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Abstract. Jonsson and Larsen’s notion of probabilistic simulation is studied from
a coalgebraic perspective. The notion is compared with two genericedmalg
definitions of simulation: Hughes and Jacobs’ one, and the one intrddaree
viously by the author. We show that the first almost coincides with the secon
and that the second is a special case of the last. We investigate implicattbiss of
characterization; notably the Jonsson-Larsen simulation is showrstuoe i.e.

its existence implies trace inclusion.

1 Introduction

Use of probabilistic algorithms in distributed and coneutrapplications is common
practice. Consequently, modeling and verification teaesgfor probabilistic systems
have been extensively developed. One fundamental braactiths about probabilistic
(bi)simulation it gives an answer when a probabilistic system is “equivéil® another,
or when one “refines” another.

In this paper we focus on simulation notions for purely philistic systems. For
such systems it is standard to define a notion of simulatiorgwseight functionsThe
idea is first devised by Jonsson and Larsen [12]; it has iedmrlarge body of work
including [1]. Our aim in this paper is to shed fresh, mathgrahlight on the idea,
from the viewpoint oftoalgebra

Coalgebra is a mathematical/categorical presentatiotatd-based systems. Its ini-
tial success was brought about by a generic, coalgebraiacteaization of bisimulation
that applies to a variety of systems, including probalidishes (see e.g. [11, 17, 19]).
The theory has since been extended to include various asplazbncurrency theory—
such as SOS and modal logic (see e.g. [13]). Simulation, as-%ded bisimulation,”
is one of such aspects.

Two approaches have been presented towards a coalgelrary thf simulation:
Hughes and Jacobs’ [10] and the current author’s [5]. Bofir@gches are generic,
applicable to non-deterministic systems like LTS as welpazbabilistic ones. In this
paper we restrict them to a purely probabilistic setting @duct a comparative study.
The comparison is among tllensson-Larsen simulatipthe Hughes-Jacobs simula-
tion, and the one in the author’s previous work [5] which we cadliifeisli simulation

Among the three, the notion of Kleisli simulation is the mdstinguishable: it is
given not as a relation but as a functidh— DY, whereX andY are the state spaces

8 Unlike e.g. Segala’s probabilistic automata [18], they do not featuredieoerminism.



of the involved systems. Therefore it is not suitable as aickate of arefinement rela-
tion, the original motivation for the Jonsson-Larsen one. Theidil simulation rather
follows the spirit of Lynch and Vaandrager [16]: it is a poftool for showingtrace
inclusion While a direct proof of trace inclusion involves transitowithin arbitrary
many steps, finding a simulation is a stepwise matter. Intfeedotion of Kleisli sim-
ulation is precisely a coalgebraic generalization of the on[16]; the former comes
with theforward andbackwardvariations just like the latter. The theory in [5] has been
successfully applied to verification of probabilistic agonity in [9].

Our findings are as follows. The standard Jonsson-Larsenaiion, defined ir§3
concretely for a specific kind of probabilistic systems (wesatibe them irg2), is
identified with a slightly restricted variant of the Hugh#escobs simulation§é). This
allows us to remove the unnecessary restriction that wasehidh the original con-
crete definition §4.4), as well as provides a guideline in transferring thenitéin to
other kinds of probabilistic systemg4(5). On another link in the triangle, we identify
the Hughes-Jacobs simulation as a special case of the ikdggllation §5). From
the genericsoundness theorefb]—existence of a Kleisli simulation implies (finite)
trace inclusion—we thus conclude soundness of the Hughmdbdanotion, hence of
the Jonsson-Larsen one.

Our expedition will be in a leisurely pace. In particular,gadegorical or coalgebraic
prerequisites are assumed; they are introduced on our waycall-by-need basis.

Due to space limitation, most proofs are deferred to an ele@wersion [7]. It has
also a series of example systems for further comparisorffefeint simulation notions,

Notations A square in a diagram which is not filled means thabinmutesthat is, the
equality symbol= is implicit in it.

A probability (sub)distributiony over a setX is often denoted like a tabl¢zx —
~v(z) Jzex. When an entry: € X is missing in the table, the probabilifyis assigned.
Hence for example, when, € X is a fixed element,z, — 1] means the distribution
~ such thaty(zo) = 1 andvy(z) = 0 for = # xo.

2 Probabilistic System

We will be mainly interested in two kinds of purely probasiic systems—GPAs and
DTMCs—which we now define formally.

Definition 2.1 (Generative probabilistic automaton, GPA) Let Ac be a fixed nonempty
alphabet; we refer to its element as artion A generative probabilistic automaton
(GPA)overAcis atripleX = (X, zo, c) where

— X is a nonempty set cftates
— xo € X is a chosen state which is called théial one; and
—c¢: X - D({v}+ Ac x X) is atransition function Here{v'} is a singleton#
denotes the disjoint union; arfdis thesubdistributionoperation such that for a set
Y
DY = {7:Y —[0,1]] Y 7 <1} . L)
yey



Suchd € DY is called asubdistribution since its values add up to not more than
1, instead of precisely.

The subdistributior(x) tells the probabilistic behavior of a stateThe value:(x) (a, 2”)
with a € Acanda’ € X is the probability with which: makes the action and moves

to 2’; thatis,c(x)(a, z') = Pr[z % 2’]. We interpret the symbat assuccessful termi-
nation thus with the probability:(z)(v') = Pr[z — V] the stater is led to successful
termination. The remaining probability— c(z)(v') — >, ., ¢(z)(a, 2)—which may

be more thard sincec(z) is a subdistribution—is understood as the probability with
which x gets intodeadlock

GPAs are said to bgenerative in contrast toreactive systems whose transition
function is given as, say,: Ac x X — D({v'} + X). They differ in whether an action
is chosen by the system or by the environment; see [4].

GPAs can be thought of as a probabilistic variant of labetadsition systems
(LTSs). DTMCs, which we introduce shortly, are then probsti¢ Kripke frames. The
notion is standard, see e.g. [1, 14]. The definitions in ttegdture vary in details; the
following one is adapted to fit the current context.

Definition 2.2 (Discrete-Time Markov Chain, DTMC) LetAP be afixed set citomic
propositions A discrete-time Markov chain (DTMQ)ver AP is a quadrupleX =
(X, 0,1, p) where

— X is a nonempty set aftates among whichzy € X is aninitial state;

— 1 : X — P(AP) is alabeling functiorwhereP denotes the powerset. This assigns
to a stater € X the set/(z) of atomic propositions that hold at

— p: X — DX is atransition functionwhereD is the operation in (1).

A DTMC has labels on its states, while a GPA has labels onatssitions.

3 Jonsson-Larsen Simulation

For DTMC and its variants, a standard definition of simulafi®2] usesweight func-
tions Here we present the definition for DTMC taken from [1]. Thasnily of simula-
tion notions—based on weight functions—uwill be callEmhsson-Larsen simulation

Definition 3.1 (JL-simulation for DTMC) LetX = (X, xo,l,p) andy = (Y, yo, m,q)
be DTMCs. AJonsson-Larsen simulation (JL-simulaticinpm X' to ) is a relation
R C X x Y which satisfies the following.

1. The initial states are related, thatig,Ryq.
2. Related states satisfy the same atomic propositioRg:impliesi(x) = m(y).
3. Foreachr € X andy € Y such thatz Ry, there exists aveight function

Apy + ({L}+X) x ({L}+Y) —[0,1]  suchthat

(@) Ay y(u,v) > 0implies either
—u=.1,o0r



—u=2a"€ X,v=y €Y andz'Ry;
(b) Az (L, J7) + Zy,ey AI,?/J(J—ay’) =1- Zm/EX/ (}r)(—x/) : o
(c) foreachn’ € X: = A, y(2', L) + 37 ey Auy(a’,y') = p(z)(2') ;
(A) Ary (L 1)+ T Ay (@ L) 2T S0y a0
(e) foreachy’ € Vi Ay y(L,y) + > ex Day(@,y) = a(y) (')

Although illustration of the previous definition is foundjein [1, Ex. 14], the definition
hardly seems as “canonical” or “intuitive” as other notimueh as (bi)simulation for
ordinary LTS. For example, the only asymmetry betwaéand) is found in Cond.
3.(a) whereu, notw, is allowed to belL. One might wonder if it is possible to weaken
this condition. Weakening- into C in Cond. 2 looks like another possibility. It is not
clear either how to adapt this definition to GPA. Even lesardie whether the adapted
notion satisfies soundness—existence of a simulation isyplee inclusion—which is
a natural property to expect.

What we do in the rest of the paper is to put the above definiticm ¢oalgebraic
context. First it will be identified with a restriction of Hhgs and Jacobs’ simulation
(HJ-simulation)[10]. From this we immediately obtain natural generaliaasi of the
original definition, which are hinted above. The generimtlgan [10] can be used to
conduct some “sanity checks” for the generalized definitiddaptation to GPA comes
for free, too. After that we will identify HJ-simulation wita certain subclass #feisli
simulation from [5]. Soundness of JL-simulation for GPAtsdorollary.

4 Hughes-Jacobs Simulation

4.1 Coalgebraic Modeling

In the Hughes-Jacobs theory of coalgebraic simulationsteayis modeled aSpy
a B-coalgebra which is a functiorr of the type on the right. The séf (which e
is arbitrary) is the system'state spacethe operationB specifies the kind of x
transitional behavior exhibited by the system; and thetione: determines the
system’s dynamic behavior. We now elaborate on the oper&tjavhich takes a seX
and returns another sgtX.

Roughly speaking, it is the operatidghwhich determines what kind of systems we
are talking about. One choice &f makes aB-coalgebra an LTS; another choice Bf
is for a deterministic automaton (DA); and so on. Specificall

B ||P(Ac x _)[2 X (_L)*[(Acout X _)A|D({v'} + Ac x _)|P(AP) x D(_)
B-coalg] LTS | DA | Mealy mach.| GPA | DTMC

When B is D({v'} + Ac x _), a B-coalgebra is a functiom : X — D({v} +
Ac x X); this is precisely a GPA (Def. 2.1) without an explicit iaitistate. FotB =
P(AP)xD(_), aB-coalgebrais afunction: X — P(AP) x DX, which is identified
with a DTMC (without an initial state) via the following bigéive projection-tupling
correspondence.

X — P(AP) x DX ‘. (I,p) == Aw-i(i(w), p(z))

X — P(AP) X — DX (mioc, moc) (I,p)




Herer,; denotes the-th projection;(l, p) denotes théupling of [ andp.

To develop a “theory of systems” on top of this modeling, aaragionB needs to
be afunctor. Leaving its detailed treatment to literature like [11],atlit means is that
the operationB not only applies to sets (i.&X — BX) but also to functions. That is,

B: xLy — BxZBY).

Note the domain and the codomain of the resulting funciigh
The previous examples @ have natural action on functions. For example, given a
functionf : X — Y,

P(Acx X) TEE p(Acx V) | w— { (0, f(@) | (ayz) € u} ;

D} +Acx X) "D pey L Acx Y |

Y [V =), (%y)'—)zxef—l({y}ﬂ(“»m)] )

P(AP)xD
P(AP) x DX TP pAP) x DY | (u,7) — (w, [y Yaerrqupn1@)]) -

To be precise, sucl is a functor of the typé&Sets — Sets, from the category
Sets of sets and functions to itself. We make a formal definitiontfe record.

Definition 4.1 (Functor, coalgebra) A functor B : Sets — Sets consists of its action

on setsX — BX and on functiong X ER Y)— (BX 5 BY), for eachX andf.
This is subject to the following conditions:

B(X'Y x)= (BX 2 BX) . B(xLv2u)=Bx 2 BY % BU) .

A B-coalgebrais a pair(X,c : X — BX) of a set and a function; we shall simply
denote it byX 5 BX.

Thefunctoriality of B is crucial in the following definition of coalgebraic bisitation
(notice use ofBrr;). The definition subsumes many known notions of bisimufatio

Definition 4.2 Let B : Sets — Sets be a functor and :

X — BX andd : Y — BY be B-coalgebras. Aoalgebraic BX Bm BR Bre BY

bisimulationis a relationR C X x Y such that: there exists ¢ r +d
a functionr : R — BR that makes the diagram on the rightX <— R ——Y
commute. Herer; andm, are obvious projections. 2)

WhenB represents purely probabilistic systems such as DTMCslibee coal(ge-
braic bisimulation instantiates to the one that uses a wéigtttion. It coincides with
the more common formulation via equivalence classes [11% doincidence proof is
implicit in [12, Thm. 4.6] and is much more systematicallyndacted in [19].

4.2 Hughes-Jacobs Simulation

Roughly speaking, simulation is “one-sided” bisimulatigvhenR is a simulation and
xRy, we requirey to exhibit “at least as much” behavior agloes, that is,

(z’s behavior) C (y's behavior)



in terms of a suitable preorder of “behavior inclusion.” Hughes and Jacobs [10] used
this intuition and defined generic simulation as a variaridef. 4.2. In order to do so,
a functorB : Sets — Sets needs to come with a “behavior-inclusion” preorder

Definition 4.3 (Functor with preorder) A functor with preorderconsists of a functor
B : Sets — Sets and a class of preordefs_ g x } x for each setfX, whereCgx is
on the setBX. Further, given a functiorf : X — Y, its actionBf : BX — BY is
required to be a monotone function. We often suppress thecapbinC g x .

Example 4.4 Let B = P(Ac x _ ), for which B-coalgebras are LTSs. It is a functor
with preorder, with a natural choice &fg x being the inclusion order.
Let B =D({v'} + Ac x _); aB-coalgebra is a GPA. For,§ € BX we define

vyLCpx d &L ~v(v)<d4(v) and ~(a,x) <d(a,x) foreacha andz.

Note thatC g x need not be reduced to the equality, sinandé aresuldistributions.
Let B = P(AP) x D(_); a B-coalgebra is then a DTMC. There are a few natural
candidates for the preorderg x. One is:

(u,v) Cxx (v,9) &Ly w=v and ~v(x) < é(x) foreachs.

We denote this order by =. Noting thatu andv are subsets ohP, we could replace
the conditionu = v by u C v, for example. The resulting order will be denoteddy.

Definition 4.5 (HJ-simulation) Let (B,C) be a functor

with preorder, andY % BX,Y -% BY be B-coalgebras. gy 2™ pp 2™ py
A Hughes-Jacobs simulation (HJ-simulatid"dm ctodis ¢t C =1+ C 14
arelationR C X x Y such that: there exists a functionX <— R —>Y
r : R — BR which makes the inequalities on the right hold. (3)

That is to be precise: for eagh, y) € R
(com)(z,y) Epx (Bm or)(x,y) and (Bmyor)(z,y) Epy (dom)(z,y) .

The formulation is different from the original one [10] wieea lax relation lifting is
used. The equivalence is proved in [7, Appendix A.1].

4.3 Jonsson-Larsen Simulation as Hughes-Jacobs Simulatio
Here is the first main observation in this paper: JL is HJ. Tideid—= is from Ex. 4.4.
Theorem 4.6 Let X = (X, xo,l,p) and) = (Y, yo, m,q) be DTMCs, and leR be

a JL-simulation fromY to ). ThenR is a HJ-simulation from the coalgebrd, p) to
(m, q): there exists- that makes the following (in)equalities hold.

AP T AP s
P(AP) x DX 2PN pAp) x DR AP pAR) x DY
(L)t = 5 T s = ~(m,q)
X R Y O




We include initial states (Cond. 1, Def. 3.1) and obtain tkfving characterization.

Theorem 4.7 (JL is HJ) Let X and) be DTMCs in Thm. 4.6. ArelatioR C X x Y
is a JL-simulation if and only if there exist functiongnd r, that make the following
(in)equalities hold. The sdt«} is a singleton.

P(AP)x Dy P(AP) XDy

P(AP) x DX P(AP) x DR ———""5 P(AP) x DY
(Lp) = T £- (m.q)
X — R — % (4)
/R Zo = ot - Yo j
{x}
Note that a functiory : {*} — X can be identified with an elemenj € X. O

4.4 Generalized Jonsson-Larsen Simulation

Thm. 4.7 shows that JL-simulation does not reach the fulegaity of HJ-simulation:
the top-left square is an equality in (4), which is not neagsSranslating HJ-simulation
into the Jonsson-Larsen style concrete terms, we are ¢ timlowing definition.

Definition 4.8 (JL-simulation for DTMC) A JL'-simulationis the same thing as a
JL-simulation (Def. 3.1) except for the following.

— A weight function is of the typed, ,, : ({L}+X) x ({L}+Y) — [-1,1].
— Cond. 3.(a) is weakened: the valueAf , (u, v) must lie in the following range,
according tou andv:

e whenu = 2’ € X andv =y € Y, if 2Ry N L] ey
then A, ,(2',y") > 0;if (2/,') ¢ Rthen — < >0
Azy(@'y') =0 :

o A, (L,y')>0foreachy’ €Y, : >0 (2'Ry)

o A, (2, 1) <0foreachs’ € X, 5”_/ =0 {0 (o.w.)

o A, (L, L) can be positive, zero or negative.

— Cond. 3.(b) and 3.(d) are dropped.

Now a weight function can take negative values. Cond. 3.d)&(d) played no role
in Thm. 4.6, hence are dropped. Similarly to JL-simulatiimding a weight function
is filling in the matrix above on the right, in such a way thatribws and columns add
up to the right values like(z)(z') or ¢(y)(y’). The task is easier with JL'-simulation
because each entry can be picked from a broadened domain.

One can further generalize the previous definition by réptac = by C< (Ex. 4.4):
in this case the systed to be simulated satisfies no more atomic propositions han
does. This generalization is useful e.g. when we are intsgtiés safety properties, and
atomic propositions represent systems’ actions.

Definition 4.9 (JL"-simulation for DTMC) A JL"-simulation is the same as a JL-
simulation (Def. 4.8), except that Cond. 2 is replaced by

2. xRy impliesi(z) C m(y).



Proposition 4.10 Let X and) be DTMCs as in Thm. 4.6, amd C X x Y.

1. The relationR is a JL’-simulation if and only if there exigtandr, that validate
the (in)equalities in (4), with the top-left equality repkd byC=.

2. The relationR is a JL"-simulation if and only if there exist andr that validate
the diagram (4), with the top two squares filled witf . ad

Let us do some sanity checks. The following holds for JL"éast of JL' too; also
for the conventional notion of JL simulation (see [1]).
Proposition 4.11 Let X = (X, z,1,p) andY = (Y, yo, m, q) be DTMCs.

1. If R C X x Y is a bisimulation, therk and R°P are both JL'-simulations.

2. The family of JL'-simulations fro’ to ) is closed under arbitrary unions. There-
fore there is the largest JL'-simulatiof ;../, calledJL'-similarity.

3. Jl'-simulations are closed under composition. Hericg, is transitive.

Proof. We apply Lem. 4.2 and Prop. 5.4 of [10]. This involves chegkintechnical
condition ofstability of orders. See [7]. ad

4.5 Jonsson-Larsen Simulation for GPA

Another implication of Thm. 4.7 is adaptation of JL-simidatfor other kinds of prob-
abilistic systems, via HJ-simulation which is general bfirdgon.

Definition 4.12 (JL-simulation for GPA) Let X = (X, zg,c¢) and) = (Y, yo,d) be
GPAs. AJL-simulationfrom X' to ) is a relationkR C X x Y such that:

1. The initial states are related, that:ig,Ryq.
2. For each paifz, y) € R, there exists a weight function

Ay ({LIH{VI+Acx X ) x ({L}+{v}+AcxY ) — [-1,1] such that

o W\ LV (anyy) o | (an,p) o
(a) Az y(u,v) lies in the range L [[Fo[>o0 >0 >0
on the right. In particular, v |I<0[>0 0 0
Az y((a,a’),(a’,y) > 0 : >0 («}Ry)
T, \ ) ) ’ L, > (m Ry )
only if a = a’ andz’Ry/’; (a1, z3) ||< 0} O {0 oy 0
o >0 (x5Ry))
(az;23) ||< 0] 0 0 {0 (ofN.) 2

(b) c(x)(\/) = Aw,y(‘/a J—) + Aw,y(‘/v ‘/) ;
(©) c(x)(a,2") = Az y((a,2'), L) + 32, Az y((a,2'), (a,y")) for eacha andz’;

(€) d(y)(a,y') = Awy(L, (a,9) + 20 Asyy((a,2), (a,y')) for eacha andy’.
This definition seems to appear for the first time. It coinsidéth HJ-simulation for
B =D({v}+Acx(_)), with B equipped with the order in Ex. 4.4 (the proof is easy).
Properties like in Prop. 4.11 hold as well. Remaining is f#s&ié osoundnesst is not
obvious at all from the above complicated definition. One wfmain contributions is
the soundness proof later §6.7, which uses the generic theory in [5].



5 Kleisli Forward and Backward Simulation

We now describe the third kind of simulation from [5]. We dhafer to this family as
Kleisli simulation for the reason that is explained shortly. Kleisli simwatconsists of
four subclassegorward, backward and twohybrid ones, like in [16]. The most notable
difference from JL- and HJ-notions is that a Kleisli simidatis itself not a relation.

5.1 Kleisli Arrow

First we fix our domain of discoursekieisli arrows. They are arrows in a Kleisli cat-
egory, a standard categorical construct. Our descripsitioivever in concrete terms.
Definition 5.1 (Kleisli arrow) Let X andY be arbitrary sets. Kleisli arrow from X
toY, denoted byf : X + Y, is a functionf : X — DY. A few typical Kleisli arrows:

— The Kleisli arrownx : X + X, for eachX, is the functiony : X — DX that
carriesz € X to [z — 1].

. . - f
— Given consecutive Kleisli arron& + Y andY - U,wehaveg® f: X —+ U by
gof : X —DU , zvr—u. 3 oy 9()(u)- f(@)(y) -
— For each (ordinary) functiorf : X — Y, we haveJf : X + Y defined byX ER
Y ™ DY. Thatis,(Jf)(z) = [f(x) — 1]. This generalizegx by:nx = J(idx).

The following are straightforward; they say that Kleisli@xs form a category.

Proposition 5.2 1. Composition of Kleisli arrows is associative: for threensecu-
. - f h
tive Kleisli arrows X —+ Y—o!i U+V,wehaveh © (g f) = (h©g)O f.
. . . f
2. nis the unit of composition: foX + Y we haveny © f = f = f © nx. O

One can think of a Kleisli arrovf : X + Y as a “function fromX to Y", with implicit

probabilistic branching”; or as a “probabilistic compugatof input typeX and output

type Y.” The operator® realizes natural composition of such probabilistic coraput

tions. The embedding f of an ordinary function endows with trivial branching.
There is a natural order between parallel Kleisli arrows.

Definition 5.3 Between a parallel pair of Kleisli arrow§ g : X +— Y, we define an
orderf C gif: f(x)(y) < g(z)(y) for eachr € X andy € Y.

5.2 Probabilistic Systems as Kleisli Coalgebras

AGPA X = (X, x0,c) (Def. 2.1) can be presented by two Kleisli arrows:

(X v+ Acx X 5)

This is a prototype of the kind of systems on which we definddilsimulation. First
we parametrize the{v'} + Ac x (_)’ part in the above.



Definition 5.4 (Polynomial functor) A polynomial functoris a functorF’ : Sets —
Sets which is constructed

— from the identity functof_) and the constant functar for each set’,
— using finite products and arbitrary disjoint union (i.e. muguct).

In the BNF notation?" ::= (_) | C' | Fy x o | [[;¢; F3

The functor{v'} + Ac x (_) is polynomial; sois e.gAc+ _)* =[], ., (Ac+ _)".

Lemma 5.5 A polynomial functoF” has canonical action on Kleisli arrows, carrying
f Fy
X+YtoFX -+ FY.

Proof. A general categorical proof is found in [&.2]; one can also define such action
concretely by induction on the constructionof O

In most case$"'s action on Kleisli arrows is obvious. Fét = {v'} + Acx (_) andf :
X-+ Y, theKleisliarrowF'f : F X+ FY is given by the functiodv'} + Ac x X —
D{Vv'} +Ac x Y), defined by

Vi— Ve ], (ar) — [(ay) = f(@)©) ey

Definition 5.6 (Probabilistic F'-system) Let F' be a polynomial functor. Avrobabilis-
tic F-systen(or S|mpIyF-systerm|s atripleX = (X, s, c), whereX is an arbitrary set

and{x} i+ X —~ FX are two Kleisli arrows. Recall that probabilistic branahin
is implicit in Kleisli arrows.

Example 5.7 A GPA induces arF-system, withf’ = {v'} + Ac x (_); see (5).F-
system is more general than GPA since the former allows aiswibdtion on initial
states (i.es € DX) rather than a single initial state. This additional geligras how-
ever not important.

A DTMC cannot be seen as dftsystem as it is: its dynamics is given by a function

x 2 P(AP) x DX which cannot be understood as a Kleisli arrow. We can fix it by
moving “state labels” into “transition labels.” Let us defia functionc; , by

ap : X —=D(PAP)x X) . z+— [(I().2) = p@)(@)],cx 3

Jx Cl,p
then theF-system{x} xS P(AP) x X represents a DTMCX, zo, [, p).

The notion of (probabilistic'-system is essentlally Kleisli F-coalgebraX -

F X equipped with an explicit initial staték}ﬂ» X. In coalgebraic studies it is usually
unnecessary to speak about explicit initial states; we kieneeed that in this paper for
formulating the soundness result (Thm. 5.20). Seé36.4].

Let us compare the curreideisli coalgebraic modelingf GPAs (Ex. 5.7) with
the modeling ing4.1. They are the same in that the dynamics of a GPA is repesen
by a functionX — D({v'} + Ac x X). In the Kleisli modeling, the functoB =
D({v'} + Ac x (_)) is divided intoD (branchingpart) andF = {v'} + Ac x (_)
(transition/actionpart); the former is then “thrown under the rug” using Kleistows.



5.3 Kleisli Simulation

Definition 5.8 (Kleisli simulation) Let F' be a polynomial functor an® = (X, s, ¢)
and) = (Y,t,d) be F-systems. Aorward Kleisli simulationfrom X to Y is a Kleisli
arrowf : Y-+ X suchthat © f C (F'f) ©dands C f ©t (see below left). Note the
direction of f. It is also called simply forward simulation

fwd. FX—Fpy bwd FX—5 Sy
c4~ C f 4d c4 b c +d
X4&——+——Y X ———Y

M{%}Q_J k@{%}@j

A backward (Kleisli) simulatiotis a Kleisli arrowb : X—+ Y such thal{ Fb) ©c C d©b
andb © s C t (see above right). Here the ordemefers to the one in Def. 5.3.

In fact, the last definition is an instance géneric forward and backward simulation
in [5,6]. The general definition has an extra parameétérat specifies aranching type
Itis fixed toT = D in this paper, representing probabilistic branching. Aeotmain
example isI" = P, the powerset operation, faon-deterministidranching.

This extra parametdr is used in the definition of Kleisli arrow. Namelp,: X+ Y
is defined to be a functiofi : X — TY. WhenT = P, aKleisli arrowf : X + Y
can be identified with &inary relationR; C X xY: zRyyifandonlyify € f(z). In
this case, if moreoveF' = Ac x (_) for which F-systems are ordinary LTSs, Kleisli
simulation (Def. 5.8) coincides with the standard notioff®ovard and backward sim-
ulation for LTS (see e.g. [16]). To summarize: probabititleisli simulation (Def. 5.8)
is a natural generalization of non-deterministic simolaiin [16].

5.4 Kileisli Simulation for GPA

We further instantiate the definition to GPA, if.= {v'} + Ac x (_). It demonstrates
Kleisli simulation’s affinity to the conventional simulati notions for LTS.

Notation 5.9 A forward simulation is a functiorf : Y — DX ; we writePr[y --» z]
for the valuef (y)(z). We letPr[z — v] andPr[z -% '] have their obvious meanings.
We also compose events; for example

Prly - 2 % 2'] := Prly --» 2] - Prjz % 2]
For a backward simulation, we writer[z --» y] for b(z)(y).

Definition 5.10 (Forward simulation for GPA) LetX = (X, zg,c) andy = (Y, yo, d)
be GPAs. Aforward (Kleisli) simulationfrom X’ to ) is a functionf : Y — DX which
satisfies the following (in)equalities.
Pryp --» 20 =1 (INnIT)
Yowex Prly -2 — V] <Prly — V] foreachy € Y (TERM)

Yosex Prly -2 L] < Zy’EY Prly 5y --» 2]
foreachy € Y,a € Acandz’ € X (AcT)



The condition (AT) is illuminating. It can be depicted as the below left, whibgkars a
clear affinity to the standard non-deterministic conditstwown on the right.

Y a Y y -2 3
Pr[ } < Pr{y*“} ( " ) implies( .>
o — o/ 2

. LN z i
Definition 5.11 (Backward simulation for GPA) A backward (Kleisli) simulatiofrom
X to Yis afunctionb : X — DY which satisfies the following inequalities.

Prlzg --+ yo] < 1 (INn1T)
Prlz — V] <3 cx Prlz -——»y — V] foreachr € X (TERM)

Spex Prlz S al - y] <3 oy Prlz -y Syl
foreachr € X,a € Acandy’ € Y (AcT)

5.5 Hughes-Jacobs Simulation as Hybrid Kleisli Simulation

Definition 5.12 (Hybrid simulation) Let X = (X,s,c¢) and) = (Y,t,d) be F-
systems. Aorward-backward (Kleisli) simulatiors a triple (U, f, b) where

— U = (U,u,e) is anF-system called thntermediate system
— fis aforward simulation fronit’ to ¢/, and
— bis a backward simulation froi1 to )). See below on the left.

fwd-bwd. FX 4 pu -y bwdewd. Fx —5s FU A FY

e Cp fe ,C Hd e L, Fe ;C 4
X 1 U 1 Y X 1 U 1 Y
C $u C [ Fu [

N S s} —+ J N S s} —+ J

Similarly, abackward-forward (Kleisli) simulatiois a triple (i, b, f) of an intermedi-
ate systenid/, a backward simulatioh from X to ¢/, and a forward simulatiorf from
U to Y. See above on the right.

Proposition 5.13 Let X', Y be F-systems. If there is a non-hybrid simulation frdén
to Y, then there are both fwd.-bwd. and bwd.-fwd. ones ffoto ).

Proof. A forward simulationf from X’ to ) induces a backward-forward simulation
(X, J(id), f); it hasX itself as an intermediate system. The other cases are simila

Lemma 5.14 Let F' be a polynomial functor. Then the functBrF' has the following
natural order. This make§DF, Cpr) a functor with preorder (Def. 4.3).

vEprx 6 &L v(u) < 6(u) forallue FX. O



WhenF = {v'} + Ac x (_) and B = DF, both B-coalgebras and probabilistic-
systems represent GPAS. In this case, the ordé? omthe previous definition coincides
with the one in Ex. 4.4.

Here comes our second main observation.

Theorem 5.15 (HJ is Kleisli) Let X 5 DFX andY . DFY be ‘DF-coalgebras,
xo € X andyy € Y be chosen (initial) states, anl C X x Y be a relation. Assume
that there exists a functionthat validates the inequalities in the diagram on the left,
that is, thatR is a HJ-simulation from: to d such thatey Ryy.

DFmq DF o F(Jmy) F(Jmg)
DFX DFR DFY FX<+—FR—+—FY
¢t Cpr T Epr Td cf C r4 C  #d
xem—r—ry = Xem—y @
(zo,y0) T J(z0,y0) T
e
z0 Yo

Then we have a fwd.-bwd. simulation from thesystem(X, Jzo, ¢) to (Y, Jyo, d),
shown above on the right. Note the ordetherein refers to the one in Def. 5.3. O

In short: a HJ-simulation betwednF'-coalgebras induces a fwd.-bwd. simulation be-
tween the correspondin-systems. The proof is found in [7].
Fwd.-bwd. simulation instantiates to GPA, like§s.4. Thm. 4.7 yields:

Corollary 5.16 (JL is Kleisli) LetXx and) be GPAs. A JL-simulatioR from X’ to
induces a fwd.-bwd. (Kleisli) simulation froAito ). O

5.6 Generic Trace Semantics

Like in [16], the principal aim of Kleisli simulation is to sk trace inclusior—a re-
finement relation with respect to (linear timedce semanticsvhich is the coarsest in
the spectrum of [3]. Our use of the generic notion of Kleisklgebra calls for a generic
definition of trace semantics too. We employ the theory intji@fe is its quick recap.

A polynomial functorF always has aimitial algebrao : FA = A. The intuition
is: F' represents a set of datatype constructors;Aislthe induced inductive datatype.
The algebraic structure always becomes an invertible function.

Example 5.17 The functorF' = {v'} +Ac x (_) is thought of as: a nullary constructor
v and a family of unary constructorg_ ), for eacha € Ac. The induced inductive
datatype is the seAc* = {ajas---a,v | n < w,a; € Ac} of (finite) lists over
Ac. This set indeed carries an initial algebra: there is a caabalgebraic structure
a: {v}+Ac x Ac* — Ac*, namely

v — v (the empty sequence), (a,aq---ap,v')+— aaq---apv .

The following is the main result in [8], adapted to the cutremntext.



Theorem 5.18 (Generic (finite) trace semantics) et Ftr()

a: FA — A be aninitial algebra. Given any’-system px — -+~ 3 FA

X = (X, s,c), there is a unique Kleisli arrowr(c) that <t () J(a@™)F
makes the diagram on the right commute. In particular,X B o4 ()

- — 5
the Kleisli coalgebra/(a ') is afinal coalgebra. N {*}tr(c)@;

We settr(X) := tr(c) @s. Itistr(X) : {*} — DA as afunction, hence is a subdistribu-
tion overA. Thistr(X') is referred to as thfinite) trace semantiosf X'. To summarize:
the action typeF' determines the sed of linear-time behavior X’s trace semantics
tr(X) tells us which linear-time behavior is exhibited with howehuikelihood.

Example 5.19 (Trace semantics for GPA)Let F' = {v'}+Acx (_). The diagram (7)
translates into the following conditions, whereganges oveAc™.

tr(c¢)(z)(v') = Prlxz — V]
tr(c)(z)(ao) = Y, cx Prlz 5 2] - tr(c)(2’)(0) ; and
tr(X) (o) = tr(c)(xo)(o) whens(x) = [zo +— 1].

This is a reasonable definition of a “trace semantics” for Gfeaulting is a subdistri-
butiontr(X) over lists onAc. For example, lef’ be the GPA below on the left; then its
trace semantics is as on the right.

Note that our trace semantics only captuiiae behavior; infinite sequences like
are not in its domair\c*. With infinite behavior included we no longer have a clean
characterization like in Thm. 5.18.

Like the definition of Kleisli simulation, the generic trasemantics (Thm. 5.18)
also applies to other kinds of branching such as non-detésmi See [8].

5.7 Soundness Theorems

We recall the soundness result [5] for Kleisli simulatioi® which soundness of JL- and
HJ-simulation immediately follows. Its short proof in [SJakes use of order-theoretic
properties of the diagram (7).

Theorem 5.20 (Soundness of KleisliLet X', Y be F-systems. Existence of a Kleisli
simulation fromX to ) implies trace inclusiontr(X) C tr())). Here a Kleisli simula-
tion can be any of forward, backward, or hybrid. O

Using Thm. 5.15 and Cor. 5.16, we immediately obtain soussired JL-simulation
(Def. 4.12). This is new to the best of the author’s knowleddénerefore the notion of
JL-simulation can also be used for proving trace inclusietwieen GPAs, a use that has
not been investigated much in the literature. The sameegpiJL- and JL'-simulation
for DTMCs; we postpone detailed treatment to another venue.
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Conclusions and Future Work

We have showed that JL-simulation is a special case of Hiatian, which is further
a special case of Kleisli simulation. This allows to tramgfeneral results for a latter
notion to a former one, most notably soundness.

Finding a Kleisli simulation is reduced to solving a familflimear inequalities. Its

algorithmic aspect is to be investigated. We also aim toakptquired genericity and
apply our results to other kinds of systems. We are intedaststochastic context-free
grammarswhich have their application in modeling the secondarycstme of RNA [2].
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