(x)

)
+
∑
r∈[0,1] r

∑
x∈p−1({r}) d(x)

=
(
1−

∑
x∈X d(x)

)
+
∑
x∈X p(x) · d(x) .

We do not yet know if τtotal and τpartial are the only modalities for D and Ω = 1.

Remark 2.10. We note the difference between a subdistribution d ∈ DX and
a predicate (i.e. a random variable) p : X → D1. An example of the latter is p>
that is everywhere 1—this is the truth predicate. In contrast, the former d ∈ DX
is subject to the (sub)normalization condition

∑
x d(x) ≤ 1, excluding p> from

the set DX (unless X is a singleton). An element d ∈ DX is therefore like
one single “current state” whose whereabouts are known only probabilistically.
More generally we shall think of it as a superposed state; see Rem. 2.11 later,
and also Rem. 1.1.

2.3.4. The Continuous Subdistribution Monad G: τtotal and τpartial

For the monad G—a continuous analogue of D, see Example 2.3—the situa-
tion is parallel to the one for D. The monad multiplication µG1 yields a modality
by Lem. 2.5 which we denote by τtotal. It is such that: given q : Y → G1 ∼= [0, 1]
and f : X → GY , both being measurable maps, we have

PK`(τtotal)(f)(q)(x) =

∫
Y

q df(x) ,
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that is, the expected value of the random variable q with respect to the sub-
probability f(x) over Y .

Since the swap isomorphism [0, 1]
∼=→ [0, 1] is measurable with respect to the

standard Borel structure of [0, 1], we have the following situation in Meas that
yields an Eilenberg-Moore algebra τpartial by Lem. 2.7.

G(G1)
τpartial ��

Gσ
∼=
// G(G1)

τtotal��

G1 G1
σ

∼=oo

Monotonicity of τpartial—established much like the D case, relying on the mono-
tonicity of integration—gives us another modality. The resulting weakest pre-
condition semantics is such that

PK`(τpartial)(f)(q)(x) =
(

1−f(x)(Y )
)

+

∫
Y

q df(x) =
(

1−
∫
Y

df(x)
)

+

∫
Y

q df(x) ,

with the likelihood of divergence 1− f(x)(Y ) = 1−
∫
Y

df(x) added.

2.4. Factorization via the Eilenberg-Moore Category

The indexed poset PK`(τ) : K`(T )op → Posets in Prop. 2.6 is shown here to
factor through the comparison functor K : K`(T ) → EM(T ), much like in (2)
and (3). We shall see this K as a superposed-state transformer semantics—or
simply a state transformer semantics in the terminology of [8]—for the reason
we explain below.

Remark 2.11 (superposed-state transformer semantics). The compari-

son functor K : K`(T ) → EM(T ) carries an object X to a free algebra
T (TX)

↓µ
TX

.

An element of (the carrier object of) the latter can be naturally identified with
a mixture or superposition of those of X, with respect to the branching effect
specified with T—one would readily see this for the examples of L,P,D and G.
For instance, in case T = D, an element d ∈ DX is a probability subdistribution
over X and it is hence a “probabilistic superposition” of elements of X. See
also Rem. 1.1 and 2.10.

The comparison functorK’s action on arrows then defines a forward “(superposed-)state
transformer semantics” of T -branching computations, the latter being identified
with arrows X → TY in C (hence X p→ Y in K`(T )). Concretely, K carries an

arrow f : X p→ Y to µY ◦ Tf :
( T (TX)

↓µX
TX

)
→
( T (TY )

↓µY
TY

)
and the latter composite

µY ◦ Tf is understood as follows. Given a superposed state t ∈ TX, the first
part Tf applies f to each component state of t; and their outcomes (each with
T -branching, because f is T -branching) are then “superposed” according to the
original superposition present in t ∈ TX, by means of the monad multiplication
µ.

In the special case of T = P, the superposed-state transformer semantics
coincides with the natural notion of strongest postcondition semantics—this is

14



because a P-superposition of states is nothing but a predicate. This is not the
case in general; see Rem. 2.10 for the case T = D.

Our goal here is the diagram (11) later; it is the the diagram (3)—except for
the left adjoint S—put in rigorous terms. (The left adjoint S will be obtained
in §2.5.) We will be using the following result.

Lemma 2.12. Let T be an order-enriched monad on C, X,Y, U ∈ C and
f : X → Y be an arrow in C. Then ( ) ◦ f : C(Y, TU) → C(X,TU) is mono-
tone.

Proof. Given g : Y → TU in C,

g ◦ f = µU ◦ ηTU ◦ g ◦ f = µU ◦ Tg ◦ Tf ◦ ηX = µU ◦ Tg ◦ Tf ◦ µX ◦ ηTX ◦ ηX
= µU ◦ Tg ◦ µY ◦ T (Tf) ◦ ηTX ◦ ηX =

(
X

JηX
p→ TX

Tf
p→ Y

g
p→ U

)
,

where J : C→ K`(T ) is the Kleisli inclusion that sends the arrow ηX : X → TX
to ηTX ◦ ηX : X p→ TX. In the calculation we used the monad laws as well as
the naturality of η and µ. The correspondence ( )� (Tf � JηX) is monotone
by assumption (Def. 2.1); this proves the claim. �

Proposition 2.13 (the indexed poset PEM(τ)). A PT situation (T,Ω, τ) in-
duces an indexed poset PEM(τ) : EM(T )op → Posets that is given by the repre-
sentable functor EM(T )( , τ). That is,

• On objects,

PEM(τ)
( TX↓a
X

)
:= EM(T )

( TX↓a
X

,
T (TΩ)

↓τ
TΩ

)
where the order v on the set EM(T )(a, τ) is inherited from C(X,TΩ) via
the forgetful functor UT : EM(T )→ C.

• On an arrow f : (TX
a→ X)→ (TY

b→ Y ),

PEM(τ)(f) : EM(T )
( TY↓b
Y
,
T (TΩ)

↓τ
TΩ

)
−→ EM(T )

( TX↓a
X

,
T (TΩ)

↓τ
TΩ

)
, q 7−→ q ◦ f .

Proof. We only have to check the monotonicity of PEM(τ)(f). It follows from
the order-enrichment of T via Lem. 2.12. �

Theorem 2.14. For a PT situation (T,Ω, τ), the following diagram commutes
up-to a natural isomorphism. Here K is the comparison functor.

Posets
PEM(τ)

pp
Ψ⇑∼=

EM(T )op

K`(T )op Kop

99

PK̀ (τ)

cc (11)
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Proof. (Also of Prop. 2.6) The natural isomorphism Ψ in question is of the
type

ΨX : PK`(τ)(X) = C(X,TΩ)
∼=−→ EM(T )

( T (TX)
↓µX
TX

,
T (TΩ)

↓τ
TΩ

)
= PEM(τ)(KX)

and it is defined by the adjunction C(X,UT τ) ∼= EM(T )(µX , τ) where UT is

the forgetful functor. Explicitly: ΨX

(
X

p→ TΩ
)

=
(
TX

Tp→ T (TΩ)
τ→ TΩ

)
;

and its inverse is Ψ−1
X

(
TX

f→ TΩ
)

=
(
X

ηX→ TX
f→ TΩ

)
. The function ΨX

is monotonic by the monotonicity of τ , see Def. 2.4; so is its inverse Ψ−1
X by

Lem. 2.12.
Let us turn to naturality of Ψ. Given f : X p→ Y in K`(T ), it requires

C(Y, TΩ)
PK̀ (τ)(f) = τ◦T ( )◦f ��

ΨY
∼=

// EM(T )(µY , τ)
PEM(τ)(Kf) = ( )◦µY ◦Tf��

C(X,TΩ)
ΨX
∼=

// EM(T )(µX , τ) .
(12)

Indeed, given q : Y → TΩ,

PEM(τ)(Kf)(ΨY q) = PEM(τ)(Kf)(τ ◦ Tq) = τ ◦ Tq ◦ µY ◦ Tf
= τ ◦ µTΩ ◦ T (Tq) ◦ Tf = τ ◦ Tτ ◦ T (Tq) ◦ Tf =

(
ΨX ◦ PK`(τ)(f)

)
q ,

where the third equality is naturality of µ and the fourth is the multiplication
law of τ (see (5)). By this naturality, in particular, we have that PK`(τ)(f)
is monotone (since the other three arrows are monotone). This is one prop-
erty needed in Prop. 2.6; the other—functoriality of PK`(τ)—also follows from
naturality of Ψ, via the functoriality of K and PEM(τ). �

The functor PEM(τ) turns out to be the right Kan extension of PK`(τ), along
the comparison functor K : K`(T ) → EM(T ). See (11). We prove this later
in §2.6.

2.5. A Dual Adjunction between Backward and Forward Semantics

Here we present the last piece missing in the triangle (3), namely the functor
S and the dual adjunction between (backward) predicate transformer semantics
and (forward superposed-)state transformer semantics. This is by an order-
enriched adaptation of a folklore result (Lem. 2.15), and currently our result
restricts to PT situations based on C = Sets. The result therefore covers
T = L,P and D; but it is not clear yet if we have a similar dual adjunction for
T = G (continuous probabilistic branching).

The following result seems to be folklore and it was brought to the au-
thor’s attention by Bart Jacobs. We include its proof, since the proof of an
order-enriched adaptation of the result—Lem. 2.16, a result our program logic
framework relies on—builds on it.
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Lemma 2.15. Let T : Sets→ Sets be a monad and TA
α→ A be an Eilenberg-

Moore algebra. We have an adjunction

Setsop

α( )

,,
> EM(T )

EM(T )( ,α)

ll as in

Y −→ EM(T )
( TX

↓a
X

,
TA
↓α
A

)
in Sets

( TX
↓a
X

)
−→

( T (AY )
↓αY
AY

)
in EM(T )

(13)

where the functor α( ) carries a set Y to an Eilenberg-Moore algebra αY : T (AY )→
AY . Here the algebraic structure αY canonically arises from T ’s strength,
namely as the adjoint transpose of

Y × T (AY )
str //T (Y ×AY )

T ev //TA
α //A . (14)

Note that any endofunctor T on Sets comes with a canonical strength str,
essentially because Sets is “Sets-enriched.” See e.g. [36].

Proof. See AppendixA. �

Below is an order-enriched adaptation of Lem. 2.15. It seems to be new. We
base ourselves on the notion of PT situation; we restrict to those on Sets, leaving
out the example G (on Meas, §2.3.4) for continuous probabilistic branching.

Lemma 2.16. Let (T,Ω, τ) be a PT situation, with an additional assumption
that: 1) the base category C is Sets; and 2) the poset structure of K`(T )(X,Y ) =
Sets(X,TY )—part of the definition that T is order-enriched (Def. 2.1)—arises
from the poset TY in the pointwise manner. Then we have an adjunction

Posetsop

τ̃( )

,,
> EM(T )

EM(T )( ,τ)

ll as in

Y −→ EM(T )
( TX

↓a
X

,
T (TΩ)

↓τ
TΩ

)
in Posets

( TX
↓a
X

)
−→

( T (Posets(Y,TΩ))
↓τ̃Y

Posets(Y,TΩ)

)
in EM(T )

(15)
where the algebraic structure τ̃Y is given as the adjoint transpose of

Y × T (Posets(Y, TΩ))
str //T (Y ×Posets(Y, TΩ))

T ẽv //T (TΩ)
τ //TΩ . (16)

Here ẽv denotes evaluation of a (monotone) function, and hence is the same as

the composite Y ×Posets(Y, TΩ) ↪→ Y × Sets(Y, TΩ)
ev→ TΩ.

Proof. See AppendixA. �

Combining Thm. 2.14 and Lem. 2.16 we obtain the following formalization of
the informal triangle (3). The result applies to all the examples of PT situations
with T = L,P,D in §2.3, but not to T = G since it is based on Meas.
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Corollary 2.17. Under the assumptions of Lem. 2.16 we have the following

situation, with a natural isomorphism PK`(τ)
∼=⇒ PEM(τ) ◦ Kop.

Posets
S

,,

PEM(τ)

ll ⊥ EM(T )op

K`(T )op

Kop

AA

PK̀ (τ)

[[

(17)

�

2.6. A Kan Extension

In the diagram (11) (also in (17)), it turns out that the functor PEM(τ) is
the right Kan extension of PK`(τ) along the comparison functor K. We shall
prove this fact here. The proof works for a general base category C (not just
C = Sets).

We start with a prototype result that is not order-enriched yet. An algebra
α : TA → A in the following lemma will later be instantiated by τ : T (TΩ) →
TΩ, in which case F will be PK`(τ). Its proof relies on arguments similar to
those in Beck’s monadicity theorem.

Lemma 2.18. Let T be a monad on a category C, and α : TA → A be an
Eilenberg-Moore algebra. Consider

Sets
EM(T )

(
,

TA
↓α
A

)
oo EM(T )op

K`(T )op Kop

88

F

cc (18)

where K is the comparison functor, and the functor F is defined as follows
(much like in Prop. 2.6).

FX := C(X,A) ; F (X
f
p→ Y )

(
Y

q→ A
)

:=
(
X

f→ TY
Tq→ TA

α→ A
)
.

Then the functor EM(T )
(

,
TA
↓α
A

)
is the right Kan extension of F along Kop.

Proof. See AppendixA. �

Corollary 2.19. Let (T,Ω, τ) be a PT situation. In the diagram (11), PEM(τ)
is the right Kan extension of PK`(τ) along Kop.

Proof. See AppendixA. �
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3. Order Enrichment and PT Situations in Sets, Concretely

In this short section we rephrase the monotonicity requirement on PT sit-
uations into more concrete terms, in the special case of C = Sets. This is via
the notions of congruence and substitutivity of an order on a monad, introduced
and studied in [17] (see also [37]).

Definition 3.1 (congruence, substitutivity [17]). Let T be a monad on
Sets, and vT=

(
vTI ⊆ TI × TI

)
I∈Sets be an assignment of a partial order

to the set TI, for each set I.

• vT is said to be congruent if the mapping

Sets(J, TI) −→ Sets(TJ, TI) , t 7−→ t† = µTI ◦ Tt

is monotone for each J . Here the order in each homset is the pointwise
extension of vTI on TI.

• vT is said to be substitutive if, for any set I and any function t : I → TI,
its Kleisli extension t† : TI → TI is monotone (with respect to vTI ).

These properties are best understood in the correspondence (see e.g. [38]) be-
tween monads and algebraic theories. The set TI is that of (algebraic) terms
with variables from I (modulo equational axioms); hence t : J → TI is a J-
indexed array (tj)j∈J of such terms. Its Kleisli extension t† : TJ → TI then
carries a term s ∈ TJ (with variables from J = {xj | j ∈ J}) to s[tj/xj ].
Following this line, vT being congruent means that tj vT t′j for each j implies

s[tj/xj ] vT s[t′j/xj ]; its being substitutive means that s vT s′ (where s, s′ ∈ TI,

the domain of t†) implies s[ti/xi] vT s′[ti/xi].
The following result (and the previous definition) are in [17, §2]. The proof

is included for the record.

Proposition 3.2 ([17]). Let T be a monad on Sets. An order vT on T that
is congruent and substitutive is in a bijective correspondence with an order-
enrichment of K`(T ) that arises in the pointwise manner.

Proof. Given vT that is congruent and substitutive, we need to check that
its pointwise extension—for f, g : X ⇒ TY , we define f v g if and only if
f(x) vTY g(x)—makes the Kleisli composition � monotone. Let f, f ′ : X → TY ,
g, g′ : Y → TU , f v f ′ and g v g′. We have, for each x ∈ X,

(g � f)(x) = g†(f(x)) v g†(f ′(x)) v (g′)†(f ′(x)) = (g′ � f ′)(x) ,

where the two inequalities are due to substitutivity and congruence, respectively.
Conversely, assume a pointwise order-enrichment of K`(T ). To see the order

vT being congruent, observe that for t : J → TI, the arrow t† is equal to

TJ
(idTJ )∧

p→ J
t
p→ I. Here (idTJ)∧ is the function TJ → TJ in Sets considered

to be an arrow in K`(T ). The correspondence t 7→ t† is monotone since � is.
Substitutivity of vT follows from the fact that for t : I → TI and s ∈ TI, the

element t†(s) is nothing but 1
s
p→ I

t
p→ I. �
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We shall now adapt the above characterization of order-enrichments of a
monad T , to PT situations. This is the technical contribution of the current
section.

Definition 3.3. Let vT be an assignment of an order on a monad T , as before.

• An algebra T (TΩ)
τ→ TΩ is order-congruent if, for each J , the mapping

Sets(J, TΩ) → Sets(TJ, TΩ), t 7→
(
TJ

Tt→ T (TΩ)
τ→ TΩ

)
is monotone

(with respect to the pointwise order).

• τ is order-substitutive if, for each J and t : J → TΩ, the function τ ◦
(Tt) : TJ → TΩ is monotone (with respect to vTJ and vTΩ).

The following (obvious) characterization offers a concrete syntactic view of
the monotonicity condition on a PT situation, as we will illustrate shortly by
examples.

Proposition 3.4. An algebra T (TΩ)
τ→ TΩ satisfies the monotonicity condition

of Def. 2.4 if and only if it is order-congruent. �

Example 3.5. The modality τ� : P(P1) → P1 in Example 2.3, while it is
order-congruent, fails to be order-substitutive. Indeed, let t : 1→ P1 be defined
by t(∗) = ff. For the function τ� ◦ Pt : P1→ P1 we have τ�(Pt(∅)) = τ�(∅) =
tt and τ�(Pt({∗})) = τ�({ff}) = ff, while ∅ v {∗} in P1. Notice that τ� is
not even monotone:6 τ�{} = {0} and τ�{0} = {}.

The previous definition is again best understood in the language of algebraic
terms. Let us be concrete, for illustration, by setting T = P, Ω = 1 and
J = {x0, x1, x2}. We write TΩ = P1 =

{
tt := {0}, ff := ∅

}
, as before. An

arrow t : J → TΩ is a valuation, i.e. an assignment of truth values (tt or ff) to
each variable xi, such as

t0 =
[
x0 7→ ff, x1 7→ tt, x2 7→ ff

]
and t1 =

[
x0 7→ tt, x1 7→ tt, x2 7→ tt

]
.

(19)
Look at the definition of order-congruence: the arrow τ ◦ Tt : TJ → TΩ there is
easily seen to carry an algebraic term s—like s0 = {x2, x1, x0}—to its interpre-
tation JsKτ,t in the algebra τ under the valuation t. Order-congruence requires
this interpretation to be monotone with respect to valuations, that is, t v t′

implies JsKτ,t v JsKτ,t′ . To see that this holds for s0, t0 v t1 defined in (19),
and τ = τ�, we observe

Js0Kτ�,t0 = J{x2, x1, x0}Kτ�,t0 = τ�
(
{ff, tt, ff}

)
= ff

v tt = τ�
(
{tt, tt, tt}

)
= J{x2, x1, x0}Kτ�,t1 = Js0Kτ�,t1 .

6Order-substitutivity implies monotonicity; take idTΩ : TΩ → TΩ as t in Def. 3.3.
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On order-substitutivity in Def. 3.3, using the same notations as above, it
stipulates that s v s′ (where s, s′ are terms, i.e. elements of TJ) implies JsKτ,t v
Js′Kτ,t. This fails for τ = τ�: let s1 = {x1}, s2 = {x0, x1}; then

Js1Kτ�,t0 = τ�
(
{tt}

)
= tt 6v ff = τ�

(
{ff, tt}

)
= Js2Kτ�,t0 .

4. The Two-Player Setting: Introduction

We extend the basic framework in the previous section by adding another
layer of branching. This corresponds to adding another “player” in computa-
tions or systems. The additional player typically has an interest that conflicts
with the original player’s: the former shall be called Opponent and denoted by
O, while the latter (the original player) is called Player P.7

x0
))

ii

��

��
x1

��
x2

))

ii
x3

The need for two players with conflicting interests is pervasive
in computer science. One example is the (nowadays heavy) use of
games in the automata-theoretic approach to model checking (see
e.g. [39]). Games here can be understood as a two-player version of
automata, where it is predetermined which player makes a move in each state.
An example is above on the right, where P-states are x0, x3 and O-states are
x1, x2. Typical questions asked here are about what Player P can force: can P
force that x3 be reached? (yes); can P force that x0 be visited infinitely often?
(no). In model checking, the dualities between ∧ and ∨, ν and µ, etc. in the
modal µ-calculus are conveniently expressed as the duality between P and O;
and many algorithms and proofs rely on suitably formulated games and results
on them (such as the algorithm in [40] that decides the winner of a parity game).
Games have also been used in the coalgebraic study of fixed-point logics [41].

Another example of nested two-player branching is found in the process-
theoretic study of probabilistic systems; see e.g. [26, 42]. There it is common to
include nondeterministic branching too: while probabilistic branching models
the behavior of a system (such as a stochastic algorithm) that flips an internal
coin, nondeterministic branching models the environment ’s behavior (such as
requests from users) on which no statistical information is available. In this
context, probabilistic branching is often called angelic while nondeterministic
one is demonic; and a common verification goal would be to ensure a property—
with a certain minimal likelihood—whatever demonic choices are to be made.

4.1. Leading Example: Nondeterministic P and Nondeterministic O

Let us first focus on the simple setting where: P moves first and O moves
second, in each round; and both P and O make nondeterministic choices. This
is a setting suited e.g. for bipartite games where P plays first. A computation
with such branching is modeled by a function

f : X −→ PP(POY ) , (20)

7Note that (capitalized) Player and Opponent are altogether called players.
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where the occurrences of the powerset functor P are annotated to indicate which
of the players it belongs to (hence PP = PO = P). We are interested in what
P can force; in this logic of forced predicates, the following notion of (pre)order
seems suitable.

a v b in PP(POY )
def.⇐⇒ ∀S ∈ a.∃S′ ∈ b. S′ ⊆POY S (21)

That is: if a can force Opponent to S ⊆ Y , then b—that has a greater power—
can force Opponent to better (i.e. smaller) S′ ⊆ Y .

In fact, we shall now introduce a modeling alternative to (20) which uses
up-closed families of subsets, and argue for its superiority, mathematical and
conceptual. It paves the way to our general setup in §5.

For a set Y , we define UPY to be the collection of up-closed families of
subsets of Y , that is,

UPY :=
{
a ⊆ PY

∣∣ ∀S, S′ ⊆ Y. (S ∈ a ∧ S ⊆ S′ ⇒ S′ ∈ a)
}
. (22)

On UPY we define a relation v by: a v b if a ⊆ b. It is obviously a partial
order.

Lemma 4.1. 1. For each set Y , the relation v in (21) on PP(POY ) is a
preorder. It is not a partial order.

2. For a ∈ PP(POY ), let ↑ a := {S | ∃S′ ∈ a. S′ ⊆ S} be its upward clo-
sure. Then the following is an equivalence of (preorders considered to be)
categories; here ι is the obvious inclusion map.

UPY
ι

44' PP(POY )

↑( )

uu

Proof. For 1., reflexivity and transitivity of v is obvious. To see it is not
antisymmetric consider {∅, Y } and {∅}.

For 2., ι is obviously monotone. If a v b in PP(POY ), for any S ∈ ↑ a there
exists S′ ∈ b such that S′ ⊆ S, hence S ∈ ↑ b. Therefore ↑( ) is monotone too.
Obviously ↑( ) ◦ ι = id.

It must be checked that ι(↑ a) ' a for a ∈ PP(POY ), where ' is the equiva-
lence induced by v. The v direction is immediate from the definition of ↑ a; for
the other direction, observe that in general a ⊆ b implies a v b in PP(POY ). �

Proposition 4.2. For each set Y , (UPY,v) is the poset induced by the preorder(
PP(POY ),v

)
. Moreover (UPY,v) is a complete lattice. �

Proof. The first half is immediate from Lem. 4.1. For the latter, observe that
supremums are given by unions. �

The constructions PP(PO ) and UP have been studied from a coalgebraic
perspective in the context of neighborhood frames [43, 44]. There a coalgebra
for the former is a model of non-normal modal logic (meaning that axioms like
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�p ∧�q → �(p ∧ q) and �p→ �(p ∨ q) can fail); one for the latter is a model
of monotone modal logic (meaning that validity of �p→ �(p ∨ q) is retained).
Prop. 4.2 shows that, as long as our interests are game-theoretic and are in the
logical reasoning with respect to the preorder v in (21), we may just as well use
UP which is mathematically better-behaved.

To argue further for the mathematical convenience of UP , we look at its

action on arrows. For PP(PO ) there are two obvious choices (PPf and 22f ) of
action on arrows, arising from the covariant and contravariant powerset functors,
respectively. Given f : X → Y in Sets,

PPf, 22f : PP(POX) −→ PP(POY ) ,

(PPf)a := {qf S | S ∈ a} , 22f a := {T ⊆ Y | f−1T ∈ a} .

Here qf S is the direct image of S by f .
These two choices are not equivalent with respect to v on PP(POY ). In

general we have 22f a v (PPf)a. To see that, assume U ∈ 22f a, i.e. f−1U ∈
a. Then we have qf (f−1U) ⊆ U (a general fact, between qf and f−1) and

qf (f−1U) ∈ (PPf)a (by f−1U ∈ a); hence 22f a v (PPf)a by (21). However

the converse 22f a w (PPf)a can fail: consider ! : 2→ 1 (where 2 = {0, 1}) and

a = {{0}}; then 22f a = ∅ while (PPf)a = {1}.
This discrepancy is absent with UP . For a function f : X → Y , the “co-

variant” action UPf and the “contravariant” action UP ′f are defied as follows.

UPX
UPf

//

��ι ��

UPY UPX
UP′f

//

��
��

UPY
��
��

PP(POX)
PPf

// PP(POY )
↑( )
OO

PP(POX)
22f

// PP(POY )
(23)

On the left, ι and ↑( ) are as in Lem. 4.1. On the right 22f restricts to UPX →
UPY (easy by the fact that f−1 is monotone); on the left such is not the case
(consider f : 1→ 2, 0 7→ 0 and a = {1}) and we need explicit use of ↑( ).

Lemma 4.3. UPf = UP ′f .

Proof. Let a ∈ UPX (hence up-closed). In view of Lem. 4.1, it suffices to show

that 22f a ' (PPf)a; we have already proved the v direction. For the other

direction, let S ∈ a; proving qf S ∈ 22f a will prove (PPf)a ⊆ 22f a, hence

(PPf)a v 22f a. That S ⊆ f−1(qf S) is standard; since a is up-closed we have

f−1(qf S) ∈ a. Therefore qf S ∈ (22f )a. �

We therefore define UP : Sets → Sets by (22) on objects and either of the
actions in (23) on arrows. Its functoriality is obvious from (23) on the right.

4.2. Nondeterministic O, then Probabilistic P: Search for Modularity

We have argued for the convenience of the functor UP, over PP(PO ), for
modeling alternating branching in games. A disadvantage, however, is that
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modularity is lost. Unlike PP(PO ), the functor UP : Sets → Sets is not an
obvious composite of two functors, each of which modeling each player’s choice.

The same issue arises also in the systems with both probabilistic and non-
deterministic branching (briefly discussed before). It is known (an observation
by Gordon Plotkin; see e.g. [45]) that there is no distributive law DP ⇒ PD
of the subdistribution monad D over the powerset monad P. This means we
cannot compose them to obtain a new monad PD. Two principal fixes have
been proposed: one is to refine D into the indexed valuation monad [45], where
[x 7→ 1/2, x 7→ 1/2] and [x 7→ 1] are two different indexed valuations (they are
the same when seen as probability distributions). The other way (see e.g. [46])
replaces P by the convex powerset construction and uses

CDX := {a ⊆ DX | pi ∈ [0, 1],
∑
i pi = 1, di ∈ a⇒

∑
i pidi ∈ a}

in place of PD, an alternative we favor due to our process-theoretic interests
(see Rem. 6.8 later). However, much like with UP, it is not immediate how to
decompose CD into Player and Opponent parts.

In the rest of the paper we shall present a categorical setup that addresses
this issue of separating two players. It does so by identifying one out of the two
layers of branching—like up-closed powerset and convex powerset—as a monad
on an Eilenberg-Moore category.

5. Generic Two-Player Weakest Precondition Semantics

Definition 5.1 (2-player PT situation). A 2-player predicate transformer
situation over a category C is a quintuple (T,Ω, τ, R, ρ) where:

• (T,Ω, τ) is a PT situation (Def. 2.4), where in particular τ : T (TΩ)→ TΩ
is an Eilenberg-Moore algebra;

• R is a monad on the Eilenberg-Moore category EM(T ); and

• ρ : R
( T (TΩ)

↓τ
TΩ

)
→
( T (TΩ)

↓τ
TΩ

)
is an Eilenberg-Moore R-algebra, that is also

called a modality. It is further subject to the monotonicity condition that
is much like in Def. 2.4: the map

EM(T )(
TX
↓a
X

,
T (TΩ)

↓τ
TΩ

) −→ EM(T )
(
R
( TX↓a
X

)
,
T (TΩ)

↓τ
TΩ

)
, f 7−→ ρ ◦ Rf

is monotone for each algebra a. Here the order of each homset is in-

duced by the enrichment of K`(T ) via EM(T )(b, τ)
UT→ C(UT b, TΩ) =

K`(T )(UT b,Ω).

The situation is as in the following diagram.

C

T

��

FT
22

UT

tt >
UTURFRFT

= UTRFT 99

> //

EM(T )
R ��

FR
11

UR
qq

> EM(R)

K`(UTRFT )

K

OO
OO (24)
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The composite adjunction yields a new monad UTURFRFT = UTRFT on C;
then from the Kleisli category K`(UTRFT ) for the new monad we obtain a
comparison functor to EM(R). It is denoted by K.8

We have a monad R on EM(T ) and an algebra (modality) ρ for it. This is
much like in the original notion of PT situation, where τ : T (TΩ) → TΩ is a
modality from which we derived a weakest precondition semantics. Indeed, the
following construction is parallel to Prop. 2.13.

Proposition 5.2 (the indexed poset PEM(τ, ρ)). A 2-player PT situation (T,Ω, τ, R, ρ)
induces an indexed poset PEM(τ, ρ) : EM(R)op → Posets over EM(T ) by:

• on an object α ∈ EM(R),

PEM(τ, ρ)
( R(TX

a→X)
↓α

(TX
a→X)

)
:= EM(R)

( R(TX
a→X)

↓α
(TX

a→X)
,

R(T (TΩ)
τ→TΩ)

↓ρ
(T (TΩ)

τ→TΩ)

)
where the order v on the set EM(R)(α, ρ) is inherited from C(X,TΩ) via
the forgetful functors EM(R)→ EM(T )→ C; and

• on an arrow f :
( Ra

↓α
a

)
→
( Rb

↓β
b

)
,

PEM(τ, ρ)(f) : EM(R)
( Rb

↓β
b
,
Rτ
↓ρ
Rτ

)
−→ EM(R)

( Ra
↓α
a
,
Rτ
↓ρ
τ

)
, q 7−→ q ◦ f .

Proof. The same as the proof of Prop. 2.13, relying on Lem. 2.12. �

Much like in Thm. 2.14, composition of this indexed poset PEM(τ, ρ) : EM(R)op →
Posets and the comparison functor K : K`(UTRFT ) → EM(R) will yield the
weakest precondition calculus. The branching computations of our interest are
therefore of the type X → UTRFTY . We will later see, through examples, that
this is indeed what models the scenarios in §4.

Note that in what follows we rely heavily on the adjunction FT a UT .

Proposition 5.3 (the indexed poset PK`(τ, ρ)). A 2-player PT situation (T,Ω, τ, R, ρ)
induces an indexed poset PK`(τ, ρ) : K`(UTRFT )op → Posets by:

• on an object X ∈ K`(UTRFT ), PK`(τ, ρ)(X) := K`(T )(X,Ω) = C(X,TΩ);

• given an arrow f : X p→ Y in K`(UTRFT ), it induces an arrow f∧ : FTX →
R(FTY ) in EM(T ); this is used in

EM(T )(FTY, τ) −→ EM(T )(FTX, τ) , q 7−→
(
FTX

f∧→ R(FTY )
Rq→ Rτ

ρ→ τ
)
.

The last map defines an arrow PK`(τ, ρ)(f) : PK`(τ, ρ)(Y )→ PK`(τ, ρ)(X)
since we have PK`(τ, ρ)(U) = C(U, TΩ) ∼= EM(T )(FTU, τ).

8The existence of K exploits the universality of the Kleisli category K`(UTRFT ) (see
e.g. [18, Thm. VI.5.2]) and not that of EM(R). We note that monadicity is not necessarily
compositional and the category EM(R) may not be monadic over C.
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We have the following natural isomorphism, where K is the comparison in (24).

Posets
PEM(τ,ρ)

pp
Ξ•Ψ⇑∼=

EM(R)op

K`(UTRFT )op Kop

77

PK̀ (τ,ρ)

ff (25)

Proof. Note here that the comparison functor K is concretely described as
follows: KX = FR(FTX) on objects, and use the correspondence

K`(UTRFT )(X,Y ) = C(X,UTURFRFTY ) ∼= EM(T )(FTX,URFRFTY )

∼= EM(R)(FRFTX,FRFTY ) = EM(R)(KX,KY )

for its action on arrows. We claim that the desired natural isomorphism Ξ •Ψ
is the (vertical) composite

PK`(τ, ρ)(X) = C(X,TΩ)
ΨX→ EM(T )(FTX, τ)

ΞX→ EM(R)(FRFTX, ρ) = PEM(τ, ρ)(KX)

where Ψ and Ξ are isomorphisms induced by adjunctions.
We have to check that ΨX and ΞX are order isomorphisms. The map ΨX

is monotone due to the monotonicity condition on τ (Def. 2.4); so is Ψ−1
X by

Lem. 2.12. Similarly, ΞX is monotone by the monotonicity condition on ρ
(Def. 5.1); so is Ξ−1

X by Lem. 2.12.
We turn to the naturality: the following diagram must be shown to commute,

for each f : X p→ Y in K`(UTRFT ).

C(Y, TΩ)
PK̀ (τ,ρ)(f) ��

ΨY
∼=
// EM(T )(FTY, τ)

ρ◦R( )◦f∧��

ΞY
∼=
// EM(R)(FR(FTY ), ρ)

PEM(τ,ρ)(Kf) = ( )◦Kf��

C(X,TΩ)
ΨX
∼=
// EM(T )(FTX, τ)

ΞX
∼=
// EM(R)(FR(FTY ), ρ) .

(26)
The square on the left commutes by the definition of PK`(τ, ρ)(f) (Prop. 5.3);
the one on the right is much like the one in (12) and its commutativity can be
proved in the same way. Note here that Kf = µRFTY ◦ R(f∧).

Since the diagram (26) commutes, and since Ψ and Ξ are order isomor-
phisms and PEM(τ, ρ)(Kf) is monotone (Prop. 5.2), we have that PK`(τ, ρ)f is
monotone. The functoriality of PK`(τ, ρ) is easy, too. This concludes the proof.

�

6. Examples of 2-Player PT Situations

6.1. Nondeterministic Player and then Nondeterministic Opponent

We continue §4 and locate the monad UP—and the logic of forced predicates—
in the general setup of §5. We identify a suitable 2-player PT situation (P, 1, τ�,RG, ρP),
in which T = P, Ω = 1 and τ = τ� that is from §2.3. The choice of τ� cor-
responds to the demonic nature of Opponent’s choices: Player can force those
properties which hold whatever choices Opponent makes.

To introduce the monad RG on EM(P)—corresponding to the up-closed pow-
erset construction—we go via the following standard isomorphism.
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Lemma 6.1. Let C : EM(P) → CL∧ be the functor such that C
( PX

↓a
X

)
:=

(X,va), where the order is defined by x va y if x = a{x, y}. Conversely, let

D : CL∧ → EM(P) be such that D(X,v) :=
( PX

↓
∧

X

)
. Both act on arrows as

identities.
Then C and D constitute an isomorphism EM(P)

∼=→ CL∧. �

The monad RG is then defined to be the composite RG := D ◦ Dw ◦ C, using
the down-closed powerset monad Dw on CL∧.

EM(P)RG 99

C

22

D
qq
∼= CL∧ Dw

yy
(27)

The switch between up-closed subsets in UP and down-closed subsets Dw may
seem confusing. Later in Prop. 6.3 it is shown that everything is in harmony;
and after all it is a matter of presentation since there is an isomorphism CL∧ ∼=→
CL∨ that reverses the order in each complete lattice. The switch here between
up- and down-closed is essentially because: the bigger the set of Opponent’s
options is, the smaller the power of Player (to force Opponent to somewhere)
is.

Concretely, the monad Dw : CL∧ → CL∧ carries a complete lattice (X,v)
to the set Dw(X) := {S ⊆ X | x v x′, x′ ∈ S ⇒ x ∈ S}. We equip Dw(X) with
the inclusion order; this makes Dw(X) a complete lattice, with sups and infs
given by unions and intersections, respectively. An arrow f : X → Y is carried
to Dw(f) : Dw(X) → Dw(Y ) defined by S 7→ ↓(qf S). Here ↓( ) denotes the
downward closure and it is needed to ensure down-closedness (consider a

∧
-

preserving map f : 1 → 2, 0 7→ 1 where 0 v 1 in 2). The monad structure
of Dw is given by: ηDw

X : X → DwX,x 7→ ↓{x}; and µDw
X : Dw(Dw(X)) →

Dw(X), a 7→
⋃
a. Note in particular that ηDw

X is
∧

-preserving. As in (27) we
define RG := D ◦ Dw ◦ C.

Finally, let us define the data ρP : RG(τ�)→ τ� in the 2-player PT situation.
Via the isomorphism (27) we shall think of it as an Dw-algebra, where the P-
algebra τ� is identified with the 2-element complete lattice [ff v tt] (the order
is because τ�{tt, ff} = ff). Therefore we are looking for a

∧
-preserving map

Dw[ff v tt] =
[
∅ v {ff} v {ff, tt}

] CρP−→ [ff v tt]

subject to the conditions of an Eilenberg-Moore algebra in (5). In fact such
C(ρP) is uniquely determined: preservation of > forces (CρP){ff, tt} = tt; the
unit law forces (CρP){ff} = ff and monotonicity of CρP then forces (CρP)∅ =
ff.

Lemma 6.2. (P, 1, τ�,RG, ρP) thus obtained is a 2-player PT situation.

Proof. It remains to check the monotonicity condition (Def. 5.1) for ρP. We
shall again think in terms of complete lattices and

∧
-preserving maps; then the
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requirement is that the map
(
X

f→ [ff v tt]
)
7→
(
Dw(X)

ρP◦Dw(f)→ [ff v tt]
)

is
monotone. Assume g v f , S ∈ Dw(X) and (ρP ◦ Dw(f))(S) = ff. It suffices
to show that (ρP ◦ Dw(g))(S) = ff; this follows from the observation that, for
h = f or g,(

ρP ◦ Dw(h)
)
(S) = ff ⇐⇒

(
Dw(h)

)
S ⊆ {ff} ⇐⇒ ∀x ∈ S. hx = ff . �

Let us check that the logic PK`(τ�, ρP) associated with this 2-player PT
situation is indeed the logic of forced predicates in §4.1. For instance, we want
“computations” X → UPRGF

PY to coincide with “computations” X → UPY .

Proposition 6.3. For any set X we have UPRGF
PX = UPX. In fact they

are equal as complete lattices, that is, Dw ◦ C ◦ FP = UP : Sets→ CL∧ where
the functor UP is equipped with the inclusion order.

Proof. Given X ∈ Sets, the definition of C dictates that C(FPX) = (PX,⊇)
and its order be given by the reverse inclusion order. Hence Dw(C(FPX))
is the collection of families a ⊆ PX that are ⊇-down-closed, i.e. ⊆-up-closed.
It is easily checked that the two functors coincide on arrows, too, using the
characterization on the left in (23). �

Next we describe the logic PK`(τ�, ρP) (Prop. 5.3) in concrete terms. We base
ourselves again in CL∧ via the isomorphism EM(P) ∼= CL∧ in (27). Consider
a postcondition q : Y → P1 and a branching computation f : X → UPY . These
are in one-to-one correspondences with the following arrows in CL∧:

q∧ : C(FPY ) = (PY,⊇) −→ [ff v tt] = C(τ�) ,

f∧ : C(FPX) = (PX,⊇) −→ Dw(PY,⊇) = C(RG(FPY )) ,

where we used Prop. 6.3. Since q∧ are f∧ are
∧

-preserving, we have

q∧W = q∧(
⋃
y∈W {y}) = q∧(

∧
y∈W {y}) =

∧
y∈W q∧{y} =

∧
y∈W qy ;

and similarly f∧S =
⋂
x∈S fx. Recall that Dw(PY,⊇) has the inclusion order.

Now Prop. 5.3 states that the weakest precondition PK`(τ�, ρP)(f)(q) is the
arrow X → P1 that corresponds, via the adjunction C ◦ FP a UP ◦ D, to

(PX,⊇)
f∧−→ Dw(PY,⊇)

Dw(q∧)−→ Dw[ff v tt]
ρP−→ [ff v tt] in CL∧.

Unweaving definitions it is straightforward to see that, for S ⊆ X,(
ρP ◦ Dw(q∧) ◦ f∧

)
S = tt ⇐⇒ ∃W ⊆ Y.

(
∀x ∈ S.W ∈ fx ∧ ∀y ∈W. qy = tt

)
;

therefore PK`(τ�, ρP)(f)(q)(x) = tt ⇐⇒ ∃W ⊆ Y.
(
W ∈ fx ∧ ∀y ∈W. qy = tt

)
.

(28)

The last condition reads: among the set fx of possible moves of Player, there
exists a move W , from which q holds no matter what Opponent’s move y is.
Therefore PK`(τ�, ρP)(f)(q)(x) = tt if Player can force the predicate q from x
after the (two-layer branching) computation f .
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6.2. Nondeterministic Opponent and then Nondeterministic Player

We change the order of Player and Opponent: O moves first and then P
moves. The general setup in §5 successfully models this situation too, with a
choice of a 2-player PT situation (P, 1, τ♦,RG, ρO) that is dual to the previous
one.

The modality τ♦ is from §2.3. Although the monad RG is the same as in §6.1,
we now prefer to present it in terms of EM(P) ∼= CL∨ instead of CL∧. The
reason is that this way the algebra τ♦ gets identified with [ff v tt], which is
intuitive. The situation is as follows.

EM(P)RG 99

C

22

D
qq

∼=

C′:=C′′◦C

OO
CL∧Dw
��

C′′
22

D′′

rr ∼= CL∨ Up
yy

D′:=D◦D′′

��
(29)

The functors C ′′ and D′′ carries a complete lattice (X,v) to (X,w), reversing
the order. The monad Up is defined by Up := C ′′ ◦ Dw ◦ D′′; concretely it
carries (X,v) to the set of its up-closed subsets, equipped with the reverse
inclusion order ⊇. That is,

Up(X,v) :=
(
{S ⊆ X | S 3 x v x′ ⇒ x′ ∈ S} , ⊇

)
.

We have RG = D ◦ Dw ◦ C = D′ ◦ Up ◦ C ′.
The modality ρO : RG(τ♦)→ τ♦ is identified, via the isomorphism C ′ in (29),

with an Up-algebra on [ff v tt]. The latter is a
∨

-preserving map

Up[ff v tt] =
[
{ff, tt} v {tt} v ∅

] C′ρO−→ [ff v tt] ;

note here that the order in Up(X,v) is the reverse inclusion ⊇. Such C ′ρO is
uniquely determined (as before): the unit law forces (C ′ρO){tt} = tt; preserva-
tion of ⊥ forces (C ′ρO){tt, ff} = ff; and then by monotonicity (C ′ρO)∅ = tt.

It is straightforward to see that (P, 1, τ♦,RG, ρO) is indeed a 2-player PT
situation; the proof is symmetric to the one in §6.1. Also symmetrically, the
weakest precondition semantics PK`(τ♦, ρO) is concretely described as follows:
given a postcondition q : Y → P1 and a branching computation f : X → UPY ,

PK`(τ♦, ρO)(f)(q)(x) = tt ⇐⇒ ∀W ⊆ Y.
(
W ∈ fx⇒ ∃y ∈W. qy = tt

)
.

This is dual to (28) and reads: whatever move W Opponent takes, there exists
Player’s move y ∈W so that q holds afterwards.

We note that the analogue of Prop. 6.3 becomes: Up ◦ C ′ ◦ FP = UP : Sets→
CL∨, where each UPX is equipped with the reverse inclusion order. This order
(a v b in UPX if a ⊇ b) is intuitive if we think of v as the power of Player.

Remark 6.4. The constructions have been described in concrete terms; this is
for intuition. An abstract view is possible too: the modality τ♦ is the dual of
τ� via the swapping σ (see (9)); and the other modality ρO is also the dual of

ρP by ρO =
(
RG(τ♦)

RGσ→ RG(τ�)
ρP→ τ�

σ→ τ♦
)
.
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6.3. Nondeterministic Opponent and then Probabilistic Player

In our last example Opponent O moves nondeterministically first, and then
Player P moves probabilistically. Such nested alternating branching occurs
in many process-theoretic models of probabilistic systems (see §4, in partic-
ular §4.2), most notably in Segala’s probabilistic automata [47]. We identify a
2-player PT situation (D, 1, τtotal, Cv, ρinf) for this situation; then the associated
logic PK`(τtotal, ρinf) is that of the probabilistic predicate transformers in [7] (see
also [21, 22, 23]. The modality τtotal is from §2.3. The other components (Cv,
ρinf) are to be described in terms of convex cones and their convex subsets.

In what follows a D-algebra is referred to as a convex cone, adopting the
notation

∑
i∈I wixi to denote an element a

(
[xi 7→ wi]i∈I

)
∈ X in a convex cone

a : DX → X. Here I is a countable index set,9 wi ∈ [0, 1], and
∑
i∈I wi ≤ 1.

Note that, since D is the subdistribution monad, the zero distribution 0 is
allowed in DX and therefore a convex cone a : DX → X has its apex a(0) ∈ X.

One can picture a convex cone as a shape that is convex (the line segment
{λx + (1 − λ)y | λ ∈ [0, 1]} that connects two points x, y is contained in the
shape—in fact its generalization to countably many points is also true), has an
apex a(0), and allows “scaling” with respect to the apex (meaning a([x 7→ λ]) ∈
X for λ ∈ [0, 1]).

Likewise, a morphism of D-algebras is referred to as a convex linear map.

Definition 6.5 (convex subset). A subset S ⊆ X of a convex cone a : DX →
X is said to be convex if, for any pi ∈ [0, 1] such that

∑
i∈I pi = 1 and any xi ∈ S,

the convex combination
∑
i∈I pixi belongs to S.

We emphasize that in the last definition
∑
i pi is required to be = 1. This is

unlike
∑
i wi ≤ 1 in the definition of convex cone. Therefore a convex subset

S need not include the apex a(0); one can think of the base of a 3-dimensional
cone as an example. This variation in the definitions is also found in [46, §2.1.2];
one reason is technical: if we allow

∑
i pi ≤ 1 then it is hard to find the monad

unit of Cv (see below). Another process-theoretic reason is described later in
Rem. 6.8.

Definition 6.6 (the monad Cv). The functor Cv : EM(D) → EM(D) carries
a convex cone a : DX → X to CvX := {S ⊆ X | S is convex}; the latter is a
convex cone by ∑

i wiSi := {
∑
i wixi | xi ∈ Si } .

It is easy to see that
∑
i wiSi is indeed a convex subset of X. Given a convex

linear map f : X → Y , Cvf : CvX → CvY is defined by (Cvf)S := qf S, which
is obviously convex in Y , too.

The monad structure of Cv is as follows. Its unit is ηCvX := { } : X →
CvX; note that a singleton {x} is a convex subset of X (Def. 6.5). The monad

9The countability requirement is superfluous since, if
∑
i∈I pi = 1, then only countably

many pi’s are nonzero.
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multiplication is µCvX :=
⋃

: Cv(CvX) → CvX. It is easy to see that ηCvX and µCvX
are convex linear maps, and that they satisfy the monad axioms.

We introduce the last component, namely the modality ρinf : Cv(τtotal) →
τtotal. A convex subset S of the carrier D1 = [0, 1] of τtotal is nothing but an
interval (its endpoints may or may not be included); ρinf then carries such S to
its infimum inf S ∈ [0, 1]. It is easy to see that ρinf is convex linear, and that it
satisfies the Eilenberg-Moore axioms: a direct proof is straightforward.

Lemma 6.7. (D, 1, τtotal, Cv, ρinf) thus obtained is a 2-player PT situation. �

Proof. It remains to check the monotonicity condition (Def. 5.1) for ρinf . As-
sume f, g : X → [0, 1] and g v f , and S ⊆ X is a convex subset. We have, for
both of h ∈ {f, g}, (

ρinf ◦ Cv(h)
)
(S) = inf{h(x) | x ∈ S} ;

from which
(
ρinf ◦ Cv(g)

)
(S) v

(
ρinf ◦ Cv(f)

)
(S) is obvious. �

The resulting logic PK`(τtotal, ρinf) is as follows. Given a postcondition
q : Y → D1 and a computation f : X → UDCvFDY , the weakest precondition is

PK`(τtotal, ρinf)(f)(q)(x) = inf
{∑

y∈Y d(y) · q(y)
∣∣ d ∈ f(x)

}
. (30)

Here d is a subdistribution chosen by Opponent; and the value
∑
y∈Y d(y)·q(y) is

the expected value of the random variable q under the distribution d. Therefore
the weakest precondition computed above is the least expected value of q when
Opponent picks a distribution in harm’s way. This is the same as in [7].

Remark 6.8. The use of the convex powerset construction, instead of (plain)
powersets, was motivated in §4.2 through the technical difficulty in getting a
monad. Convex powersets are commonly used in the process-theoretic study of
probabilistic systems, also because they model a probabilistic scheduler : Oppo-
nent (called a scheduler in this context) can not only pick one distribution but
also use randomization in doing so. See e.g. [48].

The definition of convex subset (Def. 6.5)—where we insist on
∑
i pi = 1

instead of ≤ 1—is natural in view of the logic PK`(τtotal, ρinf) described above.
Relaxing this definition entails that the zero distribution 0 is always included in
a “convex subset,” and hence always in Opponent’s options. This way, however,
the weakest precondition in (30) can always be forced to 0 and the logic gets
trivial.

We can also model the situation where the roles of Player and Opponent are
swapped: we can follow the same path as in Rem. 6.4 and obtain a 2-player PT
situation (D, 1, τpartial, Cv, ρsup); the resulting modality ρsup carries an interval
to its supremum.
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7. Conclusions and Future Work

Inspired by Jacobs’ recent work [9, 8] we pursued a foundation of predicate
transformers (more specifically weakest precondition semantics) based on an
order-enriched monad. We saw that a simple notion of PT situation yields a
triangle (11)—and (17), a situation that is called the state-and-effect triangle
in [8], in the Sets-based case. Compositionality of the semantics is one of the
properties that follow.

Our monad-based foundation accommodates different notions of modality
(such as “may” vs. “must”) as different Eilenberg-Moore algebras. Nested al-
ternating branching with two conflicting players can be modeled in a modular
way, too, by a monad R on an Eilenberg-Moore category EM(T ). Instances of
this generic framework include probabilistic weakest preconditions, those aug-
mented with nondeterminism, and the logic of forced predicates in games.

As future work we wish to address the components in the picture (2–3)
that are missing in the current framework, most notably richer order structures
than posets, like effect modules in [8]. A generic weakest precondition calculus
presented in a syntactic form is another direction, on which there are some
classic works (including [49]) and also a recent work that is also based on monads
and orders [13]. Most probably relationships between monads and algebraic
theories (see e.g. [50]) will be exploited there. So-called healthiness conditions—
i.e. characterization of the image of PK`(τ) in (11), to be precise its action on
arrows—are yet another topic, generalizing [2, 7].

The current work is hopefully a step forward towards a coalgebraic theory
of games, and hence towards coalgebraic model checking where automata (on
infinite trees), games and fixed-point logics interplay. For example, we suspect
that our categorical formulation of the logic of forced predicates should be useful
in putting game (bi)simulation (studied e.g. in [51, 52]) in coalgebraic terms.
Possibly related, we plan to work on the relationship to the coalgebraic theory
of traces and simulations formulated in a Kleisli category [24, 53] since most of
the monads in Example 2.3 fit in this trace framework.

In this paper we relied on an order-enrichment of a monad to obtain the
entailment order. We are nevertheless interested in what our current framework
brings for other monads, like the ones that model computational effects [54]
(global state, I/O, continuation, etc.). Also interesting is a higher-order ex-
tension of the current work, where the logic will probably take the form of
dependent types. Related work in this direction is [55]. Finally, we shall inves-
tigate the relationship between the 2-player framework (§5) and other known
ways of composing computational effects, including monad transformers (see
e.g. [56]), sum and tensor of Lawvere theories [57], and handlers of algebraic
effects [58].
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AppendixA. Omitted Proofs

AppendixA.1. Proof of Lem. 2.15

Proof. In what follows we denote the “currying” and “uncurrying” correspon-
dences in the adjunction Y × ( ) a ( )Y by ( )∧ and ( )∨, respectively.

We first show that the image of the upper functor α( ) is indeed an Eilenberg-
Moore algebra. For compatibility with multiplication, we have to check that
αY ◦ T (αY ) = αY ◦ µAY :(
αY ◦ T (αY )

)∨
= (αY )∨ ◦

(
Y × T (αY )

)
naturality of ( )∨

= α ◦ T ev ◦ str ◦
(
Y × T (αY )

)
definition of αY

= α ◦ T ev ◦ T (Y × αY ) ◦ str naturality of str

= α ◦ T
(
(αY )∨

)
◦ str by ev ◦ (Y × αY ) = (αY )∨

= α ◦ Tα ◦ T (T ev) ◦ T str ◦ str definition of αY

= α ◦ µA ◦ T (T ev) ◦ T str ◦ str α is an Eilenberg-Moore algebra

= α ◦ T ev ◦ µY×AY ◦ T str ◦ str naturality of µ

= α ◦ T ev ◦ str ◦ (Y × µAY ) pentagon coherence of str

= (αY )∨ ◦ (Y × µAY ) definition of αY

= (αY ◦ µAY )∨ naturality of ( )∨.

For compatibility with unit:(
αY ◦ ηAY

)∨
= (αY )∨ ◦ (Y × ηAY ) naturality of ( )∨

= α ◦ T ev ◦ str ◦ (Y × ηAY ) definition of αY

= α ◦ T ev ◦ ηY×AY str’s compatibility with η

= α ◦ ηA ◦ ev naturality of η

= ev = (id)∨ α is an Eilenberg-Moore algebra.

The functor α( ) carries an arrow f : Y → Z in Sets to a function

(
AZ

Af //AY
)

:=
(
Y ×AZ

f×AZ
//Z ×AZ ev //A

)∧
.

We have to check that Af is an algebra homomorphism from T (AZ)
αZ→ AZ to
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T (AY )
αY→ AY , that is, Af ◦ αZ = αY ◦ T (Af ).(

Af ◦ αZ
)∨

= (Af )∨ ◦ (Y × αZ) naturality of ( )∨

= ev ◦ (f ×AZ) ◦ (Y × αZ) definition of Af

= ev ◦ (Z × αZ) ◦ (f × T (AZ))

= (αZ)∨ ◦ (f × T (AZ)) by ev ◦ (Z × αZ) = (αZ)∨

= α ◦ T ev ◦ str ◦ (f × T (AZ)) definition of αZ

= α ◦ T ev ◦ T (f ×AZ) ◦ str naturality of str

= α ◦ T ev ◦ T (Y ×Af ) ◦ str (∗)
= α ◦ T ev ◦ str ◦ (Y × T (Af )) naturality of str

= (αY )∨ ◦ (Y × T (Af )) definition of αY

= (αY ◦ T (Af ))∨ naturality of ( )∨,

where, for the step (∗), we used the following commutativity:

Y ×AZ Y×Af
//

f×AZ ��

Y ×AY
evY��

Z ×AZ
evZ

// A

that holds since both paths are equal to (Af )∨.
It is straightforward that α( ) preserves identity arrows and composition,

establishing that α( ) is indeed a functor.
Finally, to see that we have an adjunction, let f : X × Y → A be a func-

tion with f ′ : Y → AX and f ′′ : X → AY being its two curryings. The corre-
spondences between these three are bijective and natural. Therefore it suf-
fices to show that the following two are equivalent: 1) f ′ factors through

EM(T )(
TX
↓a
X

,
TA
↓α
A

) ↪→ Sets(X,A) = AX ; and 2) f ′′ is an algebra homomor-

phism from a to α. We shall do so via the third equivalent condition: 3)
α ◦ Tf ◦ str = f ◦ (a× Y ), as in

TX × Y str //

a×Y
��

T (X × Y )
Tf
// TA

α
��

X × Y
f

// A .

(Here and henceforth we use symmetry isomorphisms implicitly.)
To show that the conditions 1) and 3) are equivalent, note that the condition

1) amounts to Aa ◦ f ′ = αTX ◦ TX,A ◦ f ′, as in

Y
f ′

// AX
Aa //

TX,A ��

ATX

(TA)TX
αTX

66

,
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where TX,A : AX → (TA)TX is the functor T ’s action on arrows from X to A.
Now

(Aa ◦ f ′)∨ = (Aa)∨ ◦ (TX × f ′) naturality of ( )∨

= ev ◦ (a×AX) ◦ (TX × f ′) definition of Aa

= ev ◦ (X × f ′) ◦ (a× Y )

= f ◦ (a× Y ) ;

(αTX ◦ TX,A ◦ f ′)∨ = ev ◦ (TX × αTX) ◦ (TX × TX,A) ◦ (TX × f ′)
= α ◦ ev ◦ (TX × TX,A) ◦ (TX × f ′)
= α ◦ T ev ◦ str ◦ (TX × f ′) (∗)
= α ◦ T ev ◦ T (X × f ′) ◦ str naturality of str

= α ◦ Tf ◦ str ,

where the step (∗) holds because(
ev ◦ (TX × TX,A)

)∧
= TX,A

= TX,A ◦
(

(X ×AX)X
evX→ AX

)
◦
(
AX

η→ (X ×AX)X
)

triangular equality

= (T ev)TX ◦ TX,X×AX ◦ η functoriality, T
(
ev ◦ ( )

)
= T ev ◦ T ( )

= (T ev)TX ◦ str∧ (†)
= (T ev ◦ str)∧ naturality of ( )∧.

In the above step (†), note that in Sets an endofunctor is equipped with a
unique strength that arises from its action on arrows. This proves equivalence
of 1) and 3).

To see that 2) and 3) are equivalent, note first that 2) means f ′′ ◦ a = αY ◦
Tf ′′. We have

(f ′′ ◦ a)∨ = f ◦ (a× Y ) ;

(αY ◦ Tf ′′)∨ = α ◦ T ev ◦ str ◦ (Tf ′′ × Y ) definition of αY

= α ◦ T ev ◦ T (f ′′ × Y ) ◦ str definition of αY

= α ◦ Tf ◦ str .

This concludes the proof. �

AppendixA.2. Proof of Lem. 2.16

Proof. Firstly we check that the composite function (16) is monotone in Y , so
that its transpose τ̃Y factors through Posets(Y, TΩ) ↪→ Sets(Y, TΩ). Assume
y v y′ in Y ; identifying elements of Y with functions 1→ Y , it suffices to show
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that the following inequality holds.

T (Posets(Y, TΩ))
λ−1

∼=
//

λ−1 ∼=
��

v

1× T (Posets(Y, TΩ))
y′×id

// Y × T (Posets(Y, TΩ))

τ◦T ẽv◦str
��

1× T (Posets(Y, TΩ))
y×id

// Y × T (Posets(Y, TΩ))
τ◦T ẽv◦str

// TΩ

(A.1)

Here λ is the canonical isomorphism 1 × Z ∼=→ Z, and the order between the
arrows arises from that of TΩ in the pointwise manner. In proving (A.1) we
shall exploit the monotonicity condition of a PT situation. There we use the
following sublemma.

Sublemma AppendixA.1. The composite τ ◦ T ẽv ◦ str ◦ (y × id) ◦ λ−1 in
the diagram (A.1) coincides with

Φτ

(
Posets(Y, TΩ)

λ−1

∼=
//1×Posets(Y, TΩ)

y×id
//Y ×Posets(Y, TΩ)

ẽv //TΩ

)
,

where Φτ : Sets(Z, TΩ)→ Sets(TZ, TΩ) is from Def. 2.4.

Proof. (Of Sublem. AppendixA.1)

Φτ (ẽv ◦ (y × id) ◦ λ−1)

= τ ◦ T ẽv ◦ T (y × id) ◦ Tλ−1 definition of Φτ

= τ ◦ T ẽv ◦ T (y × id) ◦ str ◦ λ−1 (∗)
= τ ◦ T ẽv ◦ str ◦ (y × id) ◦ λ−1 ,

where (∗) is because of the strength’s compatibility with the monoidal unit:

1× TZ
str1,Z

//

λ ))

T (1× Z)

Tλuu
TZ .

�

We turn back to the proof of Lem. 2.16. In view of the last sublemma and the
monotonicity of Φτ (that is assumed—see Def. 2.4), it suffices to show that

ẽv ◦ (y × id) ◦ λ−1 v ẽv ◦ (y′ × id) ◦ λ−1 ,

that is, the evaluation function ẽv : Y ×Posets(Y, TΩ)→ TΩ is monotone in the
first argument Y . This is obvious since the second argument f ∈ Posets(Y, TΩ)
is a monotone function. This establishes that the function τ̃Y is indeed of the
type T (Posets(Y, TΩ))→ Posets(Y, TΩ).

We now prove that τ̃Y is indeed an Eilenberg-Moore algebra. We rely on the
following result.
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Sublemma AppendixA.2. Between the Eilenberg-Moore algebra τY : T ((TΩ)Y )→
(TΩ)Y defined in Lem. 2.15 and the arrow τ̃Y , we have the following commute.

T (Posets(Y, TΩ)) �
� Tι //

τ̃Y ��

T ((TΩ)Y )
τY��

Posets(Y, TΩ) �
�

ι
// (TΩ)Y .

Here ι is a canonical inclusion.

Proof. (Of Sublem. AppendixA.2)

(τY ◦ Tι)∨ = τ ◦ T ev ◦ str ◦ (Y × Tι) definition of τY

= τ ◦ T ev ◦ T (Y × ι) ◦ str naturality of str

= τ ◦ T ẽv ◦ str = (τ̃Y )∨ definition of ẽv and τ̃Y . �

Compatibility of τ̃Y with unit and multiplication follows immediately from

Sublem. AppendixA.2. See below; note also that Posets(Y, TΩ)
ι
↪→ (TΩ)Y is a

mono.

Posets(Y, TΩ)
η

//
� v

))

T (Posets(Y, TΩ))� x
**τ̃Y

��

(TΩ)Y
η

// T ((TΩ)Y )

τY

��

Posets(Y, TΩ)� x

**
(TΩ)Y

T (T (Posets(Y, TΩ)))
µ

//
� y

++

T τ̃Y

��

T (Posets(Y, TΩ))� x
**τ̃Y

��

T (T ((TΩ)Y ))
µ

//

TτY

��

T ((TΩ)Y )

τY

��

T (Posets(Y, TΩ))
τ̃Y

//
� y

++

Posets(Y, TΩ)� x

**
T ((TΩ)Y )

τY
// (TΩ)Y

Finally we are to show that the scheme in (15) is indeed an adjunction. We
begin with an observation that the correspondence (13) preserves monotonicity,
that is, it restricts as in the diagram below. Note here that X is a set and Y is
a poset; and that (TΩ)Y is a poset in the pointwise manner, as assumed.

Sets(Y, (TΩ)X)
∼= // Sets(X, (TΩ)Y )

Posets(Y, (TΩ)X)
?�

OO

∼= // Sets
(
X, Posets(Y, TΩ)

)?�

OO
(A.2)

The above restriction is possible because the following conditions are mutually
equivalent: 1) f : X×Y → TΩ is monotone in Y ; 2) its currying f ′ : Y → (TΩ)X
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is monotone; and 3) f ’s other currying f ′′ : X → (TΩ)Y carries any x ∈ X to a
monotone function f ′′(x) : Y → TΩ.

In view of the prototype result (Lem. 2.15) and the last observation (A.2),
what remains to be shown is that the top-to-bottom correspondence in (13)
indeed yields an algebra homomorphism. Given a function f ′ : Y → (TΩ)X

such that f ′(x) is an algebra homomorphism (from a to τ) for each x ∈ X, let
f : X × Y → TΩ be its uncurrying and f ′′ : X → (TΩ)Y be the other currying
of f . By Lem. 2.15 we know that f ′′ is a homomorphism from a to τY ; and
by (A.2) we know that f ′′ factors through Posets(Y, TΩ) ↪→ (TΩ)Y . Our goal
then immediately follows from the diagram below. Note that the rightmost
square commutes by Sublem. AppendixA.2.

TX

a

��

00

// T (Posets(Y, TΩ))

τ̃Y
��

� y

++
T ((TΩ)Y )

τY

��

X

f ′′
00

// Posets(Y, TΩ)� y

++
(TΩ)Y

This concludes the proof of Lem. 2.16. �

AppendixA.3. Proof of Lem. 2.18

Proof. We shall use a concrete presentation of right Kan extensions by point-
wise limits; see [18, §X.3]. In the current setting, the desired right Kan extension
RanKop F is given by the following limit:

(RanKop F )(
TX
↓a
X

) = Lim
( ( TX↓a

X
↓ Kop

) P→ K`(T )op F→ Sets
)
, (A.3)

where P is the canonical projection functor from a comma category. We aim

to show that the limit on the right-hand side is given by EM(T )(
TX
↓a
X

,
TA
↓α
A

).

The diagram for the limit is illustrated in Fig. A.1. We make some remarks on
Fig. A.1.

1. In the upper half of Fig. A.1, we illustrate (the opposite of) the index

category in (A.3): note that
(
K ↓

TX
↓a
X

)op ∼=
( TX↓a
X
↓ Kop

)
.

2. In the first row, objects (Y, c), (Y ′, c′) and an arrow g between them des-
ignate general objects and arrows in the category.

3. In the second row, we present two special objects (X, a), (TX, a ◦ µX) and

two special arrows idTX , ηX ◦ a in the index category
(
K ↓

TX
↓a
X

)
. They

play a special role in the rest of the proof.
To see that idTX and ηX ◦ a are indeed arrows in the comma category is
easy, noting that KidTX = µX and K(ηX ◦ a) = Ta.
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in (K ↓
TX
↓a
X

)
_

F◦P

��

(
Y,
( T 2Y

↓µ
TY

) c−→
( TX↓a
X

)) g
//

ηX ◦ c ◦ ηY��

(
Y ′,

( T 2Y ′
↓µ

TY ′

) c′−→
( TX↓a
X

))
(
X,
( T 2X

↓µ
TX

) a−→
( TX↓a
X

))
ηX◦a
oo

idTXoo
(
TX,

( T 3X
↓µ

T 2X

) a◦µX=a◦Ta−→
( TX↓a
X

))

in Sets EM(T )
( T 2Y

↓µ
TY

,
TA
↓α
A

)
EM(T )

( T 2Y ′
↓µ

TY ′
,
TA
↓α
A

)( )◦µY ′◦Tgoo

EM(T )
( T 2X

↓µ
TX

,
TA
↓α
A

)( )◦Tc ◦TηY

OO

EM(T )
( T 3X

↓µ
T 2X

,
TA
↓α
A

)( )◦µX
//

( )◦Ta
//

Figure A.1: The diagram of the limit (A.3)

4. On the vertical arrow ηX ◦ c ◦ ηY : Y → TX in the upper half of Fig. A.1:
we note that, given any object (Y, c), we have such an arrow to a special
object (X, a).
To see that, notice first that K(ηX ◦ c ◦ ηY ) = Tc ◦ TηY ; we have to check
that it is indeed an arrow in the comma category, i.e. a ◦ (Tc ◦ TηY ) = c.
This is proved by:

a ◦ (Tc ◦ TηY ) = c ◦ µY ◦ TηY = c , (A.4)

where the first equality is because c is an algebra homomorphism from µY
to a (the top row of Fig. A.1).

5. The lower half of Fig. A.1 is the image of the upper half, under the diagram
functor F ◦ P in (A.3). We note that the diagram (18) commutes up-to
a natural isomorphism (as is shown much like in Thm. 2.14); therefore

F (P (Y, c)) = FY ∼= EM(T )
(
KY,

TA
↓α
A

) ∼= EM(T )
( T 2Y

↓µ
TY

,
TA
↓α
A

)
.

We use the last presentation for objects, under which the action of F ◦ P
on arrows is presented by: an arrow g : (Y, c) → (Y ′, c′) is carried to
( ) ◦ Kg = ( ) ◦ µY ′ ◦ Tg in the opposite direction. For the special
arrows idTX , ηX ◦ a and ηX ◦ c ◦ ηY in Fig. A.1, we have already shown
that their images under K are indeed as shown in Fig. A.1—namely µX ,
Ta and Tc ◦ TηY , respectively.

We shall now introduce a cone γ whose vertex is EM(T )(
TX
↓a
X

,
TA
↓α
A

). For an

object
(
Y,
( T 2Y

↓µ
TY

) c→
( TX↓a
X

) )
in
(
K ↓

TX
↓a
X

)
, we assign the following function
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as the corresponding component.

γ(Y,c) := ( ) ◦ c : EM(T )(
TX
↓a
X

,
TA
↓α
A

) −→ EM(T )(
T 2Y
↓µ
TY

,
TA
↓α
A

)

The naturality of γ thus defined is easy: in the diagram below, we have c′ ◦
Kg = c since g is an arrow in the comma category.

in (K ↓
TX
↓a
X

) (Y, c)
g

// (Y ′, c′)

in Sets EM(T )(µY , α) EM(T )(µY ′ , α)
( )◦Kg

oo

EM(T )(a, α)
γ(Y,c)=( )◦c

hh

γ(Y ′,c′)=( )◦c′
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Universality of the cone γ thus defined remains to be shown. Let δ be another
cone over the same diagram; since we are in Sets, we can assume that its vertex
is a singleton 1. The cone δ, in particular, singles out an algebra homomorphism

δ(X,a) :
( T 2X

↓µ
TX

)
−→

( TA↓α
A

)
(A.5)

as its (X, a)-component δ(X,a) : 1→ EM(T )(µ, α). See Fig. A.1.
We claim that the arrow δ(X,a) in (A.5) satisfies δ(X,a) ◦ µX = δ(X,a) ◦ Ta

as in the diagram (A.6) below. Indeed, by the naturality of the cone δ we have
δ(X,a) ◦ µX = δ(TX,a◦µX) = δ(TX,a◦Ta) = δ(X,a) ◦ Ta (see the second and fourth
rows of Fig. A.1).

( T 3X
↓µ

T 2X

) µX //

Ta
//

( T 2X
↓µ
TX

) a //

δ(X,a) %%

( TX↓a
X

)
m

ww( TA↓α
A

) (A.6)

The top row of the last diagram (A.6) is a coequalizer known as the canonical

presentation of
TX
↓a
X

[18, §VI.7]; it splits in Sets, after applying the forgetful

functor. Therefore we obtain an algebra homomorphism m as a mediating
arrow, as in (A.6).
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We identify this m with a function 1 → EM(T )(a, α) and claim that it is a
mediating arrow from the cone δ to γ. See below.

in (K ↓
TX
↓a
X

) (Y, c)
g

// (Y ′, c′)

in Sets 1
δ(Y,c)

uu

δ(Y ′,c′)

))m

��

EM(T )(µY , α) EM(T )(µY ′ , α)
( )◦Kg

oo

EM(T )(a, α)
γ(Y,c)=( )◦c

ii

γ(Y ′,c′)=( )◦c′
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(A.7)

We have to show that m ◦ c = δ(Y,c).

m ◦ c = m ◦ a ◦ Tc ◦ TηY since c is a homomorphism, see (A.4)

= δ(X,a) ◦ Tc ◦ TηY definition of m, see (A.6)

= δ(Y,c) naturality of δ, see the vertical arrows in Fig. A.1.

This proves that m is a mediating arrow from δ to γ, as in (A.7).
Finally we prove uniqueness of such a mediating map m′. In particular it

has to be compatible with the (X, a)-component of the cones.

in Sets 1
δ(X,a)

tt m′





EM(T )(µX , α)

EM(T )(a, α)
γ(X,a)=( )◦a

jj

This is precisely the requirement that the triangle on the right in (A.6) commute.
Hence uniqueness of m′ follows from the universality of a coequalizer. This
concludes the proof. �

AppendixA.4. Proof of Cor. 2.19
Proof. The proof goes much like that of Lem. 2.18. Only the last bit requires
modification: let the vertex of a cone δ be, instead of a singleton 1, a two-
point set 2 = (0 v 1). Then each component of δ is a monotone function
δ(Y,c) : 2→ EM(T )(µY , τ).

Now each element i ∈ 2 determines a mediating arrowm(i) :
( TX↓a
X

)
→
( TA↓α

A

)
such that m(i) ◦ a = δ(X,a)(i), as in (A.6). (Here note that A = TΩ and α = τ .)

It suffices to show that m(0) v m(1).

m(0) = m(0) ◦ a ◦ ηX a is an Eilenberg-Moore algebra

= δ(X,a)(0) ◦ ηX definition of m(0)

v δ(X,a)(1) ◦ ηX δ(X,a) is monotone, and Lem. 2.12

= · · · = m(1) . �
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