Semantics and Logic for Security Protocols

Bart Jacobg'

Institute for Computing and Information Sciences

Radboud University Nijmegen, The Netherlands
Email: B.Jacobs@cs.ru.nl

URL: http://www.cs.ru.nl/B.Jacobs

Ichiro Hasuo

Institute for Computing and Information Sciences, Radboud Universjmégen, the Netherlands
and Research Institute for Mathematical Sciences, Kyoto Universjggnla
Email: I.Hasuo@cs.ru.nl
URL: http://www.cs.ru.nl/l.Hasuo

June 12, 2007

Abstract

This paper presents a sound BAN-like logic for reasoning about isgquotocols
with theorem prover support. The logic has formulas for sending aceiviag mes-
sages (with nonces, public and private encryptietts), and has both temporal and
epistemic operators (describing the knowledge of participants). Thedagimantics
is based on strand spaces. Several (secrecy or authenticationjldsrare proven in
general and are applied to the Needham-Schroeder(-Lowe), bilkégraxchange and
the Otway-Rees protocols, as illustrations.

1 Introduction

Security protocols are difficult to get right, and so a formiatlerstanding of their meaning
with associated reasoning techniques has been an imptofaafor many years. Roughly
two approaches have emerged, one based on algorithmidgeelsrusing model checkers
(such as [22, 3], see also [28]) and one on logical reasoniings paper fits in the latter
tradition. The algorithmic techniques are very good at clatg errors in relatively simple
protocols in a “push button” style, but usually run into plerias with the size of state spaces
for more complicated protocols. In contrast, the technigbased on logical reasoning
can in principle handle arbitrarily complex protocols, &y involve considerable user
interaction. Hence, again in broad terms, algorithmic téghes are most useful early on
in design, and logical techniques later on in certification.

This paper describes a formalisation of security protgcmlglving a mathematical
model in the style of strand spaces [31], on top of which arfddlogic is defined that
resembles BAN logic [4]. The whole formalisation is repme®el in the higher order logic
of the theorem prover PVS [26], and allows verifications ofuat protocols with tool

*Corresponding author. Postal address: P.O. Box 9010, 6%0Riftegen, The Netherlands. Tel: +31 24
3652236 Fax: +31 24 3652298
T Also part-time at Technical University Eindhoven, the Neldieds.

support, like in [27]. Hence, in a sense, it combines the bitese three approaches [31,
4, 27].
The following aspects distinguish our formalisation.

e The logic involves both (linear) temporal operators (likenbeforth) and epistemic
ones (describing knowledge of participants).

e There is a clear distinction between possession (of mesyage knowledge (of
logical assertions).

e There is a syntactic distinction between “new” nonces (oretekeys) and “used”
nonces, with an associated requirement that “new” nonceg&dys) are globally
fresh.

This paper makes essential use of earlier related work [327429, 11] but differs in
several ways.

e The strand spaces of [31] form a mathematical model congigif “bundles” of
“strands” of incoming and outgoing messages for each ppatnt in a security pro-
tocol. Here we formalise essential parts of these strandespia the language of a
theorem prover and provide it with a logic.

e The virtue of BAN-style logical rules does not confine itsilftheir use in verifi-
cation via theorem proving: they also tell a protocol desigmow to get a protocol
right, functioning as “rules of thumb”. However, one of thesh problematic as-
pects of the so-called BAN logic [4] is its lack of semantittere we approach the
matter from a different angle: we do not start with a logict With a semantics and
formulate logical rules as valid consequences in the fasedimodel.

Hence, formally speaking we don’t have a logic as a colleatiqsyntactical) formu-
las with a derivation relation. Our logic is “shallow” andists only as provable im-
plications or lemmas about (interpreted) formulas as ads on the model. Such
a “logic” is most convenient for the verification of concrgtetocols in a theorem
prover.

e Within the inductive approach [27] a new model is constrddigr each protocol
that is verified, namely as inductively defined set of listeednts. Here instead we
have a semantical infrastructure of strands that is the $an@ach specific protocol.
This allows us to prove more general logical rules, for inseabout the sending or
receiving of public or secret encryptions.

e The aim of the present paper is to formulate a logic to reabontssecurity properties
on top of a strand space semantics. This aim is very similéngamne of [29] (see
also [30, Section 6.2]) and also of [11, 6, 7].

First, the reference [29] only contains a number of defingifor such a logic, with-
out any rules, applications, or formalisations. Thus, améd say, the present paper
achieves what is sketched in [29].

Second, the reference [11] defines a logic on what theyGmalll calculus: this is a
process-algebraic formulation of a variant of strand spatae resulting logic looks
quite similar to ours, although tle@mpositionality of logical reasoning is not in our

1In this paper a key for symmetric encryption is calledearet key. A key pair for asymmetric encryption
consists of gublic key and gprivate key.

logic, mainly in order to ease its formalisation in PVS. Casitionality is claimed
to be a feature of the logic in [11] and is utilized in [6, 7] twosv security properties
of compositions of protocols.

The use of a theorem prover in the formalisation of our mosiéi two reasons.

1. In general, a theorem prover is like a skeptical colleaghe patiently checks all
details. In the present setting this is useful because meoofg(esp. of the logical
rules in Section 5) are complex, highly combinatorial, ameblve many different
case distinctions. In such situations humans easily makt&kas.

2. The present formalisation arose via several iteratiomsyhich some subtle prop-
erties of the set of messages or of the semantical infrasneigvere changed. The
ability to re-run the proofs of existing results after suesie changes is very helpful
to quickly see the consequences, and to maintain overadistemcy. It will also be
of use for possible future extensions and adaptations aftbael.

The fact that we used the theorem prover PVS is not espec@éyant for the topic. We
could also have used the higher order logic of the theoremepsdsabelle or COQ. The
presentation in this paper abstracts from the concretagyitPVS and uses a more mathe-
matical/logical style. However, readers who wish to sealttails of the formalisation [20]
will have to read PVS code.

The idea of building a BAN-like logic on top of a strand spacedal is not really
new (see for instance [29]). The contribution of this paehdwever, that this idea has
been elaborated in full detail, been formalised, and putd®e successfully in concrete
examples. Doing so required a subtle balancing of the vanmssible requirements and
formulations—and a non-trivial amount of PVS work!

We analyse three protocols using our toolkit: the Needhahr¢gder(-Lowe), the bi-
lateral key exchange and the Otway-Rees protocols. Sgqniperties of Otway-Rees
are substantially harder to prove compared to the first twe, i the presence difckets,
that is, encrypted units received and forwarded withowgrimtetation. In this paper we first
introduce some simpler secrecy/authentication rules amadyse the first two protocols.
Those rules turn out to be of no use for Otway-Rees becausesé tickets. Therefore we
strengthen these rules in a later section.

Below we start in Section 2 with some fundamental resultsutiioe well-known
Needham-Schroeder protocol. Their sole role at this stageillustrate the style of prop-
erties that can be proved. The explanation of the underlthiegries starts in Section 3
with the theory of protocol messages, and proceeds withdsrand bundles in Section 4,
and with logical rules in Section 5. For the actual applmatof our theories we choose
to use different protocols than the already much-used NmmedBchroeder protocol. The
bilateral key exchange protocol (from [5, Section 6.6.6]analysed in Section 6. In Sec-
tion 7 the verification challenge in the Otway-Rees protasadentified and the logical
rules are strengthened accordingly.

2 Results about the Needham-Schroeder public key pro-
tocol
Here we consider the well-known Needham-Schroeder puldic frotocol from [24],

which was shown to be flawed in [21]. It can be described viaftfiewing three mes-
sage exchanges between Alice (writtendasvith public keyK 4) and Bob B with public

key Kg).
A— B : {na, A}k,
B— A : {np,nalk,
A— B {nB}KB

Here we writen 4 for a fresh (or new) nonce introduced By and similarlyn s for a fresh
nonce ofB.
What we can prove about this protocol is formulated as follows

A Sends ({ newnonce(n4),name(A) }x,) @i
A

A Sees ({ nonce(ng),nonce(na) }x,) Qi+ j
=

HenceForth (Secret(4, B)(nonce(n,))) @i + j

In ordinary words: if Alice sends the first protocol messagstage: and then sees the
second message at stage j, then her nonce 4 is a shared secret between her and Bob
from stage; + j onwards. Notice that Alice’s nonece, is labeled with ‘new’ in its first
use, and as a ‘plain’ nonce in subsequent use. Bob'’s nepde hew when Bob sends it,
but not anymore when Alice sees it.

An analogous result about Bob’s nongg is not provable because of Lowe’s at-
tack [21]. It can however be proved for the repaired “Needi&ehroeder-Lowe” protocol:

A— B : {na, A}k,
B— A : {TLB,TLA,B}KA
A—B : {nB}KB

Then we can prove for instance the following non-trivialuies

A Sends ({ newnonce(n), name(A) } k) @i

A /S\ees ({nonce(np),nonce(n4),name(B) }k,) @i+ j

A Qnows (B Sees ({nonce(np) }k,)) @i+ j+k

A mws (B Knows (HenceForth (Secret(A, B)(nonce(ng))))) @i+ j + k

It tells that if Alice first sends and sees the appropriatesagss and then knows that Bob
sees the final message, then Alice knows that Bob knows thatdnicen g is henceforth
a shared secret. The knowledge operator satigfie&nows (¢)) = ¢ so that the con-
clusion is pretty strong, and implies for instance the saco# the nonce. Note that Alice
needs to know the fact that the final message was seen by Boletthdhshe cannot di-
rectly observe herself—in order to draw conclusions abolt'8knowledge. This is quite
natural.

In the remainder of this paper we shall explain what formlikes A Sends (m) Q1
or B Knows () mean, and how they can be proved.

3 The theory of messages
The parties involved in the security protocols will be cdllgents. For the time being we

shall assume a (parameter) tyf& of agents, without any further structure. Only later on
we shall assume a spy among the agents.

Messages are the identities that are exchanged betweets agarprotocol. They may
be nonces, keys, names, sequence numdiersThe typeMSG of messages is defined
inductively, using the following BNF notation.

m == name(a) | number(i) | newnonce(n) | nonce(n) | newseckey(k) |
seckey(k) | pubkey(k) | privkey(k) | k{m } | {m } | hash(m) | (m,m)

The identifiera in name(a) refers to an agent, whereame(—) acts like a tag. The in
nonce(n) andnewnonce(n) belong to an unspecified domain of nonces. Similarly for the
different types of keyg;, with a tage.g. pubkey(—) making a keyk into a message. The
role of the ‘new’ will be explained later. We use the notatignm } for secret (symmetric)
encryption and{ m };, for public (asymmetric) encryption. There is an implicihfttion

~ that sends a public ke to its associated private oe The notatior{—, —) for tuples

is often used implicitly, for instance ik{ m, m2 }. Since messages are freely generated
tupling is not associative(m;, ma), ms) # (m1, {ma, m3)). Signed messages are at this
stage not supported.

The use of an inductively defined set of messages impliaitlplves certain idealisa-
tions. For instance, hashes are assumed to be perfect,siremnstructiorhash(m;) =
hash(ms) impliesm; = ms. Also, the explicit use of the datatype’s constructors edeb
type flaw attacks (seeg. [23, 19]).

A first basic function isi2p: MSG — MSG for “new-to-plain”. It erases ‘new’ recur-
sively, and is defined in the obvious way:

n2p(name(a)) = name(a) n2p(pubkey(k)) = pubkey(k)
n2p(number(i)) = number(i) n2p(privkey(k)) = privkey(k)
n2p(nonce(n)) = nonce(n) n2p(k{m?}) = k{n2p(m)}
n2p(newnonce(n)) = nonce(n) n2p({m}x) = {n2p(m) }x
n2p(seckey(k)) = seckey(k) n2p(hash(m)) = hash(n2p(m))
n2p(newseckey(k)) = seckey(k) n2p((mi,ms)) = (n2p(my),n2p(ms)).
It is clear thatn2p is idempotentj.e. satisfiem2p(n2p(m)) = n2p(m). A messagen is

called “plain” if it contains no ‘new’j.e. if n2p(m) = m.

3.1 Subterms and paths

We use the symbokK for the syntactic subterm relation, that can also be definddd-
tively. It does not care about encryptions or hashes, softitahstancenonce(n) =
hash(nonce(n)), but notseckey(k) < k{m }. Itis not hard to see that is a partial
order. Further results aren; < my impliesn2p(my) < n2p(msy), and: m; < ms with
mq plain implies thatn, is also plain; also: ifn; < n2p(ms) thenm) =< ms for some
termm/] with n2p(m}) = m;.

It is useful to extend the subterm relation to subgéts MSG of messagesin < U
means thatn < m’ for somem’ € U.

We shall often need a more informative subterm relationshiplving “paths”. A path
2in £: my ~>ms Or m; ~~>ms indicates how a termn; occurs as a subterm ims.
Such a path is a list of labels from the set

{se(k),pe(k),ha, w1, 72}

indicating how the subterm can be reached—wiIsexg:) stands for secret encryption with

k, etc. The path relation is defined inductively by the followingotalauses.

se(k k{m }

pe(k) RUUL £y),
m~~>m and my~Sremy = mw%hash(mg)

m1“j\rlf\z/‘> <m27 m3>

ol
mlw <m3, m2>

where() is the empty list, and prefixing an elemento a list/ is described by the dot
notationa - ¢.
Terms with such paths between them form a cate?gtwj{h the empty list as identity

map, and list-appengas composition: ifn; ng andms ng thenmlwéxa ms.
Composition works backwards because of the (arbitrangatiion that we have used for
paths.

The relation between paths and subterms is easy:

my < ms <= 3l.m;~>mo

Further, with paths we can define the following useful nagion

e Single-occurrence: m; =<1 mo is described asn; f}\>m2 andm; «9‘2\>m2 implies
{1 = (5. To be precise, what we define is readiymost single occurrence.

e Occurrence under public encryption with key k: m; =pe(x) m2 Mmeans that each path
£ with m; ~~>my must contairpe (k).
Similarly one defines occurrenee; =sq(;) m2 under secret encryption.
These relations are extended in the obvious way to subsegshaem =pe) U
andm =se(r) U, where the relation holds for any’ € U.

Additionally, for a setlC of keys,m; <x ms holds if each pathf with m;, L=y
containspe (k) or se(k) with k& € K.

3.2 Possessions

We shall refer to “possessions” as the cryptographicalbeasible parts of messages. For
instanceyn is in the possessions of a §étC MSG if k{m } € U andseckey(k) € U,
and also if{ m }, € U andprivkey(k) € U—where the functiorr maps a public key to
the corresponding private one.

Formally we define possessions as a closure operRidA(MSG) — P(MSG) via a
least fixed point (seeg. [8]). It is the analogue of Paulsoremalz [27]. ForU C MSG
we can describ®(U) C MSG as the smallest subset with:

k{m },seckey(k) €
U C P(U) and {m}r, privkey(kzg €
- €

A basic observation is that < P(U) if and only if m < U.

2|t happens more frequently that a partial order can be destiiba more refined way leading to morphisms
in a category, for instance in the propositions-as-typeswwhere implications become proofterms.

Example 3.1. The set of terms

P({< { seckey(ks) }ip, ks{ name(a), hash(nonce(n)) }), privkey(l?p)})

containsname(a) but notnonce(n).

The PVS formalisation [20] contains appropriate rewritéesuthat can prove such
inhabitation statements via automatic rewriting. The mwrules make several passes
through a list of terms, each time recording the keys thatazedlable and that are still
needed. The rewriting stops at the end of such a pass wheaithap overlap between
these sets of available and needed keys.

Possessions can be described in terms of paths:

mePU) <= 3Im' cU.I.m~>m' AhaglA
Vk.se(k) € £ = seckey(k) € P(U) A
Vk.pe(k) € ¢ = privkey(k) € P(U)

This allows us to prove the following two important propegtiabout occurrences under
public encryptions.

1. If m <pexy U andm € P(U) but notm € U, thenprivkey(k) € P(U).
2. It m =pey U andprivkey(k) & P(U), thenm <pe(x) P(U).

They form a crucial ingredient of the proof of the public etion rule in Subsection 5.2.

3.3 Communications

Agents use the possessions operator from the previousaidrs®o decompose incoming
messages. They use a “communications” operator to buildempmessages that they can
send out. This operator—comparable to #ymth of [27]—is again a closure operator
C: P(MSG) — P(MSG). ForU C MSG we haveC(U) C MSG as the smallest set
with:
UcC)
name(a), number(s), newnonce(n), newseckey(k) € C(U)
m,seckey(k) e C(U) = k{m} e C(U)
m, pubkey(k) € C(U) = {m}, € C(U)
m € C(U) = hash(m) € C(U)
m,m’ € C(U) = (m,m’) € C(U).

The most important point is that ‘new’ nonces and secret kéyays belong to the commu-
nications. In contrast, ‘plain’ nonces and secret keys telpng toC(U) if they already
belong toU. The restriction that ‘new’ nonces and secret keys must ayraew is im-
posed on a global level, that is, on bundles. This will be aixgd later in Section 4.2.

Obvious properties arer < U = m =< C(U), and similarly for=pe ;) and =se(x)
instead of<. A less trivial one is:

nonce(n)~~>m € C(U) —
Im’ € U.3y, ly.nonce(n) L=m/ Am/ Lsm Al =ty;0,.
It says: ifnonce(n) appears in a message c C(U) then we can find a message € U

which containionce(n) and is contained im:. The same result holds feeckey(k) in
place ofnonce(n).

4 Strands and bundles

4.1 Strands

In our formalisation we shall use “strands” as infinite setpes of possible messages. A
strand describes what happens to an individual agent,rimstef the incoming and outgoing
messages (like in [31]). Such a messagat an arbitrary stagg if any, is either incoming,
written as—m, or outgoing, written as-m. The type of “message” strands is thus defined
as function space:

Msr % N (1 + (Sgn x MSG))

wherel = {1} andSgn = {—, +}. An example of a strand is thyg-m, L, L, —m/,...)
where_L indicates that nothing is sent or received at that stage.

With such a strand of messages we associate a strand of plossedt contains at each
stage the cryptographically accessible parts of the ssandssages so far. The type of

“possession” strands is:

pstr & N-— P(MSG)

Such possession strands are obtained via a funbtiin: MStr — PStr defined by induc-
tion:

M2P(s)(0) = U, agiven set ofinitial possessions (terms)
M2P(s) (%) if s(i) =L
P(M2P(s)(i) U{m}) if s(i) = —m

M2P(s)(i + 1)

M2P(s)(i) U
{nonce(n) | newnonce(n) = m} U if s(i) = +m
{seckey(n) | newseckey(k) < m}

This requires some explanation: the possessions atstayare the same as aif nothing
happens in the message strande. if s(i) = L. But if there is an incoming messagen
ati, we extract everything we can from what we already have amih fr» together. For
instance, if the incoming message is a secret encryptios= k{m’} and we already
possesseckey(k), then we possess’ at stagei + 1. Finally, if there is an outgoing
message at stage the plain versions of any new nonces or secret keys in thgomg
messages are added. The reason for this should become afettie next subsection.
We note the following two properties.

e The generated possession strand is increasing, or monotone

i<j = M2P(s)(i) C M2P(s)(j).

A disadvantage of this property is that session keys wilbgiswoe around, and cannot
be “forgotten”.

e Call a subseX of messageBR-closed ifP(X) = X. Then:

M2P(s)(0) is P-closed = M2P(s)(4) is P-closed.

We need to cover two more properties for (message) stranddrafd is calledvell-
formed if it satisfies the following two conditions:

1. The initial possessions iNM2P(s)(0) are “primitive”, i.e. of the form name(a),
nonce(n), number(i), seckey(k), pubkey(k) or privkey(k). This means in par-
ticular thatM2P(s)(0) is P-closed—and hence all oth&t2P(s)(i) as well. This
condition excludes tickets or certificates from initial pessions—which, for the ex-
amples in this paper, is not a problem.

2. Each outgoing messagg) = +m satisfiesn € C(M2P(s)(4)). This means that it
can be built from the terms that are possessed at that stage.

Next, a strand may be determined by a protocol rule. Here vedl shly consider
elementary rules about message initiation and responseallde for parametrisation by
stages and sets of messages (possessions) in rules, dwethatd of rules is:

Rule £ NxP(MSG) — P(MSG + (MSG x MSG))
Like before,+ denotes disjoint union. We then say that a strarne MStr is rule-based
wrt. ruler € Rule if for eachs(i) = +m one has eithem € r(i, M2P(s)(¢)) ori > 0 and
s(i — 1) = —m/ with (m/,m) € r(i, M2P(s)(7)). In the first case the outgoing message
+m is an initiative according to rule, and in the second case it is a reaction determined
by .

4.2 Bundles

Bundles are collections of strands, parametrised by agiectading a spy. Recall we used
the typeAG for agents, in which we now assume a special elerappte AG. We shall
define two new types: bundles and bundle constraints, andedefihat it means that a
bundle satisfies such a constraint. First, the type of bsndle

Bun %' AG — Mstr

describes for each agent a message strand. A particulatebcaua thus be represented in a
table:

spy Ay Ay -+ € AG
stage 0| —(my,ma) | +{(m1, ma) L
1 +mq —mq —mq
2

This describes a scenario where the tuple messagem.) sent by agen; at staged
ends up with the spy. At the next stage the spy replays thepfrstn, of this tuple, and
both A; and A, receive it.

Bundles involve arbitrary sequences. We want them to yatestain restrictions, partly
determined by protocol rules. This is realised via the motibbundle constraint:

BunCst & AG — (P(MSG) x Rule).

Such a bundle constraint tells for each participant whairthi@l possessions and the rules
are. It thus specifies a protocol.

The next seven points describe what it means that an asphitardleb € Bun satisfies
a bundle constrairitc € BunCst. Intuitively it says that the bundleis a combined run for
all participants in the protocol specified by.

1. For each agent € AG, b(a) is a well-formed and rule-based strand with initial
possessions given by (be(a)) and rule byrs (be(a)).

2. Ateach stagg if there is activity, there must be a sender: if sob(e)(:) # L, then
there must be an’ € AG with b(a') (i) = +m.

3. There is at most one sender at each stag&(aif(i) = +m andb(a’)(i) = +m/,
thena = o’ (and hence alsor = m/).

4. Received messages are plain versions of what is séfi:){fi) = +m andb(a’) (i) =
—m/, thenm’ = n2p(m).

5. The spy receives all messagesb(if)(i) = +m anda # spy, thenb(spy)(i) =
—n2p(m).

6. New nonces are really fresh: ifa)(i) = +m andnewnonce(n) < m, then for
eacha’ € AG, not: nonce(n) < M2P(b(a))(3).

7. New secret keys are also fresh:b{ls)(i) = +m andnewseckey(k) < m, then
for eacha’ € AG, not: seckey(k) < M2P(b(a'))(i) and also not:k{m’} =<
M2P(b(a")) (i), for some termm’'.

The set of all bundles satisfying a particular constranatipcol form our model of the
protocol. In the remainder of this section we shall investiigsome further properties of
such models.

First of all, the standard Dolev-Yao attack model [10] isdrporated, like in strand
spaces. The rules for the spy may further refine these cépedil But in the basic set
up it is guaranteed only that the spy receives any outgoingsage. If no-one else does,
one may understand that the spy has deleted the messag&eBpytmay also replay the
message, or adapt it—subject to cryptographic constramteacribed by the possessions
operators from Subsection 3.2.

Next, we are finally in a position to explain the role of thevneersionsnewnonce(n)
andnewseckey(k) of nonces and secret keys. They can always be included imingtg
messages: € C(M2P(b(a))(3)), according to the definition of the communication opera-
tor C from Subsection 3.3. But the last two of the above conssagquire that such ‘new’
subterms in outgoing messages should be globally frests ihiow we realise a global
freshness idealisation. Further, by invoking tigp functions on the incoming messages
the ‘new’ subterms, if any, are turned into ‘plain’ ones, batt‘new’ really only occurs
in the first use. It is indeed not hard to see that all 842® (b(a))(i) of possessions only
contain plain terms.

An important consequence of the distinction between newpéaid nonces (and secret
keys) is that if we have a plain noncence(n) < m as subterm of an outgoing message
s(a)(i) = +m, thennonce(n) is already ina’s possession at—this follows from the last
statement in Subsection 3.3—so that it must be a re-useg ioé. so thatn must already
have been sent before ordfs initial possession.

To conclude, we list a number of technical properties thad far an arbitrary bundle
b € Bun satisfying a constrairitc € BunCst.

e All sets of possessiond2P(b(a))(i) areP-closed and only contain plain terms.

e New nonces can only be sent once: if there are two outgoingages(a,)(i1) =
+my andb(az)(i2) = +mso which both have the same new nomewnonce(n) <

10

my andnewnonce(n) < ms as subterm, them; = a, andi; = i5, and hence also
mip = mao.

Similarly for new secret keys.

e If we have a subterrm < m; of an incoming messadga;)(i;) = —my, then there
is an agent, and earlier stage, < i; with outgoing messagi(as)(iz) = +mo
containing a “source” subterm’ < my wherem’ € C(M2P(b(az))(i2)) satisfies
n2p(m’) = m.

e More specifically, if we have a secret encryptibfm } < m of an incoming mes-
sageb(ay)(i1) = —my, then there is an agent and earlier stagé, < i, where the
secret keyseckey(k) € M2P(b(a2))(i2) is possessed and where there is an outgo-
ing messagé(aq)(iz) = +mz with a secret encryptiok{ m’ } < m as subterm,
for whichm/ € C(M2P(b(a2))(i2)) satisfiemn2p(m’) = m.

There is an analogous result for public encryptions.

Via such results we can reason backwards about what happenadles, much like in the
well-foundedness arguments used in [31].

4.3 Comparison with strand spaces

The notions of strand and bundle as defined above resembieotitns with the same
names in [31]. The basic idea is: behaviour of each agensisritted as atrand; a collec-
tion of strands communicating with each other forduadle. A bundle is a whole system
where communication takes place. However there are alse shifferences between the
original notions and ours. We shall explain these diffeemnitere.

In general in a system where communication takes place dicgpto a cryptographic
protocol, there are two different kinds of constraints om plarticipants’ behaviour, namely
a message rule and acryptographic ability. In our case every agent that wants to send
a message needs to be able to construct the messggday possessing certain keys or
nonces. This is a crucial part of what we call well-formedneshis restriction only ap-
plies explicitly to the spy in the original strand space modéere, strands belonging to
the spy must be instantiations of the several kinds of teteptaeach corresponding to a
cryptographic operation which the spy can conduct, sucheasygtion, encryption, pro-
viding a possessed kegtc. These templates are independent of specific protocols. The
strands of legitimate (non-spy) agents must be instaatiatof message rules. These rules
must incorporate our well-formedness restrictions. Thest@ints are thus basically the
same in both models, but organised in a slightly differenbhn@s This is summarised in
the following table.

in original strand space semanticsn our semantics
message rule restricts only legitimate agents everybody
cryptographic ability restricts| only spy everybody

Our formalism is a bit more complicated, because we haveep kmck of each agents
possessions at each stage. However, the formalism is mdoerarand is thus more suit-
able for expressing various rules, and for proving theirrgimess. Additionally, we can
use our formalism as basis for other purposes than analfyaigtleentication protocols. For
example, in the analysis of anonymity protocols (ege[13]) we often need to prove that a
certain agent does not possess some given message. It isssiilp in the original strand
space formalism, in which we cannot express legitimatdgpant’'s possessions.

11

spy B
{N17 A}Kspy

Jl (0§ {N1, Ak,

2

{N1, N2}k,

{N2} Kgpy
_— =

e——— o <—

o <~—e

{N2}kp

_ >

(V1. A D0
o .
-1
Possessed key Koy \U
o .
where(s) i b
L4 °
Possessed key Kg \U
L] L]

Ve

[] o

Figure 1: Lowe’s attack in the formalism of [31]

Time | A’s MStr | B's MStr | spy's MStr
0 +{newnonce(N1), A } g, il —{ N1, A}kgy
1 1 —{ N1, A}k, +{ N1, A}k,
2 —{ N1, N2}k, +{ N1,newnonce(N2) }x, | —{ N1, N2}k,
3 +{ N2 }Kspy L —{ Nz }Kspy
4 1 —{N2}kp H{ N2 }kp

Figure 2: Lowe’s attack in our formalism

As illustration Lowe’s attack [21] on the Needham-Schragaetocol (see Section 2)
is presented in the original strand space formalism in FEdurand in our formalism in
Figure 2. In the latter we have writtel; for nonce(XV;) in order to save space. Also
we leave the possession strands implicit. Observe thatgar€il, strands for legitimate
agents embody message rules while those for the spy embggiographic operations.
These constraints are implicitly imposed on every agentgnre 2 as the well-formedness
requirement.

The asynchronous nature of the network—messages can aetayged or in a different
order—is obvious in the original strand space formalism siitcdoes not have a global
timing (or stages). In our formalism it is modelled using 8py: for example a delayed
message is first received only by the spy and later sent bypthtoghe intended recipient.

5 Logical formulas and rules for protocols
In this section we put a layer of abstraction on the modefatintroduced in the previous

section by defining appropriate logical formulas that cepessential aspects of the model.
As we emphasised in the beginning our “logic” is interpred@d consists of a number of

12

definitions and operations for formulas, together with aahlée collection of implications
(rules) between them. We refrain at this stage from fornmgga proper syntactic logic
with a derivation relation because: (1) we think that the afetules is not sufficiently
stable yet, and that further applications of this framewuwiky lead to refinements and/or
additions; and (2) for the verification work in a theorem @it is unnecessary—even
inconvenient—to have a purely syntactic logic.

The formulas that we shall consider below are atomic forsofethe form:

A Possesses (m) A Sends(m) A Says(m) A Receives (m)
Secret(A)(m) Secret(A, B)(m)

and compound formulas of the form:
¢ @1 A2 Vo e X.p HenceForth () A Knows ()

wheregp, p; are formulas.

These formulas, in interpreted form, are special predgcateour model. They take a
bundle constraintc € BunCst, a bundleb € Bun satisfyingbe, and a number (or stage)
1 € N to true or false. In order to describe the type of formulas meoiduce the notation
[bc] for the set of bundles that satisfy the bundle constrainThen:

Form & 11 ([bc] x N — bool)
beceBunCst

Here]] denotes a dependent product. We shall write Greek legteys . . . for formulas.
The usual logical operations are extended to such formudegointwise definitions, as in:

(<p1 A @2)(bc, b, i) def w1(be, b, 1) A pa(be, b, i)
(Vz € X. () (be, b, 1) L vrex. o(x)(be, b, 1).

The (linear) temporal operatbtenceForth (—)—sometimes written as—is defined in
the obvious way, namely as:

(HenceForth () (be,b,i) = Vj > i. o(be,b, j).

The epistemic “knowledge” operator will be described safiy in Subsection 5.4. Very
often the bundle (constraint) argumebtsandd remain the same and there is only variation
in the stage argumeiit Therefore it makes sense to ledveandb implicit, and writep@

for ¢(be, b, 7). The temporal operator then says thinceForth (cp) Qi is p@j for all

j > i. This@-notation was already used informally in Section 2.

5.1 Basic formulas and rules

Next we introduce some of the basic formulas about possessading, seeingic. Through-
out we shall use variable$ € AG andm € MSG for agents and messages.

ef

A Possesses (m) (bc, b,) e M2P(b(A))(i)

This says that agent possesses messagéf m can be extracted frord’s messages up-to
1. Notice that we are careful to talk about “possession” artd'kmowledge” of messages,
because “knowledge” is reserved for use with the episteqésator from Subsection 5.4.

13

As we noted in Section 412P is monotone, so the implicatioh Possesses (m) =
HenceForth (A Possesses (m)) holds. Hence the following rule is sound.

A Possesses (m)

HenceForth (A Possesses (m))

SinceM2P yields P-closed subsets of terms we also have the following founckosules.

A Possesses (k{m}) A Possesses (seckey(k))
A Possesses (m)
A Possesses ({m};) A Possesses (privkey(k))
A Possesses (m)
A Possesses ((m1,ms)) A Possesses ((m1,ms))

A Possesses (m) A Possesses (m)

Our next formulas are about sending.

A'Sends (m) (be,b,i) £ b(A)(@) = +m
ASays (m) (be,b,i) £ 3m’ € MSG.m < m’ A A Sends (/) (be, b, i)

A m € C(M2P(b(A))(3))

Agent A thus “says” a message if m is a subterm of an outgoing message andself
can be constructed. Here are some obvious rules.

A Sends (m) A Says (newnonce(n)) @1
A Says (m) A Possess (nonce(n)) @i + 1
A Says (newnonce(n)) @i B Says (newnonce(n)) @ j
A=B Ai=j

There are analogous rules foewseckey(k) in place ofnewnonce(n).
Now we turn to receiving messages.

A Receives (m) (bc,b, i) o

A Sees (m) (be, b, 1)

b(A)(i) = —m

i >0 A A Possesses (m)(bc,b,i) A

—(A Possesses (m) (be, b,i — 1)) A

3j,m’.j < i A A Receives (m/)(bc,b,j) Am < m/

def

The notion is “seeing” is a bit complicated: sees a message at stage if m is a subterm
of an earlier incoming message and is only now. @t stage and not earlier) accessible.
The last line of its definition rules out, for example, thais a nonce freshly generated by
Aati— 1. Then:

A Sees (m) A Sees (k{m}) A Possesses (seckey(k))
A Possesses (m) A Possesses (m)
ASees (k{m}) @i
3B,m/,j <i.n2p(m’) = m A B Says (m') @ j A B Possess (seckey(k)) @ j

14

There are similar rules for public encryptions.
Finally we have secrecy formulas, in twofold, namely in gltbeform (for two agents)
and un-shared form (for a single agent). We use overloadidgyave them the same name.

Secret(A)(m) (be, b, 1)

% A Possesses (m) (be, b, i) A

VX,j < i.X Possesses (m)(bc,b,j) = X = A
Secret(A4, B)(m) (be, b,)
%" A Possesses (m)(be,b,i) A B Possesses (m) (b, b, i) A
VX,j <i.X Possesses (m)(bc,b,j) = X =AV X =B

The definition can easily be extended to multiple (more tay) igents. Associated rules
appear in Subsection 5.3.

5.2 Rules for authentication

We present some logical rules by which we can draw autheitit@onclusions: from
what an agentd observes A can be sure that a certain action has been actually done by
a specific agenB. Even in the presence of the Dolev-Yao adversary that csnédbthe
traffic in the network, we can establish authentication \ilig help of cryptography.

The rules in this section—together with the strengthened tater in Section 7—are to
our semantics what thauthentication tests [16, 9] are to the strand space formalism [31].
Authentication properties often involve the most compleagfs among various security
goals. Since the strand space formalism is independenteaifgpprotocols, it is possible
to establish generic “lemmas” about strand spaces whialswitable instantiations, help us
to prove authentication properties of various protocolse proofs of these generic lemmas
are quite complicated, as one observes in [16, 9]. Howebhertdsk of proving these
lemmas is like giving complicated authentication proofgemor (almost) all protocols.
That is the virtue of having “authentication tests” for thteaed space formalism. The
logical rules we shall introduce are useful in the very saeress.

The typical case we wish to consider is when an agefitst sends out a new nonce
under encryption with another ageBts public key, and then sees its own nonce back
in unencrypted form. This forms a so-called outgoing autilcation test in [16]. The
desired conclusion is then th&t must have seen the nonce, together with whatever was
also included in the encryption, because oBlgould have decrypted the relevant message.
Making all this precise turns out to be quite subtle.

The rule that we have is too large to fit on one line, so that veeidlee it with labels as
follows.

“Asendsaj” “Aseesai > ;" “Adoesn'tsay aftef” *“ B’s privkey secret untit”

Jj.j<ji <iNn“Bseesaf;” ATdj,C. 51 < jos <iAN“C # Asends”
The meaning of the assumptions in this rule will be explaifirest.

e “A sends atj” means thatA sends a public-encrypted new nonce as a subterm.
Formally: A Sends (m) @ j with { newnonce(n),m; }x =< m, together with the
requirement that the nonce occurs only once in the outgoiessagenonce(n) <;
n2p(m).

e “Aseesat > j"is used as abbreviation ford Sees (m;) @i wherei > j and
not: nonce(n) <pe(x) m2. The latter says that the nonaéhas inm; an occurrence

15

which is outside an encryption by; it requires a subtle addition to exclude a trivial
cases, namely whens is the tuple(nonce(n), n2p(m;)).

e “A doesn't say aftej” means not:A Says (nonce(n)) @ j’, for anyj’ with j <
7’ < i. Indeed, the nonce at stake should not be used againAyso that when it
re-appears it must indeed have been decrypted.

e “B’s privkey secret untii” expresses the crucial assumption tiiats the only one
that possesses the private key associatedhyitle. Secret(B)(privkey(k)) @ for
allé' <.

The rule’s conclusions then have the following meaning.

e “B sees atj;” meansB Sees ((nonce(n),n2p(m1))) @ j; and expresses that
must have seen the encrypted tuple—because it is the onlyt #yeincould have
decrypted the tuple.

o “C # Asends”finally mean€’ # A A C Sends (mg) @ j, for some message;
with n2p(m3) = mo. One might have expected thBtmust also have been the one
that sent the incoming message of A, but that is not guaranteed? could have
passed the nonaeeon to some other agent who uses it for the message seenhy

Proving the soundness of this rule idaar de force, and involves many case distinc-
tions. The main steps are as follows.

1. The incoming termn, must come from some agent, sa@y We know that”' is not
A, becaused does not “say™.

2. The noncer must occur unencrypted 0i's possessions, because of the last property
mentioned in Subsection 3.3.

3. Now we use well-foundedness to find the first stage jsawhere an agent, say/,
different from A possesses in unencrypted form.

4. By a non-trivial induction proof we establish that upj{dhe nonce: can only occur
encrypted undek.

5. BecauseB is the only agent with the decryption key, we must ha\ve= B, using
property 1. mentioned at the end of Subsection 3.2.

There is a similar rule in whichonce(n) andnewnonce(n) are replaced bgeckey(k)
andnewseckey(k): a freshly generated secret key can play the role of a nonaeasiom
value. But there also is a more useful variation, in whichstheret keyk does not re-appear
as subterm of the incoming message but as (secret) enanyqioin a cipher texk{ m }.
We shall see such an example in Section 6.

5.3 Rules for secrecy

Among the many possible rules for secrecy we shall consliecase where two agents
Ay, As only exchange a nonce under each other’s public keyk, respectively. In labeled
form this rule looks as follows.

“A; sends new atj <i" “ Aj, A sendn only encrypted” ‘“A;, A, key secrecy”
B Possess (nonce(n)) @i => B = A; V B = A,

)

The conclusion speaks for itself, so we only explain theglagsumptions.

16

e “A; sends new at;j < i” meansA; Says (newnonce(n)) @ j for j <.

e “Ay, Ay sendn only encrypted” expresses that fgrwith ; < j/ < 4 the nonce
n is sent byA; at 5/ only underA,’s public key k-, and vice-versa. Formally, if
Ay Sends (m) @ j” thennonce(n) =pe(x,) m, and similarly forA,.

e “Ay, Ay key secrecy” expresses that ageAtsand A, both keep their own private
keys secretSecret(A,)(privkey(k,)) @i’ for p € {1, 2} andi’ <.

There are similar secrecy rules possible where a nonce cetdezy is only sent under
secret encryptions, or even under both public and secreygtians.

5.4 Knowledge of formulas

In order to define knowledge we keep our bundle constitaire BunCst fixed, but con-
sider different bundles that satisfy the constraint. Rettalt we write[bc| for the set of

such bundles. We define a collection of equivalence relafione [be] x [bc], for A € AG
andi € N as follows.
bRy E W< b(A)(G) = b (A)()),

This means that up-to stagehe strands ofd are the same ih andd’. We then define,
much like in [29],

AKnows () (be,b,i) E' Wb € [b].b =¥ = p(be, Vi)
The intuition behind this definition is the following. At gfa: in bundleb an agent4 only
has information about its own incoming and outgoing messagfar,i.e. aboutb(A)(j)
for 5 < i. If ¢ holds in all possible scenaridé that agree withh on these incoming
and outgoing messages df theny can in fact only depend on these messages (because
everything else may differ in the various scenarios), andideas all the information to
know ¢.

Typically in verifications, if we can prove an implicatian A --- A ¢, = 1 and the
assumptions; are of the the fornd Sends (—), A Sees (—) or A Knows (—), only
involving agentA, then one can prove; A --- A ¢, = A Knows (@b) since the resuly
only depends orl’s perspective. The next section contains several such gheam

Because the relations are equivalence relations we have the familiar associg®&d “
modal rules (see.g. [14, 2]), including for instance:

A Knows () A Knows () A Knows (¢) A Knows ()
© A Knows (A Knows ()) A Knows (¢ A 1)

where the double line means that the rule may be used in bebtidins.

6 The bilateral key exchange example

In this section we apply the theories from the previous sadib a standard protocol, the
so-called bilateral key exchange (BKE), described insfB.6.6]. Our aim is to establish

17

an authentication result in the form of a shared secret key Kt below). The protocol
involves the following steps.

A— B Ay{nA7A}KB
B— A : {K,hash(na),np,B}k,)
A— B : K{hash(ng)}

The protocol is an interesting verification challenge beeaaf 1) the combination of public
and secret encryption (with a fresh session k&y and 2) the hashed versions of nonces
are used as proof of possession of the original noAces.

We shall first consider the representation of this protonaburr framework, and then
discuss some interesting statements about the protombi(aketch of their proofs).

6.1 Representation of the BKE protocol

We build a concrete model of bundles that incorporates th& Biotocol. As agents
we take the set/typAG = {A, B, S} for Alice, Bob and the Spy, with corresponding
public keysK 4, K, K¢, that are (pairwise) different. We assume three nonce iomst
Na, Np, Ng, so that at each stageve have a fresh nonagewnonce(N 4(4)) for Alice
(and similarly for Bob and the Spy). We assume that:

i#j= Na(i) # Na(j) Na() #Ns(j) et

Further we need a functioBK(—) so that Bob can at each stage take a different session
key SK(i).
The initial possessions of our three agents are given adtlosving sets of messages.

Py = {pubkey(Ka),privkey(K4), pubkey(Kg), pubkey(Ks) }
Pp = {pubkey(Ka.),pubkey(Kg), privkey(Kp), pubkey(Ks) }
Ps = {pubkey(K), pubkey(Kp), pubkey(Ks), privkey(Ks) }.

Hence at stage 0 they possess their own public and privatakdyeach others public keys.

Recall that a rule is a functioN x P(MSG) — P(MSG + (MSG x MSG)) that
restricts the sending of messages. For the spy we imposestrictiens via (message)
rules, so that its rule is:

rs(i,U) = {z € MSG+ (MSG x MSG) | true}.

Hence rule-basedness does not restrict the spy’s strartd.théd, however, well-formedness
does restrict: the spy can send any message, as long as ttas(myryptographically) con-
struct the message.

The rules for Alice and Bob correspond to the protocol ruBsiom the beginning of this
section. Alice has both an initiator rule (for spontanegps&indingA4, { n4, A } k) and a
responder rule (for the final messafig hash(np) }). We formalise this as follows.

ra(i,U)
A: {{name(A), { newnonce(N4(i)),name(A4) }x,) | X € AG, X # A}
U
{ ({seckey(K),hash(nonce(N4(j))),nonce(n),name(X) }x,,
K{hash(nonce(n)) })
|j<inX#AAnonce(n) ¢ U Aseckey(K) ¢ U }.

3

3Most probably taking hash values is not necessary to estabticurity properties. However our aim here is
to prove that the original protocol in the literature [5]gewmif it involves hashes, provides the desired properties.

18

This rule thus says thal may at any stageé send the BKE protocol’s first message
(name(A), { newnonce(N4(i)),name(A) } k), in which the newly generated nonce
N4(2) is encrypted with another aget’s public key. Notice that the protocol descrip-
tion (2) prescribes that the first message should be séBt but this is misleading sincé
does not know for sure thd can be trusted,e. is not the spy. Hence we should leave this
open by using a variabl& . This enables the spy to participate as player in the prbtdco
A’s strand multiple runs of the protocol can be initiated; &tle of the runs eitheB or the
spy can be a responder.

The second part of the rule (after the unighdescribes the reaction: i gets a mes-
sage of the form{ seckey(K'), hash(nonce(N4(j))),nonce(n),name(X) }x, where
j <1, X # Aand bothnonce(n) andseckey(K') are not already iM’s possession, then
A replies by sending out the messagé hash(nonce(n)) } that is built from the incom-
ing nonce and key. The condition that neitihnence(n) nor seckey(K) is possessed yet
is included to prevent replays, and is actually used in tloefof security properties. Itis
needed because our formalisation does not have an expigitnof run. A consequence
is that a rule can be applied repeatedly resulting in diffecentinuations. In the BKE pro-
tocol for instance, having sent the first message with nancalice may reply to different
pairs K, np for this same nonce.

We turn to Bob’s rule. It only involves a reaction:

(i, U)
B: {({name(X), { nonce(n),name(X) } k),
{ newseckey(SK(i)), hash(nonce(n)), newnonce(Ng(i)),name(B) } ky)
| X # B Anonce(n) €U }.

Hence if B receives a message of the fofmame(X), { nonce(n), name(X) } k) where
nonce(n) is not already possessed aid# B, thenB responds by picking both a fresh
nonceNg(i) and a session kegK(4), and including them in the encrypted response mes-
sage{ newseckey(SK(%)), hash(nonce(n)), newnonce(Ng(i)),name(B) } k.., using
the public key of the agent” that occurs in the incoming message.

We see that the representation of the BKE protocol basifallgws the informal de-
scription (2), but requires that certain implicit assurops (about the targets of messages
or the freshness of incoming nonces and keys) are made ixplic

It must be noted that in the above representation Alice advpdgys a role of an initiator
and Bob is always a responder. This design choice is madestoea PVS formalization
work, although it must be straightforward to allow prindpéo play multiple roles.

Formally, the above initial possessions and rules form adlsunonstraintBKE &
BunCst, like in Subsection 4.2. The properties that we shall esthtelow hold for
an arbitrary bundlé € Bun satisfying the constrairBKE.

6.2 BKE properties

Once the protocol is represented appropriately, the vatifio can start. Below we shall
sketch some of the secrecy properties that have been proven.
First of all we establish that and B keep their private keys secret: for each

Secret(A)(privkey(K4)) @i and Secret(B)(privkey(Kp)) Qi

Here we use a secrecy rule that says: if a private key is nevgiosit then it remains secret.

19

The rule is part of the PVS specification. Next we have

A Sends ((name(A), { newnonce(N4(i)),name(A) }x,)) @i
A

X Possess (nonce(N4(i))) @;j v X Possess (hash(nonce(Na(i)))) @ j
—

X=AvX=8HB

This follows from the secrecy rules in Subsection 5.3. Theresimilar implication forB
with his session key:

B Sends ({ newseckey(SK(i)), hash(nonce(n)), newnonce(Np (i),
name(B) }k,) @i
A
X Possess (seckey(SK(i))) @ j
=
X=AvX=8B

We are not so interested iB's newnonceN (i) because it plays a minor role in the pro-
tocol. In fact, it could be replaced by a constant.

After these preparatory results, we first concentrated@nperspective. Assume for a
moment both:

A Sends ((name(A), { newnonce(n4),name(A) }x,)) @i
A
A Sees ({ seckey(K), hash(nonce(n)),nonce(np),name(B) }k,) Qi + j

Then we can prove the following results.
1. nga = Ny(i) andj > 0.
2. HenceForth (Secret(A, B)(nonce(n,))) @i + j.

3. A Knows (—) of the previous result,e.
A Knows (HenceForth (Secret(4, B)(nonce(n,)))) @i + j.

4. 3j'.j' < j A B Sends ({ newseckey(K), hash(nonce(n)), newnonce(ng),
name(B) }x,) @i+ ;.

5. A Knows (—) of the previous result.
6. HenceForth (Secret(A, B)(seckey(K))) @i + j.
7. A Knows (—) of the previous result.
Next we turn to Bob’s perspective, and assume the followivayformulas.

B Sends ({ newseckey(K), hash(nonce(n)), newnonce(np),name(B) } k) @i
A\
B Sees (K{hash(np)}) @i+ j

Now we can prove:

1. np = Np(i) andk = SK(3) andj > 0.

20

HenceForth (Secret(A, B)(seckey(K))) @i + j.
B Knows (—) of the previous result.
3j'.5' < j A ASends (K{hash(ng)}) @i+ j’.

B Knows (—) of the previous result.

o o A~ W DN

35'.5' < j A A Sees ({ seckey(K), hash(nonce(n)), nonce(nz),
name(B) }k,) @i+ 5.

7. B Knows (—) of the previous result.

The two strongest results we have arise by combining assonsptor A and B, in
terms of knowledge about what the other agent sends or sees.

A Sends ((name(A), { newnonce(n),name(A) }x,,)) @i

A gees ({ seckey(K), hash(nonce(n)), nonce(npz),name(B) } k,) @i + j
A /Iznows (B Sees (K{hash(ng)})) @i+ j+k

A z)ws (B Knows (HenceForth (Secret(A, B)(seckey(K))))) @i+ j + k

In this case it is thus assumed thiaknows thatB sees the final message. In a dual sense,
if B knows thatA sent the initial message, we can also obtain a similarlyngtisecrecy
result.

B Knows (A Sends ((name(A), { newnonce(n4), name(A) }k,))) @i
A\

B Sends ({ newseckey(K), hash(nonce(n)), newnonce(nz),name(B) } i,) Qi + j
A\

B Sees (K{hash(ng)}) Qi+ j+k
=

B Knows (A Knows (HenceForth (Secret(A, B)(seckey(K))))) @i+ j + k

These two conclusions are beginning to look like common kadge (see.g. [12]). They
provide a basis for authentication.

7 Logic strengthened for the Otway-Rees

The Otway-Rees key distribution protocol [25] is anothelskaown target in verification
work. There is a substantial gap between Otway-Rees andNesgdham-Schroeder or
BKE, with respect to verification: this is due to the preseottckets. We cope with this
new challenge by strengthening the logic that we have ajradarbduced. We will see that
this improvement is comparable to the introductiomariest ideals[15] in the strand space
formalism.

We apply the stronger logical rules to the Otway-Rees paittiverify its key estab-
lishment properties. Additionally, we will observe thataitack presented in [31]—which
can happen in the strand space formalism—is impossible ifioooralism. This is due to
a difference in nonce management between the two formalisroiting that we keep
track of agents’ possessions.

21

7.1 Verification challenge in the Otway-Rees protocol

The goal of the Otway-Rees protocol is key-distributionirgtiator A and a respondeB
aim to establish a session kéy, with the help of a trusted serveét. It is assumed that
each ofA and B has already established a shared long-term secrekkgyand K g s with
S. The protocol is informally described as follows.

A— B : n,A B,Kas{na,n, A B}

B—S : n,A B, Kys{na,n A B} Kgs{ng,n, A, B} @)
S— B : n,Kas{na, K}, Kps{ng, K}

B— A : TL,KAs{TLA7K5}

Heren andn, are nonces freshly generated Hy np is a fresh nonce byB, and K
is a fresh session key generated $y Recall that the notatio { m } is for symmetric
encryption.

A major difference from the Needham-Schroeder or BKE proké the existence of
tickets: a ticket is a subterm of a received message which an agestadéook inside and
just passes on to another agent. In the above run of Otwag-fReee are two tickets for
B, namelyK ss{na,n, A, B} andK 45{n4, K, }. Roughly speaking, the respond@r
can send a message containing any tickafter B receives the message A, B,t. Itis
not supposed (or possible either) Brto check whether a ticketis of the expected form
KAS{nA,n,A,B}.

Because of tickets, validity of assumptions of most ruleSéttion 5 are now non-
trivial. Hence those rules—although they are still sound—edrkttle use. For example
consider the following secrecy rule (1) in Section 5.3, dddjo the current situation.

“Bsends new g atj < i, encrypted byK ps” “ B, S sendng only encrypted byK ps”
“Kps is kept secret by, S”

C Possess (nonce(ng)) @i = C=BvVC=5

®)
We cannot use this rule to derive secrecy of nongein the above run (4). Sinc8 is
supposed to send anything he receives as a ticket, validrfiebse second assumption is
now guestioned.
In this section we shall introduce stronger rules which haeaker premises. These
weakened premises are trivially valid even for protocol®ining tickets. For example, an
alternative for the above secrecy rule is as follows.

“B sends new:p atj < i, encrypted byK'zs” “ B, S maintain encryption of ng by Kps”
“Kps is kept secret byB, S”

C Possess (nonce(np)) @i = C=BvVC=5

(6)

The new second assumptio;'S maintain encryption ofig by Kgs” means: if B or S
ever sends a message in whicp appears without encryption, then the agent must have
receivedn s in a non-encrypted form. This condition is verified easilytlhie Otway-Rees
protocol: if ng appears not encrypted in a message seris hen that must be in a ticket
which is received byB beforehand. Hence we can conclude secrecy of the negce

This challenge caused by tickets is implicit in [31]. Our wafycoping with the chal-
lenge can be compared to the one taken there, using the naftibonest ideals. The
fundamental Theorem 6.11 of [31] about honest ideals eisdigrgroves that the three as-
sumptions of our stronger rule (6) yield the second assumnpf our weaker rule (5). In
this sense, our strengthening of logical rules in this saatiorresponds to the introduction
of honest ideals like in [15] or [31, Section 6].

22

7.2 New formulas

Due to the presence of tickets, we now have to take a clos&rdban agentd’s action
of sending: isA just passing a message it has received as a ticket, or is siedlpop-
erating on a messageg. by decrypting an encryption therein? For this distinctioa w
introduce two new basic formul&riginatorOf andDecryptSends which are essentially
refinements ofends.

The formulaA OriginatorOf m roughly says thatn is a part of the sent message but
not a part of any messages received before. Formally,

A OriginatorOf (m) (be, b, 1)

' I, € MSG. (A Sends (m1) @i A m = n2p(my))

A VjeN.Vmy € MSG. (j <i A AReceives (mz) @j = m £ my)

For example, in the Otway-Rees protod®|OriginatorOf K s{na, K, } is false since
if B sends a message of that form it must be a ticket receivedéefe can prove the
following lemma (or logical rule):

(ORrRI1SAYS) OriginatorOf implies Says.
A OriginatorOf m @+
= Im/ € MSG. (A Says (m/) @i A m=n2p(m’))

The label (QR1SAYS) will be used later in Appendix B.

For an arbitrary set of keys, the intuitive meaning of a formuDecryptSends (m,)
is that A decrypts an encryption (by a key from a &&tof m and sendsn. A typical ex-
ample ofm is a nonce. Formally,

A DecryptSends (m, K) (be, b, 1)

Jmy € MSG. (A Sends (my) @i A m =< n2p(m1) A m Zx n2p(my))
A Vj€eN.Vmy € MSG. (j <i A AReceives (mg) @j = m =x my)

def

Recall thatm <x m’ means: every occurrence of in m’ is under encryption by some
key in K. Hencem Ax m’ means that there is at least one occurrence @f m’ without
encryption by any key fronkC. Therefore the conditiom < n2p(m;) above is in fact
redundant (but still there for the ease of understanding).

7.3 Strengthened logical rules

We shall present two strengthened logical rules which ptagial roles in the verification
of Otway-Rees. Their soundness against our semanticsvsgin PVS. Other rules which
are less significant are presented in Appendix A.

Ouir first rule is for authentication and calleetoming authentication test: the name is
chosen after the corresponding lemma [16] for the strandesfiamalism.

(INCTEST) Incoming authentication test is a set of agents.
1. Challengé A Sends m.@i. A newnonce(n) =< m,
A [2.Response A Seesm,@i.+i, A nonce(n) = K{mi}=m,
A [3. K{m } does not originate from A herself]
VY € [ic, ic +iw]. —(A OriginatorOf K{m; } @ 5)

A 4. K is secretly shardd Vj € N. Secret(A)(K) @
= |Authentication result

~ 3Bec A\{A}. 3j € (ic, i +iy,). B OriginatorOf K{m; } @

23

The basic idea is a common challenge-response style aigdgon. The random value
nonce(n) is not encrypted in the form ok { m, } in the (outgoing) challenge, because of
the assumption 3: in particular,

—(A OriginatorOf K{m, } Qi,)

Note thathonce(n) < m4 by the assumption 2. However at stageA receives an (incom-
ing) response which contaif§{ m, }. This so-calledthallenge component K'{ m; } must
originate from someone who possesses theKepence someone id by the assumption
4. By the assumption 3 it must not beherself. Moreover, the creation &f { m, } must
be after the creation afonce(n). This is anincoming test because the incoming response
involves particular encryption.

Itis straightforward to get a variation of this rule in whiohnce(n) andnewnonce(n)
are replaced bgeckey(K) andnewseckey(K). Less straightforward is a rule faut-
going authentication test [16]—where a nonce is encrypted in thgadng challenge but
not in the incoming response. We have the rule in the PVS Spatdn [20] but it is not
used for the verification of Otway-Rees.

Compared to the similar authentication rule earlier in B&ch.2, the third assumption
is weakened from A does not say<'{ m; }"—which is not trivially valid in Otway-Rees
due to tickets—to K { m4 } does nooriginate from A”.

Our second strengthened rule is a secrecy rule corresppridithe above (6). For
future reference we present a rule for secrecy of a freshiggeed key: the corresponding
rule for secrecy of a nonce is similar.

(SKSEc) Secrecy of session keys encrypted with uncompromised keys

A is a set of agents arid is a set of keys.
[1. Long-term keys are kept secfet

Vj<i.VK, € K.VA€ A. (APossess (K;)@Qj = AcA)
A [2. Legitimate parties keep encryption$

Vj € lio, i]. VA € A. ~(A DecryptSends (seckey(K,), K)@)
[3. Generation of session key

io<i A Ag € A N Ap Says (newseckey(K)) @i

—> [Secrecyresult VA e A. (APossess(K,)@Qi = AcA)

As explained in Section 7.1, assumption 2 is weaker than dneesgponding condition
“agents inA send K, only encrypted by a key i'C". This is crucial for the rule to be
usable for Otway-Rees.

A

7.4 Verification of the Otway-Rees protocol

Now we shall see that the refined rules are appropriatelytaddp the Otway-Rees proto-
col and to other protocols that make similar use of ticketsc&the Otway-Rees protocol
is aimed at key-distribution, we want to establish the f@lly security properties.

e Secrecy of the session key K: K is known only by the legitimate agents B, and
by the servesS.

e Freshness of K: K, was generated recently kfy, say “after B sent the message
...". (Algorithmic) cryptology says that the more data a key &d to encrypt, the
more likely the key gets compromised by cryptanalysis. The of attacks via
cryptanalysis are not present in the Dolev-Yao model, hematén our semantics
nor in the strand space formalism [31]. Nevertheless, fresk of a session key is
sufficient to mitigate those risks [17].

24

e Agreement on K: B knows, after his run of the protocol as a responder, thatas
also running the protocol as an initiator with the same datas; in particulard has
obtained the same session key. Thigis guarantee on agreement, and we can state
A’s guarantee in a similar manner.

As a showcase, in Appendix B we sketch the derivation (in P&fS}’s guarantee of the
first two properties. Namely:

B Sends (n, 4, B, t1, Kps{ newnonce(ng),n, A, B }) @ji
A BSees(Kps{ng, Ks}) Qi+
HenceForth — (spy Possesses (K)) @i+j A

=> B knows @i+ j
3k € [i, i+ j]. S Says (newseckey(K,)) @k Pty

()

In this formulat, is an arbitrary message. The proof of this secrecy propertather
complicated because it involves authentication in theofaithg way. The secrecy is easy
if the session key is issued by the legitimate seemder proper encryptions. The hard

part is thatB must be sure this is indeed the case. The guarante¢ foproved similarly.

The third property of agreement on distributed keys is thenrtapic below.

7.5 Prevention of certain replay attacks

There is an attack on the Otway-Rees protocol presented JwBich distributes different
session keys tol and B by replaying a request t§. Due to this attack the agreement
of session keys fails for Otway-Rees. Hesgy, denotes the intruder impersonating a
legitimate ageniX.

A— B: n,A,B,KAS{nA,n,A,B}
B_)SpyS: n,A,B,KAS{TLA,’ILA,B},KBS{’I’LB,TL,A,B}
SpyB_>S: n,A,B,KAS{nA,TL,A,B},KBS{’I'LB,’ILA,B}
S—B: anAS{nAvKS }aKBS{nBst} (8)
B —spyy : n, Kas{na, K¢}
SpyB_)S: n,A,B,KAS{’HA,'I’L,A,B},KBS{TLB,TL,A,B}
S — spyp : n, Kas{na, K}, Kps{np, K}
spyp — A: n, Kas{na, K}

We emphasise that this attack (possible in the originahdtspace model) is no longer
possible in our semantics. In fact we have proved in PA¥Sguarantee on agreement of
session keys.

10 <11 <2 <3

A Sends (newnonce(n), A, B, Kas{ newnonce(n), newnonce(n), A, B }) @i,
A Knows (B Sends (n, 4, B, t1, Kps{newnonce(nz),n, A, B})@il
AKnows (B Sees Kps{np, Ks }) @iy

A Sees KAs{nA, K. } Q43

K, =K, N AKnows (HenceForth (Secret({A, B, S})(K:))) @Qis

ﬂ>>>>

9)

It states: ifA has properly finished her role in a run anddfsomehow knows thab has
also finished his role with the matching nonedwhich acts as an identifier of the run),

25

then A is sure that the distributed session keys agree. The gesrémtB is formulated in
a similar way and proved in PVS.

How does this difference arise? In our semantics, the sefiareps track of all the
nonces to prevent replays. In particul8rstores among its possessionsradl (identifiers
of runs) in the requests, arffldoes not react to a request containing a nomeehich S
has ever seen. This is part of our formalisation of OtwaysReehich is done in a similar
way to (3) for BKE. The additional feature of our semanticevents the 7th message of
the above attack (8) from being sent.

This feature is possible in our semantics because each hgerxactly one “strand”
(with corresponding possessions), in which it can intedemultiple runs of the protocol.
It is not the case in the original strand space formalismretfaen agent can have multiple
strands, each of which corresponds to the agent’s role ingesrun. There is no mech-
anism which allows different strands to communicate witbheather, or to share a single
“memory”. In this sense, in the strand space formalism amtige"multi-threaded”, as
opposed to the single-threaded model in our semantics.ahtplementation determines
which semantics is more appropriate, hence enables/dsaelrtain attacks such as (8).
This issue of an agent’s inter-thread memory is studied &) yihere a translation is intro-
duced from strand spaces to what they stalind systems. Strand systems are similar to
our semantics: notably they allow multiple runs of a singlera to share a memory.

Our model of nonce management can be implemented by ingudimestamp as a
part of a nonce: we can fix a certain time span within whickeeps track of nonces, and
S responds only to nonces with timestamps in that span.

8 Conclusions and further work

We have achieved a unification in the area of security prdsoop combining the best of
several approaches [31, 4, 27, 29], namely a tool-suppsdedd logic. Itis a further intel-
lectual challenge to include process-based approachels é&s[1]) within this semantical
framework.

More practically-oriented further work lies in the applian of this approach to other,
more complex protocols, and to other properties than sgciluis is ongoing work, that
may require adaptation and/or extension of the current séosa Once a stable and useful
set of (semantic) rules has been identified, one may usedtrmaulate a proper (syntactic)
logic for security protocols. Another line of work, possilihore suitable, is to use this
formalised framework mainly to establish soundness ofdalgiules and to perform actual
verifications with more automatic tools.

As mentioned in Section 4.3, formal analysis of other sé¢gprioperties such as anony-
mity is another possible direction of the further resea\le may re-use the current PVS
infrastructure there.

Acknowledgements

Thanks are due to Erik Poll and Martijn Warnier for helpfulhmments and discussions,
and also to the referees for their constructive remarks agdestions.

26

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic posobls. Journ. ACM,
148(1):1-70, 1999.

[2] P. Blackburn, M. de Rijke, and Y. VenemaJodal Logic. Number 53 in Tracts in
Theor. Comp. Sci. Cambridge Univ. Press, 2001.

[3] P. Broadfoot and A. Roscoe. Proving security protocalhivmnodel checkers by data
independence techniquelurn. of Computer Security, 7:147-190, 1999.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of autheation. Proc. Royal Soc.,
Series A, Volume 426:233-271, 1989.

[5] J. Clark and J. Jacob. A survey of authentication pratditerature: Version 1.0.
Univ. of York.
www-users.cs.york.ac.uk/“jac/papers/drareviewps.ps , 1997,

[6] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A deation system and com-
positional logic for security protocolslourn. of Computer Security, 13(3):423-482,
2005.

[7] A. Datta, A. Derek, J.C. Mitchell, and A. Roy. Protocolmposition logic (PCL).
Elect. Notesin Theor. Comp. ci., 172:311-358, 2007.

[8] B. Davey and H. Priestley.Introduction to Lattices and Order. Math. Textbooks.
Cambridge Univ. Press, 1990.

[9] S.F. Doghmi, J.D. Guttman, and F.J. ThayabFega. Searching for shapes in crypto-
graphic protocols. Iools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS'07), number 4424 in Lect. Notes Comp. Sci., pages 523-538. @rin
Berlin, 2007. Extended version is at Cryptology ePrint Aveh
eprint.iacr.org/2006/435

[10] D. Dolev and A. Yao. On the security of public key proté&o IEEE Trans. on
Information Theory, 29(2):198-208, 1983.

[11] N.A. Durgin, J.C. Mitchell, and D. Pavlovic. A compadsital logic for proving secu-
rity properties of protocolsJourn. of Computer Security, 11(4):677-722, 2003.

[12] R. Fagin, J. Halpern, Y. Moses, and M. VardReasoning About Knowledge. MIT
Press, Cambridge, MA, 1995.

[13] F. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Blewnonymity. In R. Kisters
and J. Mitchell, editors3rd ACM Workshop on Formal Methodsin Security Engineer-
ing (FMSEQS), pages 63—-72, Alexandria , VA, U.S.A., November 2005. ACMd3r

[14] R. Goldblatt.Logics of Time and Computation. CSLI Lecture Notes 7, Stanford?d
rev. edition, 1992.

[15] J. Guttman, J. Herzog, and F. ThayeibFega. Honest ideals on strand spaces. In
Computer Security Foundations Workshop, 1998.

[16] J. Guttman and F. ThayeabBrega. Authentication tests and the structure of bundles.
Theor. Comp. Sci., 283(2):333-380, 2002.

27

[17] J. Guttman. Key compromise, strand spaces, and thetithtion tests. IMath-
ematical Foundations of Programming Semantics 17, volume 47 ofElect. Notes in
Theor. Comp. <ci., pages 1-21. Elsevier, Amsterdam, 2001.

[18] J.Y. Halpern and R. Pucella. On the relationship betwsteand spaces and multi-
agent systemsACM Trans. Inf. Syst. Secur., 6(1):43-70, 2003.

[19] J. Heather, G. Lowe, and S. Schneider. How to preverd figw attacks on security
protocols.J. Comput. Secur., 11(2):217-244, 2003.

[20] B. Jacobs and I. Hasuo. PVS sources for semantics aieldbgecurity protocols.
www.cs.ru.nl/B.Jacobs/PVS/protocols-3.0.zip

[21] G. Lowe. Breaking and fixing the Needham-Schroeder ipth#y protocol using
CSP and FDR. In T. Margaria and B. Steffen, editdmgls and Algorithms for the
Construction and Analysis of Systems, number 1055 in Lect. Notes Comp. Sci., pages
147-166. Springer, Berlin, 1996.

[22] C. Meadows. The NRL protocol analyzer: An overviedaurn. of Logic Program:
ming, 26(2):113-131, 1996.

[23] C. Meadows. Identifying potential type confusion irtteenticated messages. Work-
shop on Foundations of Computer Security, Techn. Rep. D012, Dep. Comp.
Sci., Univ. Copenhagen, 2002.

[24] R. Needham and M. Schroeder. Using encryption for antthation in large networks
of computers.Commun. ACM, 21(12):993-999, 1978.

[25] D. Otway and O. Rees. Efficient and timely mutual auttoaion. Operating Systems
Review, 21(1):8-10, 1987.

[26] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formafication for fault-
tolerant architectures: Prolegomena to the design of PYEEE Trans. on Softw.
Eng., 21(2):107-125, 1995.

[27] L. Paulson. The inductive approach to verifying crygraphic protocols.Journ. of
Computer Security, 6:85-128, 1998.

[28] P. Ryan, S. Schneider, M. Goldschmith, G. Lowe, and Asd®e.The Modelling and
Analysis of Security Protocols: the CSP Approach. Addison-Wesley, 2001.

[29] P. Syverson. Towards a strand semantics for autheigicéogics. In S. Brookes,
A. Jung, M. Mislove, and A. Scedrov, editoMathematical Foundations of Progam-
ming Semantics, number 20 in Elect. Notes in Theor. Comp. Sci. Elsevier, fems
dam, 1999.

[30] P. Syverson and |. Cervesato. The logic of authentioagirotocols. In C. Batini,
F. Giunchiglia, P. Giorgini, and M. Mecella, editoFgundations of Security Analysis
and Design, number 2171 in Lect. Notes Comp. Sci., pages 63—-136. SgiBgrlin,
2001.

[31] F. Thayer Rabrega, J. Herzog, and J. Guttman. Strand spaces: Prowugtgeroto-
cols correct.Journ. of Computer Security, 7:191-230, 1999.

28

A Logical rules for Otway-Rees

The following logical rules—together with (RSAYS), (INCTEST) and (SK%C) in Sec-
tions 7.2 and 7.3—are used for the verification of Otway-Rees.

The following rule for authentication is calleghsolicited authentication test after [16],
as opposed tincoming or outgoing test. It is unsolicited since the incoming “response” is
not really a response to any specific challenge.

(USTesT) Unsolicited authentication test.
Responsg A Receives (m) @i A K{mi}=<m
A K is secretly shardd Secret(A)(K) @i
— |Authentication result
dB e A. 3j€[0,i]. B OriginatorOf K{m; }Qj

The remaining rules state basic facts about our semantiey dre relatively easier to
prove and used in the verification of Otway-Rees.

(NRAN) Randomness of hewnonce.
ASends (ma) @iy A newnonce(n) < my
A BSends(mp)@ig A newnonce(n) < mp
— A=B A is=1ip
(SKRaN) Randomness of newseckey.
This is the same as (N&) but nonces are replaced by seckeys.
(LTKSEC) Secrecy of never-sent keys (such as long-term symmetyig) ke
[Initially K is secretly shardd Secret({4, S})(K) @0
A [Aneversends| VieN. (ASends(m)@i = K #£m)
A [Sneversend¥k| VieN. (SSends(m)@i = K £m)
—> [Secrecyresult Vi e N. Secret(A,S)(K)i

B Security proof of Otway-Rees

In the following derivation of (7)(PROT) designates use of the specification of the Otway-
Rees protocol. Free variables are immediately replaceadshf(Skolem) constants: for
example the steps 5 and 6 below can be read as “there éxist® such that ...".

1. BSends (n,A,B,t;, Kps{ newnonce(np),n, A, B }) @i Assumption

2. BSees(Kps{np, K:})Q@i+j Assumption

3. Vk€l[ii+j]. —(B OriginatorOf Kps{np, K, }Qk) (PrOT)

4. Vk eN. Secret({B,S})(Kps)Qk (PrOT), (LTKSEC)
5. 1<t <t4+7J 1, 2,3, 4, (NCTEST)
6. S OriginatorOf Kps{np, K, } @i, 1,2, 3,4, (NCTEST)
7. S Says mj Qi 6, (ORISAYS)

8. Kps{np,Ks}=n2p(mi) 6, (ORISAYS)

9. S Says Kps{ng,newseckey(K;) } @1, 7,8, (ROT)

10. S Receivesn’,D,B,Kps{np,n’,D,B},Kgs{ng,n’,D,B}@i; — 1 9, (PROT)

VvV SReceivesn’,B,D,Kgs{ng,n’,B,D},Kps{np,n’,B,D}@i; — 1

29

We refute the second disjunct of 10 as follows.

A-l. SReceivesn',B,D,Kps{np,n’,B,D},Kps{np,n,B,D}@i; —1 Assumption

A2. E=B V E=S5 A-1,4, (USTEST)

A-3. E OriginatorOf Kgs{ng,n’, B,D } @iy A-1, 4, (USTEST)

A-4. Vk e€N. —(S OriginatorOf Kgs{npg,n’,B,D}Q@k) (PRrROT)

A-5. B OriginatorOf Kgs{ng,n’,B,D} @i A-2,A-3, A-4

A-6. B Says Kps{newnonce(ng),n’,B,D } @iy A-5, (PrOT),
(ORISAYS)

A7. ds=i A n'=n 1, A-6, (NRaN)

A-8. B Receives n, A, B,t; @i — 1 1, (PrOT)

A-9. newnonce(ng) A ti1 A-8,
newnonce(npg)
only occurs in sent
messages

A-10. A = B, hencel 1, A-6,A-7,A-9

A. —|(S ReCEiVeSn/7B7D,KBs{nB7n/,B,D},Kps{np,n/7B7D}@i1—1) A-1, A-10

We turn back to the main line.

11. S Receivesn’,D,B,Kps{np,n’,D,B},Kgs{ng,n’,D,B}@i; — 1 10, A

122 D=A A n'=n Like A-10 is derived from
A-1, using (USTEST)

13. S Sends n, Kas{na,newseckey(K;) }, Kps{ng,newseckey(K;) } @i 11,12, (RROT), 9

14. VkeN. Secret({A4,S})(Kas) @k (PrOT), (LTKSEC)

15. VkeN. VK € {Kas,Kps}. VF € AG. 4,14

(F Possess K@k —» F €{A,B,S})

16. Vk € N.VF € {A, B,S}. ~(F DecryptSends (K,,{Kas,Kps})@k) (PrROT), (SKRAN)

17. i+ <1 ExpandingHenceForth

18. i1 <l AN Se{A,B,S} A S Saysnewseckey(K;) @iy 5,17,13

19. VF € AG. (F Possess K;Ql — F € {A,B,S}) 15, 16, 18, (SK&0)

20. —(spy Possess K Q1) 19

2. VI>1i+j. —(spy Possess K;Ql) 17,20

22. HenceForth (—(spy Possess K)) @i + j 21

23. 3k € [i, i+ j]. S Says newseckey(K,)@Qk 18,5

By steps 22 and 23, we have shown that

B Sends (n, A, B, t1, Kgs{ newnonce(ng),n, A, B }) @i
A BSees(Kps{np K,})Qi+j
(HenceForth —(spy Possess K,) @i+ j) A

~ |(3keli,i+yj). S Says(newseckey(K.))@k)

By applying rules orkKnows we obtain B's guarantee of secrecy and freshness of the
session keys.

30

