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Abstract

There is a growing concern about anonymity and privacy on the Internet, result-
ing in lots of work on formalization and verification of anonymity. Especially, the
importance of probabilistic aspect of anonymity is claimed recently by many au-
thors. Several different notions of “probabilistic anonymity” have been studied so
far, but proof methods for such probabilistic notions are not yet elaborated. In this
paper we introduce a simulation-based proof method for one notion of probabilis-
tic anonymity introduced by Bhargava and Palamidessi, called strong probabilis-
tic anonymity. The method is a probabilistic adaptation of the one by Kawabe,
Sakurada et al. for non-deterministic anonymity: anonymity of a protocol is proved
by finding out a forward/backward simulation between certain automata. For the
jump from non-determinism to probability we exploit a generic, coalgebraic theory
of traces and simulations developed by Hasuo, Jacobs and Sokolova. In particular,
an appropriate notion of probabilistic simulation is obtained as an instantiation of
the generic definition, for which soundness theorem comes for free. Additionally,
we show how we can use a similar idea to verify a weaker notion of probabilistic
anonymity called probable innocence.
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1 Introduction

Nowadays more and more human activities are relying critically on commu-
nication on the Internet, hence on communication protocols. This has made
verification of communication protocols a trend in computer science. At the
same time, varying purposes of communication protocols have identified new
verification goals—or security properties—such as anonymity, in addition to
rather traditional ones like secrecy and authentication.

Anonymity properties have attracted growing concern from the public. There
are emerging threats as well: for example, the European Parliament in Decem-
ber 2005 approved rules forcing ISPs to retain access records. Consequently an
increasing extent of research activities—especially from the formal methods
community—are aiming at verification of anonymity properties (see [3]).

Formal verification of anonymity properties is at its relative youth compared
to authentication or secrecy. The topic still allows for definitional work (such
as [5,8,17,19,26,33]) pointing out many different aspects of anonymity notions.
Notably many authors [5,8,19,40,41] claim the significant role of probability in
anonymity notions. This is the focus of this paper.

There have been several different notions of anonymity proposed in proba-
bilistic settings, e.g. [34,19,5]. There are also some case studies which have
analyzed existing anonymizing protocols to see whether they satisfy these no-
tions of probabilistic anonymity. However, generic verification methods for
probabilistic anonymity have not yet much elaborated.

In this paper we introduce simulation-based proof methods for two differ-
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ent notions of probabilistic anonymity. The first one is strong probabilistic
anonymity (which will be also called strong anonymity) introduced by Bhar-
gava and Palamidessi [5]; the other one is probable innocence found e.g. in [34,19].
Strong anonymity requires that, by observing an execution of the protocol, the
adversary should gain absolutely no information on who is the person to be
blamed—the culprit. The notion is a natural probabilistic extension of the
non-deterministic notion of trace anonymity 4 .

What we shall do in this paper is to extend a proof method as well, from the
one for (non-deterministic) trace anonymity to the one for probabilistic strong
anonymity. The proof method we start with is the simulation-based one which
is introduced in [28,27]. Its basic scenario is as follows.

(1) First we model an anonymizing protocol to be verified as a certain kind
of automaton X .

(2) Second we construct the anonymized version an(X ) of X . The automaton
an(X ) satisfies the appropriate notion of anonymity because of the way
it is constructed.

(3) We prove that

(trace semantics of X ) = (trace semantics of an(X )) .

Then, since the notion of anonymity is defined in terms of traces, anonymity
of an(X ) yields anonymity of X . The equality is proved by showing that
the (appropriate notion of) inclusion order ⊑ holds in both directions.
• ⊑ holds because of the construction of an(X ).
• ⊒ is proved by finding a (forward or backward) simulation from an(X )

to X . Here we appeal to soundness theorem for simulations—existence
of a simulation implies trace inclusion.

Hence the anonymity proof of X is reduced to finding a suitable forward/backward
simulation.

The basic scenario remains the same for strong (probabilistic) anonymity.
However, there is an obvious difficulty in conducting it in a probabilistic set-
ting. The theory of traces and simulations in a non-deterministic setting is well
studied e.g. by [29]; however appropriate definitions of probabilistic traces and
simulations are far from trivial.

For the jump from non-determinism to probability we exploit a generic, coal-
gebraic theory of traces and simulations developed by Hasuo, Jacobs and
Sokolova [20,23]. In the generic theory, fundamental notions such as system

4 The notion of trace anonymity is originally introduced in [37] under the name of
strong anonymity. In this paper we follow [28,27] and call it trace anonymity. This
is for the sake of terminological convenience.
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(or automaton), trace semantics and forward/backward simulation are iden-
tified as certain kinds of coalgebraic constructs. On this level of abstraction
the general soundness theorem—existence of a (coalgebraic) simulation yields
(coalgebraic) trace inclusion—is proved by categorical arguments.

The generic theory has two parameters appearing in it; by making different
choices of these parameters the theory can cover a wide variety of systems.
In particular, according to the choice of one parameter, systems can be non-
deterministic or probabilistic. 5 In this work we obtain a complex definition of
probabilistic simulations as an instance of the general, coalgebraic definition.
Moreover, this definition is an appropriate one: soundness theorem comes for
free from the general soundness theorem.

After presenting a simulation-based proof method for strong (probabilistic)
anonymity, we use a similar idea to verify a weaker anonymity notion called
probable innocence. The notion appears in [34,19] and is extensively studied
in [9]. The significance of this weaker notion is due to the fact that many
anonymizing protocols—such as Crowds [34]—do not satisfy strong anonymity
but do satisfy probable innocence. Intuitively, probable innocence does allow
the adversary to learn some information about the culprit; but it requires that
this information leak is only up to a certain bound.

We take the definition in [9]—which generalizes the ones in [34,19]—and
present a simulation-based proof method for this notion. Although the basic
scenario is not exactly the same as before, the idea about using simulations is
quite similar.

1.1 Outline of the paper

In Section 2 we illustrate notions of probabilistic anonymity using a couple of
examples. They include the Dining Cryptographers protocol and the Crowds
protocol. The formal definitions of anonymity notions are presented in Sec-
tion 3, where we also introduce our models of anonymizing protocols called
anonymity automata. In Section 4 we describe our simulation-based proof
method for strong anonymity and prove its correctness. In Section 5 the proof
method for probable innocence is described and applied to Crowds. Relation
to other work with a similar interest is discussed in Section 6.

One remark on coalgebras and category theory: the paper is written in such a
way that the reader should be able to treat the coalgebraic theory of traces and

5 Unfortunately the combination of both non-determinism and probability—which
is e.g. in probabilistic automata [39]—is not covered in this paper. We will come
back to this point later in Section 6.3.
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simulations (and the category theory behind it) as a back-end. The correctness
of our proof method, however, does rely on the coalgebraic theory; hence
some account on it is desirable in an effort to be self-contained and to justify
the results. Unfortunately we find the categorical formalism employed therein
simply not presentable in the current limited space: it makes little sense unless
it is accompanied by ample illustration. The reader is referred for the relevant
coalgebraic theory to [20], which we believe serves the end.

1.2 Notations

In the sequel the disjoint union of sets X and Y is denoted by X + Y .

The set of lists in an alphabet X with length ≥ 1 is denoted by X+, that is,
X+ = X∗ · X in a regular-expression-like notation. This appears later as a
domain of trace semantics for anonymity automata.

2 Motivating examples

In this section we motivate

• the probabilistic aspect of anonymity, and
• possible candidates for a formal notion of “probabilistic anonymity,”

by presenting concrete examples of anonymizing protocols. The first exam-
ple is the well-known Dining Cryptographers (DC) protocol [10]: this will
illustrate the importance of probability in anonymizing protocols. The second
example of simple and artificial protocols for anonymous donation will clar-
ify the idea behind the notion of strong probabilistic anonymity. Finally we
present an example of Crowds [34]—which does not satisfy strong probabilistic
anonymity—to motivate the weaker notion of probable innocence.

2.1 The Dining Cryptographers (DC) protocol

Here we follow [5] to illustrate the role of probability in anonymity, using the
Dining Cryptographers (DC) protocol.

There are three cryptographers (or “users”) dining together. The payment
will be made either by one of the cryptographers, or by NSA (U.S. National
Security Agency) which organizes the dinner. Who is paying is determined
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by NSA; if one of the cryptographers is paying, the payer has been told so
beforehand.

The goal of the DC protocol is as follows. The three cryptographers

• should reveal whether there is a payer among them, but
• should not revealing who of them is the payer (if any),

to the observer (called the adversary in the sequel) and also to the cryptogra-
phers who are not paying. The second point is where anonymity is involved.

The protocol proceeds in the following way. Three cryptographers Crypti for
i = 0, 1, 2 sit in a circle, each with a coin Coini. The coins are held in such
a way that they can be seen by the owner and one of the other two: in the
following figure → denotes the “able-to-see-her-coin” relation.

Crypt0
Crypt1 Crypt2

Then the coins are flipped; each cryptographer, comparing the two coins she
can see, announces to the public whether they agree (showing the same side)
or disagree. The trick is that the one who is paying—if there is—must lie on
the announcement. For example, given that Crypt0 is paying, the configuration
of coins

(h, t, h) that is h
t h

,

results in the announcement

(a, d, a) that is
a

d a .

This announcement is the only thing the adversary can observe; occurrence
of an odd number of d’s reveals the presence of a liar, hence the presence of a
payer among the cryptographers.

Can the adversary say which cryptographer is paying? No. In fact, given an
announcement with an odd number of d’s and any payer Crypti, we can con-
struct a coin configuration which yields the given announcement. For example,
the announcement (a, d, a) above can be yielded by any of the following con-
figurations.

Crypt0 pays, and coins are (h, t, h) or (t, h, t)

Crypt1 pays, and coins are (h, h, h) or (t, t, t)

Crypt2 pays, and coins are (h, h, t) or (t, t, h)
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2.2 Probabilistic anonymity in DC

Up to now our arguments have been non-deterministic; now we shall explain
how probabilistic aspects in DC can emerge. Assume that the coins are bi-
ased: each of three Coini’s gives head with the probability 9/10. Provided
that Crypt0 is paying, the announcement (a, d, a) occurs with the probabil-
ity (9 · 1 · 9 + 1 · 9 · 1)/103, because it results from (h, t, h) or (t, h, t). Similar
calculations lead to the following table of conditional probabilities.

(d, a, a) (a, d, a) (a, a, d) (d, d, d)

Crypt0 pays 0.73 0.09 0.09 0.09

Crypt1 pays 0.09 0.73 0.09 0.09

Crypt2 pays 0.09 0.09 0.73 0.09

Are the cryptographers still “anonymous”? We would not say so. For example,
if the adversary observes an announcement (d, a, a), it is reasonable for her to
suspect Crypt0 more than the other two.

Nevertheless, if the coins are not biased, we cannot find any symptom of broken
anonymity. Therefore we want to come up with the following two things.

The first is an appropriate notion of “probabilistic anonymity” which holds
with fair coins but is violated with biased coins. This is done in [5] and will
be explained using the next simpler example.

The second is an effective proof method to verify this notion of anonymity.
This is what we aim at in the current work.

2.3 Strong probabilistic anonymity

In this section we present toy examples of probabilistic anonymizing protocols
to motivate the notion of strong (probabilistic) anonymity [5].

Let us think of a situation of anonymous donation: one of two cryptographers
Crypt0 and Crypt1 tries to donate some money, without revealing the donor’s
identity. Consider the following three protocols, X0,X1,X2 from left to right.
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Crypt0[ 1
2
]

X
$5[ 9

10
]

X
$10K[ 1

10
]

Crypt1[ 1
2
]

X
$5[ 9

10
]

X
$10K[ 1

10
]

Crypt0[ 1
3
]

X
$5[ 9

10
]

X
$10K[ 1

10
]

Crypt1[ 2
3
]

X
$5[ 9

10
]

X
$10K[ 1

10
]

Crypt0[ 1
3
]

X

$5[ 1

10
]

X
$10K[ 9

10
]

Crypt1[ 2
3
]

X
$5[ 9

10
]

X
$10K[ 1

10
]

It is assumed that the labels Crypti—deciding which cryptographer is the
donor—are invisible for the observer. Only the labels $n—for money transactions—
are visible.

The first protocol X0 works as follows. First the donor is chosen with the
uniform probability distribution; no matter which is chosen, the donor donates
$5 with the probability 9/10 and $10K with 1/10. In the second one X1, it
is in the specification of the protocol (hence is known to the adversary) that
Crypt1 is more likely to be the donor—the culprit. In X2, Crypt0 is known to be
rich so to say: when she is chosen more often than not she gives away $10K.

Are these protocols “anonymous”? That is, by observing money transactions,
can the adversary tell who is the culprit? Intuitively it is clear that X0 should
be “anonymous” and X2 should not be. X1 can be debatable but we want
to claim it to be anonymous. It is true that Crypt1 is inherently more suspi-
cious than Crypt0 in X1 (the a-priori distribution of suspicion is not uniform).
However, after observing any execution of the protocol, from the adversary’s
viewpoint the cryptographers look exactly as suspicious as before. In other
words, an observation of transaction of $5 or $10K does not carry any infor-
mation on who is the culprit.

This intuition leads to the notion of strong anonymity introduced in [5]. Here
we give an informal description; a formal definition is found in Definition 3.8.

Definition 2.1 (Strong anonymity) An anonymizing protocol X satisfies
strong (probabilistic) anonymity if, for any observation o and users i and j,
we have

PX (o | i is a culprit) = PX (o | j is a culprit) .

Here PX (o | i is a culprit) denotes the conditional probability for the event
“given that the user i is the culprit, an execution of X yields the observation
o.”

The intuition behind this definition is quite similar to the one behind the
notion of conditional anonymity [19] whose formal definition is given later in
Definition 3.9. In fact, it is shown in [5] that under reasonable assumptions
these two notions of anonymity coincide.
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2.4 Crowds and probable innocence

Although the DC protocol with fair coins, as well as the anonymous donation
protocols X0 and X1 in Section 2.3, satisfies strong anonymity, there are a large
body of real-world protocols which do not satisfy the property. Crowds [34] is
one of them.

The Crowds protocol aims at anonymous web browsing, so that a user can
send a request to a web server without revealing the user’s identity. In essence
the identity is concealed by relaying the request among a set (“crowd”) of
relays.

• A user, who has already joined a group (“crowd”) of hosts, picks one relay
out of the crowd with a uniform probability and forwards a request to the
chosen relay. The relay can be the originating user herself.

• A relay in a crowd, on receiving a request, flips a (biased) coin to decide
whether
· to deliver the request to its intended recipient, i.e. the web server (this

happens with the probability 1 − pf ), or
· to forward it to another relay (with the probability pf ). The next relay is

chosen from the crowd with the uniform probability, including the current
relay itself.

Here the probability pf is a system-wide parameter. This way the web server
only sees a request coming from a relay, hence it is not sure who originated
the request.

It is obvious that Crowds gives no anonymity guarantee against a global eaves-
dropper—an adversary capable of observing all the network traffic. A more
realistic attack scenario is that some of the relays are corrupt and cooperates
with the adversary. A short calculation shows the following. The fact that a
certain host i has sent a request to a corrupt relay—although the adversary
cannot tell whether the host i is the originator of the request or is just for-
warding it—makes the host i probabilistically more suspicious for being the
originator than the other hosts. This makes the strong anonymity fail: the
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observation “i has sent a request to me” does carry some information on who
is the originator. 6

Still, when the number of relays (i.e. the cardinality of the crowd) is suffi-
ciently bigger than that of corrupt relays, we want to say that Crowds is
“anonymous,” that is, Crowds satisfies some weaker notion of anonymity that
allows information leak up to a certain amount. The notion of probable inno-
cence is one candidate of such an anonymity notion.

Intuitively, probable innocence is satisfied if after any observation, the ad-
versary can never have confidence exceeding 1/2 that someone is the culprit.
In [34] it is shown that Crowds satisfies probable innocence if pf > 1/2 and
the number N of relays and the number c of corrupt relays satisfy 7

N ≥
pf

pf −
1
2

(c + 1) .

However, the above statement in [34] is only true if every user in the crowd is
equally suspicious before an execution of Crowds. Assume there is a user who
is known to be much more frequently an originator of a request than other
users; then the above “confidence is ≤ 1/2” definition of probable innocence
is more easily violated. The situation is similar to the comparison between
X0 and X1 in Section 2.3; we want our definition robust to such a change of
the a-priori distribution of suspicion. A user who is inherently more suspicious
than others can still look more suspicious than others after an execution of
the protocol; a bit more than it did before an execution because now we allow
some marginal information leak; but not much more.

This idea led Chatzikokolakis and Palamidessi [9] to the following definition of
probable innocence, which we formally present later in Definition 3.11. It is also
shown to coincide with the definitions in [34,19] under suitable assumptions.

Definition 2.2 (Probable innocence) An anonymizing protocol X satis-
fies probable innocence if, for any observation o and user i we have

(n − 1)
PX (i is a culprit)

∑

j 6=i PX (j is a culprit)
≥

PX (i is a culprit | o)
∑

j 6=i PX (j is a culprit | o)
. (1)

Here n is the number of users who can possibly be a culprit; we are assuming
that two different users cannot be culprits at the same time.

6 Strong anonymity is satisfied if no relay in the crowd is corrupt. In this case,
the adversary, when it receives a request from a host i, can tell for sure that i is
forwarding the request. Hence the host i is no more suspicious than the other hosts.
7 In fact, the definition of probable innocence used in [34] is slightly different from
this one which is based on the definition in [19]. These two are shown in [9] to
coincide under some mild conditions.
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The left-hand side of (1) is about the a-priori distribution of suspicion. To
get an idea let us assume that the a-priori distribution is uniform. Then (1)
becomes

1 ≥
PX (i is a culprit | o)

∑

j 6=i PX (j is a culprit | o)
.

If we moreover assume that the observation o reveals existence of a culprit,
that is,

∑

i

PX (i is a culprit | o) = 1 ,

the condition is equivalent to 1/2 ≥ PX (i is a culprit | o). In this way we can
recover the original definition: “the adversary’s confidence does not exceed
1/2.”

3 Formalizing notions for probabilistic anonymity

3.1 Anonymity automata: models of anonymizing protocols

In this work anonymizing protocols are formalized as a specific kind of prob-
abilistic systems which we shall call (probabilistic) anonymity automata. The
notion is similar to probabilistic automata [39]. However, in anonymity au-
tomata, branching is purely probabilistic without any non-determinism. This
modification, together with other minor ones, is made so that the coalgebraic
framework in [20] applies.

The features of an anonymity automaton are as follows.

• By making a transition it can either
· execute an action and successfully terminate (x

a
→ X), or

· execute an action and move to another state (x
a
→ y).

Internal, silent actions are not explicitly present.
• An action a can be either
· an observable action o which can be seen by the adversary, or
· an actor action act(i) which means that a user i is chosen as the culprit.

• Each state comes with a probability subdistribution over the set of possible
transitions. By “sub”distribution it is meant that the sum of all the proba-
bilities is ≤ 1 rather than = 1: the missing probability is understood as the
probability for deadlock.

Here is a formal definition.

Definition 3.1 (Anonymity automata) An anonymity automaton is a 5-
tuple (X,U ,O, c, s) where:
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• X is a non-empty set called the state space.
• U is a non-empty set of users. 8

• O is a non-empty set of observable actions.
• c : X → D

(

A × {X} + A × X
)

is a function which assigns to each state

x ∈ X a probability subdistribution c(x) over possible transitions. The set
A is the set of actions and defined by

A = O + { act(i) | i ∈ U} .

The operation D gives the set of subdistributions: for a set Y ,

DY =
{

d : Y → [0, 1] |
∑

y∈Y

d(y) ≤ 1
}

. (2)

This operation D canonically extends to a monad 9 which we shall call the
subdistribution monad.

For example, the value c(x)(a,X) 10 in [0, 1] is the probability with which
a state x executes a and then successfully terminate (i.e. x

a
→ X).

• s ∈ DX is a probability subdistribution over the state space X. This specifies
which state would be a starting (or initial) one.

Example 3.2 (Anonymity automaton XDC for DC) To model the DC pro-
tocol, we take

U = {0, 1, 2} , O = {a, d} × {a, d} × {a, d} =
{

(x, y, z) | x, y, z ∈ {a, d}
}

.

We need to fix the a-priori probability distribution on who will make a payment.
Let us denote by pi the probability with which the user i pays.

The DC protocol (with its a-priori probability distribution given by pi’s) is
naturally described as follows. Probability for each transition is presented in
square brackets; otherwise the transition occurs with probability 1.

8 A user is called an anonymous user in [5].
9 Monads are a categorical notion. Interested readers are referred to [4] for the
details.
10 To be precise this should be written as c(x)

(

κ1(a,X)
)

, where κ1 : A × {X} →
A× {X} + A× X is the inclusion map.
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↓

act(0) [p0]

h0[
1
2
]

h1[
1
2
]

h2[
1
2
]

X

(d
, a, a)

t2[
1
2
]

X

(d
, d

, d
)

t1[
1
2
]

h2[
1
2
]

X

(a, d
, a)

t2[
1
2
]

X

(a, a,d
)

t0[
1
2
]

h1[
1
2
]

h2[
1
2
]

X

(a, a, d
)

t2[
1
2
]

X

(a, d
, a)

t1[
1
2
]

h2[
1
2
]

X

(d
,d

,d
)

t2[
1
2
]

X

(d
, a,a)

...
act(1) [p1] ...

act(2) [p2]
τ [1 − p0 − p1 − p2]

h0[
1
2
]

h1[
1
2
]

h2[
1
2
]

X

(a,a, a)

t2[
1
2
]

X

(a,d
,d

)

t1[
1
2
]

h2[
1
2
]

X

(d
,d

, a)

t2[
1
2
]

X

(d
, a,d

)

t0[
1
2
]

h1[
1
2
]

h2[
1
2
]

X

(d
,a,d

)

t2[
1
2
]

X

(d
,d

, a)

t1[
1
2
]

h2[
1
2
]

X

(a,d
,d

)
t2[

1
2
]

X

(a, a,a)

Here τ denotes an internal action with the intention of “NSA pays.”

However, the actions hi and ti—with their obvious meanings—must not be
present because they are not observable by the adversary. These actions are
replaced by τ ’s. Moreover, for technical simplicity we do not allow τ ’s to ap-
pear in an anonymity automaton. Hence we take the “closure” of the above
automaton in an obvious way, and obtain the following.

x

↓
X

(a, a, a)[1−p0−p1−p2

4
]

X

(a, d, d)[1−p0−p1−p2

4
]

X

(d, a, d)[1−p0−p1−p2

4
]

X

(d, d, a)[1−p0−p1−p2

4
]

y0

act(0) [p0]

X

(d
,a,a)[

14
]

X

(a,d
,a)[

14
]

X

(a,a,d
)[

14
]

X
(d

,d
,d

)[
14
]

y1

act(1) [p1]

X

(d
,a,a)[

14
]

X

(a,d
,a)[

14
]

X

(a,a,d
)[

14
]

X

(d
,d

,d
)[

14
]

y2

act(2) [p2]

X

(d
,a,a)[

14
]

X

(a,d
,a)[

14
]

X

(a,a,d
)[

14
]

X

(d
,d

,d
)[

14
]

The start state distribution s is: x 7→ 1. This anonymity automaton we shall
refer to as XDC.

3.2 Anonymity automata reconciled as coalgebras

The generic, coalgebraic theory of traces and simulations in [20,23] applies to
anonymity automata. 11 The generic theory is developed with two parameters
T and F :

11 As explained in Section 1.1, the reader can safely take the relevant (categorical)
theory of coalgebras as a back-end and ignore its details for the rest of the paper.
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• a monad T on Sets specifies the branching-type, such as non-determinism
or probability;

• a functor F on Sets specifies the transition-type, i.e., what a system can do
by making a transition.

Systems for which traces/simulations are defined are called (T, F )-systems in
the generic theory, making the parameters explicit. The theory is coalgebraic
because a (T, F )-system is essentially a coalgebra in a suitable category.

Anonymity automata fit in this generic framework. They are (T, F )-systems
with the following choice of parameters T and F .

• T is the subdistribution monad D, modeling purely probabilistic branching.
• FX = A × {X} + A × X, modeling the transition-type of “(action and

terminate) or (action and next state).”

It is immediately seen that for this choice of F , the set A+ carries the following
initial algebra in Sets. We denote its structure map by α.

A× {X} + A×A+

∼=α
κ1(a,X) κ2(a,~a)

A+ 〈a〉 a · ~a ,

where 〈a〉 denotes a list of length 1, and a · ~a is what would be written as
(cons a ~a) in the Lisp-style. Therefore [20, Corollary 5.2] suggests that the
set A+ is the appropriate “domain” of (finite) trace semantics for anonymity
automata: this is actually the case later in Definition 3.3. 12

3.3 Trace semantics for anonymity automata

Trace semantics for anonymity automata is used in defining probabilistic no-
tions of anonymity. In a non-deterministic setting, trace semantics yields a set
of lists (“traces”) of actions which can possibly occur during an execution.
In contrast, trace semantics of a probabilistic system is given by a probability
subdistribution over lists.

Definition 3.3 (Trace semantics for anonymity automata) Given an anonymity
automaton X = (X,U ,O, c, s), its trace semantics

PX ∈ D(A+)

12 To be precise, the set A+ is that of all possible traces. This is the same for
both non-deterministic and probabilistic settings. What is different in these two is
whether trace semantics is given by a set of traces or a probability distribution over
traces.
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is defined as follows. For a list of actions 〈a0, a1, . . . , an〉 with a finite length
n ≥ 1,

PX (〈a0, a1, . . . , an〉) =
∑

x0,x1,...,xn∈X

PX (x0
a0→ x1

a1→ · · ·
an−1

→ xn
an→ X) ,

where the probability

PX (x0
a0→ x1

a1→ · · ·
an−1

→ xn
an→ X)

= s(x0) · c(x0)(a0, x1) · · · · · c(xn−1)(an−1, xn) · c(xn)(an,X)

is for the event that an execution of X starts at x0, follows the path
a0→ x1

a1→
· · ·

an−1

→ xn and finally terminates with
an→ X.

Intuitively the value PX (~a) ∈ [0, 1] for a list ~a ∈ A+ is the probability with
which the system X executes actions in ~a successively and then terminates.
Our concern is on actions (observable actions or actor actions) the system
makes but not on the states it exhibits.

The following alternative characterization allows us to apply the generic, coal-
gebraic theory of traces in [20,23].

Lemma 3.4 (Trace semantics via the generic theory) Given an anonymity
automaton X , let (s, c) be a (T, F )-system identified with X as in Section 3.2.

The trace semantics PX of X coincides with the coalgebraic trace semantics
tr(s,c) defined in the generic theory [20, Definition 5.7] for (s, c). 2

Example 3.5 (Dining cryptographers) For the anonymity automaton XDC

in Example 3.2, its trace semantics PXDC
is the following probability subdistri-

bution.

〈 act(i), (d, a, a) 〉 7→ pi/4

〈 act(i), (a, d, a) 〉 7→ pi/4

〈 act(i), (a, a, d) 〉 7→ pi/4

〈 act(i), (d, d, d) 〉 7→ pi/4

〈 (a, a, a) 〉 7→ (1 − p0 − p1 − p2)/4

〈 (a, d, d) 〉 7→ (1 − p0 − p1 − p2)/4

〈 (d, a, d) 〉 7→ (1 − p0 − p1 − p2)/4

〈 (d, d, a) 〉 7→ (1 − p0 − p1 − p2)/4
(for i = 0, 1, 2)

The other lists in A+ have probability 0.

In this work we assume that in each execution of an anonymizing protocol
there appears at most one actor action. This is the same assumption as [5,
Assumption 1] and is true in all the examples in this paper. 13

13 Relaxing the assumption is desired in order to analyze a situation where an
anonymizing protocol has multiple runs simultaneously. At now it is unclear even
how to adapt the anonymity notions.
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Assumption 3.6 (At most one actor action) Let X = (X,U ,O, c, s) be
an anonymity automaton and ~a ∈ A+. If ~a contains more than one actor
actions, then we have PX (~a) = 0.

3.4 Notions of probabilistic anonymity

In this section we formalize the two different notions of probabilistic anonymity,
namely strong (probabilistic) anonymity [5] and probable innocence [34,19,9].

First, for the sake of simplicity of presentation, we shall introduce the following
notations for predicates (i.e. subsets) on A+.

Definition 3.7 (Predicates [act(i)] and [~o])

• For each i ∈ U , a predicate [act(i)] on A+ is defined as follows. In a regular-
expression-like notation,

[act(i)] = O∗ · act(i) · O∗ ,

that is, it is the set of lists which contains only one actor action which is
act(i). Obviously we have [act(i)] ∩ [act(j)] = ∅ if i 6= j.

• For each ~o ∈ O∗, a predicate [~o] on A+ is defined as follows.

[~o] = {~a ∈ A+ | removeActor(~a) = ~o} ,

where the function removeActor : A+ → O∗—which is defined by a suitable
induction—removes actor actions appearing in a list. Hence the set [~o] ⊆ A+

consists of those lists which yield ~o as the adversary’s observation. It is
emphasized that [~o] is not the set of lists which contain ~o as sublists: we
remove only actor actions, but not observable actions.

Note that we are overriding the notation [ ]: no confusion would arise since
the arguments are of different types. Values such as PX ( [act(i)] ) are defined
in a straightforward manner:

PX ( [act(i)] ) =
∑

~a∈[act(i)]

PX (~a) .

This is the probability with which X yields an execution in which a user i is
a culprit.

3.4.1 Strong (probabilistic) anonymity

Based on anonymity automata as models of anonymity protocols, we shall
formalize the notion of strong anonymity which is informally introduced in

16



Definition 2.1.

Definition 3.8 (Strong anonymity [5]) We say an anonymity automaton
X satisfies strong anonymity if, for each i, j ∈ U and ~o ∈ O∗,

PX ( [act(i)] ) > 0 ∧ PX ( [act(j)] ) > 0

=⇒ PX ( [~o] | [act(i)] ) = PX ( [~o] | [act(j)] ) .

Here PX ( [~o] | [act(i)] ) is a conditional probability: it is given by

PX ( [~o] | [act(i)] ) =
PX ( [~o] ∩ [act(i)] )

PX ( [act(i)] )
.

It is shown in [5] that under reasonable assumptions this notion coincides
with conditional anonymity [19], whose formal definition we present now for
completeness.

Definition 3.9 (Conditional anonimity [19]) An anonymity automaton X
satisfies conditional anonymity if for each i ∈ U and ~o ∈ O∗,

PX ( [act(i)] ∩ [~o] ) > 0

=⇒ PX ( [act(i)] | [~o] ) = PX ( [act(i)] |
⋃

j∈U

[act(j)] ) .

The notion in Definition 3.8 is a natural probabilistic extension of trace anonymity
in [37]. It is emphasized that these anonymity notions are based on trace se-
mantics which is at the coarsest end in the linear time-branching time spec-
trum [18]. Hence our adversary has less observation power than one in [1]
for example where security notions are bisimulation-based. A justification for
having such a weaker adversary is found in [28].

It is noted that in the current work, the adversary’s observation (~o in Defini-
tion 3.8 and elsewhere) is a finite sequence of observable actions which leads
to termination X. This choice is made for a technical reason: the coalgebraic
trace semantics in [20,23] assigns probabilities only to finite sequences; hence
so does our current definition of trace semantics (Definition 3.3). This rules out
infinite traces (infinite streams of observable actions) from our consideration
and is problematic e.g. in the following protocol.

x

↓

y0

act(0) [p0]

X

o2[
1
2
]

z0

o0[
1
2
]

o0[1]

y1

act(1) [p1]

z1

o1[
1
2
]

o1[1] X

o2[
1
2
]
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In this protocol an occurrence of o0 (or o1) immediately reveals that the culprit
is the user 0 (or the user 1, respectively). However due to Definition 3.8 the
protocol is still anonymous because it does not take infinite traces (like oω

0 ) or
incomplete traces (like on

0 ) into account.

This leads to the following assumption.

Assumption 3.10 (No infinite traces) There are no infinite traces in an
anonymity automaton X . More precisely, an execution of the automaton X
leads to termination with probability 1:

∑

~a∈A+ PX (~a) = 1.

The assumption is trivially satisfied when there is no infinite path in X . Un-
fortunately this stronger condition fails for our Crowds example (Section 5.3).

3.4.2 Probable innocence

The weaker notion of probable innocence—informally introduced in Defini-
tion 2.2—is also formalized based on anonymity automata and their trace
semantics. It is based on the definition in [9].

Definition 3.11 (Probable innocence [9]) We say an anonymity automa-
ton X satisfies probable innocence if, for each i ∈ U and ~o ∈ O∗,

• Neither of the probabilities PX (
⋃

j 6=i[act(j)]) and PX (
⋃

j 6=i[act(j)] | [~o] ) is 0.
These appear as denominators in the following inequality.

• We have

(n − 1)
PX ( [act(i)] )

PX (
⋃

j 6=i [act(j)] )
≥

PX ( [act(i)] | [~o] )

PX (
⋃

j 6=i [act(j)] | [~o] )
. (3)

Here n = |U| is the number of users.

4 Verifying strong anonymity via probabilistic simulations

In this section we extend the proof method [28,27] for (non-deterministic) trace
anonymity to the probabilistic setting for strong (probabilistic) anonymity. In
the introduction we have presented the basic scenario. Now we shall describe
its details, with all the notions therein (traces, simulations, etc.) interpreted
probabilistically.
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4.1 Anonymized automaton an(X )

We start with the definition of an(X ), the anonymized version of an anonymity
automaton X . Recall that the notion of strong anonymity is conditional: the
adversary has a-priori knowledge on who is more suspicious. In an anonymity
automaton X , the a-priori probability with which a user i is a culprit is given
by PX ( [act(i)] ). Its normalized, conditional version

ri
def.
= PX ( [act(i)] |

⋃

j∈U

[act(j)] ) =
PX ( [act(i)] ∩

⋃

j∈U [act(j)] )

PX (
⋃

j∈U [act(j)] )

=
PX ( [act(i)] )

∑

j∈U PX ( [act(j)] )

(4)

(the equalities are due to Assumption 3.6) plays an important role in the
following definition of an(X ). The value ri is the conditional probability with
which a user i is a culprit, given that there is any culprit; we have

∑

i∈U ri = 1.
Of course, for the values ri to be well-defined, the anonymity automaton X
needs to satisfy the following reasonable assumption.

Assumption 4.1 (There can be a culprit) For an anonymity automaton
X ,

∑

j∈U

PX ( [act(j)] ) 6= 0 .

Intuitively, an(X ) is obtained from X by distributing the probability for an
actor action act(i) to each user j in proportion to rj.

Definition 4.2 (Anonymized anonymity automaton an(X )) Given an anonymity
automaton X = (X,U ,O, c, s), its anonymized automaton an(X ) is a 5-tuple
(X,U ,O, can, s), where can is defined as follows. For each x ∈ X,

can(x)(act(i), u) =
∑

j∈U ri · c(x)(act(j), u) for i ∈ U and u ∈ {X} + X,

can(x)(o, u) = c(x)(o, u) for o ∈ O and u ∈ {X} + X.

Here ri is the a-priori suspicion defined in (4). On the first equation, the sum-
mand ri · c(x)(act(j), u) results from distributing the probability c(x)(act(j), u)

for a transition x
act(j)
−→ u, to a user i. This is illustrated in the following figure:

here U = {0, 1, . . . , n − 1} and q = c(x)(act(j), u).

•In X

act(j) [q]

•In an(X )

act(0) [r0 · q] · · · act(n − 1) [rn−1 · q]

• •
(5)
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The automaton an(X ) is “anonymized” in the sense of the following lemmas.

Lemma 4.3 Let X be an anonymity automaton. In its anonymized version
an(X ) = (X,U ,O, can, s) we have

rj · c
an(x)(act(i), u) = ri · c

an(x)(act(j), u)

for any i, j ∈ U , x ∈ X and u ∈ {X} + X.

PROOF. Obvious from the definition of can. 2

Lemma 4.4 (an(X ) satisfies strong anonymity) Given an anonymity au-
tomaton X , its anonymized version an(X ) satisfies strong anonymity in the
sense of Definition 3.8.

PROOF. Let ~o = 〈o1, o2, . . . , on〉 ∈ O∗ and i, j ∈ U . Moreover, assume

Pan(X )( [act(i)] ) 6= 0 and Pan(X )( [act(j)] ) 6= 0 ,

hence ri 6= 0 and rj 6= 0. Then

Pan(X )( [~o] ∩ [act(i)] )

= Pan(X )( 〈act(i), o1, o2, . . . , on〉 )

+ Pan(X )( 〈o1, act(i), o2, . . . , on〉 )

+ · · · + Pan(X )( 〈o1, o2, . . . , on, act(i)〉 )

=
∑

x0,x1,...,xn∈X

s(x0) · c
an(x0)(act(i), x1) · c

an(x1)(o1, x2) · · · · · c
an(xn)(on,X)

+
∑

x0,x1,...,xn∈X

s(x0) · c
an(x0)(o1, x1) · c

an(x1)(act(i), x2) · · · · · c
an(xn)(on,X)

+ · · ·

+
∑

x0,x1,...,xn∈X

s(x0) · c
an(x0)(o1, x1) · c

an(x1)(o2, x2) · · · · · c
an(xn)(act(i),X) .

We have the same equation for j instead of i. Hence by Lemma 4.3 we have

rj · Pan(X )( [~o] ∩ [act(i)] ) = ri · Pan(X )( [~o] ∩ [act(j)] ) . (6)
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This is used to show the equality of two conditional probabilities.

Pan(X )( [~o] | [act(i)] ) =
Pan(X )( [~o] ∩ [act(i)] )

Pan(X )( [act(i)] )

=
ri

rj

·
Pan(X )( [~o] ∩ [act(j)] )

Pan(X )( [act(i)] )
by (6)

=
Pan(X )( [~o] ∩ [act(j)] )

Pan(X )( [act(j)] )
by definition of ri, rj

= Pan(X )( [~o] | [act(j)] ) . 2

4.2 Forward/backward simulations for anonymity automata

We proceed to introduce appropriate notions of forward and backward simu-
lations. The (tedious) definition and soundness theorem—existence of a for-
ward/backward simulation implies trace inclusion—come for free from the
generic theory in [20]. This forms a crucial part of our simulation-based proof
method.

Definition 4.5 (Forward/backward simulations for anonymity automata)
Let X = (X,U ,O, c, s) and Y = (Y,U ,O, d, t) be anonymity automata which
have the same sets of users and observable actions.

A forward simulation from X to Y—through which Y forward-simulates X—is
a function

f : Y −→ DX

which satisfies the following inequalities in [0, 1].

s(x) ≤
∑

y∈Y t(y) · f(y)(x) for any x ∈ X,
∑

x∈X f(y)(x) · c(x)(e,X) ≤ d(y)(e,X) for any y ∈ Y and e ∈ A,
∑

x∈X f(y)(x) · c(x)(e, x′) ≤
∑

y′∈Y d(y)(e, y′) · f(y′)(x′)

for any y ∈ Y , e ∈ A and x′ ∈ X.

A backward simulation from X to Y—through which Y backward-simulates
X—is a function

b : X −→ DY
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which satisfies the following inequalities in [0, 1].

∑

x∈X s(x) · b(x)(y) ≤ t(y) for any y ∈ Y ,

c(x)(e,X) ≤
∑

y∈Y b(x)(y) · d(y)(e,X) for any x ∈ X and e ∈ A,
∑

x′∈X c(x)(e, x′) · b(x′)(y′) ≤
∑

y∈Y b(x)(y) · d(y)(e, y′)

for any x ∈ X, e ∈ A and y′ ∈ Y .

The definition looks puzzling. Why is a forward simulation a function of the
type Y → DX? Why is a backward simulation not of the same type? How
come the complex inequalities? How do we know that the inequalities are in
the correct direction?

In fact, this definition is an instantiation of the general, coalgebraic notions
of forward/backward simulations [20, Definitions 4.1, 4.2]. More specifically,
the two parameters T and F in the generic definition are instantiated as in
Section 3.2.

Theorem 4.6 (Soundness of forward/backward simulations) Assume there
is a forward (or backward) simulation from one anonymity automaton X to
another Y. Then we have trace inclusion

PX ⊑ PY ,

where the order ⊑ is defined to be the pointwise order: for each ~a ∈ A+,

PX (~a) ≤ PY(~a) .

PROOF. We know (Lemma 3.4) that the notions of trace semantics and
simulation for anonymity automata are instantiations of the general, coalge-
braic notions in [20,23]. Therefore we can appeal to the general soundness
theorem [20, Theorem 6.1]. 2

4.3 Probabilistic anonymity via simulations

We shall use the materials in Section 4.1 and 4.2 to prove the validity of our
simulation-based proof method (Theorem 4.11).

The following lemma—which essentially says PX ⊑ Pan(X )—relies on the way
the automaton an(X ) is constructed. The proof is a bit more complicated here
than in the non-deterministic setting [28,27].
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Lemma 4.7 Let X be an anonymity automaton. Assume there exists a for-
ward or backward simulation from an(X ) to X—through which X simulates
an(X ). Then their trace semantics are equal:

PX = Pan(X ) .

PROOF. By the soundness theorem (Theorem 4.6) we have

PX ⊒ Pan(X ) , (7)

where ⊒ refers to the pointwise order between functions A+ ⇉ [0, 1]. We shall
show that this inequality is in fact an equality.

First we introduce an operation obs which acts on anonymity automata. Intu-
itively, obs(Y) is obtained from Y by replacing all the different actor actions
act(i) with single act(sb)—sb is for “somebody.” This conceals actor actions
in Y ; hence obs(Y) only carries information on the observable actions of Y .

•In X

act(0) [q0] · · · act(n − 1) [qn−1]

•In obs(X )

act(sb) [q0 + · · · + qn−1]

• •

(8)

Formally,

Definition 4.8 (Anonymity automaton obs(Y)) Given an anonymity au-
tomaton Y = (Y,U ,O, d, t), we define an anonymity automaton obs(Y) as the
5-tuple (Y, {sb},O, dobs, t) where:

• sb is a fresh entity,
• dobs is a function

dobs : Y −→ D
(

Aobs × {X} + Aobs × Y
)

where Aobs = O + {act(sb)}, defined by:

dobs(y)(act(sb), u) =
∑

i∈U d(y)(act(i), u) for y ∈ Y and u ∈ {X} + Y ,

dobs(y)(o, u) = d(y)(o, u) for y ∈ Y , o ∈ O and u ∈ {X} + Y .

The following fact is obvious.

Sublemma 4.9 Given an anonymity automaton X , the two automata obs(X )
and obs(an(X )) are identical. 2

The following sublemma is crucial in the proof of Lemma 4.7. Two automata
Y and obs(Y), although their trace semantics distributes over different sets,
have the same sum of probabilities taken over all executions.
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Sublemma 4.10 For an anonymity automaton Y,

∑

~a∈A+

PY(~a) =
∑

~a′∈(Aobs)+

Pobs(Y)(~a′) .

Recall that A = O + {act(i) | i ∈ U} and Aobs = O + {act(sb)}.

PROOF. From the definition of trace semantics (Definition 3.3), the sub-
lemma is proved by easy calculation. 2

We turn back to the proof of Lemma 4.7. We argue by contradiction—assume
that the inequality in (7) is strict. That is, there exists ~a0 ∈ A+ such that
PX (~a0) 
 Pan(X )(~a0). Then, by (7) we have

∑

~a∈A+ PX (~a) 

∑

~a∈A+ Pan(X )(~a).
However,

∑

~a∈A+ PX (~a) =
∑

~a′∈(Aobs)+ Pobs(X )(~a′) by Sublemma 4.10

=
∑

~a′∈(Aobs)+ Pobs(an(X ))(~a′) by Sublemma 4.9

=
∑

~a∈A+ Pan(X )(~a) by Sublemma 4.10.

This contradiction concludes the proof of Lemma 4.7. 2

Now we are ready to state our main result for verifying strong anonymity.

Theorem 4.11 (Strong anonymity via simulations) If there exists a for-
ward or backward simulation from an(X ) to X , then X satisfies strong anonymity.

PROOF. By Lemma 4.7 we have PX = Pan(X ). Moreover, by Lemma 4.4,
an(X ) is strongly anonymous. This proves strong anonymity of X : recall that
strong anonymity is a property defined in terms of traces (Definition 3.8). 2

Example 4.12 (Dining cryptographers) We demonstrate our proof method
via simulations by applying it to the DC protocol.

Let X = {x, y0, y1, y2} be the state space of XDC. Its anonymized version
an(XDC) has the same state space; for notational convenience the state space
of an(XDC) is denoted by X ′ = {x′, y0

′, y1
′, y2

′}. It is verified by easy calcula-
tion that the following function f : X → D(X ′) is a forward simulation from
an(XDC) to XDC.

f(x) = [x′ 7→ 1] f(y0) = f(y1) = f(y2) =















y0
′ 7→ p0

p0+p1+p2

y1
′ 7→ p1

p0+p1+p2

y2
′ 7→ p2

p0+p1+p2














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By Theorem 4.11 this proves (probabilistic) anonymity of XDC, hence of the
DC protocol.

Remark 4.13 For our proof method to work, choosing a right anonymity
automaton to represent a given protocol is important. Consider the following
protocol (suggested by one of the referees): users in the set U = {0, 1, . . . , n−1}
pass a token through the group, starting from 0 all the way to n− 1, each step
being from the user i to the user i + 1. Exactly one user is allowed to write
into an empty token. The adversary observes the movement of the token but
not its content nor the action of writing in.

For simplicity let us assume n = 2. Although the protocol obviously satisfies
strong anonymity, the representation below on the left—which represents the
natural order of actions—does not allow the application of our simulation-
based method.

x

↓

y0

act(0) [p0]

X

pass0→1[1]

y1

pass0→1 [p1]

X

act(1)[1]

x

↓

y0

act(0) [p0]

X

pass0→1[1]

y1

act(1)[p1]

X

pass0→1 [1]

Such a problem can be always mended by “moving up actor actions” i.e. trans-
formation into an automaton where an actor action is always the first action
to be taken. Above on the right is such an automaton, to which our proof
method is successfully applied.

5 Verifying probable innocence via probabilistic simulations

In this section we present a simulation-based proof method for the weaker
notion of probable innocence. Although the basic idea is similar to that in the
last section for strong anonymity, there are certain differences as well. Most
notably, now we have to find a simulation from X to its “innocent version”
inno(X ); this is in the opposite direction of what we do for strong anonymity.

The basic scenario is as follows.

(1) We model an anonymizing protocol as an anonymity automaton X .
(2) We construct the innocent version inno(X ) of X . Here it is not much of

our concern whether inno(X ) satisfies probable innocence or not. Rather
inno(X ) is thought of as the automaton describing the upper bound of ad-
missible information leakage on who is the culprit. In fact, by examining
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the construction of inno(X ), we can prove that

PX ⊑ Pinno(X ) =⇒ X satisfies probable innocence. (9)

(3) We find a simulation from X to inno(X ). By soundness theorem this
yields trace inclusion PX ⊑ Pinno(X ), which by (9) proves that X satisfies
probable innocence.

Although this scenario is somewhat different from the one for strong anonymity
(or for non-deterministic trace anonymity [27,28]), they are the same in that:

• we model a (trace-based) anonymity property as the “idealized version” of
X ;

• by finding a simulation and then appealing to soundness theorem, we show
that the property is preserved from the idealized version to the original X .

Therein the construction of the “idealized version of X ” must be much tailored
to the specific property to be verified.

5.1 “Innocent” automaton inno(X )

We describe the construction of the innocent version inno(X ) of a given anonymity
automaton X . To illustrate the intuition, let us assume that the a-priori sus-
picion is uniformly distributed, that is, ri = 1/n where U = {0, 1, . . . , n − 1}.
The automaton inno(X ) is obtained by replacing actor actions in X as follows:
compare it with (5).

•In X

act(j) [q]

•In inno(X )

act(0) [ q
2
] · · · act(n − 1) [ q

2
]

• •

(10)

There is an obvious problem in this definition: the resulting inno(X ) may not
be an anonymity automaton, since the probabilities q/2 appearing n times
can add up to more than 1. We shall call such an automaton an extended
anonymity automaton.

Definition 5.1 (Extended anonymity automata) An extended anonymity
automaton (X,U ,O, c, s) is the same thing as an anonymity automaton (Def-
inition 3.1), except for the fact that c is a function of the type

X −→ V
(

A× {X} + A× X
)
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rather than X → D(A× {X} + A× X). Here the operation V is such that 14

VY = [0,∞]Y =
{

d : Y → [0,∞]
}

. (11)

The operation V canonically extends to a monad, which we shall call the val-
uation monad.

Given an extended anonymity automaton X , its trace semantics

PX ∈ V(A+) (12)

is defined exactly in the same way as for anonymity automata (Definition 3.3).

Given an anonymity automaton X , it can be thought of also as an extended
anonymity automaton because there is an inclusion map DY →֒ VY :

X
c
→ D(A× {X} + A× X) →֒ V(A× {X} + A× X) . (13)

Therefore we are overriding the notation PX in (12). This is not a problem,
since for an anonymity automaton X the following two trace semantics obvi-
ously coincide.

• Its trace semantics (Definition 3.3) as an anonymity automaton, and
• the trace semantics of the extended anonymity automaton induced by (13).

Before giving a formal definition of inno(X ), note that the core inequality (3)
in the definition of probable innocence is equivalent to the following one, which
uses the a-priori distribution of suspicion (ri)i∈U from (4):

PX ( [act(i)] ∩ [~o] ) ≤
(n − 1)ri

1 + (n − 2)ri

· PX

( (

⋃

j∈U

[act(j)]
)

∩ [~o]
)

. (14)

14 The range of d ∈ VY is [0,∞] including ∞. This choice is made because, in
order to apply the coalgebraic theory of traces and simulations, VY needs to carry
a Cppo-structure. In particular, any increasing ω-chain in VY must have its upper
bound in VY .
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The equivalence is shown by the following easy calculation:

(n − 1)
PX ( [act(i)] )

PX (
⋃

j 6=i [act(j)] )
≥

PX ( [act(i)] | [~o] )

PX (
⋃

j 6=i [act(j)] | [~o] )

⇐⇒
(n − 1)ri
∑

j 6=i rj

≥
PX ( [act(i)] | [~o] )

PX (
⋃

j 6=i [act(j)] | [~o] )

⇐⇒
(n − 1)ri

1 − ri

≥
PX ( [act(i)] | [~o] )

PX (
⋃

j 6=i [act(j)] | [~o] )

⇐⇒ PX ( [act(i)] | [~o] ) ≤
(n − 1)ri

1 − ri

· PX (
⋃

j 6=i

[act(j)] | [~o] )

⇐⇒

(

1 +
(n − 1)ri

1 − ri

)

PX ( [act(i)] | [~o] ) ≤
(n − 1)ri

1 − ri

· PX (
⋃

j∈U

[act(j)] | [~o] )

⇐⇒
1 + (n − 2)ri

1 − ri

·
PX ( [act(i)] ∩ [~o] )

PX ( [~o] )
≤

(n − 1)ri

1 − ri

·
PX (

⋃

j∈U [act(j)] ∩ [~o] )

PX ( [~o] )
,

from which (14) follows immediately.

Definition 5.2 (Anonymity automaton inno(X )) Given an anonymity au-
tomaton X = (X,U ,O, c, s), its innocent version inno(X ) is an extended
anonymity automaton given by the 5-tuple (X,U ,O, cinno, s), where cinno is
defined as follows. For each x ∈ X,

cinno(x)(act(i), u) =
(n − 1)ri

1 + (n − 2)ri

·
∑

j∈U

c(x)(act(j), u)

for i ∈ U and u ∈ {X} + X,

cinno(x)(o, u) = c(x)(o, u) for o ∈ O and u ∈ {X} + X.

The coefficient (n − 1)ri/(1 + (n − 2)ri) comes from the inequality (14). The
definition agrees with the informal description (10) when the a-priori suspicion
(ri)i∈U is uniform.

5.2 Probable innocence via simulations

The intuition about the automaton inno(X ) is that it represents the upper
bound of admissible information leak. This intuition is made precise in the
following lemma, which is a crucial step in our simulation-based proof method
for probable innocence.

Lemma 5.3 If we have

PX ⊑ Pinno(X ) that is, ∀~a ∈ A+. PX (~a) ≤ Pinno(X )(~a) ,
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then the anonymity automaton X satisfies probable innocence (Definition 3.11).

PROOF. By calculation much like the one which shows the equality (6) in
the proof of Lemma 4.4, we obtain the following.

Pinno(X )( [~o] ∩ [act(i)] ) =
(n − 1)ri

1 + (n − 2)ri

·
∑

j∈U

PX ( [~o] ∩ [act(j)] ) (15)

By assumption, we have

PX ( [~o] ∩ [act(i)] ) ≤ Pinno(X )( [~o] ∩ [act(i)] ) ,

which, together with (15), derives (14). 2

The assumption of Lemma 5.3—trace inclusion PX ⊑ Pinno(X )—shall be shown
by finding a probabilistic simulation. Now that inno(X ) is an extended anonymity
automaton, we have to adapt the notion of probabilistic simulation and its
soundness result to the extended setting. In terms of the generic theory in [20,23],
this corresponds to changing the parameter T from D to V .

Definition 5.4 (Forward/backward simulations, extended) Let X and
Y be extended anonymity automata. A forward (or backward) simulation from
X to Y is the same thing as a forward (or backward) simulation for anonymity
automata (Definition 4.5), except that

• we have now V in place of D, and
• the inequalities are interpreted in [0,∞] rather than in [0, 1].

For example, a forward simulation from X to Y is a function

f : Y −→ VX

which satisfies suitable inequalities as in Definition 4.5.

Theorem 5.5 (Soundness of simulations, extended) If there is a for-
ward or backward simulation from an extended anonymity automaton X to
another Y, then we have trace inclusion

PX ⊑ PY , that is, ∀~a ∈ A+. PX (~a) ≤ PY(~a) .

PROOF. The general, coalgebraic theory of traces [20,23] applies to the
choice of parameters T = V and F = A × {X} + A × , in which case the
coalgebraic notion of (T, F )-system instantiates to extended anonymity au-
tomata. Moreover, the coalgebraic notions of trace semantics and simulation
coincide with the corresponding notions for extended anonymity automata
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(Definitions 5.1 and 5.4). Therefore the statement is an instance of the gen-
eral soundness theorem [20, Theorem 6.1]. 2

Theorem 5.6 (Probable innocence via simulations) If there exists a for-
ward or backward simulation from X to inno(X ), then X satisfies probable
innocence.

PROOF. By the soundness theorem (Theorem 5.5) we have PX ⊑ Pinno(X );
by Lemma 5.3 this implies X ’s probable innocence. 2

5.3 Example: Crowds

We shall verify probable innocence of the Crowds protocol using our simulation-
based method. We focus on a restricted setting where:

• there is only one corrupt relay (this is for simplicity); and
• the a-priori suspicion ri is uniform. This is to observe a certain coincidence

(Proposition 5.7) between our analysis and the original one made in [34].
The latter says: the inequality

N ≥
pf

pf −
1
2

(c + 1) (16)

and pf > 1/2 together is sufficient for Crowds to satisfy probable innocence.
Here N is the number of all relays and c is that of the corrupt ones, hence
c = 1 now.

5.3.1 First modeling

Let us denote the set of users by U = [0, n−1] = {0, 1, . . . , n−1}. It is now the
set of incorrupt relays, hence the number of all relays is N = n + 1. Our first,
naive modeling of the Crowds protocol is as follows. On the left in Figure 1 is
this automaton when n = 2.

• The state space is {x}+{y0, . . . , yn−1}+{z0, . . . , zn−1}+{zc}. The intuition
is:
· x is the initial state;
· yi is the state where the user i is holding a message as its originator;
· zi is where the user i is holding the message as a relay; and
· zc is where the (only) corrupt user is in possession of the message.

• The transitions from each state are:

· x
act(i)[ 1

n
]

−→ yi for each i ∈ [0, n − 1], since we assumed that the a-priori
suspicion is uniform;
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naive modeling actual automaton X innocent version inno(X )

x
↓

y0 y1

zc

z0 z1

X

x
act(0)[1/2]

↓

y0 y1

zc

z0 z1

X

x′

act(0)[1/4]

act(1)[1/4]

↓

y′
0 y′

1

z′c

z′0 z′1

X

Figure 1. Automata for the Crowds protocol

· yi

s(i,j)[ 1

n+1
]

−→ zj for each i, j ∈ [0, n]. Here s(i, j) is an action that represents
relaying a message from the user i to j. From the state yi there is another

transition yi

s(i,c)[ 1

n+1
]

−→ zc where the message is sent to the corrupt relay;
· from the state zi a message is either

delivered to the intended recipient: zi
s(i,X)[1−pf ]

−→ X; or

forwarded to another relay: zi

s(i,j)[
pf

n+1
]

−→ zj for each j ∈ [0, n − 1] and

zi

s(i,c)[
pf

n+1
]

−→ zc.
The state zc has the same kind of transitions;

• x is the initial state with probability 1.

5.3.2 Taking the closure to obtain X

Although the last one is a straightforward modeling of the protocol, many
actions in it must be kept invisible to the adversary. We replace these actions—
namely the actions s(i, j) for each i, j ∈ [0, n − 1], those which do not involve
c or X—by the silent action τ . After that we have to get rid of τ ’s by taking

the closure: for example a transition yi
s(j,c)
−→ zc in the closure is understood as

a sequence of transitions

yi
τ

−→ · · ·
τ

−→ ·
s(j,c)
−→ zc

combined as one. A (rather laborious, but) straightforward calculation derives
the following automaton as the outcome. Only its transitions are different from
the original automaton:

• the transitions from the initial state x (where only actor actions take place)
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remain the same;
• from the state yi, a message is either
· delivered to the intended recipient without going through the corrupt

relay: yi
s(j,X)
−→ X for each j ∈ [0, n − 1]. Note that i and j need not

be identical: a message originated by i can be passed around and finally
delivered to the recipient by j 6= i. Each of these transitions occurs with
the probability

1−pf

n+1−npf
; or

· passed to the corrupt relay: yi
s(j,c)
−→ zc. The assigned probability is:

n+1−(n−1)pf

(n+1)(n+1−npf )

if i = j;
pf

(n+1)(n+1−npf )
if i 6= j;

• from the state zi,

· zi
s(j,X)
−→ X occurs with the probability

n+1−2npf+(n−1)p2
f

n+1−npf
if i = j; with

pf−p2
f

n+1−npf
if i 6= j;

· zi
s(j,c)
−→ zc occurs with the probability

(n+1)pf−(n−1)p2
f

(n+1)(n+1−npf )
if i = j; with

p2
f

(n+1)(n+1−npf )

if i 6= j.
The transitions from the state zc remain the same as in the original, naive
modeling.

The resulting “closure” automaton looks like the one in the center of Figure 1.
This is our anonymity automaton X for the Crowd protocol.

5.3.3 Probable innocence by simulation

We shall denote the states of inno(X ) by x′, y′
i, z

′
i and z′c, making clear their

correspondence to the states of X—this is the same convention as in Exam-
ple 4.12. The innocent version inno(X ) is obtained from X by distributing the
probability for each actor action to others (Definition 5.2). We assumed that
ri = 1/n for each i ∈ [0, n − 1]; hence the coefficient in Definition 5.2 is now

(n − 1)ri

1 + (n − 2)ri

=
1

2
. (17)

Therefore in the automaton inno(X ), the transitions from the initial state x′

are: x′
act(j)[ 1

2n
]

−→ y′
i for each i, j ∈ [0, n − 1]. The automaton on the right in

Figure 1 is inno(X ) when n = 2. 15

Let us find a simulation from X to inno(X ), which by Theorem 5.6 guarantees
probable innocence. Although it seemed impossible for us to find a forward
simulation, there is a natural candidate for a backward simulation. Namely,

15 Although the automata when n = 2 are depicted for illustration, note that they
do not satisfy probable innocence. In particular, no choice of pf satisfies the key
inequality N ≥

pf

pf−1/2(c + 1) in [34] if c = 1 and N = n + 1 = 3.
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it is a function b : {x, y0, . . . } → D{x′, y′
0, . . . } (see Definition 4.5) defined as

follows.

b(x) = [x′ 7→ 1] ,

b(yi) = [y′
j 7→ 1/2]j∈[0,n−1] for each i ∈ [0, n − 1],

b(zi) = [z′j 7→ 1/2]j∈[0,n−1] for each i ∈ [0, n − 1],

b(zc) = [z′c 7→ 1] .

Here the value 1/2 seems to come from (17). Some calculation shows the
following.

Proposition 5.7 The function b defined above is a backward simulation from
X to inno(X ), if and only if the parameters n and pf satisfy pf > 1/2 and the
inequality

n ≥
pf + 1

2

pf −
1
2

, that is N = n + 1 ≥
pf

pf −
1
2

(1 + 1) .

By Theorem 5.6, X satisfies probable innocence if these inequalities are satis-
fied. 2

The latter inequality is exactly the inequality (16) taken from [34]. Thus we
have reproduced the analysis in [34] by means of simulations.

6 Related work

6.1 Probabilistic non-interference

In the theory of programming languages, the property of non-interference [30]
has attracted much attention. Intuitively, a program C satisfies non-interference
if there is no insecure information flow from variables with high confidentiality
(high variables) to those with low confidentiality (low variables).

Let us put it slightly more formally. Assume that two memory states µ and
ν differ only in low variables (µ =L ν). Here a memory state is a list of pairs
of a variable name and a value (such as [H=0,L=0]). Non-interference of a
program C requires that the execution of C with the initial memory state µ
is observationally indistinguishable from that with ν. In particular, if µ′ and
ν ′ are the memory states after these executions, respectively, then they have
to agree on low variables:

µ =L ν, µ
C
; µ′, ν

C
; ν ′ =⇒ µ′ =L ν ′.
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A possible variant of the formal definition concerns C’s termination as well.

Volpano and Smith [45] noticed the importance of probabilistic aspects in
non-interference. The leading example is in a simple programming language
which has the multi-threading construct C | C ′ which denotes running two
threads C and C ′ in parallel, in an interleaving manner. Even though there
is no explicit probabilistic construct in the language, a probabilistic sched-
uler—a mechanism that determines which thread to execute first—introduces
probability in an operational model. In [45] a simple example is presented in
which insecure information flow emerges only in a probabilistic setting (but
not in a non-deterministic setting).

A definition of probabilistic non-interference (disregarding termination) can
be presented as follows. Let µH , νH be memory states of high variables; µL, µ′

L

be states of low variables. A program C satisfies probabilistic non-interference
if, for every µH , νH , µL and µ′

L,

Pr(µL
C
; µ′

L | initial high-memory is µH)

= Pr(µL
C
; µ′

L | initial high-memory is νH) .

Now notice the similarity to the notion of strong anonymity (Definition 2.1).

We can think of the change of low-memory µL
C
; µ′

L as an “observation”;
and the initial high-memory as a “culprit,” i.e. the information that we want
to disguise. This similarity between the two notions—(strong) probabilistic
anonymity and probabilistic non-interference—suggests that a technique to
ensure one of these properties can be used to ensure the other property.

Use of type systems is a standard technique to ensure that a certain piece of
program satisfies a certain desirable property, such as non-interference. A type
system typically has typing rules, and soundness theorem stating: if a program
C is typable—meaning that we can derive a typing judgment for C using the
given rules—then C satisfies the desired property. One big advantage of the
type-based approach is that type systems are often accompanied with typing
algorithms that effectively determine whether a program is typable or not.

For probabilistic non-interference, a couple of type systems have been pro-
posed [45,36]. They are in principle extensions of the type system in [42] that
ensures non-deterministic notion of non-interference. For example, the follow-
ing program with an obvious (but indirect) insecure information flow

if H=0 then L=0 else L=1; (18)

is typable in none of the type systems in [42,45,36]. Moreover, any program
containing this piece is not typable either, because of the compositional way
of type derivation in these type systems.
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Because of this fact the type systems from [45,36] do not seem widely applica-
ble to verification of anonymizing protocols. Consider the example of Dining
Cryptographers; a natural representation of the protocol as a program should
include a piece like (18) expressing “if a cryptographer is the payer, then she
lies on her announcement.” Therefore such a program for DC is not typable.

In the DC protocol each cryptographer’s behavior is certainly influenced by
the information to be hidden; this is why the type systems from [45,36] do
not seem to apply. Nevertheless, when three cryptographers are “composed”
in the way prescribed by the protocol, they manage to hide who is the payer.
In this sense, broken anonymity is not compositional. A type system which is
applicable to verification of anonymizing protocols needs to suitably address
such a non-compositional phenomenon. However potential complexity of such
a type system would make it harder to come up with a useful typing algorithm.

6.2 Process algebraic techniques

In the current work we have presented anonymizing protocols in the form
of automata, or transition systems. Using process algebraic terms or process
terms—such as P + Q for “non-deterministic choice between P and Q”—is
another way of expressing processes such as anonymizing protocols. In fact,
a process term induces a transition system via the structural operational se-
mantics of the process algebra [2], hence a process algebra can be seen as a
“programming language” which denotes transition systems.

One merit of using process algebras is that an algebraic structure in process
terms often aids reasoning about properties of the term (more precisely, prop-
erties of the automaton denoted by the term). For example, we can employ
inductive reasoning on the (inductive) construction of process terms. Many
tools are available for analyzing properties of process terms.

Process algebraic techniques have been successfully applied in many anonymity
applications. In [12], the MUTE anonymous file-sharing system [35] is ana-
lyzed by representing the protocol as a π-calculus term. The analysis led to
discovery of a flaw, which can be detected by the ABC bisimulation checker [6]
for the π-calculus. A detailed account of the flaw is in [14]. In [15] a general
framework for automatic checking of anonymity is proposed; the framework
is based on the process algebra µCRL. However, all the work mentioned here
are done in non-deterministic settings. A probabilistic framework of such a
kind which would aid automatic error-detection/verification of anonymity is
one interesting direction of future work.

The probabilistic π-calculus [25,32] is a process algebra that can model proba-
bilistic choices. A process term in that calculus yields a probabilistic automa-
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ton [39] as its operational model. It is used to model anonymity protocols
in [5]. In a similar direction, the recent work [7] uses a variant of CCS with
an additional operator for probabilistic choices.

6.3 Systems with both non-determinism and probability

The importance of having both of non-deterministic and probabilistic branch-
ing in system verification has been claimed by many authors, such as [38];
also in anonymity applications [31]. However our current method cannot han-
dle this combination due to the lack of suitable coalgebraic framework.

In fact the combination of non-deterministic and probabilistic branching is
a notoriously difficult one from a theoretical point of view [11,44,43]: many
mathematical tools that are useful in a purely non-deterministic or proba-
bilistic setting cease to work in the presence of both. Hence we take it as a
fundamental and important challenge to find a suitable coalgebraic framework
that accommodates the combined branching.

The notion of probabilistic automaton [39] is one of the standard models for
probabilistic processes; it has both non-deterministic and probabilistic branch-
ings. Trace semantics and simulations for probabilistic automata are studied
in [38]. Soundness theorem—existence of a simulation yields trace inclusion—
is also shown there.

However, one should be aware that the notion of “trace inclusion” in [38]
is different from that in the current work. In [38], trace semantics PX for a
probabilistic automaton X is given by a set of probability distributions over
lists on actions. An intuitive understanding is: PX is the set of all the pos-
sible probabilistic behavior of X , taken over all the choices of schedulers—
mechanisms which resolve non-deterministic choices. Then the trace inclusion
relation PX ⊑ PY is defined to be simply the set inclusion PX ⊆ PY . There-
fore, in the setting of [38], trace inclusion does not refer to the magnitude of
probabilities (such as “Y yields a list ~a with more probability than X does”).
This is different from our notion of trace inclusion used in this paper. It is not
clear whether simulations and trace semantics in [38] are useful in our current
application of probabilistic anonymity.

Presence of schedulers causes another problem: it is just easy to think of a
scheduler which collaborates with the adversary and makes anonymity fail.
For example, suppose that we have an implementation of the DC protocol
where we have a scheduler that resolves the non-deterministic choice on which
cryptographer makes her announcement (agree or disagree) first. Then we can
think of a scheduler which always put the payer’s announcement in the last
place. In fact, Tom Chothia [13] found out that this is how the Fedora JVM
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scheduler works for a certain implementation of DC in Java. There have been
some work dealing with this problem. The work [16] proposes a class of ad-
missible schedulers whose choices do not depend on the information to be
disguised. In the work [7], a scheduler is explicitly written down as a pro-
cess term; the designer of a protocol has control—in syntactic means—which
actions/probabilistic choices should be visible to a scheduler.

7 Conclusion and future work

We have extended the simulation-based proof method [28,27] for non-deterministic
anonymity to apply to the notion of strong probabilistic anonymity [5]. For
the move we have exploited a generic theory of traces and simulations [20,23]
in which the difference between non-determinism and probability is just a dif-
ferent choice of a parameter. Additionally a simulation-based proof method
for the weaker notion of probable innocence is introduced.

The DC example in this paper fails to demonstrate the true potentiality of our
proof method. For this small example direct calculation of trace distribution
is not hard. A real benefit would arise in theorem-proving anonymity of an
unboundedly large system (which we cannot model-check). In fact, the non-
deterministic version of our proof method is used to theorem-prove anonymity
of a voting protocol with arbitrary many voters [27]. A probabilistic case study
of such kind is currently missing.
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