
Tracing Anonymity with Coalgebras

Ichiro Hasuo

Copyright c© 2008 Ichiro Hasuo
ISBN: 978-90-9022827-3
IPA Dissertation Series 2008-09

Typeset with LATEX2ε
Cover design by Kumiko Arai
Printed by PrintPartners Ipskamp B.V.

The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics). The author was em-
ployed at Radboud University Nijmegen and funded by the NWO Pionier project for
security and correctness of computer programs in April 2004–April 2007. Since May
2007 he has been employed at Kyoto University, Japan.

Tracing Anonymity with Coalgebras

een wetenschappelijke proeve op het gebied
van de Natuurwetenschappen, Wiskunde en Informatica

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann,
volgens besluit van het College van Decanen

in het openbaar te verdedigen op maandag 10 maart 2008
om 13.30 uur precies

door

Ichiro Hasuo

geboren op 27 september 1978
te Omuta, Japan

Promotor:
prof. dr. B.P.F. Jacobs

Manuscriptcommissie:
prof. dr. J. Adámek Technical University of Braunschweig, Germany
prof. dr. J.H. Geuvers
prof. dr. M. Hasegawa Kyoto University, Japan
dr. D. Pavlović Univ. of Oxford, UK and Kestrel Institute, US
prof. dr. J.J.M.M. Rutten CWI and Free University Amsterdam

Preface

This thesis could have never been finished without the teaching, support, encourage-
ment, advice, criticism and help of many. It is a hopeless endeavor to list them all.
The first to name is of course my PhD supervisor Bart Jacobs who not only went
beyond perfection in his supervision but also supported me as my best friend. The
starting sentences of this preface (which I found hard to come up with) are shamelessly
stolen from his book [61].

I have had great support from my friends in academia. Thanks to Jǐŕı Adámek,
Herman Geuvers, Masahito Hasegawa, Duško Pavlović and Jan Rutten for examin-
ing this thesis as the reading committee members. I benefited from their criticism
and encouragement. It was a lot of pleasure to work with the following coauthors:
David Galindo, Flavio Garcia, Chris Heunen, Bart Jacobs, Yoshinobu Kawabe, Wolter
Pieters, Peter van Rossum, Ana Sokolova and Tarmo Uustalu. During my PhD study
I have made several visits and I thank the hosts for their hospitality, comments and
teaching: Yoshinobu Kawabe, Joseph Kiniry, Bartek Klin, Naoki Kobayashi, Alexan-
der Kurz, Catuscia Palamidessi, John Power, Ana Sokolova, Yde Venema and Hiroshi
Watanabe. Special thanks to Dirk Pattinson who led me to the theory of coalge-
bras through his lectures at NASSLLI’03. In my MSc study I learned a lot from
Ryo Kashima, Izumi Takeuti and Hiroshi Watanabe. Without their encouragement,
I would never have come to the Netherlands for my PhD study. Besides, I owe much
to comments from and discussion with: Kazuyuki Asada, David Costa, Stefan Milius,
Milad Niqui, Koki Nishizawa, Shinya Katsumata, Clemens Kupke, Christian Kissig,
Erik Poll, Bas Spitters, and Frits Vaandrager.

I had great support also from outside academia. Thanks to Désirée Hermans,
Maria van Kuppeveld, Mirèse Willems from Radboud University Nijmegen and Keiko
Nishimori from Kyoto University for their administrative support. Coming to the
Netherlands was my first time living abroad. It is probably not the easiest thing but

v

I enjoyed it a lot. Special thanks to all the friends and colleagues here in Nijmegen,
especially to Jisk Attema, Igor Di Marco, Ab Polman and Ellie Polman who shared
houses with me.

Finally, some words go to my family. Thanks to Kumiko Arai for the cover design
and everything. Thanks to Yoshio Egashira, Hiromi Hasuo and Takeshi Hasuo, for
just everything.

Ichiro Hasuo
Nijmegen, January 2008

Contents

Preface v

1 Introduction 1
1.1 Computer systems . 1
1.2 Coalgebras as systems . 1
1.3 Theory of coalgebras . 4
1.4 Thesis outline . 12
1.5 Information for reading . 19

2 Trace semantics via coinduction 21
2.1 Overview . 21
2.2 Coalgebras in a Kleisli category . 27
2.3 Final coalgebra in a Kleisli category 37
2.4 Finite trace semantics via coinduction 45
2.5 Trace semantics as testing equivalence 50
2.6 Summary and future work . 58

3 Generic forward and backward simulations 61
3.1 Overview . 61
3.2 Coalgebraic forward and backward simulations 63
3.3 Soundness and completeness theorems 76
3.4 Related work . 81
3.5 Summary and future work . 86

vii

4 Case study: probabilistic anonymity 87
4.1 Overview . 87
4.2 Motivating examples . 90
4.3 Formalizing notions for probabilistic anonymity 95
4.4 Verifying strong anonymity with probabilistic simulations 101
4.5 Verifying probable innocence with probabilistic simulations 106
4.6 Related work . 110
4.7 Summary and future work . 112

5 Foundational study: concurrency and the microcosm principle 115
5.1 Overview . 115
5.2 Parallel composition of coalgebras . 119
5.3 Formalizing the microcosm principle 124
5.4 Microcosm structures in coalgebras . 136
5.5 Parallel composition of coalgebras in K�(T) 138
5.6 Summary and future work . 145

Appendix A Preliminaries 147
A.1 Initial/final sequences . 147
A.2 Limit-colimit coincidence . 148

Bibliography 153

Index 164

Summary 167

Samenvatting (Dutch summary) 169

Curriculum vitae 171

Chapter 1

Introduction

The aim of this thesis is to obtain better understanding of the nature of computer
systems; in other words, to develop a mathematical theory of computer systems. Coal-
gebras are employed in our expedition as mathematical presentations of computer
systems.

1.1 Computer systems

Computer systems—information-processing systems consisting of (possibly multiple)
computers—are pervasive in the modern world, playing crucial roles in every aspect of
human activities. However, computer systems are also known to be extremely error-
prone: newspapers are full of incidents caused by failure of computer systems and
their enormous consequences. Given the fact that computer systems are ultimately
created by human hands, it is amazing how rarely they behave as we, their creators,
expect them to do. It must be the case that we do not quite understand computer
systems.

To understand the nature of computer systems is therefore a fundamental challenge
nowadays. This thesis is a step forward towards this goal. History tells us that clear
understanding of something is very often brought by mathematics, a lesson which we
shall follow. That is, we aim at a mathematical theory of computer systems.

1.2 Coalgebras as systems

In this thesis coalgebras are employed to formulate diverse phenomena in computer
systems. Why coalgebras? We use them because the theory of coalgebras is one of
the most promising candidates for a mathematical foundation for computer systems,
equipped with both ample applicability and mathematical simplicity.

1

2 1 Introduction

– Applicability. Our mathematical presentations of computer systems should be
able to address diverse (theoretical) problems in computer systems and their
solutions.

– Simplicity. Influential work in mathematics is very often marked with its sim-
plicity (or “beauty” as one may even say). Mathematical simplicity is a neces-
sity for further development of a theory; it is also a source of abstraction which
brings wide applicability.

Hopefully this thesis will provide grounds for the claim about such qualifications of
coalgebras, through:

– extending the application fields of coalgebras and demonstrating the notion’s
potential applicability; and

– in each of the additional application fields, providing mathematically clear for-
mulations of phenomena which have been identified as major obstacles in getting
computer systems right. In doing so we exploit mathematical simplicity of the
notion of coalgebras.

We begin with the definition of coalgebras (which is so simple) and then proceed to
the first few examples that illustrate the idea “coalgebras as systems.”

1.2.1 Definition

The notion of coalgebras (co-algebras) is the categorical dual of that of algebras.
Hence one can say: the notion of coalgebras is as primitive as that of algebras.

1.2.1 Definition (Coalgebras). Let C be a category and F : C→ C be an endofunc-
tor. An F -coalgebra is a pair of an object X ∈ C (called its carrier) and an arrow
(its structure arrow)

FX

X
c in C .

The functor F is called the coalgebra’s signature functor.

An F -coalgebra will be called simply a coalgebra when the signature functor F is
obvious from the context.

1.2.2 Remark (Functor coalgebras vs. Eilenberg-Moore coalgebras). The notion
of coalgebras just introduced is sometimes called functor coalgebras, in contrast to
Eilenberg-Moore coalgebras for comonads (see e.g. [96]). It should be noted that
often in a categorical setting the latter notion is referred to (simply) as coalgebras
too. Throughout this thesis the word “coalgebra” is reserved for the former notion.

1.2.2 First examples

1.2 Coalgebras as systems 3

{coalgebras}

{state-based systems}
abstraction

{computer systems}
⊇

In the last few decades, coalgebras have found their use
as mathematical, categorical presentations of state-based
systems such as automata; computer systems are also
instances of state-based systems. There are several in-
troductory articles to the view of “coalgebras as state-
based systems,” such as [65, 66, 86, 108, 114]; we refer to
them for a historical account of the field, extensive in-
vestigation of examples, a list of references, and so on. Here we present a few small,
elementary examples to provide an intuition.

Coalgebras are state-based systems. Let us take the category Sets of sets and
functions as the base category C. This means that the objects (such as X and FX)
are sets; and arrows (such as X

c→ FX) are set-theoretic functions. As an endofunctor
F : Sets→ Sets, let us take F = Σ× , that is

FX = Σ×X

where Σ is a fixed set.
In this case, a coalgebra X

c→ FX is identified with a function

Σ×X

X
c such as

(a, x′)

x
.

The key idea is that we can think of

– an element x ∈ X as a state, hence a set X as a state space;

– an application of a function c as a one-step transition or dynamics.

Indeed, if c(x) is a pair (a, x′) as above, we can interpret its first component a ∈ Σ
as the output of the state x when it makes a transition; its second component x′ ∈ X
as the next state of x. Therefore we can draw the following graphical representation
of the coalgebra.

x
a

x′ a′
x′′ a′′

x′′′ a′′′
· · · (1.1)

To summarize, a coalgebra X
c→ Σ×X is a state-based system which, by making a

transition, outputs a symbol in Σ and moves to another state.

Different types of systems by different endofunctor F . A coalgebra X
c→

Σ×X (that we have just observed) denotes what is usually called a stream automaton:
its behavior—i.e. what we observe by continuously running the system—is an (infinite)
stream over the alphabet Σ, such as aa′a′′a′′′ · · · in (1.1).

4 1 Introduction

Can we represent, as coalgebras, other kinds of state-based systems say labeled
transition systems (LTSs)? A state of LTSs has a set of possible transitions, each of
which is labeled with an element in a fixed alphabet Σ.

x1

...x

a1

an xn

This is different from stream automata in which a state has its unique output and
successor; an LTS exhibits non-deterministic branching. For a technical reason we
shall focus on finitely branching LTSs in the sequel.1 This means that a state can
have only a finite number of possible outgoing transitions.

We can express such a system as a function

Pfin(Σ×X)

X
c such as

{
(a1, x1), . . . , (ak, xk)

}
x

,

where Pfin denotes the operation of taking the set of all finite subsets:

PfinX = {u ⊆ X | u is finite} .

Therefore (finitely branching) LTSs are coalgebras for the base category C = Sets
and the signature functor F = Pfin(Σ×).

Non-deterministic automata are yet another kind of state-based systems. They
are almost the same as LTSs but each state has an additional 2-value attribute (T
or F) denoting whether it is one of the terminating states or not.2 Such systems
can be represented as coalgebras for C = Sets and now F = 2× Pfin(Σ×), where
2 = {T,F} is a 2-element set. For example,

2× Pfin(Σ×X)

X
c such as

(
T, {(a1, x1), . . . , (ak, xk)}

)
x

, meaning
x1
...x

a1

an xn

A much greater variety of systems allows representation as coalgebras using dif-
ferent functors F ; see e.g. [108].

1.3 Theory of coalgebras

We have sketched how state-based systems can be presented using the abstract notion
of coalgebras. What do we gain from this presentation? Isn’t it just a fancy (or scary)

1If we allow arbitrary degree of branching, a final coalgebra (which we explain in Section 1.3)
does not exist due to the size problem. See e.g. [66].

2We disregard the finiteness conditions (on a state space X and on an alphabet Σ) which are
usually present in the definition of non-deterministic automata.

1.3 Theory of coalgebras 5

way of presenting something one already knows, as if it were something one does not
know?

We claim that it is not the case. One ground for our claim is the following fact
(which has been recognized in the last couple of decades): some natural mathematical
constructions on coalgebras have indeed important meanings in the theory of state-
based systems. Among them, morphisms of coalgebras and the principle of coinduc-
tion—the two notions which we elaborate in this section—play important roles in this
thesis.

1.3.1 Morphisms of coalgebras as behavior-preserving maps

A morphism from one coalgebra to another is an arrow between their carriers which
“preserves coalgebraic structures.”

1.3.1 Definition (Morphisms of coalgebras). Let X
c→ FX and Y

d→ FY be two
coalgebras (in the base category C). A morphism from the former coalgebra c to the
latter d is an arrow f : X → Y in C such that the following diagram commutes.

FX
Ff

FY

X

c

f
Y

d

(1.2)

F -coalgebras and morphisms between them form a category which we denote by
CoalgF . Therefore there is the following one-to-one correspondence:

(FX

X

c

)
f−→
(FY

Y
d

)
in CoalgF

X
f−→ Y in C, such that

FX
Ff

FY

X

c

f
Y

d

The significance of morphisms of coalgebras is the fact that they represent behavior-
preserving maps between systems. To illustrate this point, let us take the setting in
our first example (C = Sets and F = Σ ×), in which case coalgebras are stream
automata. A morphism from X

c→ Σ×X to Y
d→ Σ× Y is a (set-theoretic) function

X
f→ Y such that the diagram

Σ×X
Σ× f

Σ× Y

X

c

f
Y

d

6 1 Introduction

commutes. In order to examine what this commutativity means, let us denote the
arrow c by

c = 〈outc, nextc〉 : X −→ Σ×X ,

making the two components outc : X → Σ and nextc : X → X explicit. Similarly we
denote d = 〈outd, nextd〉. Then the above commutativity is obviously equivalent to
the following condition: for any “state” x ∈ X,

outc(x) = outd(f(x)) and f(nextc(x)) = nextd(f(x)) . (1.3)

Its immediate consequence is that the “behavior” of a state x in the system X
c→

FX coincides with that of f(x) in Y
d→ FY . Here by the “behavior” of x we mean

the infinite stream over Σ that arises by running the system X
c→ FX continuously,

starting from x.

x
a

x′ a′
x′′ a′′

x′′′ a′′′
· · · in X

c→ FX

f(x) a
f(x′) a′

f(x′′) a′′
f(x′′′) a′′′

· · · in Y
d→ FY

Indeed, the output a ∈ Σ of f(x) must be the same as that of x by the first equality
of (1.3); moreover, if x

a→ x′ then the next state of f(x) must be f(x′) by the second
equality.

The slogan “morphisms of coalgebras as behavior-preserving maps” is true for
other kinds of systems as well. For instance, for the other two examples of a sig-
nature functor F in Section 1.2.2 (namely functors for LTSs and non-deterministic
automata), the notion of coalgebra morphisms coincides with the usual notion of
functional bisimulation (i.e. functions whose graphs are bisimulation).

1.3.2 Behavior by coinduction

We just talked about an informal notion of behaviors of state-based systems. The
behavior of a system is what we “observe” by running a system. We shall take the
black-box view about our “observation”: we (as outside observers) observe the actions
executed by the system, but have no direct means of knowing which internal states
are realizing those actions.

• a

•
a

•
a

Or rather, we do not want to care about the internal mechanism
which realizes our (black-box) observation. In fact, identifying two
different systems with the same behavior—such as the two stream
automata on the right yielding the same stream aω—is often a very
useful technique in verification of state-based systems.

One of the nicest things about the abstract notion of coalgebras is that a notion
of such “behaviors” can be elegantly formulated by a simple mathematical principle
of coinduction, i.e. by final coalgebras.

1.3 Theory of coalgebras 7

1.3.2 Definition (Final coalgebras, coinduction). A final coalgebra Z
ζ→ FZ is a

final object in the category CoalgF .3 This means that, for any F -coalgebra X
c→ FX,

there exists a unique morphism from c to ζ.

FX
Ff

FZ

X

c

f
Z

ζ

Making an explicit use of finality of a final coalgebra is often referred to as the principle
of coinduction.

1.3.3 Remark (Usage of “coinduction”). In [65] the word coinduction means the
use of the finality principle employed in a specific category CoalgF . We follow this
view.4 It is called co-induction because it is the categorical dual of induction which,
in a categorical setting, refers to the use of the initiality principle for algebras.

Here are some typical usages of the word: the unique morphism f above is induced
“by coinduction”; if g is another morphism from c to ζ then we conclude f = g
“by coinduction.” Notice that finality—called coinduction in this setting—has two
separate aspects: existence of an arrow and its uniqueness. In fact, coinduction in
the former usage (exploiting the existence aspect) is sometimes called the coinduction
definition principle; coinduction in the latter usage (exploiting the uniqueness aspect)
is called the coinduction proof principle.

Coinduction as a uniform mathematical principle that assigns to a system its
behavior is our principal tool in this thesis. The basic scenario is as follows. For the
kind of state-based systems as specified by an endofunctor F ,

– the set Z of all possible behaviors is itself found to carry an F -coalgebraic
structure Z

ζ→ FZ. It turns out that this ζ is a final coalgebra.

– Given an arbitrary coalgebra (i.e. a system) X
c→ FX, there exists a unique

morphism from c to ζ, by the definition of final coalgebras.

FX
F (beh(c))

FZ

X

c

beh(c)
Z

ζ (1.4)

The unique morphism thus induced is what assigns to (a state of) the coalgebra
c its behavior, and is denoted by beh(c).

3In category theory, a final object is often referred to as a terminal object as well. Consequently,
a final coalgebra is sometimes called a terminal coalgebra.

4In computer science the word coinduction can be used in a different, order-theoretic meaning,
which refers to the use of greatest fixed points. See e.g. [118]. In fact, our categorical usage is a
generalization of the other order-theoretic one, in the same way as categories are generalization of
poet’s.

8 1 Introduction

It is illustrative to think of this scenario employed in the category Sets. Then the
arrows are (set-theoretic) functions; the arrow beh(c) : X → Z is therefore a function
which carries each state x ∈ X to an element beh(c)(x) ∈ Z which is the “behavior”
of the state x of the system X

c→ FX.
This basic scenario works for a wide variety of systems, i.e. F -coalgebras for a

variety of F . The notion of “behaviors” (represented by a final F -coalgebra Z
ζ→

FZ) varies according to the choice of a functor F . Furthermore, as we see later in
Chapter 2, coinduction can capture a different kind of “behaviors” if employed in a
different category (than Sets). Let us look at some first (standard) examples.

Coinduction for stream automata A stream automaton is an F -coalgebra for
F = Σ× in C = Sets. A natural notion of its “behavior” is the infinite stream over
Σ that we observe by running the system continuously. The set of infinite streams
over Σ (which we denote by Σω) indeed carries the following F -coalgebra structure.

Σ× Σω

Σω
〈hd, tl〉

(a0, a1a2a3 . . .)

a0a1a2 . . .

Here the function hd returns the head element of a stream; the function tl returns the
tail stream. Now it is not hard to prove the following.

1.3.4 Proposition (Coinduction for stream automata). Let C = Sets and F =
Σ× . For any F -coalgebra X

c→ Σ×X, there exists a unique coalgebra morphism⎛
⎝ Σ×X

X
c

⎞
⎠ ���

⎛
⎝ Σ× Σω

Σω
〈hd, tl〉

⎞
⎠ .

In other words, there exists a unique function beh(c) : X → Σω that makes the
following coinduction diagram commute.

Σ×X
Σ× beh(c)

Σ× Σω

X

c

beh(c)
Σω

〈hd, tl〉 (1.5)

The diagram is an instance of (1.4); hence the coalgebra 〈hd, tl〉 : Σω → Σ× Σω is a
final coalgebra. �
Commutativity of the diagram (1.5) can be rephrased into the following equations (as
we did in (1.3)). Recall that we write c = 〈outc, nextc〉 : X → Σ×X.

hd
(
beh(c)(x)

)
= outc(x) and tl

(
beh(c)(x)

)
= beh(c)

(
nextc(x)

)
. (1.6)

1.3 Theory of coalgebras 9

Putting it graphically,

x
a→ x′ in

Σ×X

X
c =⇒ beh(c)(x) = a a′a′′a′′′ · · ·︸ ︷︷ ︸

beh(c)(x′)

.

The equations (1.6) are therefore a natural definition of the infinite stream (the “be-
havior”) beh(c)(x) induced by a state x of a stream automaton c, presented in a
conventional manner. The coinduction diagram (1.5)—which is equivalent to the
equations (1.6)—is a categorical presentation of the definition. Our point here is that
the latter allows generalization to different kinds of systems, due to the abstraction
inherent in category theory.

Coinduction for LTSs Coinduction as a mathematical principle for assigning a
“behavior” can be applied also to (finitely branching) LTSs and non-deterministic
automata.

For the functor F = Pfin(Σ ×)—for which a coalgebra is a finitely branching
LTS—a final coalgebra indeed exists [4, 10]. In the sequel we shall sketch what it
looks like, without going too much into details.

First, the carrier set of the final coalgebra—which we denote by STreeΣ
∼—consists

of equivalence classes of so-called synchronization trees over Σ, modulo bisimilarity.

– Synchronization trees [98] over Σ are finitely branching, (possibly) infinite-depth
trees whose edges are labeled with elements of Σ, such as the following.

a

c

...

a
...

b

d

b

a

...

c d

b

...

a
...

b

The nodes after d-edges (without any successors) are understood to have the
branching degree 0.

– Bisimilarity is one of the standard notions of process equivalence, originally
introduced in [107]. We shall denote the bisimilarity equivalence (on synchro-
nization trees) by ∼.

A synchronization tree emerges when we “unfold” an LTS and depict the possible
execution paths of the LTS, starting from a specific state. For example, the above
synchronization tree arises by unfolding the following LTS, starting from the state x.

x
b

a
y

c

d
z

10 1 Introduction

The structure arrow of the final coalgebra—which we denote by dstr—is the fol-
lowing one, “destructing” a tree into its immediate subtrees.

STreeΣ
∼

dstr−→ Pfin(Σ× STreeΣ
∼)⎡

⎢⎣ •a1 an

t1 tn· · ·

⎤
⎥⎦
∼

�−→
{

(a1, [t1]∼), . . . , (an, [tn]∼)
}

One can prove that this function dstr is well-defined, because of the definition of
bisimilarity ∼.

Now, the following coinduction diagram in Sets is an instantiation of (1.4) in the
current LTS setting.

Pfin(Σ×X)
Pfin(Σ× beh(c))

Pfin(Σ× STreeΣ
∼)

X

c

beh(c)
STreeΣ

∼

dstr (1.7)

In this way a finitely branching LTS (represented by a coalgebra c) is assigned its
“behavior” beh(c) : X → STreeΣ

∼. The commutativity of the diagram (1.7) boils
down to the following condition.

xa1 an

x1 · · · xn

in the system c =⇒ beh(c)(x) =

⎡
⎢⎢⎢⎣

•a1 an

beh(c)
(x1)

beh(c)
(xn)

· · ·

⎤
⎥⎥⎥⎦
∼

Therefore the “behavior” beh(c)(x) ∈ STreeΣ
∼ is (the equivalence class of) the unfold-

ing of the LTS c, starting from the state x. The following points should be noted
here.

– Information on internal states (x, x1, x2, . . .) is not present in the behavior,
because in a synchronization tree nodes are not labeled.

– Moreover, two states which are bisimilar (according to the standard definition)
are mapped to the same element of STreeΣ

∼, because elements of STreeΣ
∼ are

equivalence classes modulo ∼.

Therefore we have illustrated the following result.

1.3.5 Proposition (Coinduction captures bisimilarity). There exists a final coalgebra

dstr : STreeΣ
∼ −→ Pfin(Σ× STreeΣ

∼)

for the functor Pfin(Σ×) on Sets.

1.3 Theory of coalgebras 11

Moreover, the equivalence relation induced by coinduction coincides with the usual
notion of bisimilarity. That is, if x ∈ X is a state of a coalgebra X

c→ Pfin(Σ×X)
and y ∈ Y is a state of Y

d→ Pfin(Σ× Y), then we have

beh(c)(x) = beh(d)(y) in STreeΣ
∼ ⇐⇒ x and y are bisimilar . �

We refer to the second point of the proposition as: coinduction captures bisimilarity;
or a final coalgebra is fully abstract with respect to bisimilarity.

Coinduction in Sets captures bisimilarity It turns out that the last point in the
previous paragraph “coinduction captures bisimilarity” holds not only for the specific
endofunctor F = Pfin(Σ×), but also for a variety of endofunctors F on Sets.

Specifically, for an arbitrary endofunctor F : Sets→ Sets (i.e. for systems other
than LTSs) we can define the generalized notion of bisimulations using suitable spans.
Besides this categorical formulation of bisimulations, the notion of bisimilarity also
arises categorically, as the universal one among all the bisimulations. It can be shown
(see e.g. [114]) that this generic notion of bisimilarity is captured by coinduction (in
the sense of Proposition 1.3.5), if the functor F preserves weak pullbacks, a condition
satisfied by most functors on Sets of our interest.

Therefore here comes another slogan: coinduction in Sets captures bisimilarity.
Note that, although this slogan is valid for a variety of endofunctors F , the base
category C is fixed to be Sets. In Chapter 2 we will see that trace equivalence—
another standard process equivalence which is coarser than bisimilarity—is captured
by coinduction in a different universe, namely in a Kleisli category instead of in Sets.

1.3.6 Example (Non-deterministic automata). Our arguments on the final coalgebra
for the functor F = Pfin(Σ ×) (modeling finitely branching LTSs) remain valid
if we consider the functor F = 2 × Pfin(Σ ×) (modeling finitely branching non-
deterministic automata).

The final coalgebra for F = 2 × Pfin(Σ ×) consists of synchronization trees—
whose nodes are now labeled by T or F—modulo a suitable notion of bisimilarity.
The following is an example of such a synchronization tree.

a

b

...

a
...

c

c

a

...

b

c

...

a
...

c

� : labeled by T,
i.e. a terminating state� : labeled by F,
i.e. a non-terminating state

This tree arises by unfolding the following non-deterministic automaton starting from
the state x. In other words, the state x’s “behavior” assigned by coinduction is the
above tree (modulo bisimilarity).

x
c

a
y

b

12 1 Introduction

One thing to note here is that bisimilarity (captured by coinduction) is different from
language equivalence, another standard notion of equivalence for non-deterministic
automata. A state of a non-deterministic automaton determines a subset of the set
Σ∗ of words in Σ, called its accepted language—(ab + c)∗ for the state x in the above
example. Two states of non-deterministic automata are language equivalent if their
accepted languages are the same.

Language equivalence is as a relation strictly coarser than bisimilarity, as the fol-
lowing classic example of “language equivalent but not bisimilar states” demonstrates
(see e.g. [129]).

x
a

x′
a a

b c
b c

(1.8)

Indeed, the two states x and x′ have the same accepted language {ab, ac}; but x′

cannot simulate x’s ability that “after making an a-move, the system can still choose
between b- and c-moves,” which makes x not bisimilar to x′. How to capture this no-
tion of language equivalence by coinduction—besides bisimilarity—will be our theme
in Chapter 2.

1.4 Thesis outline

The following table summarizes the correspondence we have observed, between coal-
gebraic constructs and basic concepts in the theory of computer systems.

system behavior-preserving map behavior

coalgebraically coalgebra morphism of coalgebras by coinduction

FX

X

FX
Ff

FY

X
f

Y

FX FZ

X
c

beh(c)
Z

final

(1.9)

The examples so far have been accommodated in the category Sets, where the “be-
havior” captured by coinduction coincides with bisimilarity.

This thesis selects some noted phenomena in computer systems and provides clear
understanding of them, by identifying fundamental mathematical structures hidden
behind. Our mathematical formulations of those phenomena are based on coalgebras;
thus this thesis extends the (existing) theory of coalgebras (such as table (1.9)) in
several directions.

Let us now take a brief look at the issues about computer systems that we will
address in later chapters. In each chapter, we focus on one specific issue.

1.4 Thesis outline 13

Chapter 2. Trace semantics via coinduction We have seen that coinduction in
Sets captures a “behavior” modulo bisimilarity. However, there are standard notions
of behavioral equivalence other than bisimilarity, such as language equivalence for non-
deterministic automata. So one may ask: can we capture other notions of equivalence
also by coinduction?

In Chapter 2 we present a partial, yet positive answer to this question. We present
a coalgebraic framework for capturing trace semantics; language equivalence is an
instance of trace semantics. Informally speaking, the difference from bisimilarity
is the fact that in trace semantics inner branching structures are abstracted away;
see (1.8).

Our contributions are summarized as follows.

– Trace semantics via coinduction in K�(T) We identify coinduction in a
Kleisli category K�(T) as a mathematical principle for capturing trace semantics.
That is, the coinduction diagram in K�(T)

FX
F (beh(c))

FZ

X

c

beh(c)
Z

ζ

yields an arrow beh(c) which assigns to each state x ∈ X its trace semantics.
Therefore the theory of coalgebras, when employed in K�(T), can be thought of
as the theory of state-based systems “modulo trace semantics.” Intuitively, it
is the use of K�(T) as the base category which abstracts away inner branching
structures.

– Identification of a final coalgebra in K�(T) A final coalgebra in K�(T) turns
out to coincide with an initial algebra in Sets for the corresponding endofunctor.
This (seemingly surprising) technical result follows from

• a suitable adjunction lifting which lifts an initial algebra in Sets to an
initial algebra in K�(T); and

• the initial algebra-final coalgebra coincidence in K�(T) which results from
the limit-colimit coincidence due to a suitable order-enriched structure of
K�(T).

Here we gain remarkable genericity by using abstract categorical terms. Notice
that the framework has a parameter T—a monad on Sets—which in fact specifies
the type of branching. For one choice, systems have non-deterministic branching
as in LTSs; for another choice systems come to have probabilistic branching. The
coinduction framework works also in the latter setting, which enables us to capture
“trace semantics” for probabilistic systems, such as the following. For the state x of

14 1 Introduction

the probabilistic system

x
a[13]

a[13]
1
3

y

1
2

a[12]

za[1] �

“trace semantics” is the probability (sub)distribution[
〈〉 �→ 1

3 , a �→ 1
3 ·

1
2 , a2 �→ 1

3 ·
1
2 ·

1
2 , · · ·

an �→ 1
3 ·
(

1
2

)n
, · · ·

]
that tells the probability with which the word an occurs before the system hits the
termination symbol �.

To summarize, this chapter extends the application fields of coalgebras by adding
trace semantics to the list of process semantics that are captured by coinduction.
From a different point of view, “trace semantics” (for various kinds of systems, such
as non-deterministic vs. probabilistic) is given a uniform mathematical description,
namely as coinduction in a Kleisli category.

The material in Chapter 2 is based on joint work [43, 44, 47] with Bart Jacobs
and Ana Sokolova. Useful comments from Jǐŕı Adámek, Chris Heunen, Stefan Milius,
Tarmo Uustalu and the anonymous referees of these papers are gratefully acknowl-
edged.

Chapter 3. Generic forward and backward simulations In this chapter we
continue our investigation into coalgebras in a Kleisli category K�(T). We have shown
that coinduction in K�(T) gives trace semantics. What about the other coalgebraic
constructs in the table (1.9), namely morphisms of coalgebras? How can we interpret
them in K�(T)?

It turns out that two relaxed versions of morphisms of coalgebras—lax and oplax
morphisms—have significant meanings in the study of computer systems, namely as
forward and backward simulations between systems.

FX
Ff

FY

X

c

f

Y

d
FX

Ff
FY

X

c

f

�
Y

d

lax coalgebra morphism oplax coalgebra morphism
= forward simulation = backward simulation

(1.10)

The partial order � in the diagram refers to the natural notion of “more behav-
ior” associated with the branching type in question—such as set inclusion for non-
deterministic branching. Therefore this chapter, combined with the previous Chap-
ter 2, establishes the view of the theory of coalgebras in K�(T) as the generic theory
of traces and simulations.

1.4 Thesis outline 15

The theory of traces and simulations has been extensively studied due to its signif-
icance in system verification; see e.g. [94]. A typical application scenario that involves
traces and simulations is as follows.

– We have two systems at hand, S (called a specification) and I (called an imple-
mentation).

– The specification S is a simple system and is known to satisfy a certain desired
property P . Let us assume that P is a safety property, meaning: a certain
(unwanted) phenomenon never occurs in any execution trace of the system.
Our goal is to establish that the implementation system I also satisfies the
safety property P .

– To that goal, it suffices for us to show

(trace semantics of I) � (trace semantics of S) , (1.11)

which means for example that the former trace set is included in the latter
(when systems are non-deterministic). Indeed, since we already know that none
of the execution traces of the specification system S exhibits the unwanted
phenomenon, from the above “trace inclusion” (1.11) we can conclude that
neither the implementation I exhibits the unwanted phenomenon. Hence I is
shown to satisfy the safety property P .

– In order to show the trace inclusion (1.11), we search for either a forward
or a backward simulation from I to S. We do so because traces and for-
ward/backward simulations are related via a so-called soundness theorem: for
two systems X and Y,

∃ (forward or backward simulation from X to Y)
=⇒ (trace sem. for X) � (trace sem. for Y) .

In this way we prove I’s satisfaction of the trace-based property P , essentially by
finding a simulation. Such a simulation-based method is often useful because, in
many applications, establishing trace inclusion (1.11) by directly computing the trace
semantics (which takes arbitrarily many steps into account) is much harder than
checking that a relation forms a forward/backward simulation (which only involves
one-step transitions).

Therefore the soundness theorem—relating simulations and trace semantics—is
an essential piece in the theory of traces and simulations. Indeed, our main result in
this chapter is a generic soundness theorem which relates coalgebraic trace semantics
(via coinduction, Chapter 2) and coalgebraic forward/backward simulations in (1.10).
It is proved once for all, using abstract categorical terms.

Here again we gain ample genericity by using abstract categorical terms. In par-
ticular, the framework covers both non-deterministic systems and probabilistic ones.
Assume that we are interested in some (exotic) kind of systems, no matter if they
are non-deterministic or probabilistic. When those systems allow suitable coalgebraic

16 1 Introduction

modeling (which happens reasonably often), our coalgebraic framework provides a
definition of forward/backward simulations tailored for this kind of systems as an
instantiation of (1.10). This definition is guaranteed to be a “useful” one, because for
this definition of simulations the soundness theorem comes for free.

From a viewpoint of a coalgebra-theorist, in Chapters 2 and 3 we have established
the view:

theory of coalgebras in a Kleisli category
as

generic theory of traces and simulations

which is summarized in the following table of correspondences.

system simulation trace semanticsforward backward

in K�(T) coalgebra lax morphism oplax morphism coinduction

FX

X

FX
Ff

FY

X
f

�
Y

FX
Ff

FY

X
f

�
Y

FX FZ

X
c

beh(c)
Z

final

(1.12)

This is a new way of understanding the basic table (1.9), besides the standard one
(namely, coalgebras in Sets are systems modulo bisimilarity). In this way we have
extended the application fields of coalgebras.

The material in Chapter 3 has been presented in [46]. Part of the work was done
during the author’s stay at Research Center for Verification and Semantics, National
Institute of Advanced Industrial Science and Technology (AIST), Japan, in March
2006. Their hospitality as well as helpful comments from Chris Heunen, Bart Jacobs,
Yoshinobu Kawabe, Koki Nishizawa, Ana Sokolova, Frits Vaandrager and Hiroshi
Watanabe are gratefully acknowledged.

Chapter 4. Probabilistic anonymity (case study) The table (1.12) summa-
rizes the view of theory of coalgebras in K�(T) as theory of traces and simulations. As
already mentioned, what is remarkable in this table is the fact that non-deterministic
systems and probabilistic systems are given the same, uniform treatment. In partic-
ular, the shift from non-deterministic branching to probabilistic one is just a matter
of replacing the parameter T . That is to say, anything we can (coalgebraically) do in
a non-deterministic setting, we can also do in a probabilistic setting (by replacing T).

We will exploit this genericity in this chapter which is devoted to a case study of
verifying anonymity properties of network protocols. Online anonymity is an increas-
ingly important property, at this age when most human activities involve communica-
tion on the Internet. Advances in information communication technology have made
exchange of enormous amount of information a daily matter, from which we benefit
vastly. However, it is the same technology that poses threats to our privacy: so much
information on us is on the Internet and retrieving it has never been an easier task.

1.4 Thesis outline 17

Therefore formalization and verification of anonymity properties have attracted
increasing attention in the computer security community. In this chapter we set our
starting point at one definition of anonymity introduced in [119]—as a property of
the trace set of an automaton—and a simulation-based proof method [71, 72] for
this notion of anonymity. These prior results are all obtained in a non-deterministic
setting.

However, an important role of probability has been claimed recently by many au-
thors in the field. Non-deterministic anonymity is qualitative: each participant of
the protocol is either “suspicious” or “not suspicious at all,” but nothing in between.
In contrast, in a probabilistic notion of anonymity we talk about quantitative suspi-
cion, a fact which is essential in modeling e.g. those anonymizing protocols which use
probabilistic mechanisms for disguising identities.

The main contribution in this chapter is hence transferring the non-deterministic
simulation-based proof method for anonymity—introduced in [71, 72]—to a proba-
bilistic setting. In its course we fully exploit the coalgebraic theory developed in
previous chapters: we obtain the definition of suitable “probabilistic simulations” by
instantiating the coalgebraic definition and the soundness theorem (which comes for
free) plays an essential part in the proof method.

The material in Chapter 4 is based on joint work [50, 51] with Yoshinobu Kawabe
and Hideki Sakurada, carried out during the author’s stay at NTT Communication
Science Laboratories in September–October 2006 and April 2007. Helpful comments
from Kostas Chatzikokolakis, Tom Chothia, Ken Mano, Catuscia Palamidessi, Peter
van Rossum, Ana Sokolova, Yasuaki Tsukada and the anonymous referees for the
paper [50] are gratefully acknowledged.

Chapter 5. Concurrency and the microcosm principle (foundational study)
In this chapter we address the issue of concurrency in computer systems. Concur-
rency is about running multiple systems in parallel, possibly involving communication
between them. Concurrency is everywhere at this age when almost all the comput-
ers are mutually connected via the Internet. At the same time, the exponentially
growing complexity of systems with concurrency makes verification of such systems a
fundamental challenge in computer science.

Our special attention is to the compositionality property: informally it means that
the behavior of a composed system C ‖ D is determined by the behavior of C and that
of D. The significance of compositionality in the study of computer systems is that
it supports modular verification methods. In modular verification, correctness of a
composed system C1 ‖ · · · ‖ Cn is established using correctness of each component Ci.

We start with the following—seemingly plausible—formulation of “coalgebraic
compositionality.” The operator beh is the one induced by coinduction; see (1.9).

beh

(FX

X

c

∥∥∥∥ FY

Y
d

)
= beh

(FX

X

c

) ∥∥∥∥ beh

(FY

Y
d

)
(1.13)

18 1 Introduction

However, a closer look at the equation raises some questions. Most notably, the two
operators ‖ on each side of the equation have in fact different domains: the one on
the left has a type

CoalgF ×CoalgF

‖−→ CoalgF , composing coalgebras as systems;

while the one on the right has a type

Z × Z
‖−→ Z , composing “states” of the final coalgebra Z as behaviors.

Moreover, these two domains (CoalgF and Z) are nested: the latter is an object of
the former (which is a category). Therefore what we observe here is a phenomenon
that the same algebraic structure—namely a binary operator ‖ possibly with some
equational properties such as associativity—interpreted in two separate yet nested
domains. This is the mathematical structure of our interest in this chapter.

Although examples of such phenomena abound in computer science—think of
concatenation of deterministic automata and of regular languages—there does not
seem to be much emphasis on them. However in mathematics the phenomenon of
such nested algebraic structures has been long known; it is called the microcosm
principle by Baez and Dolan [9]. We take this abstract, mathematical principle in
itself as an interesting topic to investigate.

L

1

C

⇓X CAT

In this chapter—starting with the above observation on paral-
lel composition and compositionality—we present a mathematically
rigorous formalization of the microcosm principle. The formaliza-
tion is 2-categorical and looks like the diagram on the right. An
algebraic theory to be interpreted twice is presented categorically as a Lawvere theory
L; an outer model (the category CoalgF in the above example) is a product-preserving
functor C; and an inner model (the object Z above) is a lax natural transformation
X. Here 1 denotes the constant functor into the category 1 with one object and one
arrow.

Based on this formalization, we turn our attention back to coalgebraic settings. As
our main result we prove a generic compositionality result regarding an L-structure
on coalgebras, for an arbitrary algebraic theory L. This generic result instantiates
to the equation (1.13) when L is suitably chosen. Therefore our expedition in this
chapter establishes mathematical foundation for modular verification of systems with
concurrency.

Additionally, we investigate the relationship between the general framework for
parallel composition (in this chapter) and the material in the previous chapters: the
former indeed yields “compositionality” results for trace semantics and simulations.
Specifically, our main result in this chapter (generic compositionality for behavior by
coinduction) immediately yields compositionality of trace semantics which is “behav-
ior by coinduction” in K�(T) (Chapter 2). Moreover, in relation to coalgebraic simu-
lations (Chapter 3), we show that the forward/backward similarity relations are com-
positional under suitable assumptions. Let us write c �F d (“c is forward-simulated

1.5 Information for reading 19

by d”) if there exists a forward simulation from a coalgebra c to another d. Then we
have

FX

X
c �F

FY

Y
d =⇒

(
FX

X
c

∥∥∥∥ FV

V
e

)
�F

(
FY

Y
d

∥∥∥∥ FV

V
e

)
.

We obtain a similar result for backward similarity as well.
We consider the material in Chapter 5 as a starting point of our research program

on concurrency in coalgebra. The material is based on joint work [45] with Bart
Jacobs and Ana Sokolova. Helpful comments from Kazuyuki Asada, John Baez,
Masahito Hasegawa, Bill Lawvere, Duško Pavlović, John Power and the participants
of CALCO-jnr workshop including Alexander Kurz are gratefully acknowledged.

1.5 Information for reading

Chapters 2–4 form a single thread, investigating coalgebras in a Kleisli category and
applying them in a case study. The topic of Chapter 5 is outside this thread; al-
though we also describe a relationship to earlier chapters, Chapter 5 can be read as
an independent material.

This thesis contains no more introductory treatment of the standard theory of
coalgebras than we have already had. See [65, 66, 86, 108, 114] for more details.

Nor have we any introductory material for basic category theory. For Chapters 2
and 3, the needed categorical background is available from the references at each
point or from one of the aforementioned standard references on coalgebras. Chapter 4
does not have many prerequisites as it is a case study. Chapter 5 is mathematically
more demanding compared to the previous chapters. Although it is meant to be
self-contained, the reader may feel more comfortable being familiar with monoidal
categories [96, Chapter VII]; Lawvere theories [82]; and with basic higher-dimensional
category theory [19, Chapter 7].

20 1 Introduction

Chapter 2

Trace semantics via coinduction

Trace semantics has been defined for various kinds of state-based systems, notably
with different forms of branching such as non-determinism vs. probability. In this
chapter we claim to identify one underlying mathematical structure behind these
“trace semantics,” namely coinduction in a Kleisli category. This claim is based on
our technical result that, under a suitably order-enriched setting, a final coalgebra in
a Kleisli category is given by an initial algebra in the category Sets. Formerly the
theory of coalgebras has been employed mostly in Sets where coinduction yields a
finer process semantics of bisimilarity. Therefore we extend the application fields of
coalgebras, providing a new instance of the principle “process semantics via coinduc-
tion.”

2.1 Overview

Trace semantics is a commonly used semantic relation for reasoning about state-based
systems. Trace semantics for labeled transition systems is found on the coarsest edge
of the linear time-branching time spectrum [39]. Moreover, trace semantics is defined
for a variety of systems, among which are probabilistic systems [122]. Our claim in
this chapter is: these various forms of “trace semantics” are instances of a general
construction, namely coinduction in a Kleisli category.

21

22 2 Trace semantics via coinduction

2.1.1 “Trace semantics” in various contexts

First we motivate our contribution through examples of various forms of “trace se-
mantics.” Think of the following three state-based, branching systems.

x
a y b

�

x′
a[13]

a[13]
1
3

y′

1
2

a[12]

z′

a[1]
�

A context-free grammar

(for Peano Arithmetic)

Terminal symbols: 0, s
Non-terminal symbol: T
Generation rules:

T → 0
T → sT

(2.1)

– The first one is a non-deterministic system with a special state � denoting
successful termination. To its state x we can assign its trace set :

tr(x) = {a, ab, abb, . . . } = ab∗ , (2.2)

that is, the set of the possible linear-time behaviors (namely words) that can
arise through an execution of the system.1 In this case the trace set tr(x) is
also called the accepted language; formally it is defined (co)recursively by the
following equations. For an arbitrary state x,

〈〉 ∈ tr(x) ⇐⇒ x→ �
a · σ ∈ tr(x) ⇐⇒ ∃y. (x

a→ y ∧ σ ∈ tr(y))
(2.3)

Here 〈〉 denotes the empty word; σ = a1a2 . . . an is a word.

– The second system has a different type of branching, namely probabilistic

branching. Here x′ a[1/3]−→ y′ denotes: at the state x′, a transition to y′ which
outputs a occurs with probability 1/3. Now, to the state x′, we can assign its
trace distribution:

tr(x) =
[
〈〉 �→ 1

3 , a �→ 1
3 ·

1
2 , a2 �→ 1

3 ·
1
2 ·

1
2 , · · ·

an �→ 1
3 ·
(

1
2

)n
, · · ·

]
, (2.4)

that is, the probability distribution over the set of linear-time behaviors.2 Its
formal (corecursive) definition is as follows.

tr(x)(〈〉) = Pr(x→ �) ,

tr(x)(a · σ) =
∑

y∈X Pr(x a→ y) · tr(y)(σ) ,
(2.5)

where Pr(. . .) denotes the probability of a transition.

1The infinite trace abω is out of our scope here: we will elaborate this point later in Section 2.4.2.
2Here again, we do not consider the infinite trace aω �→ 1/3.

2.1 Overview 23

– The third example can be thought of as a state-based system, with non-terminal
symbols as states. It is non-deterministic because a state T has two possible
transitions. It is natural to call the following set of parse-trees its “trace seman-
tics.”

tr(T) =

⎧⎨
⎩
•
0

•
s •

0

•
s •

s •
0

· · ·

⎫⎬
⎭

It is again a set of “linear-time behaviors” as in the first example, although the
notion of linear-time behaviors is different here. Linear-time behaviors—that
is, what we observe after we have resolved all the non-deterministic branchings
in the system—are now parse-trees instead of words.

2.1.1 Remark. Notice that the first system in (2.1) can be thought of as a (finitely
branching) non-deterministic automaton as described in Chapter 1. This is by iden-
tifying states which have a transition to termination �, with terminating states � in
non-deterministic automata. That is,

x1

...x

a1

an� xn

if and only if

x1

...x

a1

an xn

. (2.6)

We will come back to this point later in Remark 2.2.2.

2.1.2 Coalgebras and coinduction

In recent years the theory of coalgebras has emerged as the “mathematics of state-
based systems” [65, 66, 114]. In the categorical theory of coalgebras, an important
definition/reasoning principle is coinduction: a system (identified with a coalgebra
c : X → FX) is assigned a unique morphism beh(c) into a final coalgebra.

FX
F (beh(c))

FZ

X

c

beh(c)
Z

final∼=

The success of coalgebras is largely due to the fact that, when Sets is taken as the base
category, final coalgebra semantics is fully abstract with respect to the conventional
notion of bisimilarity : for states x and y of coalgebras X

c→ FX and Y
d→ FY ,

beh(c)(x) = beh(d)(y) ⇐⇒ x and y are bisimilar.

This is the case for a wide variety of systems (i.e. for a variety of functors F), hence
coinduction in Sets captures bisimilarity.

24 2 Trace semantics via coinduction

However, there is not so much work so far that captures other behavioral equiva-
lences (coarser than bisimilarity) by the categorical principle of coinduction. The cur-
rent work—capturing trace semantics by coinduction in a Kleisli category—therefore
extends the application fields of the theory of coalgebras.

2.1.3 Our contributions

Our technical contributions are summarized as follows. Assume that T is a monad
on Sets which has a suitable order structure; we shall denote its Kleisli category by
K�(T).

– Trace semantics via coinduction in a Kleisli category. Commutativity of the
coinduction diagram

FX
F (tr(c))

FZ

X

c

tr(c)
Z

final∼=
in K�(T),

the Kleisli category for T
(2.7)

is shown to be equivalent to the conventional recursive definition of trace se-
mantics such as (2.3) and (2.5). This is true for both trace set semantics (for
non-deterministic systems) and trace distribution semantics (for probabilistic
systems). The induced arrow tr(c) thus gives (conventional) trace semantics for
a system c.

– Identification of a final coalgebra in a Kleisli category. We show that

an initial algebra in Sets
coincides with

a final coalgebra in K�(T).

In particular, a final coalgebra in Rel is an initial algebra in Sets, because the
category Rel of sets and relations is a Kleisli category for a suitable monad.
This coincidence happens in the following two steps:

• an initial algebra in Sets lifts to an initial algebra in a Kleisli category,
due to a suitable adjunction-lifting result;
• in a Kleisli category we have initial algebra-final coalgebra coincidence.

Here we use the classical result by Smyth and Plotkin [127], namely limit-
colimit coincidence which is applicable in a suitably order-enriched cate-
gory.

Note the presence of two parameters in (2.7): a monad T and an endofunctor F , both
on Sets. The monad T specifies the branching type of systems. We have three leading

2.1 Overview 25

examples:3

– the powerset monad P modeling non-deterministic or possibilistic branching;

– the subdistribution monad D

DX = {d : X → [0, 1] |
∑
x∈X

d(x) ≤ 1}

modeling probabilistic branching; and

– the lift monad L = 1 + () modeling system with exception (or deadlock, non-
termination).

The functor F specifies the transition type of systems: our understanding of “transi-
tion type” shall be clarified by the following examples.

– In labeled transition systems (LTSs) with explicit termination—no matter if
they are non-deterministic or even probabilistic—a state either

• terminates (x→ �), or
• outputs one symbol and moves to another state (x a→ x′),

in one transition. This “transition type” is expressed by the functor FX =
1 + Σ×X, where Σ is the output alphabet and 1 = {�}.

– In context-free grammars (CFGs) as state-based systems, a state evolves into
a sequence of terminal and non-terminal symbols in a transition. The functor

FX = (Σ + X)∗

with Σ being the set of terminal symbols, expresses this transition type.

Clear separation of branching and transition types is essential in our generic treatment
of trace semantics. The transition type F determines the set of linear-time behaviors
(which is in fact given by an initial F -algebra in Sets). We model a system by a
coalgebra X

c→ FX in the Kleisli category K�(T)—see (2.7)—where F is a suitable
lifting of F in K�(T). By the definition of a Kleisli category we will easily see the
following bijective correspondence.

X
c

FX in K�(T)

X
c

TFX in Sets

Hence our system—a function of the type X → TFX—first resolves a branching of
type T and then makes a transition of type F . Many branching systems allow such
representation so that our generic coalgebraic trace semantics applies to them.

3Other examples include the monad X �→ (N ∪ {∞})X for multisets, the monad X �→ [0,∞]X

for real valuations, and the monad X �→ P(M ×) with a monoid M for timed systems (cf. [75]).
These monads can be treated in a similar way as our leading examples. We leave out the details.

26 2 Trace semantics via coinduction

2.1.4 Testing and trace semantics

Since the emergence of the theory of coalgebras, the significance of modal logics as
specification languages has been noticed by many authors. This is exemplified by
the slogan in [85]: ‘modal logic is to coalgebras what equational logic is to algebras’.
Inspired by coalgebras on Stone spaces and the corresponding modal logic, recent
developments [17, 18, 79, 80, 83, 87, 109] have identified the following situation as the
essential mathematical structure underlying modal logics for coalgebras.

CopF op

P

� A M

Sop

together with MP
δ=⇒ PF op

In fact, it is noticed in [109] that such a situation not only hosts a modal logic but
also a more general notion of testing (in the sense of [39, 130], also called testing
scenarios). Therefore we shall call the above situation a testing situation.

In the last technical section of the chapter we investigate coalgebraic trace seman-
tics for the special case T = P (modeling non-determinism) from this testing point
of view. First, we present some basic facts on testing situations, especially on the
relationship between the induced testing equivalence and final coalgebra semantics.
These two process equivalences are categorically presented as kernel pairs, which en-
ables a fairly simple presentation of the theory of coalgebraic testing. In addition,
we observe that the coinduction scheme in the Kleisli category K�(P) gives rise to a
canonical testing situation, in which the set of tests is given by an initial F -algebra.

2.1.5 Organization of the chapter

In Section 2.2 we observe that a coalgebra in a Kleisli category is an appropriate “de-
notation” of a branching system, when we focus on trace semantics. In Section 2.3 we
present our main technical result that an initial algebra in Sets yields a final coalge-
bra in K�(T). The relationship to axiomatic domain theory—which employs similar
mathematical toolkit—is also discussed here. Section 2.4 presents some examples of
the use of coinduction in K�(T) and argues that the coinduction principle is a general
form of trace semantics. In Section 2.5 we review the preceding material from the
testing point of view.

2.1.6 Bibliographical remarks

Capturing trace semantics via coinduction is the central theme of this chapter. One
of the first attempts to do so is in [116], which focuses on (non-deterministic) labeled
transition systems. The use of the Kleisli category K�(P) to accommodate non-
deterministic systems is claimed in [111] and pursued in [62]. We follow this idea.
In [111] they also present a scheme to lift a functor from Sets to a Kleisli category via
a distributive law. Their scheme constitutes a part of ours presented in Section 2.2.2.

2.2 Coalgebras in a Kleisli category 27

Talking about distributive laws, there is another separate line of studies in the
theory of coalgebras which utilize distributive laws. It is about bialgebras, concerning
about process terms as algebras, transition systems as coalgebras, and structural
operational semantics—specifying how algebra meets coalgebra—expressed in terms
of distributive laws. The seminal paper [134] commences this line of work (although
some ideas already appear in [116]), later followed by [12, 67, 75, 78, 79]. The material
later in Chapter 5 can be also seen as a further development along this line.

In this chapter the main technical ingredient that leads to identification of a fi-
nal coalgebra in K�(T) is the theory of algebras and coalgebras in order-enriched
categories. Originally it is used in the domain-theoretic semantics of programming
languages, such as in [31, 34, 35, 106, 125, 127]. Besides, identification of an initial
algebra and a final coalgebra in Rel ∼= K�(P)—which is a special case of our general
result—has played an important role in relational refinement calculus to reason about
programs involving algebraic data types [16, 101]. Relations to these references are
described in detail later in Section 2.3.3–2.3.4.

2.2 Coalgebras in a Kleisli category

In the study of coalgebras as “categorical presentations of state-based systems,” the
category Sets of sets and functions has been traditionally taken as a base category
(see e.g. [65, 114]). An important fact in such a setting is that bisimilarity is often
captured by coinduction.4

However, bisimilarity is not the only process equivalence. In some applications
one would like coarser equivalences, for example in order to abstract away internal
branching structures. One of such coarser semantics, which has been extensively
studied, is trace equivalence. Trace equivalence appeared in Chapter 1 as language
equivalence of non-deterministic automata. Another example is in the process algebra
CSP [55] where trace semantics is used as an operational model. Trace equivalence
is coarser than bisimilarity, as the classic example (1.8) of “trace-equivalent but not
bisimilar” states demonstrates.

It is first noticed in [111] that the Kleisli category for the powerset monad is an
appropriate base category for trace semantics for non-deterministic systems. This
observation is pursued further in [43, 44, 47, 62]. In [42] it is recognized that the same
is true for the subdistribution monad for probabilistic systems. The current chapter
of this thesis provides a unified framework which yields those preceding results, in
terms of Cppo-enrichment of a Kleisli category; see Section 2.2.3. In this section we
first aim to justify the use of coalgebras in a Kleisli category.

4Non-examples include LTSs with unbounded branching degree; this is why we exclusively con-
sidered finitely branching systems in the introduction (Chapter 1). LTSs are modeled as coalgebras
for FX = P(Σ × X)—using P instead of Pfin. Lambek’s Lemma readily shows that this choice of

F does not have a final coalgebra in Sets, because it would imply an isomorphism Z
∼=→ P(Σ × Z)

which is impossible for cardinality reasons.

28 2 Trace semantics via coinduction

2.2.1 Monads and Kleisli categories

Here we recall the relevant facts about monads and Kleisli categories. For simplicity
we exclusively consider monads on Sets.

A monad on Sets is a categorical construct. It consists of

– an endofunctor T on Sets;

– a unit natural transformation η : id⇒ T , that is, a function X
ηX→ TX for each

set X satisfying a suitable naturality condition; and

– a multiplication natural transformation μ : T 2 ⇒ T , consisting of functions
T 2X

μX→ TX with X ranging over sets.

The unit and multiplication are required to satisfy the following compatibility condi-
tions.

TX
ηTX

id

T 2X

μX

TX
TηX

id

T 3X
TμX

μTX

T 2X

μX

TX T 2X μX
TX

See [11, 96] for the details.
The monad structures play a crucial role in modeling “branching.” Intuitively,

the unit η embeds a non-branching behavior as a trivial branching (with only one
possibility to choose). The multiplication μ “flattens” two successive branchings into
one branching, abstracting away internal branchings:

x
•

• y
• z

μ�−→
x

• y
z

(2.8)

The following examples of monads will illustrate how this flattening phenomenon is
a crucial feature of trace semantics.

In this chapter we concentrate on the three monads mentioned in Section 2.1: L,
P and D.

– The lift monad L = 1 + ()—where we denote 1 = {⊥} with ⊥ meaning dead-
lock—has a standard monad structure induced by a coproduct. For example,
the multiplication μL

X : 1 + 1 + X → 1 + X carries x ∈ X to itself and both ⊥’s
to ⊥.

– The powerset monad P has a unit given by singletons and a multiplication given
by unions. The monad P models non-deterministic branching: the “flattening”
in (2.8) corresponds to the following application of the multiplication of P.

PPX
μP

X PX{
{x, y}, {z}

}
{x, y, z}

2.2 Coalgebras in a Kleisli category 29

The monad P’s action on arrows (as a functor) needs mention as well. It is
given by direct images: for f : X → Y , the function Pf : PX → PY carries a
subset u ⊆ X to the subset {f(x) | x ∈ u} ⊆ Y .

– The subdistribution monad D has a unit given by the Dirac distributions.

X
ηD

X DX

x

[
x �→ 1
x′ �→ 0 (for x′ �= x)

]

Its multiplication is given by multiplying the probabilities along the way. That
is,

μD
X(ξ) = λx.

∑
d∈DX

ξ(d) · d(x) ,

which models “flattening” of the following kind.

x
•

1/2

1/2•
1/3

2/3
y

•
1

z

μ�−→
x

•
1/6

2/3

1/6 y

z

,

that is, ⎡
⎣
[

x �→ 1/2
y �→ 1/2

]
�→ 1/3

[z �→ 1] �→ 2/3

⎤
⎦ μ�−→

⎡
⎣ x �→ 1/6

y �→ 1/6
z �→ 2/3

⎤
⎦ .

The monad D’s action on arrows (as a functor) is given as a suitable adaptation
of “direct images.” Namely, for f : X → Y , the function Df : DX → DY
carries d ∈ DX to [y �→

∑
x∈f−1(y) d(x)] ∈ DY .

Given any monad T , its Kleisli category K�(T) is defined as follows. Its objects are
the objects of the base category, hence sets in the current setting. An arrow X → Y
in K�(T) is the same thing as an arrow X → TY in the base category, here Sets.

X Y in K�(T)

X TY in Sets

Identities and composition of arrows are defined using the unit and the multiplication
of T . Moreover, there is a canonical adjunction

Sets
J

K
⊥ K�(T) (2.9)

30 2 Trace semantics via coinduction

in which the “Kleisli inclusion” functor J carries X
f−→ Y in Sets to X

ηY ◦f−→ Y in
K�(T); its right adjoint K carries

X
f−→ Y in K�(T), that is, a function X

f−→ TY in Sets

to TX
Tf−→ TTY

μY−→ TY in Sets. See [11, 96] for details.
The relevance of Kleisli categories in our coalgebraic expedition is that a Kleisli

category can be thought of as a category where the branching is implicit. For example,
an arrow X → Y in the Kleisli category K�(P) is a function X → PY hence a “non-
deterministic function.” When T = D, then by writing X → Y in the Kleisli category
we mean a function with probabilistic branching. Moreover, composition of arrows in
K�(T) is given by

X
f−→ Y

g−→ Z in K�(T) = X
f−→ TY

Tg−→ T 2Z
μZ−→ TZ in Sets;

that is, making one transition (by g) after another (by f), and then flattening (by
μZ). For example, this general definition instantiates as follows when T = D. Given

X
f→ Y

g→ Z in K�(D),

(g ◦ f)(x)(z) =
∑

y∈Y f(x)(y) · g(y)(z) .

2.2.1 Remark. Our use of the sub-distribution monad instead of the distribution
monad

D=1(X) = {d : X → [0, 1] |
∑
x∈X

d(x) = 1}

needs some justification. Looking at the trace distribution (2.4), one sees that the
probabilities add up only to 2/3 and not to 1; this is because the infinite trace (namely
aω �→ 1/3) are not present. Therefore in this example, although the state-based
system can be modeled as a coalgebra in the category K�(D=1), its trace semantics
can only be expressed as an arrow in K�(D).

When a system is modeled as a coalgebra in K�(D), a state may have a (sub)-
distribution over possible transitions which adds up to less than 1. In that case the
missing probability can be understood as the probability for deadlock.

Technically, we use the monad D instead of D=1 because we need the minimum ele-
ment (a bottom) so that the Kleisli category becomes Cppo-enriched (Theorem 2.3.3).
A bottom is available for D as the zero distribution [x �→ 0], but not for D=1.

2.2.2 Lifting functors by distributive laws

In this chapter a state-based system is presented as a coalgebra X → FX in K�(T),
where F : K�(T) → K�(T) is a lifting of F : Sets → Sets. This lifting F �→ F is
equivalent to a distributive law FT ⇒ TF . The rest of this section elaborates on this
point.

Various kinds of state-based, branching systems are expressed as a function of the
form X

c→ TFX with T a monad (for branching type) and F a functor (for transition
type). The following examples are already hinted at in the previous section.

2.2 Coalgebras in a Kleisli category 31

– For T = P and F = 1 + Σ × , a function X
c→ TFX is an LTS with explicit

termination. For example, consider the following system

X
c P(1 + Σ×X)

x {�, (a1, x1), (a2, x2)}

where � is the element of 1.5 Then the state x can make three possible tran-
sitions, namely: x → � (successful termination), x

a1→ x1, and x
a2→ x2, when

written in a conventional way.

– By replacing T = P by D, but keeping F the same, we obtain a probabilistic
system such as the one in the middle of (2.1). For example,

X
c D(1 + Σ×X)

x′

⎡
⎣ (a, y′) �→ 1/3

(a, z′) �→ 1/3
� �→ 1/3

⎤
⎦

.

– For T = P and F = (Σ +)∗, a function X
c→ TFX is a CFG with Σ the

terminal alphabet (but without finiteness conditions e.g. on the state space).
See [43] for more details.

2.2.2 Remark. LTSs with explicit termination � can be roughly seen as non-
deterministic automata (Remark 2.1.1). Coalgebraically, it is because of the following
isomorphism (which is natural in X).

2× Pfin(Σ×X)
∼= Pfin(1 + Σ×X) (2.10)

It establishes an isomorphism between

(2× Pfin(Σ×))-coalgebras and Pfin(1 + Σ×)-coalgebras ,

hence between (finitely branching) non-deterministic automata and (finitely branch-
ing) LTSs with �. These systems are almost LTSs with � (which we described before
this remark), except for the additional assumption of finite branching.

We shall not take special care of this condition of finite branching. Technically
speaking, the subsequent results work for T = P but not for T = Pfin; it is because
we need a Cppo-enriched structure in K�(T). To illustrate the problem, look at the
first system in (2.1). Although every branching in the system is finite, its trace map
(which we will accommodate in K�(T)) is no longer “finitely branching.”

5Note that the singleton 1 = {�} here in F = 1 + Σ × has a different interpretation from
1 = {⊥} in T = L = 1 + . The intuition is as follows. On the one hand, when an execution hits
successful termination �, it yields its history of observations as its trace. On the other hand, when
an execution hits deadlock ⊥ then it yields no trace no matter what is the history before hitting ⊥.
This distinction will be made formal in Example 2.4.3.

32 2 Trace semantics via coinduction

All the systems listed above are modeled by a function X
c→ TFX, hence an arrow

X
c→ FX in K�(T). Our question here is: is c a coalgebra in K�(T)? In other words:

is the functor F on Sets also a functor on K�(T)?
Hence, to develop a generic theory of traces in K�(T), we need to lift F to a

functor F on K�(T). A functor F is said to be a lifting of F if the following diagram
commutes. Here J is the left adjoint in (2.9).

K�(T) F K�(T)

Sets
J

F
Sets

J (2.11)

The following fact is presented in [103]; see also [92, 93]. Its proof is straightforward.

2.2.3 Lemma. A lifting F of F is in bijective correspondence with a distributive
law λ : FT⇒TF . A distributive law λ is a natural transformation which is compatible
with T ’s monad structure, in the following way.

FX
FηX

ηFX

FTX
λX

FT 2X
λTX

FμX

TFTX
TλX

T 2FX
μFX

TFX FTX
λX

TFX �
A distributive law λ induces a lifting F as follows. On objects: FX = FX. Given
f : X → Y in K�(T), we need an arrow Ff : FX → FY in K�(T). Recall that
f is a function X → TY in Sets; one defines Ff to be the arrow in K�(T) which
corresponds to the function

FX
Ff−→ FTY

λY−→ TFY in Sets .

Conversely, given a lifting F of F , one obtains a distributive law in the following way.

TX
id−→ TX in Sets

TX −→ X in K�(T)

FTX −→ FX in K�(T)
applying F to the arrow

FTX −→ TFX in Sets FX = FX on objects, see (2.11)

A distributive law specifies how a transition (of type F) “distributes” over a
branching (of type T). Let us look at an example. For T = P and F = 1+Σ× (the
combination for LTSs with explicit termination), we have the following distributive
law.

1 + Σ× (PX)
λX P(1 + Σ×X)

� {�}
(a, S)

{
(a, x) | x ∈ S

}

2.2 Coalgebras in a Kleisli category 33

For example,

x
• a · y

z

λ�−→
· a

x
• · a y

· a
z

,

that is
(
a, {x, y, z}

) λ�−→
{
(a, x), (a, y), (a, z)

}
,

where waving arrows � denote branchings.
Throughout this chapter we need the global assumption that a functor F has a

lifting F on K�(T), or equivalently, that there is a distributive law λ : FT ⇒ TF .
Now we present some sufficient conditions for existence of λ. In most examples one
of these conditions holds.

First, take T = P, in which case we have K�(P) ∼= Rel, the category of sets and
binary relations. We can provide the following condition that uses relation liftings,
whose definition is found e.g. in [62].

2.2.4 Lemma ([133]). Let F : Sets → Sets be a functor that preserves weak pull-
backs. Then there exists a distributive law λ : FP ⇒ PF given by

λX(u) =
{

v ∈ FX | (v, u) ∈ RelF (∈X)
}

,

where u ∈ FPX and RelF (∈X) ⊆ FX × FPX is the F -relation lifting of the mem-
bership relation ∈X . �
In fact, the functor F : Rel→ Rel induced by this distributive law carries an arrow
R : X → Y in K�(P)—which we can identify with a binary relation between X and
Y —to its F -relation lifting RelF (R). That is,

FR = RelF (R) : FX −→ FY (2.12)

in K�(P) ∼= Rel.
Now let us consider a monad T which is other than P. When a monad T is

commutative and a functor F is shapely, we can provide a canonical distributive law.
The class of such monads and functors is wide and all the examples in this chapter
are contained.

– A commutative monad [81] is intuitively a monad whose corresponding algebraic
theory has only commutative operators. We exploit the fact that a commutative
monad is equipped with an arrow called double strength

dstX,Y : TX × TY −→ T (X × Y) (2.13)

for any sets X and Y ; the double strength must be compatible with the monad
structure of T in an obvious way.

34 2 Trace semantics via coinduction

Our three examples of monads are all commutative, with the following double
strengths.

dstLX,Y (u, v) =
{

(u, v) if u ∈ X and v ∈ Y,
⊥ if u = ⊥ or v = ⊥,

dstPX,Y (u, v) = u× v ,

dstDX,Y (u, v) = λ(x, y). u(x) · v(y) .

(2.14)

– The family of shapely functors6 [69] on Sets is defined inductively by the fol-
lowing BNF notation:

F ::= id | Σ | F1 × F2 |
∐

i∈IFi ,

where Σ denotes the constant functor into an (arbitrary) set Σ. Notice that
taking an infinite product is not allowed, nor an exponentiation to the power of
an infinite set. This is in order to ensure that we find an initial F -algebra as a
suitable ω-colimit—see Proposition A.1.1.

2.2.5 Lemma. Let T : Sets→ Sets be a commutative monad, and F : Sets→ Sets
a shapely functor. Then there is a distributive law λ : FT ⇒ TF .

Proof. The construction of a distributive law is done inductively on the construction
of shapely F .

– If F is the identity functor, then the λ is the identity natural transformation
T ⇒ T .

– If F is a constant functor, say X �→ Σ, then λ is the unit ηΣ : Σ → TΣ at
Σ ∈ Sets.

– If F = F1×F2 we use induction in the form of distributive laws λFi : FiT ⇒ TFi

for i ∈ {1, 2} to form the composite:

F1TX × F2TX
λF1 × λF2

TF1X × TF2X
dst

T (F1X × F2X) .

– If F is a coproduct
∐

i∈I Fi then we use laws λFi : FiT ⇒ TFi for i ∈ I in:

∐
i∈I Fi(TX)

[T (κi) ◦ λFi]i∈I
T (
∐

i∈I FiX) .

It is straightforward to check that such λ is natural and compatible with the monad
structure. �

Note that the results in the sequel rely on existence of a distributive law, but
not on e.g. commutative T and shapely F . The latter is a sufficient condition for
the former but not a necessary one, although this marginal generality is yet to be
exploited in our examples.

6Shapely functors as they are called here are referred to as polynomial functors by some authors,
although other authors allow infinite powers or the powerset construction in their “polynomial”
functors.

2.2 Coalgebras in a Kleisli category 35

2.2.3 Order-enriched structures of Kleisli categories

The notion of branching naturally involves a partial order: one branching is bigger
than another if the former offers “more possibilities” than the latter. Formally, this
order appears as the Cppo-enriched structure of a Kleisli category. It plays an
important role in the initial algebra-final coalgebra coincidence in Section 2.3.1.

A Cppo-enriched category C is a category where:

– Each homset C(X,Y) carries a partial order � as in

X

g

f

� Y

which makes C(X,Y) an ω-cpo with a bottom. This means:

• for an increasing ω-chain of arrows from X to Y ,

f0 � f1 � . . . : X −→ Y ,

there exists its join
⊔

n<ω fn : X → Y ;
• for any X and Y there exists a bottom arrow ⊥X,Y : X → Y which is the

minimum in C(X,Y).

– Moreover, composition of arrows is continuous as a function C(X,Y)×C(Y,Z)→
C(X,Z). This means preservation of the following joins:7

g ◦
(⊔

n<ω fn

)
=

⊔
n<ω(g ◦ fn) and

(⊔
n<ω fn

)
◦ h =

⊔
n<ω(fn ◦ h) .

Note that composition need not preserve bottoms (i.e. it is not necessarily
strict).

This is in fact an instance of a more general notion of V-enriched categories where V is
the category Cppo of pointed (i.e. with ⊥) cpo’s and continuous (but not necessarily
strict) functions. See [19, 73, 89] for more details on enriched category theory, and [2]
on cpo’s and domain theory.

2.2.6 Lemma. For our three examples L, P and D of a monad T , the Kleisli category
K�(T) is Cppo-enriched. Moreover, composition of arrows is left-strict: ⊥ ◦ f = ⊥.

The left-strictness of composition will be necessary later.
Proof. Notice first that a set TY for T ∈ {L,P,D} carries a cpo structure with ⊥.
The set LY = {⊥}+ Y carries the flat order with a bottom:

y y′ y′′ · · ·

⊥
7This component-wise preservation of joins is equivalent to the continuity of the composition

function. See [2, Lemma 3.2.6].

36 2 Trace semantics via coinduction

embodying the idea that ⊥ denotes non-termination or deadlock—in contrast to �
for successful termination. The set PY carries an inclusion order; in DY we have
the pointwise order—d � e if d(y) ≤ e(y) for each y ∈ Y . The bottom element in
DY is the zero distribution [y �→ 0]: this belongs to the set DY because D is the
sub-distribution monad.

The cpo structure of a homset K�(T)(X,Y) comes from that of TY in a pointwise
manner:

X

g

f

� Y if and only if ∀x ∈ X. f(x) �TY g(x) .

It is laborious but straightforward to show that composition in K�(T) is continuous
and left-strict. �

We are concerned with coalgebras X → FX in the category K�(T), which we
assume is Cppo-enriched. Hence it comes natural to require that the functor F
should be somehow compatible with the Cppo-enriched structure of K�(T). The
obvious choice is to require that F is a Cppo-enriched functor (see e.g. [19]), i.e. F is
locally continuous in this setting. It means that for an increasing ω-chain fn : X → Y ,
we have

F (
⊔

n<ω

fn) =
⊔

n<ω

(Ffn) .

This is indeed the assumption universally chosen in axiomatic domain theory; we will
come back to this point later in Section 2.3.3. However, for our later purpose, only
local monotonicity is sufficient: f � g implies Ff � Fg.

For a monad T ∈ {L,P,D} and a shapely functor F (recall Lemma 2.2.5), the
lifted F is indeed locally continuous. We emphasize again that this does not imply
our results in Section 2.3 hold exclusively for shapely functors: being shapely is a
sufficient condition for the assumption of those later results.

2.2.7 Lemma. Let F be a shapely functor and T ∈ {L,P,D}. The lifting F :
K�(T)→ K�(T) induced by Lemma 2.2.5 is locally continuous.

Proof. By induction on the construction of shapely functors.

– F = id, the identity functor. Then F = id which satisfies the condition.

– F = Σ, a constant functor. Then F maps every arrow to the identity map on
Σ in K�(T). This is obviously locally continuous.

– F = F1 × F2. First notice that, for f : X → Y in K�(T), we obtain Ff as the
following composite in Sets.

F1X × F2X
F1f × F2f

Ff

TF1Y × TF2Y
dstF1Y,F2Y

T (F1Y × F2Y)

2.3 Final coalgebra in a Kleisli category 37

Because the order in K�(T)(FX,FY) is pointwise, it suffices to show the fol-
lowing: dst : TX × TY → T (X × Y) is a continuous map between cpo’s. It is
easy to check that this is indeed the case. See (2.14).

– F =
∐

j∈J Fj . For f : X → Y in K�(T), we obtain the map Ff as the composite
[Tκj]j∈J ◦

∐
j∈J K�(Fj)(f) in Sets. Since the order on the homset is pointwise,

it suffices to show that each Tκj : TFjY → T (
∐

j∈J FjY) is continuous. This
is easy. �

2.3 Final coalgebra in a Kleisli category

In this section we shall prove our main technical result of this chapter: an initial F -
algebra in Sets yields a final F -coalgebra in K�(T). It happens in the following two
steps: first, an initial algebra in Sets is lifted to an initial algebra in K�(T); second we
have the initial algebra-final coalgebra coincidence in K�(T). For the latter we use the
classical result [127] of limit-colimit coincidence. This is where the Cppo-enriched
structure of K�(T) plays a role.

In the proof we use two standard constructions: initial/final sequences [5] and
limit-colimit coincidence [127]. The reader who is not familiar with these constructions
is invited to look at Appendices A.1 and A.2 where we briefly recall them.

2.3.1 Remark. The proof of our main theorem (Theorem 2.3.3) can be simplified if
we suitably strengthen the assumptions. First, if we assume local continuity of the
lifted functor F (instead of local monotonicity that is assumed in our main theorem),
then the initial algebra-final coalgebra coincidence follows from a standard result in
axiomatic domain theory; see Section 2.3.3. Furthermore, for the special case T = P
in which case K�(P) ∼= Rel, the initial algebra-final coalgebra coincidence is almost
obvious due to the duality Rel ∼= Relop; see Section 2.3.2.

2.3.1 An initial algebra in Sets yields a final coalgebra in K�(T)

First, it is standard that an initial algebra in Sets is lifted to an initial algebra
in K�(T). Such a phenomenon is studied for instance in [33, 106] in the context
of combining datatypes (modeled by an initial algebra) and effectful computations
(modeled by a Kleisli category). For this result we do not need an order structure.

2.3.2 Proposition. Let T be a monad and F be a endofunctor, both on a category
C. Assume that we have a distributive law FT ⇒ TF—or equivalently, we have a
lifting F on K�(T). If F has an initial algebra α : FA

∼=→ A in C, then

Jα = ηA ◦ α : FA −→ A in K�(T)

is an initial F -algebra. Here J is the canonical Kleisli left adjoint as in (2.9).

We will use an instance of this result for C = Sets.

38 2 Trace semantics via coinduction

Proof. It follows from [54, Theorem 2.14] that a distributive law lifts the canonical
Kleisli adjunction to an adjunction between the categories AlgF and AlgF of algebras.

AlgF

J ′

⊥ AlgF

C

J

K
⊥F K�(T) F

The left adjoint J ′ preserves an initial object (see e.g. [96]). �
Second, we use the initial algebra-final coalgebra coincidence in K�(T)—which

holds in a suitable order-enriched setting—to identify a final coalgebra in K�(T).
This is our main results of the chapter.

2.3.3 Theorem (Main theorem of Chapter 2). Assume the following conditions.

1. A monad T on Sets is such that its Kleisli category K�(T) is Cppo-enriched
and composition in K�(T) is left-strict.

2. For an endofunctor F on Sets, we have a distributive law λ : FT ⇒ TF .
Equivalently, F has a lifting F on K�(T). Moreover, the lifting F is locally
monotone.

3. The functor F preserves ω-colimits in Sets, hence has an initial algebra via the
initial sequence (see Proposition A.1.1).

Such a triple (F, T, λ) shall be called a trace situation.
Then the initial F -algebra α : FA

∼=→ A yields a final F -coalgebra in K�(T) by

(Jα)−1 = J(α−1) = ηFA ◦ α−1 : A −→ FA in K�(T) .

We first present the main line of the proof. Some details are provided in the form of
subsequent lemmas. Note that the assumptions are satisfied by T ∈ {L,P,D} and
shapely F ; see Lemmas 2.2.6 and 2.2.5.

Proof. By the assumption (3) we obtain an initial algebra via the initial sequence in
Sets.

In Sets A (colimit)

α−1∼=· · · Fn−1 ¡
Fn0

αn

Fαn−1

Fn+10

αn+1

Fαn

· · ·

FA (colimit)

α (2.15)

Here 0 = ∅ ∈ Sets is initial and ¡ : 0→ X is the unique arrow from 0 to an arbitrary
X. We apply the functor J : Sets→ K�(T) to the whole diagram. Since a left adjoint

2.3 Final coalgebra in a Kleisli category 39

J preserves colimits, the two cocones in the following diagram are both colimits again.

In K�(T) A (colimit)

Jα−1∼=· · · JFn−1 ¡
Fn0

Jαn

JFαn−1

Fn+10

Jαn+1

JFαn

· · ·

FA (colimit)

Jα (2.16)

The ω-chain in this diagram is in fact the initial sequence for the functor F (Lemma
2.3.4) because, for example, a left adjoint J preserves initial objects. Moreover the
lower cone is the image of the upper cone under F because JF = FJ ; see the di-
agram (2.11). Hence the diagram (2.16) is equal to the following one. Recall that
FX = FX on objects.

In K�(T) A (colimit)

Jα−1∼=· · · F
n−1

¡
F

n
0

Jαn

FJαn−1

F
n+1

0

Jαn+1

FJαn

· · ·

FA (colimit)

Jα (2.17)

Thus Proposition A.1.1 yields that Jα : FA
∼=→ A is an initial F -algebra. This can be

seen as a more concrete proof of Proposition 2.3.2.
Now we show the initial algebra-final coalgebra coincidence in K�(T). This is done

by reversing all the arrows in (2.17) and transforming the diagram into the one of the
final sequence and its limits.

We notice (Lemma 2.3.6) that each arrow F
n

¡ in the initial sequence is an em-
bedding (in the sense of embedding-projection pairs; see Definition A.2.1). Hence
the limit-colimit coincidence Theorem A.2.5 says that every arrow in the diagram is
an embedding. Note that Jα and Jα−1, inverse to each other, form an embedding-
projection pair.

By taking the corresponding projections—they are uniquely determined (Lemma A.2.2)
and are denoted by ()P —we obtain the next diagram. The limit-colimit coincidence
Theorem A.2.5 says that the two resulting cones are both limits. It is also obvious
that the whole diagram commutes.

In K�(T) A (limit)

(Jα−1)P∼=· · ·
(F

n−1
¡)P

F
n
0

(Jαn)P

(FJαn−1)P

F
n+1

0

(Jαn+1)P

(FJαn)P

· · ·

FA (limit)

(Jα)P
(2.18)

40 2 Trace semantics via coinduction

The ωop-chain here is indeed a final sequence: Lemma 2.3.5 shows—using the assump-
tion (1) on left-strictness—that 0 is also final in K�(T), and according to Lemma 2.3.6
we have (F

n
¡)P = F

n
! where ! : X → 0 is the unique arrow to the final object 0 in

K�(T). As to the lower cone we have
(
FJαn

)P = F
(
(Jαn)P

)
by Lemma 2.3.7.

Hence the diagram (2.18) is equal to the following one, showing the final sequence
for F , its limit (the upper one) and that limit mapped by F (the lower one) which is
again a limit.

In K�(T) A (limit)

Jα∼=· · · F
n−1

!
F

n
0

(Jαn)P

F (Jαn−1)P

F
n+1

0

(Jαn+1)P

F (Jαn)P

· · ·

FA (limit)

Jα−1
(2.19)

By Proposition A.1.2 we conclude that Jα−1 is a final F -coalgebra. �
In the remainder of this section the lemmas used in the above proof are presented.

We work with a trace situation (F, T, λ), i.e. those which satisfy the assumptions as
in Theorem 2.3.3.

2.3.4 Lemma. The ω-chain in the diagram (2.16) is indeed the initial sequence for
F . That is, we have for each n < ω,

JFn
(

¡ Sets
)

= F
n(

¡K�(T)
)

: JFn0 −→ JFn+10 in K�(T),

where ¡ Sets : 0→ F0 in Sets and ¡K�(T) : 0→ F0 in K�(T) denote the unique maps.

Proof. By induction on n. For n = 0 the two maps are equal due to initiality of
J0 = 0 in K�(T). For the step case we use the commutativity JF = FJ of (2.11). �
2.3.5 Lemma. The empty set 0 is both an initial and a final object in K�(T).

In particular, this implies that the object T0 is final in Sets, hence T0 ∼= 1.

Proof. The functor J : Sets→ K�(T) preserves initial objects since it is a left adjoint.
Therefore 0 = J0 is initial in K�(T). Finality follows essentially from the left-strictness
assumption: for each set X there exists at least one arrow X → 0 in K�(T), for
example ⊥X,0. To show the uniqueness of such an arrow, take an arbitrary arrow
f : X → 0 in K�(T). Recalling that the bottom map ⊥0,0 : 0→ 0 is also the identity
arrow in K�(T) because of initiality, we obtain

f = id ◦ f = ⊥0,0 ◦ f
(∗)
= ⊥X,0 ,

where the compositions are taken in K�(T) and the equality marked by (∗) holds by
left-strictness of composition. �

2.3 Final coalgebra in a Kleisli category 41

2.3.6 Lemma. Each arrow F
n

¡ in the initial sequence for F , as in the diagram
(2.17), is an embedding. Its corresponding projection is given by

(
F

n
¡
)P = F

n
! in Fn0

F
n

¡

Fn+10
F

n
!

.

Proof. We show that (F
n

¡ , F
n

!) is an embedding-projection pair for all n < ω. We
have F

n
! ◦ F

n
¡ = id because ! ◦ ¡ = id. For the other half we have

F
n

¡ ◦ F
n

! = F
n
(¡ ◦ !)

= F
n
(⊥0,F0 ◦ !) initiality of 0 in K�(T)

= F
n
(⊥F0,F0) composition is left-strict

� F
n
(id) = id F is locally monotone. �

2.3.7 Lemma. We have
(
FJαn

)P = F
(
(Jαn)P

)
. Hence the lower cone in the

diagram (2.18) is the image of the upper cone under F .

Proof. It is easy to check that
(
FJαn, F

(
(Jαn)P

))
indeed form an embedding-

projection pair. Therein we use the monotonicity of F ’s action on arrows. �
2.3.2 Simpler proof in K�(P) ∼= Rel

When T = P we have the self-duality

Op : K�(P)op
∼=−→ K�(P) .

This is because of the following bijective correspondence between functions

X
f
PY in Sets

Y
f∨

PX in Sets

given by f∨(y) = {x ∈ X | y ∈ f(x)}. Recalling K�(P) ∼= Rel, this mapping f �→ f∨

carries a relation to its opposite relation.
Due to this “global” duality K�(P) ∼= K�(P)op, the proof of Theorem 2.3.3 is

drastically simplified for T = P. It essentially relies on the lifted self duality AlgF
∼=

AlgF
op , where the latter is isomorphic to (CoalgF)op. We do not need here an order

structure of K�(P) nor local monotonicity of F .

2.3.8 Theorem. Let F : Sets → Sets be a functor which preserves weak pullbacks,
and F : K�(P)→ K�(P) be its lifting induced by relation lifting (Lemma 2.2.4). Then
an initial F -algebra in Sets yields a final F -coalgebra in K�(P).

42 2 Trace semantics via coinduction

Proof. We have the following situation because of the self-duality of K�(P).

Sets
J

K
⊥

F

K�(P)
Opop

∼=
F

K�(P)op

F
op

The adjunction J � K and the isomorphism Op : K�(P)op ∼=→ K�(P) lift to those
between the categories of algebras.

AlgF

J ′

⊥ AlgF

(Op′)op

∼=
AlgF

op
∼= (CoalgF)op

Sets
J

K
⊥

F

K�(P)
Opop

∼=
F

K�(P)op

F
op

Indeed, J � K lifts due to Proposition 2.3.2; the lifted isomorphism Op′ : AlgF

∼=→
AlgF

op is because of the following commutativity:

K�(P)op
Op

F
op

K�(P)
F

K�(P)op
Op

K�(P)
(2.20)

which is because: FR = RelF (R) (see (2.12)); and taking relation liftings is com-
patible with opposite relations (i.e. RelF (Rop) = (RelF R)op, see [58]). Moreover the
category AlgF

op is obviously isomorphic to (CoalgF)op.
Therefore an initial object in AlgF is carried to an initial object in (CoalgF)op,

hence to a final object in CoalgF . �
For monads such as T = D a “global” self-dualityK�(T) ∼= K�(T)op is not available.

Instead, in the proof of Theorem 2.3.3, we exploit the “partial” duality which holds
between the colimit/limit of the initial/final sequence.

2.3.3 Related work: axiomatic domain theory

The initial algebra-final coalgebra coincidence is heavily exploited in the field of ax-
iomatic domain theory, e.g. in [31, 34, 35, 125]. There, categories which have an initial
algebra and a final coalgebra coinciding with each other, for each endofunctor, are
called algebraically compact categories. They draw special attention as suitable “cate-
gories of domains” for denotational semantics of datatype construction. The relevance
comes as follows.

Let C be a “category of domains.” One thinks of an object of the category C as a
type. A “recursive datatype constructor” is presented as a bifunctor G : Cop×C→ C.

2.3 Final coalgebra in a Kleisli category 43

Note the presence of both covariance and contravariance. One expects that such a
category C has a canonical fixed point FixG such that

G(Fix G,Fix G) ∼=→ FixG ,

which represents the recursive type determined by the datatype constructor G. Freyd [34]
showed that if C is algebraically compact, then one can construct such a fixed point
as a suitable initial algebra; moreover this fixed point is shown by Fiore [31] to be a
canonical one in a suitable sense. The rough idea here is that the covariant part of G
is taken care of by an initial algebra; the contravariant part is by a final coalgebra;
the initial algebra-final coalgebra coincidence yields a fixed point of overall G.

Typical examples of algebraically compact categories are enriched over Cppo or
one of its variants. This conforms the traditional use of the word “domain” for certain
cpo’s (e.g. in [2]).

Although in this chapter we utilize the initial algebra-final coalgebra coincidence
result in K�(T), we are not so much interested in algebraic compactness of K�(T).
This is because our motivation is different from that of axiomatic domain theory. In
studying trace semantics for coalgebras, we need not deal with every endofunctor on
K�(T), but only such an endofunctor F which is a lifting of F : Sets→ Sets.

Local continuity vs. local monotonicity In axiomatic domain theory, Cppo-
enriched categories are said to be algebraically compact because, “in a 2-category
setting” [35], every endofunctor has an initial algebra and a final coalgebra. Concretely
this means: “every locally continuous functor.”

In this spirit, we could have made a stronger assumption of F ’s local continu-
ity in Theorem 2.3.3 instead of local monotonicity. If we do so, in fact, the proof
of Theorem 2.3.3 becomes much simpler: the following proposition (Lemma in [35,
p.98]) immediately yields the initial algebra-final coalgebra coincidence for a locally
continuous F .

2.3.9 Proposition ([35]). Let D be a Cppo-enriched category whose composition is
left-strict, and G : D → D be a locally continuous endofunctor. An initial algebra
β : GB

∼=→ B, if it exists, yields a final coalgebra β−1 : B
∼=→ GB.

Proof. Given a coalgebra d : Y → GY , the function

Φ : D(Y,B) −→ D(Y,B) , f �−→ β ◦ Gf ◦ d

is continuous due to the local continuity of G. Hence by the Knaster-Tarski theorem
it has the least fixed point

⊔
n<ω Φn(⊥); this proves existence of a morphism from d

to β−1.
GY GB

Y
d

B
β−1∼=

Now we shall show its uniqueness. Assume that g : Y → B is a morphism
of coalgebras as above, that is, Φ(g) = g. Similarly to Φ, we define a function

44 2 Trace semantics via coinduction

Ψ : D(B,B) → D(B,B) as the one which carries h : B → B to β ◦ Gh ◦ β−1. We
have⊔

n Φn(⊥) =
⊔

n Φn(Y
g→ B

⊥→ B) composition is left-strict, so ⊥ ◦ g = ⊥
=
⊔

n

(
Ψn(⊥) ◦ Φn(g)

)
Φn(⊥ ◦ g) = Ψn(⊥) ◦ Φn(g), by induction

=
(⊔

n Ψn(⊥)
)
◦
(⊔

n Φn(g)
)

composition is continuous
=
⊔

n Φn(g)
⊔

n Ψn(⊥) = id, (∗)
= g Φ(g) = g by assumption.

Here (∗) holds because
⊔

n Ψn(⊥), being a fixed point for Ψ, is the unique morphism
of algebras from β to β. This shows that the morphism g must be the least fixed
point of Φ, which is unique. �

For our main Theorem 2.3.3 of this chapter we can do with only local monotonicity
of the lifted functor F , by taking a closer look at the initial/final sequences. However
at this stage it is not clear how much we gain from this generality: up to now we have
not found an example where the functor F is only locally monotone (and not locally
continuous).

2.3.4 Related work: functional programming

Datatypes and effects In a different context of functional programming, the
work [106] also studies initial algebras and final coalgebras in a Kleisli category. The
motivation there is to combine datatypes and effects. More specifically, an initial al-
gebra and a final coalgebra support the fold and the unfold operators, respectively,
used in recursive programs over datatypes. A computational effect is presented as a
monad, and its Kleisli category is the category of effectful computations.

The difference between [106] and the current work is as follows. In [106], the orig-
inal, base category of pure functions is already assumed to be algebraically compact;
the paper studies the conditions for the base category’s algebraic compactness to be
carried over to a Kleisli category. In contrast, in the current work, it is a monad—
with a suitable order structure, embodying the essence of “branching”—which yields
the initial algebra-final coalgebra coincidence in a Kleisli category; the coincidence is
not present in the original category Sets.

Relational refinement calculus In a yet another context, initial algebras in the
category Rel of sets and relations are investigated in [16, 101]. The category Rel is
isomorphic to the Kleisli category K�(P), an instance of our general Kleisli framework.

The aim in [16, 101] is to develop a refinement calculus which involves algebraic
datatypes: starting from a specification of a desired function, such a calculus allows
one to derive an implementation of—i.e. an algorithm which realizes—the desired
function, by repeatedly applying derivation rules of the calculus (such as “fusion
laws”). The desired function is an arrow in Sets; however one can make intermediate
derivations in the extended domain of Rel and come back at the very last moment

2.4 Finite trace semantics via coinduction 45

to Sets. Working in Rel gives one much more freedom. For example one can take
the inverse of every arrow in Rel.

Since their main concern is in initial algebras in Rel, the lifting result (our Propo-
sition 2.3.2) is fundamental in their investigation. Moreover, as we have seen in
Section 2.3.2, the initial algebra-final coalgebra coincidence is much easier to see in
the special case of Rel ∼= K�(P). In fact identification of final coalgebras in Rel is
almost implicit in [16]: one important technical ingredient in Section 2.3.2 is the com-
patibility diagram (2.20) which is present in [16, pp.112] (in a more general setting of
allegories). Nevertheless the crucial initial algebra-final coalgebra coincidence in Rel
is not explicitly presented in [16].

The main result of [101] (Theorem 5) does explicitly mention final coalgebras, but
in a category different from Rel. The result is about final coalgebras in the category
Tran of sets and monotone predicate transformers between them. Up to now we are
yet to find a direct connection between our result and the one in [101].

2.4 Finite trace semantics via coinduction

In this section we shall further illustrate the observation that the principle of coin-
duction, when employed in K�(T), captures trace semantics of state-based systems.
As we have shown in the previous section, an initial algebra in Sets constitutes the
semantic domain, i.e. is a final coalgebra in K�(T). Viewing an initial algebra as the
set of well-founded terms (such as finite words or finite-depth parse trees), this fact
means that the “trace semantics” induced by coinduction is inevitably finite, in the
sense that it captures only finite-depth behaviors. Here we will elaborate on this
finiteness issue as well.

2.4.1 Trace semantics by coinduction

As we have seen in Section 2.2.2 various types of state-based systems allow their
presentation as coalgebras X → FX in a Kleisli category K�(T). For example,

– LTSs with explicit termination, with T = P and F = 1 + Σ× ;

– probabilistic LTSs (also called generative probabilistic transition systems in [40,
128]) with explicit termination, with T = D and F = 1 + Σ× ;

– context-free grammars with T = P and F = (Σ +)∗.

The main observation underlying this work is the following. If we instantiate the
parameters

T for branching type and F for transition type

46 2 Trace semantics via coinduction

in the coinduction diagram

FX
F (tr(c))

FA

X

c

tr(c)
A

Jα−1∼= in K�(T) (2.21)

with one of the above choices, then the commutativity of the diagram is equivalent
to the corresponding (conventional) definition of trace semantics in Section 2.1.1.
Therefore we claim that the diagram (2.21) is the mathematical principle underlying
various “trace semantics,” no matter if it is “trace set” (non-deterministic) or “trace
distribution” (probabilistic).

2.4.1 Definition (Trace semantics for coalgebras). Let (F, T, λ) be a trace situation
(Theorem 2.3.3), and α : FA

∼=→ A is an initial F -algebra in Sets. Given a coalgebra
c : X → TFX in Sets, we can assign a function

tr(c) : X −→ TA in Sets

which is, as an arrow X → A in K�(T), the unique one making the diagram (2.21)
commute. We shall call this function tr(c) the (finite) trace semantics for the coalgebra
c. �
2.4.2 Example. As further illustration we give details for the choice of parameters
T = P and F = 1 + Σ× . This is the suitable choice of parameters to deal with the
first system in (2.1).

Now the coinduction diagram looks as follows. Recall that an initial F -algebra is
carried by the set Σ∗ of finite words.

1 + Σ×X
1 + Σ× tr(c)

1 + Σ× Σ∗

X

c

tr(c)
Σ∗

J([nil, cons])−1∼= in K�(P) (2.22)

It assigns, to a system c, a function tr(c) : X → P(Σ∗) which carries a state x ∈ X
to the set of finite words on Σ which can possibly arise as an “execution trace” of c
starting from x. The commutativity states equality of two arrows X ⇒ 1 + Σ × Σ∗

in K�(P), that is, functions X ⇒ P(1 + Σ× Σ∗). Let us denote these functions by

u = (1+Σ×tr(c)) ◦ c (up, then right), v = J([nil, cons])−1 ◦ tr(c) (right, then up).

For each x ∈ X, the following conditions—derived straightforwardly by definition of
composition of K�(P), lifting of the functor 1 + Σ× , etc.—specify u and v’s value
at x, as a subset of 1 + Σ× Σ∗.

� ∈ u(x) ⇐⇒ � ∈ c(x)
(a, σ) ∈ u(x) ⇐⇒ ∃x′ ∈ X.

(
(a, x′) ∈ c(x) ∧ σ ∈ tr(c)(x′)

)
� ∈ v(x) ⇐⇒ 〈〉 ∈ tr(c)(x)

(a, σ) ∈ v(x) ⇐⇒ a · σ ∈ tr(c)(x)

2.4 Finite trace semantics via coinduction 47

Commutativity of (2.22) amounts to u = v; this leads to the condition (2.3).
From a different point of view we can also say as follows: finality of the coalgebra

Σ∗ ∼=→ 1 + Σ × Σ∗ in (2.22) ensures that the conventional recursive definition (2.3)
uniquely determines a function tr(c) : X → P(Σ∗). That is, tr(c) is well-defined.

An easy consequence of the recursive definition (2.3) is

a1 . . . an ∈ tr(c)(x) ⇐⇒ ∃x1, . . . , xn ∈ X. x
a1→ · · · an→ xn → � .

Therefore every trace a1 . . . an ∈ tr(c)(x) has termination � implicit at its tail. In
particular, the set tr(c)(x) is not necessarily prefix-closed: a1 . . . anan+1 . . . an+m ∈
tr(c)(x) does not imply a1 . . . an ∈ tr(c)(x).

2.4.3 Example. Let us take T = L (the lift monad) and F = 1 + Σ × . In this
case a coalgebra X

c→ L(1 + Σ×X) in Sets is a system which can

– get into a deadlock (c(x) = ⊥ with L = {⊥}+),

– successfully terminate (c(x) = � with F = {�}+ Σ×), or

– output a letter from Σ and move to the next state (c(x) = (a, x′)).

By examining trace semantics for such systems, we shall formally put the difference
between the computational meanings of the two elements, ⊥ and �.

The coinduction diagram (2.21) instantiates to the same diagram as (2.22), but
now in the category K�(L). Easy calculation shows that its commutativity amounts
to the following condition. The function

X
tr(c)

L(Σ∗) = {⊥}+ Σ∗ in Sets

satisfies, for each x ∈ X,

tr(c)(x) = 〈〉 ⇐⇒ c(x) = � ,
tr(c)(x) = a · σ ⇐⇒ ∃x′ ∈ X.

(
c(x) = (a, x′) ∧ tr(c)(x′) = σ

)
,

tr(c)(x) = ⊥ ⇐⇒ c(x) = ⊥ or ∃x′ ∈ X.
(
c(x) = (a, x′) ∧ tr(c)(x′) = ⊥

)
.

(2.23)

Here σ ∈ Σ∗ is a word in Σ.
For the systems under consideration, we can think of the following three different

kinds of possible executions.

– An execution eventually hitting �, that is, x
a1→ · · · an→ xn → �. By the

condition (2.23) it yields a word tr(c)(x) = a1 . . . an as its trace.

– An execution eventually hitting ⊥, that is, x
a1→ · · · an→ xn → ⊥. By the third

line of (2.23) we see that tr(c)(xn) = ⊥; moreover

tr(c)(xn−1) = tr(c)(xn−2) = · · · = tr(c)(x) = ⊥ .

It properly reflects our intuition that a state x that eventually goes into deadlock
does not yield a finite (i.e. “terminating”) trace.

48 2 Trace semantics via coinduction

– An execution not hitting � nor ⊥, that is, x
a1→ x1

a2→ · · · . In this case, the
only possible solution of the “recursive equation” (2.23) is tr(c)(x) = tr(c)(x1) =
· · · = ⊥. The intuition here is: a state leading to livelock does not yield a finite
trace.

2.4.2 Infinite traces

The trace semantics obtained via coinduction (Definition 2.4.1) assigns, to each state
x ∈ X, “a set of” (if T = P) or “a distribution over” (if T = D) elements of the initial
algebra A. Elements of A are thought of as possible linear behaviors of the system
determined by the transition type (i.e. the functor F).

Now the intuition is that an initial F -algebra A consists of the well-founded (or
finite-depth) terms and a final F -coalgebra Z consists of the possibly non-well-founded
(or infinite-depth) terms. For example,

– for F = 1+Σ× , A = Σ∗ consists of all the finite words, and Z = Σ∞ = Σ∗+Σω

is augmented with streams, i.e. infinite words;

– for F = (Σ +)∗, A is the set of finite-depth skeletal parse trees (see [43]), and
Z additionally contains infinite-depth ones;

– for F = Σ × which models LTSs without explicit termination, A = 0 and
Z = Σω.

Therefore our trace semantics X → TA takes account of only finite-depth, well-
founded linear-time behaviors but not infinite-depth ones. This is why the trace set
(2.2) does not contain abω; it is also why we have been talking about LTSs with
explicit termination—otherwise the finite trace semantics is always empty.

Designing a coalgebraic framework to capture possibly infinite trace semantics is
the main aim of [62]. The work is done exclusively in a non-deterministic setting and
the main result reads as follows.

2.4.4 Theorem (Possibly infinite trace semantics for coalgebras, [62]). Let F be a
shapely functor on Sets, and ζ : Z

∼=→ FZ be a final coalgebra in Sets. The coalgebra

Jζ : Z −→ FZ in K�(P)

is weakly final: that is, given a coalgebra c : X → FX, there is a morphism from c to
Jζ but the morphism is not necessarily unique.

FX
F (tr∞(c))

FZ

X

c

tr∞(c)
Z

Jζ∼= in K�(P) (2.24)

Still there is a canonical choice tr∞(c) among such morphisms, namely the one
which is maximal with respect to the inclusion order. We shall call the function
tr∞(c) : X → PZ the possibly-infinite trace semantics for c. �

2.4 Finite trace semantics via coinduction 49

Note here that, when we take F = 1+Σ× and T = P (the choice for LTSs with
termination), commutativity of (2.24) boils down to exactly the same conditions as
(2.3):

〈〉 ∈ tr∞(c)(x) ⇐⇒ x→ �,

a · σ ∈ tr∞(c)(x) ⇐⇒ ∃y. (x
a→ y ∧ σ ∈ tr∞(c)(y)).

(2.25)

Weak finality of Σ∞ ∼=→ 1 + Σ×Σ∞ (corresponding to Z
∼=→ FZ in (2.24)) means the

following. The recursive definition (2.25)—although it looks valid at the first sight—
does not uniquely determine the infinite trace map tr∞(c) : X → P(Σ∞). Instead,
the map tr∞(c) we want is the maximal one among those which satisfy (2.25).

As an example take the first system in (2.1). We expect its possibly-infinite trace
map X → P(Σ∞) to be such that x �→ ab∗+abω and y �→ b∗+bω. Indeed this satisfies
(2.25) and is moreover the maximal. However, the function x �→ ab∗ and y �→ b∗—
this is actually the finite trace X → P(Σ∗) embedded along Σ∗ ↪→ Σ∞—also satisfies
(2.25). In fact, [43, Section 5] shows a general fact that such an embedding of the
finite trace map is the minimal one among those morphisms which make the diagram
(2.24) commute.

The coalgebraic characterization (Theorem 2.4.4) of possibly-infinite trace seman-
tics is not yet fully developed. In particular the current proof of Theorem 2.4.4
(in [62]) is fairly concrete and a categorical principle behind it is less clear than the
one behind finite traces. Consequently the result’s applicability is limited: we do not
know whether the result holds in a probabilistic setting; or whether it holds for any
weak-pullback-preserving functor F .

2.4.3 Accepted languages via determinization

In Example 2.4.2 we illustrated that our coalgebraic framework successfully captures
trace semantics for (non-deterministic) labeled transition system with explicit termi-
nation, that is, accepted languages of non-deterministic automata (see Remark 2.2.2).
There is another standard way to capture accepted language by coinduction, namely
via determinization of non-deterministic automata. It appears for example in [116];
here we briefly describe the construction.

The construction is in fact the standard determinization procedure—which trans-
forms a non-deterministic automaton (NDA) with a state space X into a deterministic
one (DA) with a state space PX—described coalgebraically. Deterministic automata
are modeled as coalgebras for the functor G = 2× ()Σ to which, as easy calculation
shows, coinduction assigns accepted languages. Therefore what we do is to transform
an NDA to a DA, and apply coinduction to the latter. In its course we will utilize
the isomorphism (2.10) without the finiteness assumption. That is,

2× P(Σ×X)
∼= P(1 + Σ×X) . (2.26)

In the sequel we put F = 1 + Σ× and G = 2× ()Σ. Hence (2.26) establishes an
isomorphism GP

∼==⇒ PF . It is easy to see its naturality.

50 2 Trace semantics via coinduction

Given a NDA X
c→ PFX, we transform it to a DA (i.e. a G-coalgebra) in the

following way.

PX
Pc−→ P2FX

μP
F X−→ PFX

∼=−→ GPX

We denote this composite by det(c). Now it is standard that a final G-coalgebra is
carried by the set P(Σ∗) of languages over Σ, with its structure given as follows.

2×
(
P(Σ∗)

)Σ

P(Σ∗)

〈ε, δ〉 with
ε(L) = T ⇐⇒ 〈〉 ∈ L ,
δ(L)(a) = {σ | a · σ ∈ L} .

The operation δ is called the Brzozowski derivative. For more details see [67, 115].
Now by coinduction—remember that we are in Sets now—a G-coalgebra det(c)

induces the unique map below. It assigns, to each “state” S ∈ PX, its accepted
language.

GPX GP(Σ∗)

X
ηP = { }

PX

det(c)
P(Σ∗)
〈ε, δ〉∼=

Our original interest is the accepted language of each single state x ∈ X. This is
obtained by the above map, by pre-composing ηP : X −→ PX which yields singletons.

This much said, its relation to our general Kleisli framework is not yet clear. The
above determinization construction relies on the following ingredients:

– a natural isomorphism GP
∼==⇒ PF ;

– a final G-coalgebra is carried by PA where A carries an initial F -algebra.

These assumptions already look quite strong and we are yet to see how to generalize
them.

2.5 Trace semantics as testing equivalence

In this section we will observe that, in a non-deterministic setting, the coalgebraic
finite trace semantics (i.e. coinduction in K�(P)) gives rise to a canonical testing situ-
ation in which a test is an element of an initial F -algebra A in Sets. Here F specifies
the transition type, just as before. The notion of testing situations (Definition 2.5.1)
and its variants have attracted many authors’ attention in the context of coalgebraic
modal logic; our aim here is to demonstrate genericity and pervasiveness of the no-
tion of testing situations by presenting an example which is not much like modal logic
(that is, propositional logic plus modality).

In Section 2.5.1 we introduce the notion of testing situations and investigate some
of their general properties. Our main concern there is the comparison between two

2.5 Trace semantics as testing equivalence 51

process equivalences, namely testing equivalence and equivalence modulo final coal-
gebra semantics. We present the equivalences categorically as suitable kernel pairs;
this makes the arguments simple and clean. In Section 2.5.2 we present the canonical
testing situation for trace semantics. Moreover we show that it is expressive: the
testing captures final coalgebra semantics, which is now trace semantics.

2.5.1 Testing situations

Recent studies [17, 18, 80, 84, 87, 109] on coalgebra and modal logic have identified
(variants of) the following categorical situation as the essential underlying structure.
Following [109], we prefer using a more general term “testing”: it subsumes “modal
logic” in the following sense. We learn properties of a system through pass or failure
of tests; modal logic constitutes a special case where tests are modal formulas.

2.5.1 Definition. A testing situation is the following situation of a contravariant
adjunction Sop � P and two endofunctors F,M

CopF op

P

� A M

Sop

(2.27)

plus a “denotation” natural transformation δ : MP ⇒ PF op : Cop → A, which
consists of arrows MPX

δX−→ PFX in A.

Note that the denotation δ is a parameter: the same “syntax for tests” M : A → A

can have different interpretations with different δ.
The requirements in Definition 2.5.1 are the same as in [80,109]. They are what we

need to compare two process semantics, namely testing equivalence—which arises nat-
urally from the concept of testing—and final coalgebra semantics.8 We shall explain
each ingredient’s role, using the well-established terminology of modal logic.

– The endofunctor F : C → C makes CoalgF the category of “systems,” or
“Kripke models” in modal logic.

– The category A—typical examples being Bool of Boolean algebras or Heyt
of Heyting algebras—is that of “propositional logic.” The functor M specifies
“modality”: modal operators and axioms. Then AlgM is the category of “modal
algebras”; an initial M -algebra ML

∼=→ L is a “modal logic” consisting of modal
formulas, modulo logical equivalence.

8In fact we can be even more liberal: existence of a denotation δ can be replaced by existence
of a lifting P̂ : Coalgop

F → AlgM of P . The results in this section nevertheless hold in that case.

The latter condition (there is a lifting P̂) is strictly weaker than the former (there is a natural

transformation δ): obviously δ induces P̂ but not the other way round. Let C = ωop, A = ω, P =
id, F = (1 +)op and M = 2 + . Then both CoalgF and AlgM are the empty category hence P
has the trivial lifting. However there is no natural transformation MPX → PF opX.

52 2 Trace semantics via coinduction

– The denotation δ specifies how the modality M is interpreted via transitions
of type F . This allows to give “Kripke semantics” for the modal logic: given
a coalgebra (or a “Kripke model”) c : X → FX, interpretation � �c of modal
formulas therein is given by the following induction.

ML

∼=initial

MPX
δX

PFX
Pc

L
� �c

PX

(2.28)

– Why a right adjoint S of P op? It allows us, via transposition, to assign a modal
“theory” to each state of a Kripke model.

L
� �c

PX in A

X
thc

SL in C

(Sop � P) (2.29)

The theory thc(x) associated with a state x contains precisely the modal for-
mulas that hold at x.

Following the above intuition, we define the categorical notion of testing equivalence:
two states are testing-equivalent if they have the same modal theory.

2.5.2 Definition. Assume that we have a testing situation (2.27), and that C has
finite limits. On a coalgebra X

c→ FX, the testing equivalence TestEqc is the kernel
pair of the theory map thc defined by (2.28) and (2.29). Equivalently,

TestEqc

〈p1,p2〉
X ×X

thc◦π1

thc◦π2

SL (2.30)

is an equalizer.

Similarly, we introduce the categorical notion of “equivalence modulo final coal-
gebra semantics”; we shall call it FCS-equivalence for short.

2.5.3 Definition. Assume that there is a final F -coalgebra ζ : Z
∼=→ FZ, and that C

has finite limits. On a coalgebra X
c→ FX, the FCS-equivalence FCSEqc is the kernel

pair of the unique map beh(c) : X → Z induced by finality. Equivalently,

FCSEqc

〈q1,q2〉
X ×X

beh(c)◦π1

beh(c)◦π2

Z (2.31)

is an equalizer.

2.5 Trace semantics as testing equivalence 53

It is easily seen that the two “relations” TestEqc and FCSEqc on X are equiva-
lence relations in the sense of [61, Section 1.3]. That is, they satisfy the reflexivity,
symmetry, and transitivity conditions when the conditions are suitably formulated in
categorical terms.

Now our concern is the comparison between two process semantics TestEqc and
FCSEqc, as subobjects of X×X. The following lemma is crucial for our investigation;
in fact it is important for coalgebraic modal logic in general and appears e.g. as [80,
Theorem 3.3].

2.5.4 Lemma. A morphism of F -coalgebras preserves theory maps. That is,

FX
Ff

FY

X

c

f
Y

d implies
X thc

f
Y

thd
SL .

Proof. The following induction diagram proves Pf ◦ � �d = � �c. Naturality of δ
plays an important role there.

ML
Ff

∼=initial

MPY
MPf

δY

MPX
δX

PFY
PFfPd

PFX
Pc

L
� �d

PY
Pf

PX .

Then the claim follows from naturality of the transposition (2.29). �
We show that in a testing situation like (2.27), tests respect final coalgebra se-

mantics. That is, testing does not distinguish two FCS-equivalent states.

2.5.5 Proposition. Consider such a testing situation and equivalence relations as
in Definitions 2.5.2 and 2.5.3. For any coalgebra X

c→ FX we have an inclusion

FCSEqc ≤ TestEqc

of subobjects of X ×X.

Proof. It suffices to show that the arrow 〈q1, q2〉 in (2.31) equates the parallel arrows
in (2.30); then the claim follows from universality of an equalizer.

thc ◦ π1 ◦ 〈q1, q2〉 = thc ◦ q1

= thζ ◦ beh(c) ◦ q1 (∗)
= thζ ◦ beh(c) ◦ q2 due to (2.31)
= thc ◦ q2 (∗)
= thc ◦ π2 ◦ 〈q1, q2〉 .

Here (∗) is an instance of Lemma 2.5.4: beh(c) is a morphism of coalgebras from c to
the final ζ. �

54 2 Trace semantics via coinduction

The converse TestEqc ≤ FCSEqc does not hold in general. For a fixed type of
systems (i.e. for fixed F : C → C), we can think of logics with varying degree of
expressive power; this results in process equivalences with varying granularity. This
view is systematically presented by van Glabbeek in [39] as the linear time-branching
time spectrum—a categorical version of which we consider as an important direction
of future work.

It is when we have FCSEqc
∼=→ TestEqc that a modal logic (considered as a test-

ing situation) is said to be expressive. Recall that FCSEqc usually coincides with
bisimilarity if C is Sets: in this case an expressive logic captures bisimilarity.

The following proposition states a (rather trivial) equivalent condition for a testing
situation to be expressive. For more ingenious sufficient conditions—which essentially
rely on the transpose of δ being monic—see e.g. [80].

2.5.6 Proposition. Consider a testing situation as in Definitions 2.5.2 and 2.5.3.
The testing is expressive, that is, for any coalgebra X

c→ FX we have

TestEqc
∼=→ FCSEqc

as subobjects of X × X, if and only if the theory map thζ : Z → SL for the final
coalgebra is a mono.

Proof. We first prove the “if” direction. In view of Proposition 2.5.5, it suffices to
show that 〈p1, p2〉 in (2.30) equalizes beh(c) ◦ π1 and beh(c) ◦ π2 (which proves
TestEqc ≤ FCSEqc).

thζ ◦ beh(c) ◦ p1 = thc ◦ p1 by Lemma 2.5.4
= thc ◦ p2 due to (2.30)
= thζ ◦ beh(c) ◦ p2 by Lemma 2.5.4

We have beh(c) ◦ p1 = beh(c) ◦ p2 since thζ is a mono.
To prove the “only if” direction, first we observe that the FCS-equivalence on the

final coalgebra ζ : Z
∼=→ FZ is the diagonal relation: that is,

FCSEqζ
∼=

Z × Z
beh(ζ)◦π1

beh(ζ)◦π2

Z

Z
〈id,id〉

.

This is because beh(ζ) = id : Z → Z. Now assume that thζ ◦ k = thζ ◦ l for
k, l : Y ⇒ Z. Universality of an equalizer TestEqζ induces a mediating arrow m in
the following diagram.

Y
〈k, l〉

m
Z × Z

beh(ζ) ◦ π1

beh(ζ) ◦ π2

Z

TestEqζ ∼=
FCSEqζ ∼= Z

〈id, id〉

2.5 Trace semantics as testing equivalence 55

The whole diagram commutes since TestEqζ
∼= FCSEqζ (by assumption) and FCSEqζ

∼=
Z (by the above observation), both as subobjects of Z × Z. This proves k = l. �
2.5.7 Remark. The literature [17, 18] considers more restricted settings than the
testing situations in Definition 2.5.1. There an adjunction Sop � P is replaced by
a dual equivalence of categories, and a denotation δ is required to be a natural iso-
morphism. These additional restrictions allow one to say more about the situations:
logics are always expressive; the main concern of [18] is how to present an abstract
modal logic M : A→ A by concrete syntax. However, for our purpose in Section 2.5.2
the greater generality of our notion of testing situations is needed.

2.5.2 Canonical testing for trace semantics in K�(P)

In this section we shall present a canonical testing situation for coalgebras in K�(P).
We shall also show that the testing is “expressive,” in the sense that the testing
captures final coalgebra semantics. The intuition is as follows.

Trace semantics for non-deterministic systems assigns to each system c its “(finite)
trace set” map tr(c) : X → PA, where A carries an initial algebra in Sets. This
suggests a natural testing framework where: an element t of A is a test; a state
x ∈ X of a system passes a test t if and only if the trace set of x includes t (i.e.
x |= t ⇐⇒ t ∈ tr(c)(x)). An important point here is that A, carrying an initial
algebra in Sets, usually gives a well-founded syntax for tests.9

We focus on a non-deterministic setting (i.e. T = P) in this section and leave a
probabilistic one as future work. Although the above intuition is true in probabilistic
settings as well—where the 2-valued (pass/failure) observation scheme is replaced by
the refined [0, 1]-valued one—we do not know yet how to extend the current material
to probabilistic settings. The difficulty is that the category K�(D) is not self-dual, as
opposed to K�(P); see (2.32) below.

The canonical testing situation which captures finite trace semantics is the follow-
ing one.

K�(P)op

F
op

Op
∼= K�(P)

Opop

K

� Sets

F

J

(2.32)

Here J � K is the canonical Kleisli adjunction. Recall the self duality Op : K�(P)op ∼=→
K�(P) from Section 2.3.2. The denotation is given by (the components of) the dis-
tributive law λ : FP ⇒ PF . The following lemma establishes that the denotation
thus defined is indeed a natural transformation.

9Recall the construction of an initial algebra in Sets via the initial sequence (Proposition A.1.1).
The set A is the colimit (union in Sets) of the initial sequence 0 → F0 → F 20 → · · · . Each F n0
can be thought of as the set of terms with depth ≤ n.

56 2 Trace semantics via coinduction

2.5.8 Lemma. Let F : Sets → Sets be a functor which preserves weak pullbacks,
and F be its lifting induced by the relation lifting (Lemma 2.2.4). Then the com-
ponents FPX

λX→ PFX of the corresponding distributive law λ also form a natural
transformation

F ◦ K ◦ Op =⇒ K ◦ Op ◦ F
op

: K�(P)op −→ Sets .

Proof. The desired natural transformation is obtained from another natural transfor-
mation

λ′ : FK =⇒ KF : K�(P) −→ Sets

which we describe in a moment, by post-composing the functor Op. That is, the
desired one is the composite

FKOp
λ′◦Op
=⇒ KFOp

(∗)
= KOpF

op
,

or equivalently, in a 2-categorical presentation,

K�(P)op
Op

F
op (∗)

K�(P) K

F λ′
Sets

F

K�(P)op
Op

K�(P)
K

Sets .

Here the equality (∗) is the one in (2.20).
Now we describe the natural transformation λ′. Its components are given by those

of λ; naturality of λ′ is an easy consequence of λ’s being a distributive law. Indeed,
given an arrow f : X → Y in K�(P), the following shows that the naturality square
commutes.

KFf ◦ λX = μP
FY ◦ PFf ◦ λX definition of K

= μP
FY ◦ PλY ◦ PFf ◦ λX definition of F

= μP
FY ◦ PλY ◦ λPY ◦ FPf naturality of λ

= λY ◦ FμP
Y ◦ FPf λ is compatible with multiplication μP

= λY ◦ FKf definition of K �
The previous lemma establishes that the situation (2.32) is indeed a testing situation
as defined in Definition 2.5.1.

In the previous Section 2.5.1, the use of testing situations is demonstrated through
comparing testing equivalence and final coalgebra semantics, both described as suit-
able kernel pairs. Unfortunately this argument is not valid in the current situa-
tion (2.32), since the category K�(P) does not have kernel pairs.

Still, we shall claim that the situation (2.32) is “expressive,” in the sense that final
coalgebra semantics is captured by testing. This claim is supported by the following
fact: in the current situation the two arrows tr(c) and thc simply coincide. Therefore
their kernel relations—in any reasonable formalization—should coincide as well.

2.5 Trace semantics as testing equivalence 57

2.5.9 Proposition. Let X
c→ FX be a coalgebra in K�(P). In the testing situation

(2.32), the following arrows in K�(P) coincide.

– tr(c) : X → A, giving the final coalgebra (trace) semantics for c.

– thc : X → A, giving the testing semantics, i.e. the set of passed tests.

Therefore the testing is “expressive”: tests from an initial F -algebra captures trace
semantics (which is via a final F -coalgebra).

Here A is the carrier of an initial F -algebra, hence that of a final F -coalgebra. Note
that, in the general setting in Section 2.5.1, the codomains of tr(c) and thc need not
coincide.

Proof. We shall show that the transpose

tr(c)∨ : A −→ PX in Sets

of tr(c) under the adjunction in (2.32) makes the diagram (2.28)—which defines � �c—
commute. This proves tr(c)∨ = � �c, hence tr(c) = � �c

∨ = thc.
First note that the transpose tr(c)∨ : A→ PX, when it is thought of as an arrow

in K�(P), coincides with the arrow Op(tr(c)) : A → X. In the sequel we shall write
Op(tr(c)) for tr(c)∨.

Commutativity of the diagram (2.21)—defining tr(c)—yields the following equal-
ity.

Op(tr(c)) ◦ Op(Jα−1) = Op(c) ◦ Op(F
op

tr(c)) in K�(P).

By the definition of composition in K�(P), it reads as follows in Sets.

μX ◦ P(Op(tr(c))) ◦ Op(Jα−1) = μX ◦ P(Op(c)) ◦ Op(F
op

tr(c)) (2.33)

We use this equality in showing that Op(tr(c)) makes the diagram (2.28) commute.

Op(tr(c)) ◦ α = μX ◦ ηX ◦ Op(tr(c)) ◦ α unit law
= μX ◦ P(Op(tr(c))) ◦ ηA ◦ α naturality of η

= μX ◦ P(Op(tr(c))) ◦ Op(Jα−1) Op(Jα−1) = Jα = ηA ◦ α

= μX ◦ P(Op(c)) ◦ Op(F
op

tr(c)) by (2.33)

= μX ◦ P(Op(c)) ◦ FOp(tr(c)) OpF
op

= FOp, (2.20)

= μX ◦ P(Op(c)) ◦ λX ◦ FOp(tr(c)) definition of F

= KOp(c) ◦ λX ◦ FOp(tr(c)) .

Recall that M in (2.28) is now F ; P in (2.28) is now KOp. This concludes the proof.�
The proposition establishes a connection between two semantics for F -coalgebras

in K�(P), namely: tr(c) via a final F -coalgebra, and thc via an initial F -algebra. One
may well say that it is a “degenerate” case because, as we have shown in Section 2.3,

58 2 Trace semantics via coinduction

coinduction in K�(P) and induction in Sets are essentially the same principle. Our
emphasis is more on the fact that the coincidence of induction and coinduction yields
a rather uncommon example of testing situations. Testing situations are of interest
in modal logic—where the underlying contravariant adjunction Sop � P : A → Cop

in (2.27) is often the Stone duality or one of its variants. Our exampleK�(P)op � Sets
here does not look like one of those familiar examples.

2.6 Summary and future work

We have developed a mathematical principle underlying “trace semantics” for various
kinds of branching systems, namely coinduction in a Kleisli category. This general
view is supported by a technical result that a final coalgebra in a Kleisli category is
induced by an initial algebra in Sets.

The possible instantiations of our generic framework include non-deterministic
systems and probabilistic systems, but do not yet include systems with both non-
deterministic and probabilistic branching. The importance of having both of these
branchings in system verification has been claimed by many authors e.g. [120, 137],
with an intuition that probabilistic branching models the choices “made by the sys-
tem, i.e. on our side,” while (coarser) non-deterministic choices are “made by the
(unknown) environment of the system, i.e. on the adversary’s side.” A typical exam-
ple of such systems is given by probabilistic automata introduced by Segala [120].

In fact this combination of non-deterministic and probabilistic branching is a noto-
riously difficult one from a theoretical point of view [26,132,136]: many mathematical
tools that are useful in a purely non-deterministic or probabilistic setting cease to work
in the presence of both. For our framework of generic trace semantics, the problem
is that we could not find a suitable monad T with an order structure.

We have used the order-enriched structure of a Kleisli category (expressing “more
possibilities”) to obtain the initial algebra-final coalgebra coincidence result. How-
ever, an order structure is not the only one that can yield such coincidence: other
examples include metric, quasi-metric and quantale-enriched structures (in increasing
generality). See e.g. [32, 135] for the potential use of such enriched structures in a
coalgebraic setting. The relation of the current work to such structures is yet to be
investigated.

In the discipline of process algebra, a system is represented by an algebraic term
(such as a.P ‖ a.Q) and a structural operational semantics (SOS) rule determines its
dynamics, that is, its coalgebraic structure. This is where “algebra meets coalgebra”
and the interaction is studied e.g. in [12, 78, 134]. Later in chapter 5 we will claim
the importance of the microcosm principle in this context and provide a “general
compositionality theorem”: under certain assumptions, final coalgebra semantics is
“compositional” in a suitable sense. The results of the current chapter say that final
coalgebra semantics can be interpreted as finite trace semantics (besides bisimilar-
ity); hence the result in Chapter 5 instantiates to a compositionality result for trace
semantics.

2.6 Summary and future work 59

We have included some material—on possibly-infinite traces and testing situations—
which, unfortunately, we have worked out only in a non-deterministic setting. A fully
general account of these topics is left as future work.

Finally, there are so many different process semantics for branching systems, be-
tween two edges of bisimilarity and trace equivalence in the linear time-branching
time spectrum [39]. How to capture them in a coalgebraic setting is, we believe, an
important and challenging question.

60 2 Trace semantics via coinduction

Chapter 3

Generic forward and backward simulations

The technique of forward/backward simulations has been applied successfully in ver-
ification of distributed/concurrent systems. In this chapter, however, we claim that
the technique has more potential generality and mathematical clarity. We do so
by identifying forward/backward simulations as lax/oplax morphisms of coalgebras.
Following this observation, we present a systematic study of this generic notion of sim-
ulations. It is meant to be a generic version of the study by Lynch and Vaandrager,
covering both non-deterministic systems and probabilistic systems. In particular we
prove soundness and completeness results for simulations with respect to trace inclu-
sion: the proof is by coinduction using the generic theory of traces developed in the
previous chapter. By suitably instantiating our generic framework, one obtains an
appropriate definition of forward/backward simulations for a variety of systems, for
which soundness and completeness come for free.

3.1 Overview

The theory of forward/backward simulations for non-deterministic automata has been
extensively studied due to its significance in system verification (as described in Chap-
ter 1). A notable example is a systematic study by Lynch and Vaandrager [94]. The
technique of forward/backward simulations has been applied successfully in many dis-
tributed and concurrent applications, described as transition systems. For example,
in [71] trace-based anonymity properties for network protocols are proved by build-
ing backward simulations. The notions of forward/backward simulations are also
extended to different kinds of state-based systems such as probabilistic ones [120].

We claim that the theory of forward/backward simulations has more potential
generality and mathematical clarity. We do so by revealing a simple mathematical
structure hidden behind various notions of simulations defined for different kinds of
systems. The slogan is: a forward/backward simulation is a lax/oplax morphism of

61

62 3 Generic forward and backward simulations

coalgebras in a Kleisli category.

In K�(T)
FX

Ff
FY

X

c

f

Y

d
FX

Ff
FY

X

c

f

�
Y

d

lax coalgebra morphism oplax coalgebra morphism
= forward simulation = backward simulation

(3.1)

An arrow f in (3.1) is called a lax/oplax morphism of coalgebras because it satisfies
a condition which is similar to the one for a morphism of coalgebras, but has an
inequality in the square (instead of an equality—which we usually do not put explicit).

FX
Ff

FY

X

c

f

=
Y

d
FX

Ff
FY

X

c

f

Y

d
FX

Ff
FY

X

c

f

�
Y

d

morphism lax morphism oplax morphism

The use of categorical terms allows us to put various constructions in a mathematically
clearer way. For example, the informal “duality” between forward and backward
simulations is now put explicit, in the form of reversed inequalities (vs. �) in (3.1).

Based on this observation, we aim at presenting a generic version of the systematic
study [94]. We employ the generic theory of traces in Chapter 2 and show:

– Soundness. Existence of a forward/backward/hybrid simulation from a system
S to T implies trace inclusion tr(S) � tr(T).

– Completeness. Trace inclusion implies existence of a certain kind of hybrid
simulation, namely a backward-forward simulation.

Our generic, coalgebraic theory of forward/backward simulations in this chapter
is built on top of the theory of trace semantics in Chapter 2. The mathematical
setting stays the same: we work with F -coalgebras in the category K�(T), where a
functor F : K�(T) → K�(T) is a lifting of F : Sets → Sets. Just like in Chapter 2,
we understand the functor F as a specification of “transition type”; the monad T
as a specification of “branching type.” Moreover, the order � in (3.1) refers to the
Cppo-enriched structure of the Kleisli category, as the “more possibilities” order
that we exploited in Chapter 2. The conditions imposed on these F and T remain the
same. This results in the same (wide) variety of possible choices of parameters F and
T , hence in the same applicability. In particular, our generic theory of simulations
covers both non-deterministic systems as well as purely probabilistic systems (but not
systems with both non-determinism and probability—as in Chapter 2).

For a variety of systems, our generic theory of simulations gives a definition of
forward/backward simulations tailored to the specific kind of systems, as an instanti-
ation of the coalgebraic definition (3.1). The resulting definition is (at least) a “useful”

3.2 Coalgebraic forward and backward simulations 63

one, since for these simulations a soundness theorem comes for free. Soundness plays
a crucial role in the simulation-based verification technique of trace-based properties
(see Chapter 1); we will prove generic soundness theorems parametrized by F and T ,
once for all.

Now let us take the viewpoint of a coalgebra theorist. This chapter continues
investigation of coalgebras in a Kleisli category which we started in Chapter 2, filling
in the lower middle cell in the following table.

morphism of coalgebras coinduction gives
In Sets functional bisimulation bisimilarity

In K�(T)
lax · · · forward simulation

oplax · · · backward simulation
[this chapter]

trace semantics
[Chapter 2]

3.1.1 Bibliographical remarks

The novelty in this chapter is to identify lax/oplax coalgebra morphisms in a Kleisli
category as forward/backward simulations. This view—with three keywords lax mor-
phism, Kleisli and simulation—seems new to the best of our knowledge. However, a
close relationship between lax morphisms and simulations (not necessarily in a Kleisli
category) has been pointed out or hinted by many authors.

The work [139] uses lax/oplax coalgebra morphisms in obtaining a coalgebraic
representation of the Cone of Influence reduction. The key observation there is,
for coalgebras in Sets with their signature F = P, a graph of a lax morphism is a
simulation. The work [32, 135] formulate what they call ordered categorical bisimula-
tions using lax coalgebra morphisms. The notion of ordered categorical bisimulations
“resembles the notion of bisimulation up to” [32]; this comes close to simulations.
Additionally, the work [21] describes users’ visit to a website in two ways—namely as
a suitable simulation and as a lax coalgebra morphism—hinting conceptual closeness
between the two notions.

Besides, there are work that we are aware of which focuses on one of the three
keywords listed above. For example, the work [58, 64] presents a coalgebraic formula-
tion of simulations which is different from ours, starting from a given order structure
in a signature functor F . The work [56, 76] investigates use of lax categorical struc-
tures in computer science. Details about these references, together with comparison
of our notion of probabilistic simulations to some existing definitions, are found in
Section 3.4.

3.2 Coalgebraic forward and backward simulations

In this section we introduce our coalgebraic presentations of forward and backward
simulations. It turns out that, in defining these coalgebraic simulations, it is more
appropriate to make start states explicit, although start states are usually left implicit
in the study of coalgebras.

64 3 Generic forward and backward simulations

Therefore in Section 3.2.1 we start with introducing the notion of coalgebras in
a Kleisli category accompanied with their (explicit) start states; this notion we shall
call (T, F)-systems. In Section 3.2.2 the coalgebraic notion of (finite) trace semantics
from Chapter 2 is extended to (T, F)-systems in a natural way. Section 3.2.3 presents
our core definition of coalgebraic forward/backward simulations; in Section 3.2.4 we
explain why we need to make start states explicit.

3.2.1 (T, F)-systems

For the reason we will discuss later in Section 3.2.4, in this chapter we shall work with
coalgebras in K�(T) which additionally have explicit start states. When one think of
“(a) start state(s)” of a branching system, there are two different possible approaches.

1. One single state of the system is its starting state. That is, there is no branching
in choosing a start state.

2. There is branching in choosing a start state. If the system in question is non-
deterministic, the notion of “start states” should be given by the set of those
states which can possibly be chosen as an initial state of an execution. If the
system is probabilistic then the notion of “start states” is given by a probability
(sub)distribution over the state space—describing with what probability a state
is chosen as an initial state of an execution.

These two approaches are equivalent in practice. The first (non-branching) “start
state” is turned into the second kind by regarding it as a trivial branching; conversely
a system with the second (branching) kind of “start states” is turned into a system
with the first kind of “start states” by adding a fresh “start state” (◦ below) and
transitions from it.

x0 · · ·

x1 · · ·
�−→

x0 · · ·
◦

x1 · · ·

We shall take the second approach (“branching start state”) since it is better
accommodated in our setting in a Kleisli category. Specifically, let X be the set of
states. A (branching) start state map is given by an arrow

1 s−→ X in K�(T) ,

which is the same thing as an arrow 1 s→ TX in Sets, hence as an element s ∈ TX.
When our system is non-deterministic (T = P) the arrow s is hence a subset of X;
when it is probabilistic (T = D) the arrow s gives us a probability subdistribution
over the set X. This matches the intuition described above.

This notion of start state maps 1 s→ X is combined with coalgebras to give our
presentation of state-based systems.

3.2 Coalgebraic forward and backward simulations 65

3.2.1 Definition ((T, F)-systems). Let T be a monad and F be an endofunctor,
both on Sets. Assume further that F : Sets→ Sets has a lifting F : K�(T)→ K�(T)
in the sense of the diagram (2.11).

A (T, F)-system is a pair of arrows

FX

X
c

1
s

in the Kleisli category K�(T) ,

which is the same thing as a pair of functions(TX

1
s ,

TFX

X
c

)
in Sets ,

recalling that FX = FX for a lifting F . The arrow s is called the start state map,
and the F -coalgebra c is called the dynamics. The set X is called the state space.
The only element of the singleton 1 appearing here is denoted by ∗.1

3.2.2 Example (LTSs with explicit termination). Let us take T = P and F =
1 + Σ× , in which case an F -coalgebra in K�(T) is a function

X
c−→ P(1 + Σ×X) in Sets

modeling an LTS with explicit termination such as the leftmost one in (2.1). The
monad T = P models non-deterministic branching; the endofunctor F = 1 + Σ ×
sets the transition type of “terminate, or (output and proceed).”

In this setting, a (T, F)-system—i.e. (P, 1+Σ×)-system—is an LTS with explicit
termination

X
c−→ P(1 + Σ×X) in Sets

plus an explicit start state map

1 s−→ X in K�(P)

1 s−→ PX in Sets
s ⊆ X .

When the leftmost system in (2.1) is accompanied by a start state map s(∗) = {x, y},
it means that both states x and y can potentially become an initial state of an
execution.

x
a y b

�
1Throughout Chapters 2 and 3 we have three different singletons with different meanings: {�}

(in F = 1 + Σ ×) for successful termination; {⊥} (in T = L = 1 +) for deadlock; and {∗} to
denote start states.

66 3 Generic forward and backward simulations

3.2.3 Example (Probabilistic LTSs with explicit termination). Let us replace T = P
in the previous example by T = D, the subdistribution monad, in which case we have
probabilistic branching. A (T, F)-system is an F -coalgebra

X
c−→ D(1 + Σ×X) in Sets

such as the probabilistic system in the middle of (2.1), augmented with a start state
map

1 s−→ X in K�(D)

1 s−→ DX in Sets
s ∈ DX .

An example of such s is

s(∗) =
[

x′ �→ 1/3
y′ �→ 2/3

]
,

which we can depict as follows.

x′
a[13]

a[13]
1
3

[13]

y′

1
2

a[12]

[23]

z′a[1] �

3.2.4 Remark. In category theory, an arrow in a category from a terminal object to
an object X is often called a point in X. It is so because in Sets (where a singleton
1 is terminal) we have the following correspondence.

1 x−→ X in Sets
an element x ∈ X

In the current setting, a start state map 1 s→ X is not a point in this sense, since its
domain 1 is not a terminal object in K�(T).2

Nevertheless the object 1 ∈ K�(T) has a special status as a unit of a symmetric
monoidal category K�(T). Specifically, when the monad T in question is commutative
(Section 2.2), its Kleisli category K�(T) has a canonical commutative tensor (see [60,
Theorem 4.3] or an abstract treatment later in Section 5.5.1). This tensor acts on
objects as products hence has 1 as its neutral object. Consequences of this status of
1 in K�(T) are yet to be investigated.

2 The empty set 0 is terminal in a setting of our interest, that is, when K�(T) is Cppo-enriched
(Lemma 2.3.5).

3.2 Coalgebraic forward and backward simulations 67

3.2.2 Trace semantics for (T, F)-systems

In Chapter 2 we introduced the scheme of (finite) trace semantics for F -coalgebras in
a Kleisli category K�(T). It extends naturally to (T, F)-systems.

Let us make a brief review. Given a coalgebra c : X → FX in K�(T), where the
functor F is a lifting of F : Sets → Sets, we obtain its (finite) trace semantics via
coinduction.

FX
F (tr(c))

FA

X

c

tr(c)
A

Jα−1∼= in K�(T)

Specifically, a coalgebra c is assigned the unique morphism tr(c) going into a final
F -coalgebra Jα−1 (which is given by an initial F -algebra in Sets). The resulting
arrow is, as a function, of the type

tr(c) : X −→ TA in Sets.

This (set-theoretic) function carries each state x ∈ X to a “set of” (or “probability
subdistribution on,” etc. depending on the choice of T) linear-time behaviors which
are elements of A.

Now that we have an explicit start state map s : 1 → X (in K�(T)), the trace
semantics of a (T, F)-system 1 s→ X

c→ FX is naturally defined as the composition
of tr(c) : X → A after s : 1→ X, taken in K�(T).

3.2.5 Definition (Finite trace semantics of (T, F)-systems). Let (F, T, λ) be a trace
situation (Theorem 2.3.3). Given a (T, F)-system 1 s→ X

c→ FX in K�(T), its (finite)
trace semantics tr(s, c) is the following composite.

FX
F (tr(c))

In K�(T) FA

X

c
tr(c)

A

∼= Jα−1

1
s

tr(s, c)

Here FA
α→ A is an initial algebra in Sets; J : Sets→ K�(T) is the standard Kleisli

left adjoint.

This definition indeed gives what we expect from “trace semantics taking start
states into account,” as the following examples illustrate.

3.2.6 Example. Let us take T = P modeling non-deterministic branching. As we
saw in Example 3.2.2, a start state map s : 1→ X (in K�(P)) is identified as a subset
s(∗) of X; it is seen as the set of possible initial states.

68 3 Generic forward and backward simulations

In this case, a natural interpretation of “trace semantics of the system X
c→ FX

starting from s” is the union ⋃
x∈s(∗)

tr(c)(x)

of the possible linear-time behaviors tr(c)(x), taken over all the possible initial states
x ∈ s(∗). The composite tr(s, c) = tr(c) ◦ s in Definition 3.2.5 indeed yields this
union:

1 s−→ X
tr(c)−→ A in K�(P) = 1 s−→ PX

P(tr(c))−→ PPA
μP

A−→ PA in Sets

which carries ∗ ∈ 1 to
⋃

x∈s(∗)
tr(c)(x) .

Recall that the multiplication μP for the powerset monad is given by unions.

3.2.7 Example. Let us take T = D, the subdistribution monad, to model probabilis-
tic branching. A start state map s : 1→ X (in K�(D)) is identified with a probability
subdistribution s(∗) ∈ DX such as in Example 3.2.3.

It is easy to see that the trace semantics of a (T, F)-system

tr(s, c) : 1 −→ A in K�(D)
tr(s, c) : 1 −→ DA in Sets

carries ∗ ∈ 1 to the probability subdistribution[
u ∈ A �−→

∑
x∈X

s(x) · tr(c)(x)(u)

]
,

that is,[
u ∈ A �−→

∑
x∈X

Pr(init. state is x) · Pr
(exec. of c, starting from x, yields u
as its linear-time behavior

)]
.

This probability assigned to a behavior u ∈ A can be justifiably called the probability
with which “the system (s, c) yields u as its linear-time behavior.”

3.2.3 Forward and backward simulations

Now let us present the key observation in this chapter, namely the identification of

lax/oplax morphisms of coalgebras as forward/backward simulations.

Throughout the rest of this chapter, we assume that (F, T, λ) is a trace situation, that
is, it satisfies the conditions in Theorem 2.3.3 on trace semantics.

3.2 Coalgebraic forward and backward simulations 69

3.2.8 Definition (Forward simulations). Let 1 s→ X
c→ FX and 1 t→ Y

d→ FY be
(T, F)-systems, presented in K�(T).

A forward simulation from (t, d) to (s, c) is an arrow f : X → Y in K�(T) such
that:

t � f ◦ s and d ◦ f � Ff ◦ c ,

that is,

FX
Ff

In K�(T) FY

X
c

f

Y
d

1
s

1
t

,

(3.2)

where � refers to the DCpo⊥-enriched structure of the Kleisli category K�(T) which
we assume to be present; see Section 2.2.3.

We write (t, d) �F (s, c) if there is a forward simulation from (t, d) to (s, c). The
relation �F is called the forward similarity relation.

Therefore, to be precise, a forward simulation is a lax morphism of coalgebras

FX
Ff

FY

X

c

f

Y

d

which satisfies an additional inequality regarding start state maps (the lower square
in (3.2)).

A “dual” notion of forward simulations, with the inequalities reversed (but not
the directions of arrows), is that of backward simulations.

3.2.9 Definition (Backward simulation). Let 1 s→ X
c→ FX and 1 t→ Y

d→ FY be
(T, F)-systems, presented in K�(T).

A backward simulation from (s, c) to (t, d) is an arrow f : X → Y in K�(T) such
that: f ◦ s � t and Ff ◦ c � d ◦ f . That is,

FX
Ff

In K�(T) FY

X
c

f
�

Y
d

1
s �

1
t

.

(3.3)

We write (s, c) �B (t, d) if there is a backward simulation from (s, c) to (t, d). It is
called the backward similarity relation.

70 3 Generic forward and backward simulations

In the context of data refinement, lax natural transformations are used to formu-
late simulations between interpretations of a programming language [56, 76]—note
that those “simulations” are not the ones (between state-based systems) that we are
currently investigating. In a coalgebraic setting, [32] uses lax morphisms to investi-
gate order-enriched version of bisimulations. However, to the best of our knowledge,
the significance of lax/oplax morphisms in Kleisli categories is first emphasized here.

When an arrow f : X → Y makes the diagram (3.2) or (3.3) commute—i.e.
equalities hold in place of inequalities—the arrow f will be called a morphism of
systems.

3.2.10 Definition. Let 1 s→ X
c→ FX and 1 t→ Y

d→ FY be (T, F)-systems,
presented in K�(T). An arrow f : X → Y is a morphism of (T, F)-systems from (s, c)
to (t, d), if the following diagram commutes.

FX
Ff

In K�(T) FY

X
c

f Y
d

1
s

1
t

.

(3.4)

3.2.11 Remark. Note the directions of arrows and inequalities in the definition of
forward/backward simulations. Specifically, in (3.2) the system (t, d) is simulated by
(s, c) via f . In (3.3)—where the “simulation” arrow f has the same direction from X
to Y but the inequalities are reversed—the system (s, c) is simulated by (t, d) via f ,
with the roles of the two systems exchanged.

A general rule here is that the system appearing on the smaller side of the inequal-
ities is the system which is simulated by the other system. The coming examples will
clarify this intuition.

Let us justify our coalgebraic definition of forward/backward simulations. We shall
do so by showing that the coalgebraic definition instantiates to the conventional defi-
nition of (non-deterministic) simulations, when the parameters T and F are suitably
chosen.

3.2.12 Example (LTSs with explicit termination). In the setting of Example 3.2.2,
namely T = P and F = 1 + Σ × , an arrow X → Y in K�(T) is identified with a
binary relation R from X to Y .

X −→ Y in K�(P)
X −→ PY in Sets
R ⊆ X × Y, binary relation

In this case, Definition 3.2.8 is instantiated as follows. A relation R ⊆ X ×Y is a for-

3.2 Coalgebraic forward and backward simulations 71

ward simulation from (t, d) to (s, c), if and only if it satisfies the following conditions.

y ∈ start(t,d) =⇒ ∃x ∈ start(s,c). xRy ,
xRy ∧ y →d � =⇒ x→c � ,

xRy ∧ y
a→d y′ =⇒ ∃x′ ∈ X.

(
x

a→c x′ ∧ x′Ry′) .

Here start(s,c) denotes the set s(∗) of the possible initial states of the system (s, c);
and x

a→c x′ denotes the fact that (a, x′) ∈ c(x), i.e. x ∈ X can make an a-move to
x′ in the system c. Hence the first line is concerned with initial states; the second
line with termination; and the last line with “output and continue” type transitions.
Among them we consider the third one as a core condition for simulations, and it
is exactly the same as the one in the standard literature [94]. So is the first one on
initial states.3

The third line draws special attention because it is the conventional definition of
forward simulations between LTSs (without explicit start states or explicit termina-
tion). It works indeed “forwards,” as illustrated below.

x

R
y a

y′
=⇒

x
a

R

∃x′

R

in X
c→ FX

y a
y′

in Y
d→ FY

(3.5)

Let us further illustrate how this well-known condition arises from the diagram (3.2).

x
a→ x′

FR x
a→ x′

.

.

.R
y′

(†)

FX
FR

FY
x

R
.
.
.
y

a→ y′
(∗)

⇐=⇐=⇐=

X

c

R

Y

d

x

c

R

x

R
.
.
.
y

d

(3.6)

First imagine that we take the path d ◦ R from X, i.e. first to the right then upwards.
By going along R we find a state y ∈ Y such that xRy; then by going along d, the
state y makes a transition in d namely y

a→ y′. This yields the situation (∗) above.
3The three conditions here differ from the definition in [94] in the following respects: termination

and internal actions. More specifically, the second line here is missing in [94] since explicit termination
is not considered there. The condition we have here is a natural one since, intuitively, xRy means
“x can simulate what y can do.” We do not consider internal τ -actions (while [94] does); coalgebraic
treatment of internal actions is known to be hard and we leave it as future work.

72 3 Generic forward and backward simulations

Look at the other path FR ◦ c (upwards, then to the right). First the state x ∈ X

makes a transition x
a→ x′ in c; then by going along FR (the “lifting” of the relation

R) the successor x′ is related to some y′ ∈ Y via R. This results in the situation (†).
Finally, the inequality in the diagram postulates d ◦ R � FR ◦ c, that is, in case

we have the situation (∗) we need to have (†) as well. Hence the implication =⇒ in
the above diagram (3.6); it requires us to be able to find a state x′ in the situation
(†). This is precisely the conventional definition (3.5).

Similarly, a relation R from X to Y is a backward simulation (Definition 3.2.9)
from (s, c) to (t, d) if and only if:

x ∈ start(s,c) ∧ xRy =⇒ y ∈ start(t,d) ,
x→c � =⇒ ∃y ∈ Y.

(
xRy ∧ y →d �

)
,

x
a→c x′ ∧ x′Ry′ =⇒ ∃y ∈ Y.

(
xRy ∧ y

a→d y′) .

The third condition here works “backwards”:

x
a

x′

R

y′
=⇒

x
a

R

x′

R

in X
c→ FX

∃y a
y′

in Y
d→ FY

(3.7)

which arises from the diagram (3.3) in the following way.

x
a→ x′

FR x
a→ x′

.

.

.R
y′

(†)

FX
FR

FY
x

R
..
.
y

a→ y′
(∗)

=⇒=⇒=⇒

X

c

R

�

Y

d

x

c

R

x

R
.
.
.
y

d

The only differences from the diagram (3.6) is that the inequality is reversed and so
is the implication =⇒. The reversed implication (†) =⇒ (∗) yields (3.7).

3.2.13 Example (Probabilistic LTSs with explicit termination). Let us see what
arises from the generic definition (Definitions 3.2.8 and 3.2.9), if the systems have
probabilistic branching (by taking T = D). We consider the same transition-type
F = 1 + Σ× . Recall from Example 3.2.3 that (T, F)-systems, say (s, c) and (t, d),

3.2 Coalgebraic forward and backward simulations 73

are thought of as probabilistic LTSs with explicit termination � and an explicit start
state distribution.

A forward simulation from (t, d) to (s, c) is a function f : X → DY in Sets which
satisfies the following conditions.

t(∗)(y) ≤
∑
x∈X

s(∗)(x) · f(x)(y)∑
y∈Y

f(x)(y) · d(y)(�) ≤ c(x)(�)∑
y∈Y

f(x)(y) · d(y)(a, y′) ≤
∑

x′∈X

c(x)(a, x′) · f(x′)(y′)

(3.8)

The third line can be rephrased as follows. It can be a bit more intuitive.

∑
y∈Y

Pr(x � y) · Pr(y a→ y′) ≤
∑

x′∈X

Pr(x a→ x′) · Pr(x′ � y′)

⎛
⎜⎝cf.

x
a

x′

y a
y′

⎞
⎟⎠

where a function f : X → DY is thought of as a “probabilistic transition” from X to
Y and the value f(x)(y) is denoted by Pr(x � y). The generic definition of backward
simulations can be instantiated in a similar manner.

One may wonder why we can call such a function f : X → DY a “forward simu-
lation.” In particular, our “probabilistic simulations” are no longer binary relations
between state spaces. We have two justifications for the notion.

– The authenticity of our “probabilistic simulations” is supported by the way it
arises: it is an instantiation of the generic, coalgebraic simulations which yields
conventional simulations in a non-deterministic setting.

– Our view on forward/backward simulations in this thesis is that they are tools
for establishing trace inclusion, hence for showing a system’s satisfaction of some
trace-based property. Such a scenario has been demonstrated in Section 1.4.

Therefore we do not care much if our “simulation” is a binary relation or not.
Our emphasis is instead on a soundness property which ensures usefulness of
our “simulation.” Indeed, we will later prove general soundness results (Theo-
rem 3.3.2) which instantiates to the soundness property for our “probabilistic
simulations.” Moreover we will use them in verifying probabilistic trace-based
(anonymity) properties later in Chapter 4.

Later in Section 3.4.3 our notion of “probabilistic simulations” (as an instantiation of
the coalgebraic simulations) is compared with existing notions of (bi)simulations for
probabilistic systems.

74 3 Generic forward and backward simulations

Although forward and backward simulations will be shown to be sound (Theo-
rem 3.3.2), they fail to be complete in general.

∃ (forward or backward simulation from X to Y)

soundness

(trace sem. for X) � (trace sem. for Y)

completeness×××

A completeness result will be proved for a certain combination of forward and back-
ward simulations. In [94] various combinations of forward and backward simulations
are called hybrid simulations and their completeness properties are proved. Here we
shall focus on the following kind of hybrid simulations.

3.2.14 Definition (Backward-forward simulations). Let 1 s→ X
c→ FX and 1 t→

Y
d→ FY be (T, F)-systems. A backward-forward simulation from (s, c) to (t, d)

consists of

– an intermediate system 1 r→ U
b→ FU ;

– a backward simulation f from (s, c) to (r, b), and

– a forward simulation g from (r, b) to (t, d).

Diagrammatically presented in K�(T) (note the direction of arrows and inequalities),

FX
Ff

FU FY
Fg

X

c

f

�
U

b �
Y

d
g

1
s �

1
�r

1 .
t

(3.9)

We write (s, c) �BF (t, d) if there is a backward-forward simulation from (s, c) to
(t, d) (backward-forward similarity). Obviously,

(s, c) �BF (t, d) ⇐⇒ ∃(r, b).
(

(s, c) �B (r, b) ∧ (r, b) �F (t, d)
)

. (3.10)

3.2.4 Why explicit start states?

We shall explain the reason why we need an explicit start state map 1 s→ X incorpo-
rated in the notion of (T, F)-systems. It has much to do with the general phenomenon
that

a morphism of coalgebras preserves a behavior (given by coinduction),

3.2 Coalgebraic forward and backward simulations 75

an idea we informally introduced in Section 1.3.1.
Specifically, assume that an endofunctor F : C→ C has a final coalgebra ζ : Z

∼=→
FZ. If there is a morphism of coalgebras

FX
Ff

FY

X

c

f
Y

d

then f preserves a behavior given by coinduction. That is,

beh(d) ◦ f = beh(c) . (3.11)

This fact follows immediately from coinduction (proof principle). Soundness results
(Theorem 3.3.2) are in the same spirit: it is about relating (possibly relaxed versions
of) morphisms with behaviors by coinduction.

The resulting “behavior preservation” (3.11) has an immediate interpretation in
the category Sets. It means: for each state x ∈ X we have

beh(d)
(
f(x)

)
= beh(c)(x) ,

that is, the state f(x) ∈ Y has the same behavior (modulo bisimilarity) as x ∈ X.
However, when we work in a Kleisli category K�(P), the equality (3.11) is no longer

intuitive. For illustration let us take T = P, the powerset monad. In (3.11) the arrows
beh(c) and beh(d) give trace (set) semantics; the arrow f has, as a function, the type
f : X → PY . Equality means: for each x ∈ X,⋃

y∈f(x)

beh(d)(y) = beh(c)(x) . (3.12)

That is, the state x has more behavior than any state y ∈ f(x), but at the same time
any behavior of x is simulated by some y ∈ f(x). It is not easy to see significance of
this equality.

The clumsiness here lies in comparing “one x vs. many y’s.” Introducing explicit
start states is how we mend it: the following observation is an adaptation of the
previous “behavior preservation” result, so that it takes start states into account.

3.2.15 Proposition. Let 1 s→ X
c→ FX and 1 t→ Y

d→ FY be (T, F)-systems,
presented in K�(T).

If f : X → Y is a morphism of (T, F)-systems from (s, c) to (t, d) (Defini-
tion 3.2.10), then trace semantics for the two systems is the same:

tr(s, c) = tr(t, d) . (3.13)

76 3 Generic forward and backward simulations

Proof. We have the following situation.

FX
Ff

FY
F (tr(d))

FA

X
f

c

Y
tr(d)d

A

∼= Jα−1

1
s

1
t

tr(t, d)

The claim is shown by an easy calculation.

tr(t, d) = tr(d) ◦ t = tr(d) ◦ f ◦ s
(∗)
= tr(c) ◦ s = tr(s, c) ,

where the equality (∗) is due to coinduction. �
The meaning of the equality (3.13) is intuitive and clear: when T = P it means⋃

x∈s(∗)
beh(c)(x) =

⋃
y∈t(∗)

beh(d)(y) .

The difference from (3.12) is that we are now comparing “many x’s vs. many y’s,”
with the help of explicit start states.

3.3 Soundness and completeness theorems

In this section we present the main results in this chapter, namely soundness and
completeness theorems which relate forward/backward simulations (as lax/oplax mor-
phisms of coalgebras) and trace semantics (as given by coinduction). The soundness
results possibly reduce the task of proving trace inclusion to finding a simulation—
the former involves looking ahead arbitrary many steps, while the latter involves only
one-step transitions. Hence soundness plays a central role in simulation-based verifi-
cation methods for trace-based properties, some examples of which will be presented
later in Chapter 4.

3.3.1 Order-theoretic universality of a final coalgebra in K�(T)

We have already observed that a morphism of (T, F)-systems preserves trace seman-
tics (Proposition 3.2.15); its proof was essentially by coinduction. In the sound-
ness results we will relate trace semantics (by coinduction) with forward/backward
simulations—which are lax/oplax morphisms and hence involve the order structure of
K�(T). Hence in the proofs (by coinduction) we will need an order-theoretic universal
property of a final coalgebra in K�(T) besides its finality in a usual sense; it is given
by the following result.

3.3 Soundness and completeness theorems 77

3.3.1 Proposition (Trace semantics as the largest lax morphism). Assume that
(F, T, λ) is a trace situation (Theorem 2.3.3). An arbitrary F -coalgebra c : X → FX
gives rise to its trace semantics tr(c) : X → A given by the following coinduction.

FX
F (tr(c))

In K�(T) FA

X

c

tr(c)
A

Jα−1∼=

Note that an equality = is implicit in the middle of the diagram. Hence the arrow
tr(c) is both a lax morphism and an oplax morphism from c to Jα−1.

– The trace arrow tr(c) is the largest lax morphism from c to Jα−1. That is, for
any f : X → A in K�(T),

FX
Ff

FA

X
c

f

A

Jα−1∼= implies X

f

tr(c)

�

A .

– Dually, the trace semantics tr(c) is the smallest oplax morphisms from c to
Jα−1. That is, for any f : X → A in K�(T),

FX
Ff

FA

X

c

f

�
A

Jα−1∼= implies X

tr(c)

f

�

A .

Proof. Although the claim follows from a general result [32, Proposition 6.7], in this
specific setting of a Kleisli category we can give another proof. Our proof depends
only on the local monotonicity of F and not on its local continuity. It avoids the use
of local continuity in a similar way to the proof of Theorem 2.3.3, namely by looking
into the final sequence for the functor F .

Let us consider the final sequence 1 !← F1 F !← · · · for F in K�(T).4 The following
facts are standard about the final sequence; they are in the proof of Proposition A.1.2.

– A final F -coalgebra (which by the way coincides with an F -initial algebra in
Sets, Theorem 2.3.3) is an ω-limit of this final sequence. We denote this limit
by (ζn : A→ Fn1)n<ω.

– An F -coalgebra c : X → FX yields a cone (γn : X → Fn1)n<ω over the final
sequence, in an inductive manner.

4For simplicity of presentation, we employ different notations from those in the proof of Theo-
rem 2.3.3. For example, a final object 1 in K�(T) is given by the empty set, so it was denoted by 0
before.

78 3 Generic forward and backward simulations

– The unique coalgebra morphism tr(c) from c to the final coalgebra coincides
with the unique mediating arrow X → A from the cone (γn) to the limit (ζn).

Hence we have the following situation in K�(T).

A (limit)

tr(c)· · · Fn1

ζn

γn

Fn!
Fn+11

ζn+1

γn+1

· · ·

X

In the proof of Theorem 2.3.3, it was crucial that the limit (ζn) can be also charac-
terized by the order-theoretical notion of O-limit (Definition A.2.3). In particular we
can take the corresponding embedding ζE

n : Fn1→ A of each ζn : A→ Fn1; moreover
we have idA =

⊔
n<ω(ζE

n ◦ ζn).
Now we prove the first statement of the proposition.

tr(c) =
(⊔

n<ω ζE
n ◦ ζn

)
◦ tr(c) by idA =

⊔
n<ω(ζE

n ◦ ζn)

=
(⊔

n<ω ζE
n ◦ ζn ◦ tr(c)

)
composition is continuous

=
(⊔

n<ω ζE
n ◦ γn

)
tr(c) is a mediating arrow

(⊔

n<ω ζE
n ◦ ζn ◦ f

)
ζn ◦ f � γn for each n, (†)

=
(⊔

n<ω ζE
n ◦ ζn

)
◦ f = f , composition is continuous

where the inequality (†) is proved by induction on n, using the assumption that f is
a lax morphism. In this proof, local monotonicity of F has been implicitly used in
showing that the limit (ζn) is also an O-limit.

The dual statement is proved in a similar way. �
3.3.2 Soundness of forward/backward simulations

3.3.2 Theorem (Soundness of simulations). Let 1 s→ X
c→ FX and 1 t→ Y

d→ FY be
(T, F)-systems. Existence of a forward/backward/backward-forward simulation from
(s, c) to (t, d) implies trace inclusion tr(s, c) � tr(t, d). That is,

1. (s, c) �F (t, d) =⇒ tr(s, c) � tr(t, d) ,
2. (s, c) �B (t, d) =⇒ tr(s, c) � tr(t, d) ,
3. (s, c) �BF (t, d) =⇒ tr(s, c) � tr(t, d) .

Proof. 1. By definition of �F we have a forward simulation f : Y → X. In particular
we have the following situation in K�(T).

FY
Ff

FX
F (tr(c))

FA

Y

f

d
X

=

tr(c)

c

A

∼= Jα−1 (final)

3.3 Soundness and completeness theorems 79

The square on the right is a coinduction diagram. This shows that the arrow tr(c) ◦ f
is a lax coalgebra morphism from d to the final coalgebra, that is,

Jα−1 ◦
(
tr(c) ◦ f

)
� F

(
tr(c) ◦ f

)
◦ d in K�(T).

Since the trace map is the biggest lax coalgebra morphism (Proposition 3.3.1), we
have tr(c) ◦ f � tr(d). This inequality is combined with f ’s condition on start state
maps.

tr(s, c) = tr(c) ◦ s � tr(c) ◦ f ◦ t � tr(d) ◦ t = tr(t, d)

This proves 1. Similar arguments prove 2.
3. The relation �BF is a relational composition �F◦�B. We use 1. and 2. of the

theorem, and transitivity of the order � between arrows 1 ⇒ A. �
3.3.3 Completeness of hybrid simulations

Completeness (the converse of soundness) does not hold for �F,�B but does hold for
the more strict notion of �BF. For a restricted class of non-deterministic systems the
completeness result is shown in [77, 94].

3.3.3 Theorem (Completeness of �BF).

tr(s, c) � tr(t, d) =⇒ (s, c) �BF (t, d) .

Proof. Given a (T, F)-system (s, c), we construct the following system which we refer
to as a canonical system.

1
tr(s, c)

A
Jα−1

∼= FA in K�(T)

Its dynamics is a final F -coalgebra; its start states map is given by the trace semantics
of the system (s, c) in consideration.

By definition of trace semantics, the arrow tr(c) : X → A is a morphism of
systems from (s, c) to this canonical system. This establishes the left side of the
diagram (3.14) below. We apply the same construction to (t, d) and obtain the right
side of the diagram. Now the assumption tr(s, c) � tr(t, d) fits in the lower middle of
the diagram.

FX
F (tr(c))

FA FY
F (tr(d))

X

c
tr(c)

A

∼= Jα−1

Y

d
tr(d)

1

s

1

tr(s, c) tr(t, d)�
1

t

(3.14)

80 3 Generic forward and backward simulations

From this we obtain the following two diagrams of backward-forward simulations—like
the diagram (3.9) in Definition 3.2.14—depending on our choice of the intermediate
system.

FX FA FY

X

c

A

∼=
Y

d

1
s

1
tr(s, c) �

1
t

FX FA FY

X

c

A

∼=
Y

d

1
s

1
� tr(t, d)

1
t

Either diagram shows (s, c) �BF (t, d). �
3.3.4 Similarity relations are preorders

We shall show that three similarity relations �F,�B and �BF—corresponding to
forward, backward, and backward-forward simulations, respectively—are indeed pre-
orders. Being a preorder is a basic property that we would expect from such a relation.
The proofs have been postponed until now, because in showing transitivity of �BF

we use completeness (Theorem 3.3.3).
For �F and �B the proof is straightforward.

3.3.4 Proposition (�F,�B are preorders). The forward and backward similarity
relations �F and �B are preorders. That is, they are reflexive and transitive.

Proof. Reflexivity is obvious: take the identity arrow in the Kleisli category as a
forward (or backward) simulation. To show transitivity, assume (s, c) �F (t, d) �F

(r, b). There exist forward simulations f and g such that

FU
Ff

FY
Fg

FX

U
b

f

Y
d

g X

c

1
r

1
t

1
s

, hence

FU
F (g ◦ f)

FX

U
b

g ◦ f

X

c

1
r

1
s

.

This shows (s, c) �F (r, b). Transitivity of �B is proved in a similar way. �
3.3.5 Proposition (�BF is a preorder). The backward-forward similarity relation
�BF is a preorder.

Proof. Reflexivity is trivial by taking the system itself as an intermediate one. Assume
(s, c) �BF (t, d) �BF (r, b). By soundness of �BF (Theorem 3.3.2) we have tr(s, c) �
tr(t, d) � tr(r, b); transitivity of � implies tr(s, c) � tr(r, b). This in turn yields
(s, c) �BF (r, b) by completeness of �BF (Theorem 3.3.3). Hence we have shown
transitivity of �BF. �

3.4 Related work 81

3.4 Related work

3.4.1 Simulations in coalgebra

Hughes and Jacobs [58,64] also study simulations in a coalgebraic setting. Their coal-
gebraic modeling of simulations—and their motivation which leads to the modeling—
is quite different from ours. They introduce their notion of simulations (which, by the
way, work “forwards”) as a relaxed version of bisimulations. Based on this definition
they proceed to observe how these simulations are related to coalgebraic bisimulations,
hence to final coalgebras in Sets. This marks a contrast between their investigation
and ours; in the current work simulations are related to trace semantics (not to bisim-
ulations), hence to final coalgebras in K�(T).

More specifically, the definition of coalgebraic bisimulations which is used in [58,
64]—and which is relaxed to yield coalgebraic simulations—is the following one, using
relation liftings. (We have used relation liftings in Lemma 2.2.4.) Given coalgebras
X

c→ FX and Y
d→ FY in Sets, a bisimulation between them is a binary relation

R ⊆ X × Y such that

(x, y) ∈ R =⇒
(
c(x), d(y)

)
∈ RelF (R) . (3.15)

The relation RelF (R) ⊆ FX × FY is the F -relation lifting of R. For illustration, let
us take F = Pfin(Σ×) for which coalgebras are (finitely branching) LTSs. For this
F , the relation lifting RelF (R) is the following relation.

RelF (R) ⊆ Pfin(Σ×X)× Pfin(Σ× Y) ,

(u, v) ∈ RelF (R) ⇐⇒
[

(a, x′) ∈ u =⇒ ∃y′ ∈ Y.
(

(a, y′) ∈ v ∧ (x′, y′) ∈ R
)

(a, y′) ∈ v =⇒ ∃x′ ∈ X.
(

(a, x′) ∈ u ∧ (x′, y′) ∈ R
)]

In this case it is obvious that a coalgebraic bisimulation (3.15) is the same thing as
a conventional bisimulation between LTSs. More generally, bisimilarity defined in
terms of these coalgebraic bisimulations (using relation liftings) coincides with the
bisimilarity via coinduction (which we discussed in Section 1.3.2), if the functor F
preserves weak pullbacks.

The core assumption made in [58, 64] is that the functor F comes with a preorder
structure. Specifically, the functor F : Sets → Sets factors through the forgetful
functor PreOrd → Sets from the categories of preordered sets and monotone func-
tions.

PreOrd

Sets
F

�

Sets
(3.16)

In particular, each set of the form FX comes with a preorder �.
This preorder structure � on FX and FY is used to relax (3.15) and obtain

coalgebraic simulations in [58, 64]. Namely, a simulation from X
c→ FX to Y

d→ FY

82 3 Generic forward and backward simulations

is a binary relation R ⊆ X × Y such that

(x, y) ∈ R =⇒ ∃u ∈ FX. ∃v ∈ FY.

⎡
⎣ c(x) �FX u
∧ (u, v) ∈ RelF (R)
∧ v �FY d(y)

⎤
⎦ ,

that is, c(x)
�FX ∃u

RelF (R)
∃v �FY

d(y) .

(3.17)

Here �FX refers to the preorder on FX which results from the assumption (3.16).
The condition (3.17) for simulations is weaker than (3.15) for bisimulations because,
in (3.17), c(x) and d(y) can use “helper” preorders �FX and �FY in order to be
related via RelF (R).

In [58, 64] it is demonstrated that the coalgebraic simulation (3.17) gives a con-
ventional simulation in many examples. They proceed to investigate the relationship
between coalgebraic simulations and bisimulations, such as the following.

– When does bisimilarity coincide with two-way similarity? The former implies
the latter but not the other way round in general.

– Similarity order makes a final coalgebra an ω-cpo. Moreover, under certain
conditions it becomes an algebraic cpo.

All these observations in [58, 64] take place in Sets.
In contrast, we take a different view on forward/backward simulations in our

current setting: simulations are tools to show trace inclusion. Hence our emphasis is
on the relationship to trace semantics, in particular soundness properties. We base
our observations on a Kleisli category.

Let us compare concrete definitions of simulations obtained from the framework
in [58, 64] and definitions obtained from ours. For non-deterministic systems, both
frameworks yield quite similar “simulations”; moreover they are similar to conven-
tional ones such as in [94]. Indeed if we take F = P(1 + Σ ×) (equipped with
the inclusion order) in the framework of [58, 64], their notion of simulations coincides
with our forward simulations for LTSs with explicit termination (described in Ex-
ample 3.2.12). Notice that in the former framework there is no distinction between
branching types and transition types; hence both P and 1 + Σ × are put into a
single functor F .

However a difference emerges in a probabilistic setting. It is possible to apply the
framework of [58, 64] to a functor F which contains probabilistic branching; however,
still in this case, the induced simulation is a binary relation between state spaces
(see (3.17)). In contrast our simulation is a function of type X → DY . The latter
finds its use in showing trace inclusion (see Chapter 4); comparative merits of the
former notion of simulations is yet to be investigated.

3.4.2 Lax categorical structures and data refinement

Categorical notions of lax and oplax morphisms of coalgebras play central roles in our
framework. As we have briefly mentioned, lax/oplax categorical constructs are also

3.4 Related work 83

used in formalizing data refinement [56, 76]. In this context of data refinement, peo-
ple use terminologies such as upward simulations, downward simulations, and so on.
These “simulations” are not the same things as the simulations between state-based
systems (investigated in this chapter); nevertheless we shall briefly sketch “simula-
tions” in data refinement.

In short, an upward simulation in data refinement is a “relationship” between two
interpretations of the same programming language. It is categorically formalized as
a lax natural transformation ρ in the following situation [56].

Cl
F

G

⇓ρ Dom (3.18)

Let us explain the situation. First, one identifies the programming language of
our interest with its classifying, syntactic category Cl.

– An object in Cl is a type, such as stack;

– an arrow in Cl is a piece of code which denotes a function with corresponding
types, such as pop : stack→ stack, or (pop; pop) : stack→ stack.

These syntactic objects are interpreted in a locally-ordered category Dom of “seman-
tic domains” such as Dom = Cppo. An interpretation is given categorically as a
functor F : Cl → Dom; it carries objects (i.e. types) and arrows (i.e. functions) in
Cl to their interpretations in Dom, respectively.

The basic idea of data refinement is as follows. Given two interpretations F and
G of the programming language Cl in Dom, sometimes one would like to say ‘F is a
refined interpretation of G’ or ‘F gives a representation of a “specification” G.’ Such
a statement would mean that there is, for each type X ∈ Cl, an arrow

ρX : FX −→ GX in Dom.

Moreover this “translation” should be compatible with interpretations of functions:
for each arrow X

f→ Y in Cl,

FX
ρX

Ff
GX

Gf
FY ρY

GY .
(3.19)

This makes ρ : F ⇒ G a natural transformation.
However, in a “specification” G, some function f may be yet to be interpreted.

Categorically it means that the arrow Gf : GX → GY in Dom might be the bottom⊥
(which is available e.g. when Dom is Cppo). Nevertheless the refined interpretation
F may have the function f already interpreted; in this case the diagram (3.19) does

84 3 Generic forward and backward simulations

not commute but rather one obtains an inequality in the square.

FX
ρX

Ff
GX

Gf
FY ρY

GY .

Hence an upward simulation ρ from F to G—which witnesses that F is a refined
interpretation of G—is a lax natural transformation as in the situation (3.18). Here
the order structure of Dom is considered to be “degree of definedness” [76].

3.4.3 (Bi)simulations for probabilistic systems

We have obtained the notion of “probabilistic forward/backward simulations” by suit-
ably instantiating our coalgebraic simulations (Example 3.2.13). What is notable
about it is that a simulation is not a binary relation between state spaces, but instead
a function of the type X → DY ; and that we have soundness theorems for free.

There have been definitions of “bisimulations” and “simulations” for probabilistic
systems, proposed by several authors. Here we shall focus on two notable defini-
tions among them—those introduced in [88, 120]—and compare these two with our
definition.

In [120] the notion of (forward) simulations is introduced for (Segala’s) probabilistic
automata which are models of probabilistic systems introduced in [120]. It is proved to
be sound with respect to trace inclusion in [120]. Moreover in [95] these simulations are
shown to be also complete, with respect to trace distribution precongruence ≤DC—
it is the coarsest preorder which is included in the trace inclusion preorder and is
“compositional,” i.e. compatible with parallel composition of probabilistic automata.

The biggest difference between the setting of [95, 120] and ours is that (Segala’s)
probabilistic automata have both non-deterministic and probabilistic branching. Coal-
gebraically, (Segala’s) probabilistic automata are functions of the type

X −→ PDFX

where F is a suitable transition type. See [128] for detailed treatment of coalgebraic
formulation of various models of probabilistic systems. Our coalgebraic theory of
traces and simulations (in K�(T)) has not been applied to this combined branching
yet (see Section 2.6).

Still the following fact suggests possible applicability of our coalgebraic framework.
A “simulation” in [120] is not a binary relation between states, but it is a relation
between a state and a probability distribution over states, which can be identified
with a function of the type X → PDY .

R ⊆ X ×DY, a relation
X −→ PDY in Sets

3.4 Related work 85

Hence this simulation might be an arrow X → Y in a suitable Kleisli category like
K�(PD);5 if so, it matches our framework where a simulation is an arrow X → Y in
K�(T).

Another point to note is that the notion of “trace inclusion” in [95, 120] between
(Segala’s) probabilistic automata is quite different from ours. Specifically, trace se-
mantics for a (Segala’s) probabilistic automaton is given by a set of probabilistic
distributions over the set of linear-time behavior, that is, a function

tr(s, c) : 1 −→ PDA

where A is the set of all linear-time behavior. Now the “trace inclusion” order
tr(s, c) � tr(t, d) is defined by:

tr(s, c) � tr(t, d) ⇐⇒ ∀d ∈ tr(s, c). d ∈ tr(t, d) .

Hence “trace inclusion” for (Segala’s) probabilistic automata in [95, 120] refers to
(pure) set inclusion; it does not say anything about the comparative quantity of
probability with which a linear-time behavior would occur. In contrast, in our setting
(which is purely probabilistic), trace inclusion—defined in terms of the Cppo-enriched
structure of K�(D)—is based on comparative quantity of probability.

The other definition that interests us is the notion of probabilistic bisimulation
in [88]. A probabilistic bisimulation in [88] is defined between purely probabilistic
systems (i.e. no non-deterministic branching) so the setting is similar to ours; still
it is given by a binary relation, in contrast to ours which are functions of the type
X → DY . Roughly speaking, an equivalence relation R ⊆ X ×X on a state space of
a probabilistic LTS is said to be a probabilistic bisimulation if

xRy =⇒ ∀a ∈ Σ. ∀S ∈ X/R. Pr(x a→ S) = Pr(y a→ S) . (3.20)

Here Σ is the set of actions and Pr(x a→ S) is the probability with which x makes an
a-move to one of the states in S. That is,

Pr(x a→ S) =
∑
x′∈S

Pr(x a→ x′) .

The problem is that this definition is not immediately transformable into a definition
of simulations. Specifically, the relation R’s being an equivalence is crucial in writing
down the condition (3.20); however we expect a simulation to be a preorder rather
than an equivalence. Additionally, the above definition of probabilistic bisimulations
works only within the same system. It does not easily generalize to bisimulations
between two different systems; neither to simulations from one system to another.

5It is known that the combination PD is not a monad [136]. To make it a monad a small
modification is needed for either P or D.

86 3 Generic forward and backward simulations

3.5 Summary and future work

Continuing from Chapter 2, we have developed a generic theory of traces and simula-
tions in terms of coalgebras in Kleisli categories. Notions such as forward/backward
simulations and traces are defined and related via soundness and completeness results.
Several illustrating examples suggest implications of this theory in practice.

As mentioned in Section 2.6, systems with both non-deterministic and proba-
bilistic branching (such as Segala’s probabilistic automata) do not fit in our general
framework. Some observations regarding the potential applicability of our framework
have been made in Section 3.4.3.

Later in Chapter 5 we will introduce a generic coalgebraic framework to describe
parallel composition of systems and compositionality of process semantics. As men-
tioned in Section 2.6, the framework works for all the process semantics given by
coinduction, hence including trace semantics (by coinduction in K�(T)). The rela-
tionship between this composition framework and the material in this chapter (on
simulations) is investigated as well; we will obtain compositionality results for simi-
larity relations �F, �B and �BF (Propositions 5.5.5 and 5.5.6).

Often a process equivalence ∼ (or a process preorder �) is characterized by means
of some modal logic: C ∼ D (or C � D) if, for any formula ϕ in the logic,

C |= ϕ ⇐⇒ D |= ϕ (or C |= ϕ =⇒ D |= ϕ),

respectively. A classic result of this kind is expressivity of the Hennessy-Milner
logic with respect to bisimilarity [52]; other than that a variety of process equiva-
lences/preorders have been given such characterizations (see e.g. [39]). The canonical
testing situation in Section 2.5 is also considered to be a “logical characterization”
of coalgebraic trace equivalence (Proposition 2.5.9); logical characterizations of the
coalgebraic similarity relations �F and �B in this chapter is yet to be investigated.

IOA Toolset [38] is a formal verification tool in which systems are described as I/O
automata and analyzed using simulations. Now that its base theory is made generic,
one might as well contemplate on a generic version of the toolset as well.

Chapter 4

Case study: probabilistic anonymity

There is a growing concern about anonymity and privacy on the Internet, resulting
in lots of work on formalization and verification of anonymity. Especially, importance
of probabilistic aspects of anonymity is claimed recently by many authors. Several
different notions of “probabilistic anonymity” have been studied so far, but proof
methods for such probabilistic notions are not yet much elaborated. In this chapter we
introduce a simulation-based proof method for one notion of probabilistic anonymity
introduced by Bhargava and Palamidessi [15], called strong probabilistic anonymity.
The method is a probabilistic adaptation of the one by Kawabe, Sakurada et al. for
non-deterministic anonymity [71, 72]: anonymity of a protocol is proved by finding
out a forward/backward simulation between certain automata. For the jump from
non-determinism to probability we exploit the generic, coalgebraic theory of traces
and simulations developed in Chapters 2 and 3. In particular, an appropriate notion
of probabilistic simulations is obtained as an instantiation of the generic definition,
for which a soundness theorem comes for free. Additionally, we show how we can
use a similar idea to verify a weaker notion of probabilistic anonymity called probable
innocence.

4.1 Overview

4.1.1 Online anonymity

Nowadays most human activities rely on communication over the Internet, hence on
communication protocols. This has made verification of communication protocols
a trend in computer science. At the same time, varying purposes of communica-
tion protocols have identified new verification goals—or security properties—such as
anonymity, in addition to rather traditional ones like secrecy and authentication.

Anonymity properties have attracted growing concern from the public. There
are emerging threats as well: for example, the European Parliament in December

87

88 4 Case study: probabilistic anonymity

2005 approved rules forcing ISPs to retain access records. Consequently an increasing
extent of research activities—especially from the formal methods community—are
aiming at verification of anonymity properties (see [6]).

Formal verification of anonymity properties is relatively young compared to au-
thentication or secrecy. The topic still allows for definitional work (such as [15, 22,
37, 41, 57, 110]) pointing out many different aspects of anonymity notions. Notably
many authors [15,22,41,123,124] claim the significant role of probability in anonymity
notions. This is the focus of the current work.

4.1.2 Probabilistic anonymity

There have been several different notions of anonymity proposed in probabilistic set-
tings, e.g. [15, 41, 112]. There are also some case studies which analyze existing
anonymizing protocols and examine whether they satisfy the notions of probabilistic
anonymity. However, generic verification methods for probabilistic anonymity have
not yet much elaborated.

In this chapter we introduce simulation-based proof methods for two different no-
tions of probabilistic anonymity. The first one is strong probabilistic anonymity (which
will be also called strong anonymity) introduced by Bhargava and Palamidessi [15].
The definition requires that, by observing an execution of the protocol, the adversary
should gain absolutely no information on who is the person to be blamed—the cul-
prit. The notion is a natural probabilistic adaptation of the non-deterministic notion
of trace anonymity.1

What we shall do in this chapter is to adapt a proof method as well, from the one
for (non-deterministic) trace anonymity to the one for probabilistic strong anonymity.
The proof method we start with is the simulation-based one which is introduced
in [71, 72]. Its basic scenario is as follows.

1. First we model an anonymizing protocol as a certain kind of automaton X .

2. Second we construct the anonymized version an(X) of X . The automaton
an(X) satisfies the appropriate notion of anonymity because of the way it is
constructed.

3. We prove that

(trace semantics of X) = (trace semantics of an(X)) .

Then, since the notion of anonymity is defined in terms of traces, anonymity
of an(X) yields anonymity of X . The equality is proved by showing that the
(appropriate notion of) inclusion order � holds in both directions.

– One direction � holds because of the construction of an(X).

1The notion of trace anonymity is originally introduced in [119] under the name of strong
anonymity. In this chapter we follow [71, 72] and call it trace anonymity. This is for the sake
of terminological convenience.

4.1 Overview 89

– The other direction is proved by finding a (forward or backward) sim-
ulation from an(X) to X . Here we appeal to the soundness theorem for
simulations—existence of a simulation implies trace inclusion.

Hence the anonymity proof of X is reduced to finding a suitable forward/backward
simulation.

4.1.3 Converting non-determinism to probability

The basic scenario remains the same for strong (probabilistic) anonymity. However,
there is an obvious difficulty in conducting the scenario in a probabilistic setting.
The theory of traces and simulations in a non-deterministic setting is well studied
e.g. in [94]; however appropriate definitions of probabilistic traces and simulations are
far from trivial.

This jump from non-determinism to probability is where we exploit the generic,
coalgebraic theory of traces and simulations developed in the previous chapters. In
the generic theory, fundamental notions such as systems (or automata), trace seman-
tics and forward/backward simulations are identified as certain kinds of coalgebraic
constructs. On this level of abstraction the general soundness theorem—existence of a
(coalgebraic) simulation yields (coalgebraic) trace inclusion—is proved by categorical
arguments.

The generic theory has two parameters T and F appearing in it; by making differ-
ent choices of these parameters the theory can cover a wide variety of systems. In par-
ticular, according to the choice of one parameter T , systems can be non-deterministic
or probabilistic. In this chapter we obtain a complex definition of probabilistic simula-
tions as an instance of the general, coalgebraic definition. Moreover, this definition is
a useful one: a soundness theorem comes for free from the general soundness theorem.

After a simulation-based proof method for strong (probabilistic) anonymity, we
use a similar idea to verify a weaker anonymity notion called probable innocence. The
notion appears in [41, 112] and is extensively studied in [23]. The significance of
this weaker notion is due to the fact that many real-world anonymizing protocols—
which include Crowds [112]—do not satisfy strong anonymity but do satisfy probable
innocence. Intuitively, probable innocence does allow the adversary to learn some
information about the culprit; but it requires that this information leak is only up to
a certain bound.

We take the definition in [23]—which generalizes the ones in [41,112]—and present
a simulation-based proof method for this notion. Although the basic scenario is not
exactly the same as before, the idea of using simulations is quite similar.

4.1.4 Outline of the chapter

In Section 4.2 we illustrate notions of probabilistic anonymity using a couple of ex-
amples. They include the Dining Cryptographers protocol and the Crowds protocol.
The formal definitions of anonymity notions are presented in 4.3, where we also intro-
duce our models of anonymizing protocols called anonymity automata. In Section 4.4

90 4 Case study: probabilistic anonymity

we describe our simulation-based proof method for strong anonymity and prove its
correctness. In Section 4.5 the proof method for probable innocence is described.
Relation to other work with a similar interest is discussed in Section 4.6.

Notations The set of lists in an alphabet X with length ≥ 1 is denoted by X+,
that is, X+ = X∗ · X in a regular-expression-like notation. This appears later as a
domain of trace semantics for anonymity automata.

4.2 Motivating examples

In this section we motivate

– the probabilistic aspect of anonymity, and

– possible candidates for a formal notion of “probabilistic anonymity,”

by presenting concrete examples of anonymizing protocols. The first example is the
Dining Cryptographers (DC) protocol [25]: this common example in the formal study
of anonymity protocols will illustrate the important role of probability in anonymiz-
ing protocols. The second example of simple and artificial protocols for anonymous
donation will clarify the idea behind the notion of strong probabilistic anonymity. In
the last place we present an example of Crowds [112]—which does not satisfy strong
probabilistic anonymity—to motivate the weaker notion of probable innocence.

4.2.1 The Dining Cryptographers (DC) protocol

Here we follow [15] to illustrate the role of probability in anonymity, using the Dining
Cryptographers (DC) protocol.

There are three cryptographers (or “users”) dining together. The payment will be
made either by one of the cryptographers, or by NSA (U.S. National Security Agency)
which organizes the dinner. Who is paying has been determined by NSA; if one of
the cryptographers is paying, the payer has been told so beforehand.

The goal of the DC protocol is as follows. The three cryptographers

– reveal whether there is a payer among them, but

– not revealing which of them is the payer (if any),

to the observer (called the adversary in the sequel) and also to the cryptographers
who are not paying.

The protocol proceeds in the following way. Three cryptographers Crypti for i =
0, 1, 2 sit in a circle, each with a coin Coini. The coins are held in such a way that they
can be seen by the owner and one of the other two: the arrows → in the following
figure denote the “able-to-see-her-coin” relation.

Crypt0

Crypt1 Crypt2

4.2 Motivating examples 91

Hence Crypt0 can see the coin held by Crypt1 as well as her own. Then the coins are
flipped; each cryptographer, comparing the two coins she can see, announces to the
public whether they agree (showing the same side) or disagree. The trick is that the
one who is paying—if there is—must lie about the announcement. For example, given
that Crypt0 is paying, the configuration of coins

(h, t, h) that is h
t h

,

results in the announcement

(a, d, a) that is
a

d a .

This announcement is the only thing the adversary can observe; occurrence of an odd
number of d’s reveals the presence of a liar, hence the presence of a payer among the
cryptographers.

Can the adversary tell which cryptographer is paying? No. In fact, given any
announcement with an odd number of d’s, one can construct a coin configuration
which yields the given announcement under an arbitrary choice of the payer. For
example, the announcement (a, d, a) above can be obtained from any of the following
configurations.

Crypt0 pays, and coins are (h, t, h) or (t, h, t)
Crypt1 pays, and coins are (h, h, h) or (t, t, t)
Crypt2 pays, and coins are (h, h, t) or (t, t, h)

4.2.2 Probabilistic anonymity in DC

Up to now our arguments have been non-deterministic; now we shall explain how
probabilistic aspects in DC can emerge. Assume that the coins are biased: each of
three Coini’s gives head with the probability 9/10. Provided that Crypt0 is paying, the
announcement (a, d, a) occurs with the probability (9 · 1 · 9 + 1 · 9 · 1)/103, because it
results from (h, t, h) or (t, h, t). Similar calculations lead to the following table of
conditional probabilities.

(d, a, a) (a, d, a) (a, a, d) (d, d, d)
Crypt0 pays 0.73 0.09 0.09 0.09
Crypt1 pays 0.09 0.73 0.09 0.09
Crypt2 pays 0.09 0.09 0.73 0.09

Are the cryptographers still “anonymous”? We would not say so. For example, if
the adversary observes an announcement (d, a, a), it is reasonable for her to suspect
Crypt0 more than the other two.

Nevertheless, if the coins are not biased we cannot find any symptom of broken
anonymity. Therefore we want to come up with the following two things.

92 4 Case study: probabilistic anonymity

The first is an appropriate notion of “probabilistic anonymity” which holds with
fair coins but is violated with biased coins. This is done in [15] and the definition will
be explained using the next simpler example.

The second is an effective proof method to verify this notion of anonymity. This
is what we aim at in the current work.

4.2.3 Strong probabilistic anonymity

In this section we present toy examples of probabilistic anonymizing protocols to
motivate the notion of strong (probabilistic) anonymity [15].

Let us think of a situation of anonymous donation: one of two cryptographers
Crypt0 and Crypt1 tries to donate some money, without revealing the donor’s identity.
Consider the following three protocols, X0,X1,X2 from left to right.

Crypt0[
1
2]

�
$5[9

10]

�
$10K[1

10]

Crypt1[
1
2]

�
$5[9

10]

�
$10K[1

10]

Crypt0[
1
3]

�
$5[9

10]

�
$10K[1

10]

Crypt1[
2
3]

�
$5[9

10]

�
$10K[1

10]

Crypt0[
1
3]

�
$5[1

10]

�
$10K[9

10]

Crypt1[
2
3]

�
$5[9

10]

�
$10K[1

10]

It is assumed that the labels Crypti—deciding which cryptographer is the donor—
are invisible for the observer. Only the labels $n—for money transactions—are visible.

The first protocol X0 works as follows. First the donor is chosen with the uniform
probability distribution; no matter which is chosen, the donor donates $5 with the
probability 9/10 and $10K with 1/10. In the second protocol X1, it is in the specifi-
cation of the protocol (hence is known to the adversary) that Crypt1 is more likely to
be the donor—the culprit. In X2 (in comparison to X1), Crypt0 is known, so to say, to
be rich: when she is chosen as the donor more often than not she gives away $10K.

Are these protocols “anonymous”? That is, by observing money transactions,
can the adversary tell who is the culprit? Intuitively it is clear that X0 should be
“anonymous” and X2 should not be. X1 can be debatable but we want to claim it
to be anonymous. It is true that Crypt1 is inherently more suspicious than Crypt0 in
X1 (the a-priori distribution of suspicion is not uniform). However, after observing
any execution of the protocol, from the adversary’s viewpoint the cryptographers look
exactly as suspicious as before. In other words, in X1, an observation of transaction
of $5 or $10K does not carry any information on who is the culprit.

This intuition leads to the notion of strong anonymity introduced in [15]. Here we
give an informal description; a formal definition is found in Definition 4.3.8.

4.2.1 Definition (Strong anonymity). An anonymizing protocol X satisfies strong
(probabilistic) anonymity if, for any observation o and users i and j, we have

PX (o | i is a culprit) = PX (o | j is a culprit) .

4.2 Motivating examples 93

Here PX (o | i is a culprit) denotes the conditional probability for the event “given
that the user i is the culprit, an execution of X yields the observation o.”

The intuition behind this definition is quite similar to the one behind the notion of
conditional anonymity [41] whose formal definition is given later in Definition 4.3.9.
In fact, it is shown in [15] that under reasonable assumptions these two notions of
anonymity coincide.

4.2.4 Crowds and probable innocence

Although the DC protocol with fair coins (as well as the anonymous donation proto-
cols X0 and X1 in Section 4.2.3) satisfies strong anonymity, there are a large body of
real-world protocols which do not satisfy the property. Crowds [112] is one of them.

The Crowds protocol aims at anonymous web browsing, so that a user can send a
request to a web server without revealing the user’s identity. In essence the identity
is concealed by relaying the request among a set (“crowd”) of relays.

– A user, who has already joined a group (“crowd”) of hosts, picks one relay out
of the crowd with a uniform probability and forwards a request to the chosen
relay. The relay can be the initiating user herself.

– A relay in a crowd, on receiving a request, flips a (biased) coin to decide whether

• to deliver the request to its intended recipient, i.e. the web server (this
happens with the probability 1− pf), or
• to forward it to another relay (with the probability pf). The next relay is

chosen from the crowd with the uniform probability, including the current
relay itself.

Here the probability pf is a system-wide parameter. This way the web server only
sees a request coming from a relay, hence it is not sure who initiated the request.

It is obvious that Crowds gives no anonymity guarantee against a global eaves-
dropper—an adversary capable of observing all the network traffic—because a global
eavesdropper can see the initiator sending out a message without receiving any mes-
sage beforehand. A more realistic attack scenario is that some of the relays are corrupt

94 4 Case study: probabilistic anonymity

and they cooperate with the adversary. A short calculation shows the following. The
fact that a certain host i has sent a request to a corrupt relay—although the adversary
cannot tell for sure whether the host i is the initiator of the request or is just for-
warding it—makes the host i probabilistically more suspicious than the other hosts.
This makes the strong anonymity fail: the observation “i has sent a request to me”
does carry some information on who is the initiator.2

Still, when the number of relays (i.e. the cardinality of the crowd) is sufficiently
bigger than that of corrupt relays, we want to say that Crowds is “anonymous,” that
is, Crowds satisfies some weaker notion of anonymity that allows information leak up
to a certain amount. The notion of probable innocence is one candidate of such an
anonymity notion.

Intuitively, probable innocence is satisfied if after any observation, the adversary
can never have confidence exceeding 1/2 that someone is the culprit. In [112] it is
shown that Crowds satisfies probable innocence if pf > 1/2 and the number n of
relays and the number c of corrupt relays satisfy the inequality n ≥ pf

pf−1/2 (c + 1).3

However, the above statement in [112] is only true if every user in the crowd is
equally suspicious a-priori, i.e. before an execution of Crowds. Assume there is a
user who is known to be much more frequently an initiator of a request than other
users; then the above “confidence is ≤ 1/2” definition of probable innocence is more
easily violated. The situation is similar to the comparison between X0 and X1 in Sec-
tion 4.2.3; we want our definition robust to such a change of the a-priori distribution
of suspicion. A user who is a-priori more suspicious than the others can still look
more suspicious than the others after an execution of the protocol; a bit more than it
did before an execution, because now we allow some marginal information leak; but
not much more.

This idea led Chatzikokolakis and Palamidessi [23] to the following definition of
probable innocence, which we formally present later in Definition 4.3.10. It is also
shown to coincide with the original definitions in [41,112] under suitable assumptions.

4.2.2 Definition (Probable innocence). An anonymizing protocol X satisfies probable
innocence if, for any observation o and user i we have

(n− 1)
PX (i is a culprit)∑

j �=i PX (j is a culprit)
≥ PX (i is a culprit | o)∑

j �=i PX (j is a culprit | o) . (4.1)

Here n is the number of users who can possibly be a culprit; we are assuming that
two different users cannot be culprits at the same time.

2 Strong anonymity is satisfied if no relay in the crowd is corrupt. In this case, the adversary is
a web server outside the crowd; when it receives a request from a host i, it can tell for sure that i
is forwarding the request (recall that at least one forwarding is mandated). Hence the host i is no
more suspicious than the other hosts.

3In fact, the definition of probable innocence used in [112] is slightly different from this one which
is based on the definition in [41]. These two are shown in [23] to coincide under some mild conditions.

4.3 Formalizing notions for probabilistic anonymity 95

The left-hand side of (4.1) is about the a-priori distribution of suspicion. To get
an idea let us assume that the a-priori distribution is uniform. Then (4.1) becomes

1 ≥ PX (i is a culprit | o)∑
j �=i PX (j is a culprit | o) .

If we moreover assume that the observation o reveals existence of a culprit, that is,∑
i

PX (i is a culprit | o) = 1 ,

the condition is equivalent to 1/2 ≥ PX (i is a culprit | o). In this way we can recover
the original definition: “the adversary’s confidence does not exceed 1/2.”

4.3 Formalizing notions for probabilistic anonymity

4.3.1 Anonymity automata: models of anonymizing protocols

In this chapter anonymizing protocols are formalized as a specific kind of probabilistic
systems which we shall call (probabilistic) anonymity automata. The notion is to some
extent similar to probabilistic automata [121]. However, in anonymity automata,
branching is purely probabilistic without any non-determinism. This modification,
together with other minor ones, is made so that the coalgebraic framework of the
previous chapters applies.

The features of an anonymity automaton are as follows.

– By making a transition it can either

• execute an action and successfully terminate (x a→ �), or

• execute an action and move to another state (x a→ y).

For technical simplicity we leave out internal actions (denoted by τ).

– An action a can be either

• an observable action o which can be seen by the adversary, or
• an actor action act(i) which means the choice of a user i as the culprit.

– Each state comes with a probability subdistribution over the set of possible
transitions. Recall that, by “sub”distribution it is meant that the sum of all the
probabilities is ≤ 1 rather than = 1. The missing probability is understood as
the probability for deadlock.

Here is a formal definition.

4.3.1 Definition (Anonymity automata). An anonymity automaton is a 5-tuple
(X,U ,O, c, s) where:

96 4 Case study: probabilistic anonymity

– X is a non-empty set called the state space.
– U is a non-empty set of users.4

– O is a non-empty set of observable actions.
– c : X → D

(
A×{�}+A×X

)
is a function which assigns to each state x ∈ X a

probability subdistribution c(x) over possible transitions. The set A is the set
of actions and defined by

A = O + { act(i) | i ∈ U } .

The operation D is the subdistribution monad; its action on a set Y is given by

DY =
{
d : Y → [0, 1] |

∑
y∈Y

d(y) ≤ 1
}

. (4.2)

For example, the value c(x)(a,�)5 in [0, 1] is the probability with which a state
x executes a and then successfully terminate (i.e. x

a→ �).
– s ∈ DX is a probability subdistribution over the state space X. This specifies

which state would be a starting (or initial) one.

A major difference between (probabilistic) anonymity automata and probabilistic LTS
with explicit termination (Example 3.2.3) is that the former executes an action even
when it terminates (x a→ �); while the latter does not (x→ �).

4.3.2 Example (Anonymity automaton XDC for DC). To model the DC protocol,
we take

U = {0, 1, 2} , O = {a, d} × {a, d} × {a, d} =
{
(x, y, z) | x, y, z ∈ {a, d}

}
.

We need to fix the a-priori probability distribution on who will make a payment. Let
us denote by pi the probability with which the user i pays.

The following is a natural representation of the DC protocol (with its a-priori
probability distribution given by pi’s). It makes explicit use of internal actions which
we still have to get rid of. Probability for each transition is presented in square
brackets; otherwise the transition occurs with probability 1.

↓

act(0) [p0]

h0[12]

h1[12]

h2[12]

�

(d
, a, a)

t2[12]

�

(d
, d

, d)

t1[12]

h2[12]

�

(a, d
, a)

t2[12]

�

(a, a, d)

t0[12]

h1[12]

h2[12]

�

(a, a, d)

t2[12]

�

(a, d
, a)

t1[12]

h2[12]

�

(d
, d

, d)

t2[12]

�

(d
, a, a)

...
act(1) [p1] ...

act(2) [p2]
τ [1− p0 − p1 − p2]

h0[12]

h1[12]

h2[12]

�

(a,a,a)

t2[12]

�

(a,d
,d)

t1[12]

h2[12]

�

(d
,d

,a)

t2[12]

�

(d
,a,d)

t0[12]

h1[12]

h2[12]

�

(d
,a,d)

t2[12]

�

(d
,d

,a)

t1[12]

h2[12]

�

(a,d
,d)

t2[12]

�

(a,a,a)

4A user is called an anonymous user in [15].
5To be precise this should be written as c(x)

`
κ1(a, �)

´
, where κ1 : A×{�} → A×{�}+A×X

is the inclusion map.

4.3 Formalizing notions for probabilistic anonymity 97

Here τ denotes an internal action with the intention of “NSA pays.”
However, the coin-flip actions hi and ti—with their obvious meanings—must not

be present because they are not observable by the adversary nor are actor actions.
These actions are replaced by τ ’s. Moreover, for technical simplicity we do not allow
τ ’s to appear in an anonymity automaton. Hence we take the “closure” of the above
automaton in an obvious way, and obtain the following.

x

↓ �
(a, a, a)[1−p0−p1−p2

4]

�
(a, d, d)[1−p0−p1−p2

4]

�
(d, a, d)[1−p0−p1−p2

4]

�
(d, d, a)[1−p0−p1−p2

4]
y0

act(0) [p0]

�

(d
,a,a)[

14]

�

(a,d
,a)[

14]

�

(a,a,d)[
14]

�

(d
,d

,d)[
14]

y1

act(1) [p1]

�
(d

,a,a)[
14]

�
(a,d

,a)[
14]

�

(a,a,d)[
14]

�

(d
,d

,d)[
14]

y2

act(2) [p2]

�

(d
,a,a)[

14]

�

(a,d
,a)[

14]

�

(a,a,d)[
14]

�

(d
,d

,d)[
14]

The start state distribution s is: x �→ 1. This anonymity automaton we shall refer to
as XDC.

4.3.2 Anonymity automata reconciled as coalgebras

The generic, coalgebraic theory of traces and simulations (Chapters 2 and 3) applies to
anonymity automata. Recall that the generic theory is developed with two parameters
T and F :

– a monad T on Sets specifies the branching type, such as non-determinism or
probability;

– a functor F on Sets specifies the transition type, i.e., what a system can do by
making a transition.

Systems for which traces/simulations are defined are called (T, F)-systems in the
generic theory, making the parameters explicit (Definition 3.2.1). The theory is coal-
gebraic because a (T, F)-system is essentially a coalgebra in a Kleisli category K�(T).

Anonymity automata fit in this generic framework. They are (T, F)-systems with
the following choice of parameters T and F .

– T is the subdistribution monad D, modeling purely probabilistic branching.

– FX = A×{�}+A×X, modeling the transition-type of “(action and terminate)
or (action and next state).”

98 4 Case study: probabilistic anonymity

It is immediately seen that for this choice of F , the set A+ (of lists in A with length
≥ 1) carries the following initial algebra in Sets. We denote its structure map by α.

A× {�}+A×A+

∼=α

κ1(a,�) κ2(a,−→a)

A+ 〈a〉 a · −→a ,

where 〈a〉 denotes a list of length 1, and a ·−→a is what would be written as (cons a −→a)
in Lisp. Therefore Definition 2.4.1 suggests that the set A+ is the appropriate domain
of (finite) trace semantics for anonymity automata; this is indeed the case later in
Definition 4.3.3.

4.3.3 Trace semantics for anonymity automata

Trace semantics for anonymity automata is used in defining probabilistic notions
of anonymity. In a non-deterministic setting, trace semantics yields a set of lists
(“traces”) of actions which can possibly occur during an execution. In contrast, trace
semantics of a probabilistic system is given by a probability subdistribution over lists.

4.3.3 Definition (Trace semantics for anonymity automata). Given an anonymity
automaton X = (X,U ,O, c, s), its trace semantics

PX ∈ D(A+)

is defined as follows. For a list of actions 〈a0, a1, . . . , an〉 with a finite length n ≥ 1,

PX (〈a0, a1, . . . , an〉) =
∑

x0,x1,...,xn∈X

PX (x0
a0→ x1

a1→ · · · an−1→ xn
an→ �) ,

where the probability

PX (x0
a0→ x1

a1→ · · · an−1→ xn
an→ �)

= s(x0) · c(x0)(a0, x1) · · · · · c(xn−1)(an−1, xn) · c(xn)(an,�)

is for the event that an execution of X starts at x0, follows the path a0→ x1
a1→ · · · an−1→

xn and finally terminates with an→ �.

Intuitively the value PX (−→a) ∈ [0, 1] for a list −→a ∈ A+ is the probability with
which the system X executes actions in −→a successively and then terminates. Our
concern is about actions (observable actions or actor actions) the system makes but
not about the (internal) states it exhibits.

The following alternative characterization allows us to apply the generic, coalge-
braic theory of traces (Chapters 2 and 3).

4.3.4 Lemma (Trace semantics via the generic theory). Given an anonymity au-
tomaton X , let (s, c) be a (T, F)-system identified with X as in Section 4.3.2.

The trace semantics PX of X coincides with the coalgebraic trace semantics tr(s, c)
defined for (s, c) (Definition 3.2.5). �

4.3 Formalizing notions for probabilistic anonymity 99

4.3.5 Example (Dining cryptographers). For the anonymity automaton XDC in
Example 4.3.2, its trace semantics PXDC is the following probability subdistribution.

〈 act(i), (d, a, a) 〉 �→ pi/4
〈 act(i), (a, d, a) 〉 �→ pi/4
〈 act(i), (a, a, d) 〉 �→ pi/4
〈 act(i), (d, d, d) 〉 �→ pi/4

〈 (a, a, a) 〉 �→ (1− p0 − p1 − p2)/4
〈 (a, d, d) 〉 �→ (1− p0 − p1 − p2)/4
〈 (d, a, d) 〉 �→ (1− p0 − p1 − p2)/4
〈 (d, d, a) 〉 �→ (1− p0 − p1 − p2)/4

(for i = 0, 1, 2)

The other lists in A+ have probability 0.

In this work we assume that in each execution of an anonymizing protocol there
appears at most one actor action. This is the same assumption as [15, Assumption 1]
and is true in all the examples in this chapter.

4.3.6 Assumption (At most one actor action). Let X = (X,U ,O, c, s) be an
anonymity automaton and −→a ∈ A+. If −→a contains more than one actor actions,
then we have PX (−→a) = 0.

4.3.4 Notions of probabilistic anonymity

In this section we formalize two different notions of probabilistic anonymity, namely
strong (probabilistic) anonymity [15] and probable innocence [23, 41, 112].

First, for the sake of simplicity of presentation, we shall introduce the following
notations for predicates (i.e. subsets) on A+.

4.3.7 Definition (Predicates [act(i)] and [−→o]).

– For each i ∈ U , a predicate [act(i)] on A+ is defined as follows. In a regular-
expression-like notation,

[act(i)] = O∗ · act(i) · O∗ ,

that is, it is the set of lists which contains only one actor action which is act(i).
Obviously we have [act(i)] ∩ [act(j)] = ∅ if i �= j, by Assumption 4.3.6.

– For each −→o ∈ O∗, a predicate [−→o] on A+ is defined as follows.

[−→o] = {−→a ∈ A+ | removeActor(−→a) = −→o } ,

where the function removeActor : A+ → O∗—which is defined by a suitable
induction—removes actor actions appearing in a list. Hence the set [−→o] ⊆
A+ consists of those lists which yield −→o as the adversary’s observation. It is
emphasized that [−→o] is not the set of lists which contain −→o as sublists: we
remove only actor actions, but do not remove observable actions.

100 4 Case study: probabilistic anonymity

Note that we are overriding the notation []: no confusion would arise since
the arguments are of different types. Values such as PX ([act(i)]) are defined in a
straightforward manner:

PX ([act(i)]) =
∑

−→a ∈[act(i)]

PX (−→a) .

This is the probability with which X yields an execution in which the user i is a
culprit.

Strong (probabilistic) anonymity

Based on anonymity automata as models of anonymity protocols, we shall formalize
the notion of strong anonymity which is informally introduced in Definition 4.2.1.

4.3.8 Definition (Strong anonymity [15]). We say an anonymity automaton X sat-
isfies strong anonymity if, for each i, j ∈ U and −→o ∈ O∗,

PX ([act(i)]) > 0 ∧ PX ([act(j)]) > 0
=⇒ PX ([−→o] | [act(i)]) = PX ([−→o] | [act(j)]) .

Here PX ([−→o] | [act(i)]) is a conditional probability: it is given by

PX ([−→o] | [act(i)]) =
PX ([−→o] ∩ [act(i)])

PX ([act(i)])
.

It is shown in [15] that under reasonable assumptions this notion coincides with
conditional anonymity [41], whose formal definition we present now.

4.3.9 Definition (Conditional anonimity [41]). An anonymity automaton X satisfies
conditional anonymity if for each i ∈ U and −→o ∈ O∗,

PX ([act(i)] ∩ [−→o]) > 0

=⇒ PX ([act(i)] | [−→o]) = PX ([act(i)] |
⋃
j∈U

[act(j)]) .

The notion in Definition 4.3.8 is a natural probabilistic adaptation of trace anonymity
in [119]. It is emphasized that these anonymity notions are based on trace semantics
which is at the coarsest end in the linear time-branching time spectrum [39]. Hence
our adversary has less observation power than the one in [1], for example, where
security notions are bisimulation-based.

Our choice of such a weak adversary is justified as long as we think of a passive
adversary—or an “eavesdropper”—which passively observe an execution of the pro-
tocol without actively taking part in it. In fact, each process semantics in the linear
time-branching time spectrum [39] has a corresponding testing scenario, an informal
description about what kind of observation will have the distinguishing power pre-
scribed by the process semantics. The ability of a passive adversary coincides with
the testing scenario for the weakest process semantics in the spectrum, namely trace
semantics.

4.4 Verifying strong anonymity with probabilistic simulations 101

Probable innocence

The weaker notion of probable innocence—informally introduced in Definition 4.2.2—
is also formalized based on anonymity automata and their trace semantics. It is based
on the definition in [23].

4.3.10 Definition (Probable innocence [23]). We say an anonymity automaton X
satisfies probable innocence if, for each i ∈ U and −→o ∈ O∗,

– Neither of the probabilities PX (
⋃

j �=i[act(j)]) and PX (
⋃

j �=i[act(j)] | [
−→o]) is 0.

These appear as denominators in the following inequality.

– We have

(n− 1)
PX ([act(i)])

PX (
⋃

j �=i [act(j)])
≥ PX ([act(i)] | [−→o])

PX (
⋃

j �=i [act(j)] | [−→o])
. (4.3)

Here n = |U| is the number of users.

4.4 Verifying strong anonymity with probabilistic
simulations

In this section we adapt the proof method [71, 72] for (non-deterministic) trace
anonymity to the probabilistic setting for strong (probabilistic) anonymity. In Sec-
tion 4.1.2 we have presented its basic scenario. Now we shall describe its details, with
all the notions therein (traces, simulations, etc.) interpreted probabilistically.

4.4.1 Anonymized automaton an(X)

We start with the definition of an(X), the anonymized version of an anonymity au-
tomaton X . Recall that the notion of strong anonymity is conditional: the adversary
has a-priori knowledge on who is more suspicious. In an anonymity automaton X ,
the a-priori probability with which a user i is a culprit is given by PX ([act(i)]). Its
normalized, conditional version

ri
def.= PX ([act(i)] |

⋃
j∈U

[act(j)]) =
PX ([act(i)] ∩

⋃
j∈U [act(j)])

PX (
⋃

j∈U [act(j)])

=
PX ([act(i)])∑

j∈U PX ([act(j)])

(4.4)

(the equalities are due to Assumption 4.3.6) plays an important role in the following
definition of an(X). The value ri is the conditional probability with which a user i
is a culprit, given that there is any culprit; we have

∑
i∈U ri = 1. Of course, for the

values ri to be well-defined, the anonymity automaton X needs to satisfy the following
reasonable assumption.

102 4 Case study: probabilistic anonymity

4.4.1 Assumption (There must be a culprit). For an anonymity automaton X ,

∑
j∈U

PX ([act(j)]) �= 0 .

Intuitively, an(X) is obtained from X by distributing the probability for an actor
action act(i) to each user j in proportion to rj .

4.4.2 Definition (Anonymized anonymity automaton an(X)). Given an anonymity
automaton X = (X,U ,O, c, s), its anonymized anonymity automaton an(X) is a quin-
tuple (X,U ,O, can, s), where can is defined as follows. For each x ∈ X,

can(x)(act(i), u) =
∑

j∈U ri · c(x)(act(j), u) for i ∈ U and u ∈ {�}+ X,
can(x)(o, u) = c(x)(o, u) for o ∈ O and u ∈ {�}+ X.

In the first equation, the summand ri · c(x)(act(j), u) results from distributing the

probability c(x)(act(j), u) for a transition x
act(j)−→ u, to a user i. This is illustrated in

the following figure: here U = {0, 1, . . . , n− 1} and q = c(x)(act(j), u).

•In X
act(j) [q]

•In an(X)

act(0) [r0 · q] · · · act(n− 1) [rn−1 · q]
• •

(4.5)

The automaton an(X) is “anonymized” in the sense of the following lemmas.

4.4.3 Lemma. Let X be an anonymity automaton. In its anonymized version an(X) =
(X,U ,O, can, s) we have

rj · can(x)(act(i), u) = ri · can(x)(act(j), u)

for any i, j ∈ U , x ∈ X and u ∈ {�}+ X.

Proof. Obvious from the definition of can. �
4.4.4 Lemma (an(X) satisfies strong anonymity). Given an anonymity automaton
X , its anonymized version an(X) satisfies strong anonymity in the sense of Defini-
tion 4.3.8.

Proof. Let −→o = 〈o1, o2, . . . , on〉 ∈ O∗ and i, j ∈ U . Moreover, assume

Pan(X)([act(i)]) �= 0 and Pan(X)([act(j)]) �= 0 ,

4.4 Verifying strong anonymity with probabilistic simulations 103

hence ri �= 0 and rj �= 0. Then

Pan(X)([−→o] ∩ [act(i)])
= Pan(X)(〈act(i), o1, o2, . . . , on〉)

+ Pan(X)(〈o1, act(i), o2, . . . , on〉)
+ · · ·
+ Pan(X)(〈o1, o2, . . . , on, act(i)〉)

=
∑

x0,x1,...,xn∈X

s(x0) · can(x0)(act(i), x1) · can(x1)(o1, x2) · · · · · can(xn)(on,�)

+
∑

x0,x1,...,xn∈X

s(x0) · can(x0)(o1, x1) · can(x1)(act(i), x2) · · · · · can(xn)(on,�)

+ · · ·
+

∑
x0,x1,...,xn∈X

s(x0) · can(x0)(o1, x1) · can(x1)(o2, x2) · · · · · can(xn)(act(i),�) .

We have the same equation for j instead of i. Hence by Lemma 4.4.3 we have

rj · Pan(X)([−→o] ∩ [act(i)]) = ri · Pan(X)([−→o] ∩ [act(j)]) . (4.6)

This is used to show the equality of two conditional probabilities.

Pan(X)([−→o] | [act(i)]) =
Pan(X)([−→o] ∩ [act(i)])

Pan(X)([act(i)])

=
ri

rj
·
Pan(X)([−→o] ∩ [act(j)])

Pan(X)([act(i)])
by (4.6)

=
Pan(X)([−→o] ∩ [act(j)])

Pan(X)([act(j)])
by definition of ri, rj

= Pan(X)([−→o] | [act(j)]) . �
4.4.2 Forward/backward simulations for anonymity automata

We proceed to introduce appropriate notions of forward and backward simulations.
The (tedious) definition and a soundness theorem—existence of a forward/backward
simulation implies trace inclusion—come for free from the generic theory in Chapter 3.
This forms a crucial part of our simulation-based proof method.

4.4.5 Definition (Forward/backward simulations for anonymity automata). Let
X = (X,U ,O, c, s) and Y = (Y,U ,O, d, t) be anonymity automata which have the
same sets of users and observable actions.

A forward simulation from X to Y—through which Y forward-simulates X—is a
function

f : Y −→ DX

104 4 Case study: probabilistic anonymity

which satisfies the following inequalities in [0, 1].

s(x) ≤
∑

y∈Y t(y) · f(y)(x) for any x ∈ X,∑
x∈X f(y)(x) · c(x)(e,�) ≤ d(y)(e,�) for any y ∈ Y and e ∈ A,∑
x∈X f(y)(x) · c(x)(e, x′) ≤

∑
y′∈Y d(y)(e, y′) · f(y′)(x′)

for any y ∈ Y , e ∈ A and x′ ∈ X.

A backward simulation from X to Y—through which Y backward-simulates X—is
a function

b : X −→ DY

which satisfies the following inequalities in [0, 1].∑
x∈X s(x) · b(x)(y) ≤ t(y) for any y ∈ Y ,

c(x)(e,�) ≤
∑

y∈Y b(x)(y) · d(y)(e,�) for any x ∈ X and e ∈ A,∑
x′∈X c(x)(e, x′) · b(x′)(y′) ≤

∑
y∈Y b(x)(y) · d(y)(e, y′)

for any x ∈ X, e ∈ A and y′ ∈ Y .

This definition (similar to the “probabilistic simulations” in Example 3.2.13) is an in-
stantiation of the general, coalgebraic notions of forward/backward simulations (Def-
initions 3.2.8 and 3.2.9). More specifically, the two parameters T and F in the generic
definition are instantiated as in Section 4.3.2.

4.4.6 Theorem (Soundness of forward/backward simulations). Assume there is a
forward (or backward) simulation from one anonymity automaton X to another Y.
Then we have trace inclusion

PX � PY ,

where the order � is defined to be the pointwise order: for each −→a ∈ A+,

PX (−→a) ≤ PY(−→a) .

Proof. We know (Lemma 4.3.4) that the notions of traces and simulations for anonymity
automata are instantiations of the general, coalgebraic notions in the previous chap-
ters. Therefore we can appeal to the general soundness theorem (Theorem 3.3.2).�
4.4.3 Probabilistic anonymity via simulations

We shall use the material in Section 4.4.1 and 4.4.2 to prove the validity of our
simulation-based proof method (Theorem 4.4.11).

The following lemma—which essentially says PX � Pan(X)—relies on the way the
automaton an(X) is constructed. The proof is a bit more complicated here than in
the non-deterministic setting [71, 72].

4.4.7 Lemma. Let X be an anonymity automaton. Assume there exists a forward
or backward simulation from an(X) to X—through which X simulates an(X). Then
their trace semantics are equal:

PX = Pan(X) .

4.4 Verifying strong anonymity with probabilistic simulations 105

Proof. By the soundness theorem (Theorem 4.4.6) we have

PX Pan(X) , (4.7)

where refers to the pointwise order between functions A+ ⇒ [0, 1]. We shall show
that this inequality is in fact an equality.

First we introduce an operation obs which acts on anonymity automata. Intu-
itively, obs(Y) is obtained from Y by replacing all the different actor actions act(i)
with single act(sb)—sb is for “somebody.” This conceals actor actions in Y; hence
obs(Y) only carries information on the observable actions of Y.

•In X
act(0) [q0] · · · act(n− 1) [qn−1]

•In obs(X)

act(sb) [q0 + · · ·+ qn−1]

• •

(4.8)

Formally,

4.4.8 Definition (Anonymity automaton obs(Y)). Given an anonymity automaton
Y = (Y,U ,O, d, t), we define an automaton obs(Y) as the tuple (Y, {sb},O, dobs, t)
where:

– sb is a fresh entity,

– dobs is a function

dobs : Y −→ D
(
Aobs × {�}+Aobs × Y

)
where Aobs = O + {act(sb)}, defined by:

dobs(y)(act(sb), u) =
∑

i∈U d(y)(act(i), u) for y ∈ Y and u ∈ {�}+ Y ,
dobs(y)(o, u) = d(y)(o, u) for y ∈ Y , o ∈ O and u ∈ {�}+ Y .

The following fact is obvious.

4.4.9 Sublemma. For an anonymity automaton X , obs(X) and obs(an(X)) are iden-
tical. �

The following fact is crucial in the proof of Lemma 4.4.7. Two automata Y and
obs(Y), although their trace semantics distributes over different sets, have the same
sum of probabilities taken over all executions.

4.4.10 Sublemma. For an anonymity automaton Y,∑
−→a ∈A+

PY(−→a) =
∑

−→
a′∈(Aobs)+

Pobs(Y)(
−→
a′) .

Recall that A = O + {act(i) | i ∈ U} and Aobs = O + {act(sb)}.

106 4 Case study: probabilistic anonymity

Proof. From the definition of trace semantics (Definition 4.3.3), the sublemma is
proved by easy calculation. �

We turn back to the proof of Lemma 4.4.7. We argue by contradiction—assume
that the inequality in (4.7) is strict. That is, there exists −→a0 ∈ A+ such that PX (−→a0) �

Pan(X)(
−→a0). Then, by (4.7) we have

∑
−→a ∈A+ PX (−→a) �

∑
−→a ∈A+ Pan(X)(

−→a). However,

∑
−→a ∈A+ PX (−→a) =

∑
−→
a′∈(Aobs)+

Pobs(X)(
−→
a′) by Sublemma 4.4.10

=
∑

−→
a′∈(Aobs)+

Pobs(an(X))(
−→
a′) by Sublemma 4.4.9

=
∑

−→a ∈A+ Pan(X)(
−→a) by Sublemma 4.4.10.

This contradiction concludes the proof of Lemma 4.4.7. �
Now we are ready to state our main result for verifying strong anonymity.

4.4.11 Theorem (Strong anonymity via simulations). If there exists a forward or
backward simulation from an(X) to X , then X satisfies strong anonymity.

Proof. By Lemma 4.4.7 we have PX = Pan(X). Moreover, by Lemma 4.4.4, an(X)
is strongly anonymous. This proves strong anonymity of X : recall that strong
anonymity is a property defined in terms of traces (Definition 4.3.8). �
4.4.12 Example (Dining cryptographers). We demonstrate our simulation-based
proof method by applying it to the DC protocol.

Let X = {x, y0, y1, y2} be the state space of XDC. Its anonymized version an(XDC)
has the same state space; for notational convenience the state space of an(XDC) is
denoted by X ′ = {x′, y0

′, y1
′, y2

′}. It is verified by easy calculation that the following
function f : X → D(X ′) is a forward simulation from an(XDC) to XDC.

f(x) = [x′ �→ 1] f(y0) = f(y1) = f(y2) =

⎡
⎣ y0

′ �→ p0
p0+p1+p2

y1
′ �→ p1

p0+p1+p2

y2
′ �→ p2

p0+p1+p2

⎤
⎦

By Theorem 4.4.11 this proves (probabilistic) strong anonymity of XDC, hence of the
DC protocol.

4.5 Verifying probable innocence with probabilistic
simulations

In this section we present a simulation-based proof method for the weaker notion of
probable innocence. Although the basic idea is similar to that in the last section for
strong anonymity, there are certain differences as well. Most notably, now we have
to find a simulation from X to its “innocent version” inno(X); this is in the opposite
direction of what we do for strong anonymity.

The basic scenario is as follows.

4.5 Verifying probable innocence with probabilistic simulations 107

1. We model an anonymizing protocol as an anonymity automaton X .

2. We construct the innocent version inno(X) of X . Here it is not much of our
concern whether inno(X) satisfies probable innocence or not. Rather inno(X)
is thought of as the automaton describing the upper bound of admissible infor-
mation leakage on who is the culprit. In fact, by examining the construction of
inno(X), we can prove that

PX � Pinno(X) =⇒ X satisfies probable innocence. (4.9)

3. We find a simulation from X to inno(X). By the soundness theorem this yields
trace inclusion PX � Pinno(X), which by (4.9) proves that X satisfies probable
innocence.

Although this scenario is somewhat different from the one for strong anonymity (or
for non-deterministic trace anonymity [71, 72]), they are the same in that:

– we model a (trace-based) anonymity property as the “idealized version” of X
(such as an(X) or inno(X));

– by finding a simulation and then appealing to the soundness theorem, we show
that the property is transferred from the idealized version to the original X .

Therein the construction of the “idealized version of X” must be much tailored to the
specific property to be verified.

4.5.1 “Innocent” automaton inno(X)

We describe the construction of the innocent version inno(X) of a given anonymity
automaton X . To illustrate the intuition, let us assume that the a-priori suspicion is
uniformly distributed, that is, ri = 1/n where U = {0, 1, . . . , n− 1}. The automaton
inno(X) is obtained by replacing actor actions in X as follows: compare it with (4.5).

•In X
act(j) [q]

•In inno(X)

act(0) [q
2] · · · act(n− 1) [q

2]

• •

(4.10)

There is an obvious problem in this definition: the resulting inno(X) may not be an
anonymity automaton, since the probabilities q/2 appearing n times can add up to
more than 1. We shall call such an automaton an extended anonymity automaton.

4.5.1 Definition (Extended anonymity automata). An extended anonymity automa-
ton (X,U ,O, c, s) is the same thing as an anonymity automaton (Definition 4.3.1),
except for the fact that c is a function of the type

X −→ V
(
A× {�}+A×X

)

108 4 Case study: probabilistic anonymity

rather than X → D(A× {�}+A×X). Here the operation V is such that6

VY = [0,∞]Y =
{
d : Y → [0,∞]

}
. (4.11)

The operation V canonically extends to a monad, which we shall call the valuation
monad.

Given an extended anonymity automaton X , its trace semantics

PX ∈ V(A+) (4.12)

is defined exactly in the same way as for anonymity automata (Definition 4.3.3).

Given an anonymity automaton X , it can be thought of as an extended anonymity
automaton because there is an inclusion map DY ↪→ VY :

X
c→ D(A× {�}+A×X) ↪→ V(A× {�}+A×X) . (4.13)

Therefore we are overriding the notation PX in (4.12). This is not a problem, since
for an anonymity automaton X the following two trace semantics obviously coincide.

– Its trace semantics (Definition 4.3.3) as an anonymity automaton, and

– the trace semantics of the extended anonymity automaton induced by (4.13).

Before giving a formal definition of inno(X), note that the core inequality (4.3) in
the definition of probable innocence is equivalent to the following one, which uses the
a-priori distribution of suspicion (ri)i∈U from (4.4):

PX ([act(i)] ∩ [−→o]) ≤ (n− 1)ri

1 + (n− 2)ri
· PX

((⋃
j∈U

[act(j)]
)
∩ [−→o]

)
. (4.14)

The equivalence is shown by the following easy calculation:

(n− 1)
PX ([act(i)])

PX (
⋃

j �=i [act(j)])
≥ PX ([act(i)] | [−→o])

PX (
⋃

j �=i [act(j)] | [−→o])

⇐⇒ (n− 1)ri∑
j �=i rj

≥ PX ([act(i)] | [−→o])
PX (

⋃
j �=i [act(j)] | [−→o])

⇐⇒ (n− 1)ri

1− ri
≥ PX ([act(i)] | [−→o])

PX (
⋃

j �=i [act(j)] | [−→o])

⇐⇒ PX ([act(i)] | [−→o]) ≤ (n− 1)ri

1− ri
· PX (

⋃
j �=i

[act(j)] | [−→o])

⇐⇒
(

1 +
(n− 1)ri

1− ri

)
PX ([act(i)] | [−→o]) ≤ (n− 1)ri

1− ri
· PX (

⋃
j∈U

[act(j)] | [−→o]) ,

from which (4.14) follows immediately.
6The range of d ∈ VY is [0,∞] including ∞. This choice is made because, in order to apply the

coalgebraic theory of traces and simulations, VY needs to carry a Cppo-structure. In particular,
any increasing ω-chain in VY must have its upper bound in VY .

4.5 Verifying probable innocence with probabilistic simulations 109

4.5.2 Definition (Anonymity automaton inno(X)). Given an anonymity automaton
X = (X,U ,O, c, s), its innocent version inno(X) is an extended anonymity automaton
given by the 5-tuple (X,U ,O, cinno, s), where cinno is defined as follows. For each
x ∈ X,

cinno(x)(act(i), u) =
(n− 1)ri

1 + (n− 2)ri
·
∑
j∈U

c(x)(act(j), u)

for i ∈ U and u ∈ {�}+ X,
cinno(x)(o, u) = c(x)(o, u) for o ∈ O and u ∈ {�}+ X.

The coefficient (n−1)ri/(1+(n−2)ri) comes from the inequality (4.14). The def-
inition agrees with the informal description (4.10) when the a-priori suspicion (ri)i∈U
is uniform.

4.5.2 Probable innocence via simulations

The intuition about the automaton inno(X) is that it represents the upper bound
of admissible information leak. This intuition is put precise in the following lemma,
which is a crucial step in our simulation-based proof method for probable innocence.

4.5.3 Lemma. If we have

PX � Pinno(X) that is, ∀−→a ∈ A+. PX (−→a) ≤ Pinno(X)(
−→a) ,

then the anonymity automaton X satisfies probable innocence (Definition 4.3.10).

Proof. By calculation much like the one which shows the equality (4.6) in the proof
of Lemma 4.4.4, we obtain the following.

Pinno(X)([−→o] ∩ [act(i)]) =
(n− 1)ri

1 + (n− 2)ri
·
∑
j∈U

PX ([−→o] ∩ [act(j)]) (4.15)

By assumption, we have

PX ([−→o] ∩ [act(i)]) ≤ Pinno(X)([−→o] ∩ [act(i)]) ,

which, together with (4.15), derives (4.14). �
The assumption of Lemma 4.5.3—trace inclusion PX � Pinno(X)—shall be shown

by finding a probabilistic simulation. Now that inno(X) is an extended anonymity
automaton, we have to adapt the notion of probabilistic simulations and its soundness
result to the extended setting. In terms of the generic theory in the previous chapters,
this corresponds to changing the parameter T from D to V.

4.5.4 Definition (Forward/backward simulations, extended). Let X and Y be ex-
tended anonymity automata. A forward (or backward) simulation from X to Y is the
same thing as a forward (or backward) simulation for anonymity automata (Defini-
tion 4.4.5), except that

110 4 Case study: probabilistic anonymity

– we have now V in place of D, and

– the inequalities are interpreted in [0,∞] rather than in [0, 1].

For example, a forward simulation from X to Y is a function

f : Y −→ VX

which satisfies suitable inequalities as in Definition 4.4.5.

4.5.5 Theorem (Soundness of simulations, extended). If there is a forward or back-
ward simulation from an extended anonymity automaton X to another Y, then we
have trace inclusion

PX � PY , that is, ∀−→a ∈ A+. PX (−→a) ≤ PY(−→a) .

Proof. The general, coalgebraic theory of traces in the previous chapters applies to the
choice of parameters T = V and F = A×{�}+A× , in which case the coalgebraic
notion of (T, F)-systems instantiates to extended anonymity automata. Moreover, the
coalgebraic notions of trace semantics and simulations instantiate to the corresponding
notions for extended anonymity automata (Definitions 4.5.1 and 4.5.4). Therefore the
statement is an instance of the general soundness theorem (Theorem 3.3.2). �
4.5.6 Theorem (Probable innocence via simulations). If there exists a forward or
backward simulation from X to inno(X), then X satisfies probable innocence.

Proof. By the soundness theorem (Theorem 4.5.5) we have PX � Pinno(X); by Lemma 4.5.3
this implies X ’s probable innocence. �

4.6 Related work

4.6.1 Probabilistic non-interference

In the theory of programming languages, a property called non-interference [97] has
attracted much attention. Intuitively, a program C satisfies non-interference if there is
no “insecure” information flow from variables with high confidentiality (high variables)
to those with low confidentiality (low variables).

Let us put it slightly more formally. By a memory state we mean a list of pairs of
a variable name and a value (such as [H=0,L=0]). Assume that two memory states
μ and ν differ only in high variables (μ =L ν). Non-interference of a program C
requires that the execution of C with the initial memory state μ is observationally
indistinguishable from that with ν. In particular, if μ′ and ν′ are the memory states
after these executions, respectively, then they have to agree on low variables:

μ =L ν, μ
C� μ′, ν

C� ν′ =⇒ μ′ =L ν′.

A possible variant of the formal definition concerns C’s termination as well.

4.6 Related work 111

Volpano and Smith [138] claim the importance of probabilistic aspects in non-
interference. The leading example is in a simple programming language which has
the multi-threading construct C | C ′ which denotes running two threads C and C ′

in parallel, in an interleaving manner. Even though there is no explicit probabilistic
construct in the language, a probabilistic scheduler—a mechanism that determines
which thread to execute first—introduces probability in an operational model. In [138]
a simple example is presented in which insecure information flow emerges only in a
probabilistic setting (but not in a non-deterministic setting).

A definition of probabilistic non-interference (disregarding termination for the
sake of simplicity) can be presented as follows. Let μH , νH be memory states of
high variables; μL, μ′

L be states of low variables. A program C satisfies probabilistic
non-interference if, for every μH , νH , μL and μ′

L,

Pr(μL
C� μ′

L | initial high-memory is μH)

= Pr(μL
C� μ′

L | initial high-memory is νH) .

Notice similarity to the notion of strong anonymity (Definition 4.2.1). One can think
of the change of low-memory μL

C� μ′
L as an “observation”; and the initial high-

memory as a “culprit,” i.e. the information that we want to disguise. This similarity
between the two notions—(strong) probabilistic anonymity and probabilistic non-
interference—suggests that a technique to ensure one of these properties can be used
to ensure the other property as well.

Use of type systems is a standard technique to ensure that a certain piece of
program satisfies a certain desirable property, such as non-interference. A type sys-
tem typically has typing rules, and a soundness theorem stating: if a program C is
typable—meaning that we can derive a typing judgment for C using the given rules—
then C satisfies the desired property. One big advantage of the type-based approach
is that type systems are often accompanied with typing algorithms that effectively
determine whether a program is typable or not.

For probabilistic non-interference, a number of type systems have been proposed [117,
138]. They are in principle extensions of the type system in [126] that ensures non-
deterministic notion of non-interference. For example, the following program with an
obvious (but indirect) insecure information flow

if H=0 then L=0 else L=1; (4.16)

is typable in none of the type systems in [117, 126, 138]. Moreover, any program
containing this piece is not typable either, because of the compositional way of type
derivation in these type systems.

Because of this fact the type systems from [117, 138] do not seem widely ap-
plicable to verification of anonymizing protocols. Consider the example of Dining
Cryptographers: a natural representation of the protocol as a program should include
a piece like (4.16) expressing “if a cryptographer is the payer, then she lies about her
announcement.” Therefore such a program for DC is not typable.

112 4 Case study: probabilistic anonymity

In the DC protocol each cryptographer’s behavior is certainly influenced by the
information to be hidden; this is why the type systems from [117, 138] do not seem
to apply. Nevertheless, when three cryptographers are “composed” in the way pre-
scribed by the protocol, they manage to hide who is the payer. In this sense, broken
anonymity is not compositional. A type system, if one wants to use it for verification
of anonymizing protocols, needs to address such a non-compositional phenomenon.
However potential complexity of such a type system would make it harder to come
up with a useful typing algorithm.

4.6.2 Process algebraic techniques

In the current work we have presented anonymizing protocols in the form of automata,
or transition systems. Using process algebraic terms or process terms—such as P +
Q for “non-deterministic choice between P and Q”—is another way of expressing
processes such as anonymizing protocols. In fact, a process term induces a transition
system via the structural operational semantics of the process algebra [3], hence a
process algebra can be seen as a “programming language” which denotes transition
systems.

One merit of using process algebras is that an algebraic structure in process terms
often aids reasoning about properties of the term (more precisely, properties of the
automaton denoted by the term). For example, one can employ inductive reasoning on
the (inductive) construction of process terms. Many tools are available for analyzing
properties of process terms.

Process algebraic techniques have been successfully applied in many anonymity
applications. In [27], the MUTE anonymous file-sharing system [113] is analyzed by
representing the protocol as a π-calculus term. The analysis led to discovery of a flaw,
which is detected by the ABC bisimulation checker [20] for the π-calculus. A detailed
account of the flaw is in [28]. In [29] a general framework for automatic checking of
anonymity is proposed; the framework is based on the process algebra μCRL. How-
ever, all the work mentioned here is done in non-deterministic settings. A probabilistic
framework of such a kind which would aid automatic error-detection/verification of
anonymity is one interesting direction of future work.

The probabilistic π-calculus [53, 105] is a process algebra that can model proba-
bilistic choices. A process term in that calculus yields a probabilistic automaton [121]
as its operational model. It is used to model anonymity protocols in [15]. In a simi-
lar direction, recent work [24] uses a variant of CCS with an additional operator for
probabilistic choices.

4.7 Summary and future work

We have extended the simulation-based proof method [71, 72] for non-deterministic
anonymity to apply to the notion of strong probabilistic anonymity [15]. For the move
we have exploited a generic theory of traces and simulations developed in Chapters 2

4.7 Summary and future work 113

and 3, in which the difference between non-determinism and probability is just a
different choice of a parameter. Additionally a simulation-based proof method for the
weaker notion of probable innocence is introduced.

The DC example in this chapter fails to demonstrate the usefulness of our proof
method. For this small example direct calculation of trace distribution is not hard.
A real benefit would arise in theorem-proving anonymity of an unboundedly large
system (which we cannot model-check). In fact, the non-deterministic version of our
proof method is used to theorem-prove anonymity of a voting protocol with arbitrary
many voters [71]. A probabilistic case study of such kind is currently missing.

114 4 Case study: probabilistic anonymity

Chapter 5

Foundational study:
concurrency and the microcosm principle

Coalgebras are categorical presentations of state-based systems. In investigating par-
allel composition of coalgebras (realizing concurrency), we observe that the same
algebraic theory is interpreted in two different domains in a nested manner, namely:
in the category of coalgebras, and in the final coalgebra as an object in it. This phe-
nomenon is what Baez and Dolan have called the microcosm principle, a prototypical
example of which is “a monoid in a monoidal category.” In the current work we obtain
a formalization of the microcosm principle in which such a nested model is expressed
categorically as a suitable lax natural transformation. An application of this account
is a general compositionality result which supports modular verification of complex
systems.

5.1 Overview

Design of systems with concurrency is nowadays one of the mainstream challenges
in computer science [91]. Concurrency is everywhere: with the Internet being the
biggest example and multi-core processors probably the smallest; also in a modular,
component-based architecture of a complex system, its components collaborate in a
concurrent manner. However numerous difficulties have been identified in getting
concurrency right. For example, a system’s exponentially growing complexity is one
of the main obstacles. One way to cope with it is a modular verification method in
which correctness of the whole system C1 ‖ · · · ‖ Cn is established using correctness
of each component Ci. Compositionality—meaning that the behavior of C ‖ D is
determined by the behavior of C and that of D—is an essential property for such a
modular method to work.

115

116 5 Foundational study: concurrency and the microcosm principle

5.1.1 Coalgebras as systems

The work described in this chapter is a starting point of our research program aimed
at better understanding of the mathematical nature of concurrency. In its course
we shall use coalgebras as presentations of systems to be run in parallel. The use
of coalgebras as an appropriate abstract model of state-based systems is increasingly
established (see Chapter 1); the notion’s mathematical simplicity and clarity provide
us with a sound foundation for our exploration. We recall the following table which
summarizes how ingredients of the theory of systems are presented as coalgebraic
constructs. The same table appeared before as (1.9)

system behavior-preserving map behavior

coalgebraically coalgebra morphism of coalgebras by coinduction

FX

X

FX
Ff

FY

X
f

Y

FX FZ

X
c

beh(c)
Z

final

(5.1)

This view of “coalgebras as systems” has been successfully applied in the category
Sets of sets and functions, in which case the word “behavior” in (5.1) refers (roughly)
to the one modulo bisimilarity. Additionally, in Chapters 2 and 3 we have shown that
“behavior” in the table can also refer to trace semantics, by moving from Sets to a
suitable Kleisli category.

5.1.2 Compositionality in coalgebras

We start with the following question: what is “compositionality” in this coalgebraic
setting? Conventionally compositionality is expressed as:

C1 ∼ C2 and D1 ∼ D2 =⇒ C1 ‖ D1 ∼ C2 ‖ D2 ,

where the relation ∼ denotes the behavioral equivalence of interest. If this is the case
the relation∼ is said to be a congruence, with its oft-heard instance being “bisimilarity
is a congruence.”

When we interpret “behavior” in compositionality as the coalgebraic behavior in-
duced by coinduction (see (5.1)), the following equation comes natural as a coalgebraic
presentation of compositionality.

beh

(
FX

X
c

∥∥∥∥ FY

Y
d

)
= beh

(
FX

X
c

) ∥∥∥∥ beh

(
FY

Y
d

)
(5.2)

But a closer look reveals that the two “parallel composition operators” ‖ in the equa-
tion have in fact different types: the one on the left has a type

CoalgF ×CoalgF

‖−→ CoalgF , composing coalgebras as systems;

5.1 Overview 117

while the one on the right has a type1

Z × Z
‖−→ Z , composing states of the final coalgebra Z as behaviors.

Moreover, the two domains are actually nested: the latter one Z
∼=→ FZ is an object

of the former one CoalgF .

5.1.3 The microcosm principle

What we have just observed is one instance—which is not often claimed explicitly in
computer science—of the microcosm principle as it is called by Baez and Dolan [9]. It
refers to a phenomenon that the same algebraic theory (or algebraic “specification,”
consisting of operations and equations) is interpreted twice in a nested manner, once
in a category C and the other time in its object X ∈ C. This is not something
very unusual, because “a monoid in a monoidal category” constitutes a prototypical
example.

monoidal category C monoid X ∈ C

⊗ : C× C→ C multiplication X ⊗X
μ→ X

I ∈ C unit I
η→ X

I ⊗X ∼= X ∼= X ⊗ I unit law
X X ⊗X X

X

X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y)⊗ Z associativity law
X ⊗X ⊗X X ⊗X

X ⊗X X

(5.3)

Notice here that the outer operation ⊗ appears in the formulation of the inner op-
eration μ. Moreover, to be precise, in the inner “equations” the outer isomorphisms
should be present in suitable places. Hence this monoid example demonstrates that,
in such nested algebraic structures, the inner structure depends on the outer. What
is a mathematically precise formalization of such nested models? Answering this
question is a main goal of this chapter.

Such a formalization has been done in [9] when algebraic theories are specified
in the form of opetopes. Here instead we shall formalize the microcosm principle for
Lawvere theories [90], whose role as categorical representation of algebraic theories
has been recognized in theoretical computer science.

L

1

C

⇓X CAT

As it turns out, our formalization looks like the situation on
the right. Here L is a category (a Lawvere theory) representing an
algebraic theory; an outer model C is a product-preserving functor
L→ CAT; and an inner model X is a lax natural transformation.
The whole setting is 2-categorical: 2-categories (categories in categories) serve as an
appropriate basis for the microcosm principle (algebras in algebras).

1At this stage the presentation remains sloppy for the sake of simplicity. Later in technical sections
the first composition operator will be denoted by ⊗⊗⊗; and the second composition operator will have
the type Z ⊗ Z → Z instead of Z × Z → Z.

118 5 Foundational study: concurrency and the microcosm principle

5.1.4 Applications to coalgebras: parallel composition via sync

The categorical account we have sketched above shall be applied to our original ques-
tion about parallel composition of coalgebras. As a main application we prove a
generic compositionality theorem. For an arbitrary algebraic theory L, composition-
ality like (5.2) is formulated as follows: the “behavior” functor beh : CoalgF → C/Z
(via coinduction) preserves an L-structure. This general form of compositionality
holds under the following assumptions: C has an L-structure and F : C → C lax-
preserves the L-structure.

Turning back to the original setting (5.2) of “coalgebraic compositionality,” these
general assumptions read roughly as follows: the base category C has a binary op-
eration ‖; and the endofunctor F comes with a natural transformation sync : FX ‖
FY → F (X ‖ Y). Essentially, this sync is what lifts ‖ on C to ‖ on CoalgF , hence
“parallel composition via sync.” It is called a synchronization because it specifies the
way two systems synchronize with each other. In fact, for a fixed functor F there
can be different choices of sync (such as CSP-style vs. CCS-style), which in turn yield
different “parallel composition” operators on the category CoalgF .

5.1.5 Organization of the chapter

We shall not dive into our 2-categorical exploration from the beginning. In Sec-
tion 5.2, we instead focus on one specific algebraic theory, namely the one for parallel
composition of systems. Our emphasis there is on the fact that the sync natural trans-
formation essentially gives rise to parallel composition ‖, and the fact that equational
properties of ‖ (such as associativity) can be reduced to the corresponding equational
properties of sync.

These concrete observations will provide us with intuition for abstract categorical
constructs in Section 5.3, where we formalize the microcosm principle for an arbitrary
Lawvere theory L. In Section 5.4 this formalization is applied to our original question
on concurrency; here results on coalgebras such as compositionality are proved in their
full generality and abstraction. Additionally in Section 5.5 we address some specific
issues which arise in a Kleisli category, where coinduction captures trace semantics.

In the current work we shall focus on strict algebraic structures on categories
in order to avoid complicated coherence issues. This means for example that we
only consider strictly monoidal categories for which the isomorphisms in (5.3) are in
fact equalities. Investigation of “pseudo” or “strong” algebraic structures (such as
not necessarily strictly monoidal categories) is left as future work: some preliminary
observations are presented in Section 5.3.3.

5.1.6 Related work

Our interest is similar to that of studies of bialgebraic structures in computer science
(such as [12, 67, 75, 78, 79, 116, 134]), in the sense that we are also concerned with
algebraic structures on coalgebras as systems. Our current framework is distinguished
in the following aspects.

5.2 Parallel composition of coalgebras 119

First, we handle equations in an algebraic theory as an integral part of our ap-
proach. Equations such as associativity and commutativity appear explicitly as com-
mutative diagrams in a Lawvere theory L. We benefit from this explicitness in e.g.
spelling out a condition for the generic associativity result (Theorem 5.2.4). In con-
trast, in the bialgebraic studies an algebraic theory is presented either by an endo-
functor X �→

∐
σ∈Σ X |σ| or by a monad T . In the former case equations are simply

not present; in the latter case equations are there but not as explicitly as in a Lawvere
theory.

Secondly and more importantly, by considering higher-dimensional, nested alge-
braic structures, we can now compose different coalgebras as well as different states of
the same coalgebra. In this way the current work can be seen as a higher-dimensional
extension of the existing bialgebraic studies (the existing studies focus on “inner”
algebraic structures).

5.2 Parallel composition of coalgebras

5.2.1 Parallel composition via sync natural transformation

Let us start with the equation (5.2), a coalgebraic representation of compositionality.
The operator ‖ on the left is of type CoalgF ×CoalgF → CoalgF . It is natural to
require functoriality of this operation, making it a bifunctor. A bifunctor—especially
an associative one which we investigate later in Section 5.2.3—plays an important role
in various applications of category theory. Usually such an (associative) bifunctor is
called a tensor and denoted by ⊗⊗⊗, a convention that we also follow.2 Therefore the
“compositionality” statement now looks as follows.

beh

(
FX

X
c ⊗⊗⊗

FY

Y
d

)
= beh

(
FX

X
c

) ∥∥∥∥ beh

(
FY

Y
d

)
(5.4)

The first question is: when do we have such a tensor ⊗⊗⊗ on CoalgF ? In many appli-
cations of coalgebras, it is obtained by lifting a tensor ⊗ on the base category C to
CoalgF .3 Such a lifting is possible in presence of a natural transformation

syncX,Y : FX ⊗ FY −→ F (X ⊗ Y) ,

used in

FX

X
c ⊗⊗⊗

FY

Y
d :=

F (X ⊗ Y)

FX ⊗ FY

syncX,Y

X ⊗ Y
c⊗ d

. (5.5)

2Hence what is called a tensor here in Section 5.2.1 is just a bifunctor, possibly satisfying equa-
tional axioms such as associativity. Later in Section 5.2.3 we investigate its equational properties.

3We use boldface ⊗⊗⊗ for a tensor on CoalgF to distinguish it from ⊗ on C.

120 5 Foundational study: concurrency and the microcosm principle

We shall call this sync a synchronization because its computational meaning is indeed
a specification of the way two systems synchronize. This will be illustrated in the
coming examples.

Once we have an outer parallel composition ⊗⊗⊗ in the form of a tensor, an inner
operator ‖ which composes behaviors (i.e. states of the final coalgebra) is also obtained
immediately by the following coinduction.

F (Z ⊗ Z) FZ

Z ⊗ Z

ζ⊗⊗⊗ζ

‖ Z

ζfinal (5.6)

Compositionality (5.4) is straightforward by finality: both sides of the equation are
the unique coalgebra morphism from c ⊗⊗⊗ d to the final ζ. The following theorem
summarizes the observations so far.

5.2.1 Theorem (Coalgebraic compositionality). Assume that a category C has a
tensor ⊗ : C × C → C and an endofunctor F : C → C has a natural transformation
syncX,Y : FX ⊗ FY → F (X ⊗ Y). If moreover there exists a final F -coalgebra
ζ : Z

∼=→ FZ, then:

1. The tensor ⊗ on C lifts to an “outer” tensor

⊗⊗⊗ : CoalgF ×CoalgF −→ CoalgF ,

which we understand as an “outer” composition operator.

2. We obtain an “inner” composition operator ‖: Z⊗Z → Z by coinduction (5.6).

3. Between the two composition operators the compositionality property (5.4) holds.�
We can put the compositionality property (5.4) in more abstract terms as “the functor
beh : CoalgF → C/Z preserves the tensor,” meaning that the following diagram
commutes.

CoalgF ×CoalgF
beh× beh

⊗⊗⊗
C/Z × C/Z

⊗
CoalgF

beh
C/Z

Here the tensor ⊗ on the slice category C/Z is given as follows, using the inner
composition ‖.

(X
f

Z
,

Y
g

Z

) ⊗
�−→

X ⊗ Y
f ⊗ g

Z ⊗ Z
‖

Z

(5.7)

5.2 Parallel composition of coalgebras 121

The point of Theorem 5.2.1 is as follows. Those parallel composition operators
which are induced by sync are well-behaved ones: good properties like composition-
ality come for free. We shall present some examples in Section 5.2.2.

5.2.2 Remark. The view of parallel composition of systems as a tensor structure
on CoalgF has been previously presented in [70]. The interest there is in categorical
structures on CoalgF and not so much in properties of parallel composition such as
compositionality. In [70] and other references an endofunctor F with sync (equipped
with some additional compatibility) is called a monoidal endofunctor.4

5.2.2 Examples

In Sets: bisimilarity is a congruence

We shall focus on (finitely branching) LTSs, and bisimilarity as their process seman-
tics. For this purpose it is appropriate to take Sets as our base category C and
Pfin(Σ ×) as the functor F (see Section 1.3.2). We use Cartesian products as a
tensor on Sets. This means that a composition of two coalgebras has the product of
the two state spaces as its state space, which matches our intuition. The functor Pfin

in F is the finite powerset functor; the finiteness assumption is needed for existence
of a final F -coalgebra. In Section 1.3.2 we sketched that a final F -coalgebra captures
bisimilarity via coinduction.

In considering parallel composition of LTSs, the following three examples are well-
known ones.5

– CSP-style [55]: a.P ‖ a.Q
a→ P ‖ Q. For the whole system to make an a-action,

each component has to make an a-action.

– CCS-style [99]: a.P ‖ a.Q
τ→ P ‖ Q, assuming Σ = {a, b, . . . }∪{a, b, . . . }∪{τ}.

When one component outputs on a channel a and the other inputs from a, then
the whole system makes an internal τ move.

– ACP-style [13]: a.P ‖ b.Q
a|b→ P ‖ Q. The way processes interact with each

other is parametrized by a partial binary operation | on Σ. In fact, suitable
choices of | realize CSP- and CCS-style synchronization.

In fact, each of these different ways of synchronization can be represented by a suitable

4Later in Section 5.3 we will observe that a functor F with sync is a special case of a lax L-
functor. Such a functor F with sync is usually called a monoidal functor (as opposed to a lax
monoidal functor), probably because it preserves (inner) monoid objects; see Proposition 5.3.13.1.

5Here we focus on synchronous interaction. All the process algebras mentioned here have an
additional kind of interaction, namely an “interleaving” one; see Remark 5.2.3.

122 5 Foundational study: concurrency and the microcosm principle

sync natural transformation.

Pfin(Σ×X)× Pfin(Σ× Y) −→ Pfin

(
Σ× (X × Y)

)
(u, v)

syncCSP
X,Y�−→

{
(a, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v

}
(u, v)

syncCCS
X,Y�−→

{
(τ, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v

}
(u, v)

syncACP
X,Y�−→

{
(a|b, (x, y)) |
(a, x) ∈ u ∧ (b, y) ∈ v ∧ a|b is defined

}
By Theorem 5.2.1, each of these gives (different) ⊗⊗⊗ on CoalgF , and ‖ on Z; moreover
the behavior functor beh satisfies compositionality (5.4). In other words: bisimilarity
is a congruence with respect to CSP-, CCS- and ACP-style parallel composition.

5.2.3 Remark. As mentioned in Section 5.1, in some ways the current work can be
seen as an extension of the bialgebraic studies started in [134]. However there is also
a drawback, namely the limited expressive power of sync : FX ⊗ FY → F (X ⊗ Y).

Our sync specifies the way an algebraic structure interacts with a coalgebraic one.
In this sense it is a counterpart of a distributive law ΣF ⇒ FΣ in [134] representing
operational rules, where Σ is a functor induced by an algebraic signature. However
there are many common operational rules which do not allow representation of the
form ΣF ⇒ FΣ; therefore in [134] the type of such a distributive law is eventually
extended to Σ(F × id) ⇒ FΣ∗ for enhanced expressive power. The class of rules
representable in this extended form coincides with the class of so-called GSOS-rules.

At present it is not clear how we can make a similar extension for our sync;
consequently there are some operational rules which we cannot model by sync. One
important example is an interleaving kind of interaction—such as a.P ‖ Q

a→ P ‖ Q
which leaves the second component unchanged. This is taken care of in [134] by the
identity functor (id) appearing on the left-hand side of Σ(F × id) ⇒ FΣ∗. For our
sync to be able to model such interleaving, we can replace F by the cofree comonad
on it, as is done in [70, Example 3.11]. This extension should not be hard but detailed
treatment is left as future work.

In K�(T): trace equivalence is a congruence

In Chapter 2 we have shown that trace semantics—including trace set semantics for
non-deterministic systems and trace distribution semantics for probabilistic systems—
is also captured by coinduction employed in a Kleisli category K�(T).

Our compositionality result (Theorem 5.2.1) applies to this Kleisli setting all the
same: in presence of a suitable tensor ⊗ in K�(T) and a synchronization natural
transformation, we can compose coalgebras and trace semantics (via coinduction in
K�(T)) is automatically compositional.

Recall that, in this setting, systems are modeled as F -coalgebras in K�(T) where
the functor F : K�(T) → K�(T) is a lifting of some F : Sets → Sets. Following the
same spirit, it is possible to reduce the relevant ingredients (namely a tensor ⊗ and

5.2 Parallel composition of coalgebras 123

a synchronization, both in K�(T)) to certain constructs in Sets. This procedure will
be described later in Section 5.5.

5.2.3 Equational properties of parallel composition operators

Now we shall investigate equational properties—associativity, commutativity, and so
on—of an outer parallel composition operator ⊗⊗⊗ and an inner one ‖, which we have
ignored deliberately for simplicity of arguments. We present our results in terms
of associativity; it is straightforward to transfer the results to other properties like
commutativity.

First we present a result on an outer composition ⊗⊗⊗ (which arises from ⊗ and
sync; see Section 5.2.1). The main point is as follows: if ⊗ is associative and sync is
“associative,” then the lifting ⊗⊗⊗ is associative. The proof is straightforward.

5.2.4 Theorem. Let C be a category with a strictly associative tensor ⊗,6 and F :
C→ C be a functor with sync : FX ⊗ FY → F (X ⊗ Y). If the diagram

FX ⊗ (FY ⊗ FZ)
FX ⊗ sync

id
FX ⊗ F (Y ⊗ Z)

sync
F (X ⊗ (Y ⊗ Z))

id
(FX ⊗ FY)⊗ FZ

sync⊗FZ
F (X ⊗ Y)⊗ FZ sync F ((X ⊗ Y)⊗ Z)

(5.8)

commutes, then the lifted tensor ⊗⊗⊗ on CoalgF is strictly associative. �
The two (vertical) identity arrows in (5.8) are available due to strict associativity of
⊗. Later in Section 5.4 we shall reveal the generic principle behind the commutativity
condition of (5.8), namely a coherence condition of a lax natural transformation.

Once we have an associative outer composition ⊗⊗⊗, associativity of an inner com-
position ‖: Z ⊗ Z → Z is straightforward by coinduction.

5.2.5 Theorem. Assume that Theorem 5.2.4 holds and hence we have a strictly
associative tensor ⊗⊗⊗ on CoalgF . Then the inner composition operator ‖: Z⊗Z → Z
induced by coinduction (5.6) is associative in the following sense.

Z ⊗ (Z ⊗ Z) id

Z⊗ ‖
(Z ⊗ Z)⊗ Z

‖ ⊗Z
Z ⊗ Z

‖
Z ⊗ Z

‖ Z

The identity arrow in the diagram is due to the strict associativity of ⊗. �
As an example, syncCSP and syncCCS in Section 5.2.2 are easily seen to be “as-

sociative” in the sense of the diagram (5.8). Therefore the resulting tensors ⊗⊗⊗ are
strictly associative; so are the corresponding inner composition operators ‖.

6As mentioned already, in the current work we stick to strict algebraic structures.

124 5 Foundational study: concurrency and the microcosm principle

5.3 Formalizing the microcosm principle

In this section we shall formalize the microcosm principle for an arbitrary algebraic
theory presented as a Lawvere theory L. The formalization will be used later in
Section 5.4 where we give a general account of algebraic structures on coalgebras.

L

1

C

⇓X CAT

In our formalization (which we sketched in Section 5.1) an
outer model will be a product-preserving functor C : L→ CAT;
an inner model inside will be a lax natural transformation X :
1 ⇒ C. Here 1 : L → CAT is the constant functor which maps
everything to the category 1 with one object and one arrow.7 Mediating 2-cells for the
lax natural transformation X play a crucial role as inner interpretations of algebraic
operations. In this section we heavily rely on 2-categorical notions, of which detailed
accounts can be found in [19].

5.3.1 Lawvere theories

Lawvere theories are categorical presentations of algebraic theories. The notion is
introduced in [90] (not under this name, though) aiming at a categorical formulation
of “theories” and “semantics.” An accessible introduction to the notion can be found
in [82]. Lawvere theories are known to be equivalent to finitary monads. These two
ways of presenting algebraic theories have been widely used in theoretical computer
science, e.g. for modeling computation with effect [59, 100]. Recent developments
(such as [104]) utilize the increased expressive power of enriched Lawvere theories.

In the sequel, by an FP-category we refer to a category with (a choice of) finite
products. An FP-functor is a functor between FP-categories which preserves finite
products “on-the-nose,” that is, up-to-equality instead of up-to-isomorphism.

5.3.1 Definition (The category Nat). By Nat we denote the category of natural
numbers (as sets) and functions between them. Therefore every arrow in Nat is a (co-
tuple of) coprojection: an arrow f : k → n can be written as a cotuple [κf(1), . . . , κf(k)]
where κi : 1 → n is the coprojection into the i-th summand of n = 1 + · · · + 1 (n
times). Dually, every arrow in Natop is a (tuple of) projection.

5.3.2 Definition (Lawvere theory). A Lawvere theory is a small FP-category L

equipped with an FP-functor H : Natop→L which is bijective on objects. We shall
denote an object of L by a natural number k, identifying k ∈ Natop and Hk ∈ L.

The category Natop—which is a free FP-category on the trivial category 1—is
there in order to specify the choice of finite products in L. For illustration, we make
some remarks on L’s objects and arrows.

– An object k ∈ L is a k-fold product 1× · · · × 1 of 1 ∈ L. Note that 1 ∈ L is not
a terminal object; instead 0 ∈ L is terminal since 0 is terminal in Natop.

7The functor 1 : L → CAT is a special case of an outer model of L.

5.3 Formalizing the microcosm principle 125

– An algebraic operation appears in L in the form of an arrow. That is, a k-ary
operation as an arrow k → 1 in L; an arrow k → n is then understood as an
n-tuple 〈f1, . . . , fn〉 of k-ary operations. To be precise, arrows in L also include
projections (such as 2 π1→ 1) and terms made up of operations and projections

(such as 3
m◦〈π1,π2〉−→ 1).

Conventionally in universal algebra, an algebraic theory is presented by an algebraic
specification (Σ, E)—a pair of a set Σ of operations and a set E of equations. A
Lawvere theory L arises from such (Σ, E) as its so-called classifying category (see
e.g. [61, 90]). An arrow k → n in the resulting Lawvere theory L is an n-tuple
([t1(−→x)], . . . , [tn(−→x)]) of Σ-terms with k variables −→x , where [] denotes taking an
equivalence class modulo equations in E. An equivalent way to describe this con-
struction is via sketches: (Σ, E) is identified with an FP-sketch, which in turn induces
L as a free FP-category. See [11] for details.

5.3.3 Example. Our leading example is the Lawvere theory Mon for monoids.8 It
arises as a classifying category from the well-known algebraic specification of monoids.
This specification has a nullary operation e and a binary one m; subject to the equa-
tions

m(x, e) = x , m(e, x) = x and m(x,m(y, z)) = m(m(x, y), z) .

Equivalently, Mon is the freely generated FP-category by arrows 0 e→ 1 and 2 m→ 1
subject to the following commutativity.

1
〈id, e〉

id

2
m

1
〈e, id〉

id

3
m× id

id×m
2
m

1 2 m 1
(5.9)

These data (arrows and commutative diagrams) form an FP-sketch (see [11]).

5.3.2 Outer models: L-categories

We start by formalizing an outer model. It is a category with an L-structure, hence
we call it an L-category.

By the way, it is standard that a (set-theoretic) model of L—a set with an L-
structure—is identified with an FP-functor L

X→ Sets. Concretely, let X = X1 be
the image of 1 ∈ L; this is the carrier set. Then k ∈ L must be sent to Xk = X×· · ·×X
(k times) due to preservation of finite products. Now the functor’s action on arrows

8The Lawvere theory Mon for the theory of monoids should not be confused with the category
of (set-theoretic) monoids and monoid homomorphisms (which is often denoted by Mon as well).

126 5 Foundational study: concurrency and the microcosm principle

is what interprets L’s operations in X.

L
X−→ Sets

2
m

1
�−→

X2

�m�
X

Equations (expressed as commutative diagrams in L) are satisfied because a functor
preserves commutative diagrams.

Turning back to L-categories, what we have to do now is to just replace Sets by
the category CAT of (possibly large but locally small) categories.

5.3.4 Definition (L-categories). A (strict) L-category is an FP-functor L
C→ CAT.

In the sequel we denote the image C1 of 1 ∈ L by C; and the image Ca of an arrow a
by �a�.

A morphism of L-categories—formalized as follows—is understood as a functor
which preserves an L-structure.

5.3.5 Definition (L-functors). Let C and D be L-categories. An L-functor F : C→

D is a natural transformation L
C

D

⇓F CAT .

Indeed, the 1-component of such a natural transformation is a functor F1 : C → D;
this is the “underlying” functor.

Another way to look at the previous definitions is to view an L-structure as “factor-
ization through Natop → L.” Specifically, we can identify a category C ∈ CAT with
a functor 1→ CAT, which is in turn identified with an FP-functor Natop → CAT,
because Natop is the free FP-category on 1.

C, a category
C : 1 −→ CAT, a functor

C : Natop −→ CAT, an FP-functor

We say that C has an L-structure, if the last FP-functor C : Natop → CAT factors
through H : Natop → L.

Natop H

C

L

CAT

Note that the factorization is not necessarily unique, because there can be different
ways of interpreting the algebraic theory L in C.

This factorization view applies also to L-functors. A functor C
F→ D is identified

with a natural transformation 1 ⇓F CAT ; and then with Natop ⇓F CAT
due to the 2-universality of Natop as a free object. We say that this F preserves

5.3 Formalizing the microcosm principle 127

an L-structure, if the natural transformation Natop ⇓F CAT factors through
H : Natop → L.

Natop H

⇓
F

L
⇐

CAT

5.3.6 Example. The usual notion of strictly monoidal categories coincides with L-
categories for L = Mon. A tensor ⊗ and a unit I on a category arise as interpretation
of the operations 2 m→ 1 and 0 e→ 1; commuting diagrams in Mon such as m ◦ 〈id, e〉 =
id yield equational properties of ⊗ and I.

5.3.3 Remarks on “pseudo” algebraic structures

As we mentioned already, in the current work we focus on strict algebraic struc-
tures. This means that monoidal categories (in which associativity holds only up-
to-isomorphism, for example) fall out of our consideration. Extending our current
framework to such “pseudo” algebraic structures is one important direction of our fu-
ture work. Such an extension is not entirely obvious; we shall sketch some preliminary
observations in this direction.

The starting point is to relax the definition of L-categories from (strict) functors
L→ CAT to pseudo functors, meaning that composition and identities are preserved
only up-to-isomorphism. Then it is not hard to see that a pseudo functor Mon C→
CAT (which preserves finite products in a suitable sense) gives rise to a monoidal
category.

Let us take a detailed look. A pseudo functor Mon C→ CAT preserves composition
up-to-isomorphism; let us denote the mediating natural isomorphism by Cb,a as below.

jin Mon
a

k
b

n

in CAT Cj
�a�

�b ◦ a�Ck

�b�

=⇒
Cb,a

∼=
Cn

(5.10)

Then a commuting diagram in Mon (below left) gives rise to the two iso-2-cells on
the right.

3
in Mon

id×m m×id

2
m

2
m

1

in CAT
C3�id×m� �m×id�

�m◦(m×id)�

=�m◦(id×m)�C2

�m�

⇒
Cm,id×m

C2

�m�

⇐
Cm,m×id

C

(5.11)

The composite �m� ◦ �id×m� on the left edge is a functor such that

(X1,X2,X3) �−→ X1 ⊗ (X2 ⊗X3) ;

128 5 Foundational study: concurrency and the microcosm principle

the one �m� ◦ �m× id� on the right edge is such that

(X1,X2,X3) �−→ (X1 ⊗X2)⊗X3 .

Now the composite C−1
m,m×id • Cm,id×m of the iso-2-cells is what gives us a natural

isomorphism α : X1 ⊗ (X2 ⊗X3)
∼=→ (X1 ⊗X2)⊗X3.

Moreover, the coherence condition on such isomorphisms in a monoidal category
(see [14, 96]) requires that “any two compositions of such natural isomorphisms are
identical.” A well-known instance is commutativity of the following “pentagon dia-
gram.”

X1 ⊗ (X2 ⊗ (X3 ⊗X4))
α

X1 ⊗ α

(X1 ⊗X2)⊗ (X3 ⊗X4)

αX1 ⊗ ((X2 ⊗X3)⊗X4)
α

(X1 ⊗ (X2 ⊗X3))⊗X4
α⊗X4

((X1 ⊗X2)⊗X3)⊗X4

Indeed, commutativity of this pentagon is derived from the fact that the following
two composed iso-2-cells are identical.

C4
�1·2,3,4�

�1,2·3,4�

�1,2,3·4�

C3

�1·2,3�

C3
�1·2,3�

�1,2·3�

⇓α×C

C2

�1·2�C3

�1,2·3�

⇓C×α

C2
�1·2�

⇓
α

C

C4
�1·2,3,4�

�1,2,3·4�

C3

�1·2,3�

�1,2·3� C2

�1·2�C3
�1·2,3�

�1,2·3�

⇓id

C2

�1·2�

⇓α

C2
�1·2�

⇓α

C

These two composites are identical due to the coherence condition on the mediating 2-
cells Cb,a of a pseudo functor (see [19]). Here the notation 1 ·2, 3, 4—with its intention
being x1, x2, x3, x4 # x1 · x2, x3, x4 following the categorical logic tradition—denotes
the arrow 〈m ◦ 〈π1, π2〉, π3, π4〉 : 4→ 3 in Mon.

So far so good. However, at this moment it is not clear what is a canonical
construction the other way round, i.e. from a monoidal category to a pseudo functor.9

In the present paper we side-step these 2-categorical subtleties by restricting ourselves
to strict, non-pseudo algebraic structures.

5.3.4 Inner models: L-objects

We proceed to formalize an inner model. It is an object in an L-category which itself
carries an (inner) L-structure, hence is called an L-object. A monoid object in a

9 For example, given a monoidal category C, we need to define a functor �m ◦ (m × id)� = �m ◦
(id×m)� in (5.11). It’s not clear whether it should carry (X, Y, Z) to X⊗(Y ⊗Z), or to (X⊗Y)⊗Z.

5.3 Formalizing the microcosm principle 129

monoidal category is a prototypical example. We first present an abstract definition;
some illustration follows afterwards.

5.3.7 Definition (L-objects). An L-object X in an L-category C is a lax natural
transformation X : 1⇒ C (below left) which is “product-preserving”: this means that
the composition X ◦ H (below right) is strictly, non-lax natural. Here 1 : L→ CAT
denotes the constant functor to the trivial one-object category 1.

L

1

C

⇓ X
CAT Natop H

L

1

C

⇓ X
CAT

Such a nested algebraic structure—formalized as an L-object in an L-category—shall
be called a microcosm model for L.

Let us now illustrate the definition. First, X’s component at 1 ∈ L is a functor
1 X1→ C, which is identified with an object X ∈ C. This is the carrier object of this inner
algebra. Moreover, any component 1 Xk→ Ck must be the k-tuple (X, . . . , X) ∈ Ck

of X’s. This is because X is “product-preserving”: for any i ∈ [1, k] we have the
following naturality diagram of X ◦ H which requires the composite πi ◦ Xk to be
X1 = X.

k
in Natop

πi

1

1in CAT Xk

= Ck

�Hπi�=πi

1
X1=X

C

The (inner) algebraic structure on the object X arises in the form of mediating 2-cells
of the lax natural transformation X. For each arrow k

a→ n in L, lax naturality of X
requires existence of a mediating 2-cell Xa : �a� ◦ Xk ⇒ Xn. The following diagram
shows the situation when we set a = m, a binary operation.

2in L

m

1

1in CAT X2=(X,X)

⇓
Xm

C2

�m�=⊗

1
X

C

(5.12)

The natural transformation Xm can be identified with an arrow X ⊗ X
μ→ X in C,

which gives an inner binary operation on the carrier X.
How do such inner operations on X satisfy equations as specified in L? The key

is the coherence condition10 on mediating 2-cells: it requires Xid = id concerning
identities; and Xb◦a = Xb • (�b� ◦ Xa) concerning composition (as in the following

10This is part of the notion of lax natural transformations; see [19].

130 5 Foundational study: concurrency and the microcosm principle

diagram).

1

⇓
Xb◦a

Cl

�b◦a�

1 Cn

=

1 ⇓
Xa

Cl

�a�

1 ⇓
Xb

Ck

�b�

1 Cn

(5.13)

The following example illustrates how such coherence induces equational properties.

5.3.8 Example. A monoid object in a strictly monoidal category is an example of
an L-object in an L-category. Here we take L = Mon, the theory of monoids.

For illustration, let us here derive associativity of (inner) multiplication X⊗X
μ→

X. In the current setting a tensor ⊗ is identified with �m� = Cm : C2 → C; the inner
multiplication μ is identified with a mediating 2-cell Xm as in (5.12) above. Now the
coherence condition (5.13) yields the two equalities (∗) below.

3
in Mon

id×m m×id

2
m

2
m

1

1
in CAT

⇓
Xid×m

C3

�id×m�

1
⇓
Xm

C2

�m�

1 C

(∗)
=

1
⇓

Xm◦(id×m)

=Xm◦(m×id)

C3

1 C1

(∗)
=

1 ⇓
Xm×id

C3

�m×id�

1
⇓
Xm

C2

�m�

1 C

(5.14)

Now it is not hard to see that: the composed 2-cell on the left

1 ⇓
Xid×m

C3

�id×m�

1
⇓
Xm

C2

�m�

1 C

corresponds to X ⊗X ⊗X
X⊗μ−→ X ⊗X

μ−→ X ; (5.15)

and the one on the right

1 ⇓
Xm×id

C3

�m×id�

1
⇓
Xm

C2

�m�

1 C

corresponds to X ⊗X ⊗X
μ⊗X−→ X ⊗X

μ−→ X .

Therefore the equalities in (5.14) prove associativity of the inner multiplication μ :
X ⊗X → X.

X ⊗X ⊗X
μ⊗X

X ⊗ μ

X ⊗X

μ

X ⊗X μ X

5.3 Formalizing the microcosm principle 131

For further illustration, let us elaborate the correspondence (5.15). The only non-
trivial step in the correspondence is showing

Xid×m = 〈idX ,Xm〉 , (5.16)

that is, the (upper) 2-cell Xid×m in (5.15) is identical to the tuple 〈idX ,Xm〉 (depicted

below) which obviously corresponds to the arrow X ⊗X ⊗X
X×μ−→ X ⊗X in C.

C3 �id×m�=idC×⊗

1

(X,X,X)

⇓〈idX ,Xm〉

(X,X)

C2 that is,

〈
1

X

X

⇓idX C , 1
X⊗X

X

⇓Xm C

〉

The equality Xid×m = 〈idX ,Xm〉 (5.16) holds essentially because the lax natural
transformation X is “product-preserving” (Definition 5.3.7). Product-preservation
in this context means that a mediating 2-cell Xπi

for a projection πi is an identity.
Indeed, the following calculation shows that π2 ◦ Xid×m = Xm.

1 ⇓
Xid×m

C3

�id×m�

1 C2

�π2�=π2

C

=

1
(X,X,X)

⇓
Xid×m

C3

�id×m�

1 (X,X)

⇓
id

C2

�π2�=π2

1
X

C

(∗)
=

1
(X,X,X)

⇓
Xid×m

C3

�id×m�

1 (X,X)

⇓
Xπ2

C2

�π2�=π2

1
X

C

(†)
=

1
⇓

Xπ2◦(id×m)

=Xm◦π2

C3

1 C

(†)
=

1
(X,X,X)

⇓
Xπ2

C3

�π2�=π2

1 (X,X)

⇓
Xm

C2

�m�

1
X

C

(∗)
=

1
(X,X,X)

⇓
id

C3

�π2�=π2

1 (X,X)

⇓
Xm

C2

�m�

1
X

C

= Xm

Here (∗) holds since Xπi
= id; (†) refers to the coherence condition (5.13) on mediating

2-cells on X. Similar calculation shows π1 ◦ (Xid×m) = idX ; this proves the equality
Xid×m = 〈idX ,Xm〉 in (5.16).

5.3.5 Basic observations on microcosm models

We shall establish some basic facts about microcosm models. Some of them will be
used later in our main result of general compositionality (but many others will not).

Lifting outer L-structures

Let C be an L-category, and F : C → C be a functor. Later in Section 5.4 we want
to lift the L-structure on C to the one on the category CoalgF of F -coalgebras. We
can imagine that, for us to be able to do so, the functor F needs to be somehow
compatible with L. It turns out that F ’s being a lax L-functor is sufficient. It is
weaker than F ’s being an L-functor (Definition 5.3.5).

132 5 Foundational study: concurrency and the microcosm principle

5.3.9 Definition (Lax L-functors). A functor F : C → D between L-categories is
said to be a lax L-functor if it is identified with11 some lax natural transformation

L
C

D

⇓F CAT which is product-preserving (meaning F ◦ H is strictly natural; see

Definition 5.3.7).
Lax naturality means that, for each arrow a : k → n in L, we have the following

mediating 2-cell. We shall denote it by Fa.

k
in L

a
n

Ckin CAT Fk = F k

�a� ⇓
Fa

Dk

�a�

Cn

Fn = Fn Dn

(5.17)

Here the k-component Fk of the lax natural transformation F is identical to

F k : Ck −→ Ck , (X1, . . . , Xk) �−→ (FX1, . . . , FXk) , (5.18)

because F is “product-preserving”: for each i ∈ [1, k] we have the following (non-lax)
naturality diagram.

k
in Natop

πi

1

Ckin CAT Fk

�πi� = πi
= Dk

�πi� = πi

C
F1 = F

D

Dually, an oplax L-functor is a functor F : C → D which can be identified with

an oplax natural transformation L
C

D

⇓F CAT which is “product-preserving.” Its

mediating 2-cells—as in (5.17), but in the opposite direction—shall be denoted by Fa

as well.

5.3.10 Proposition. 1. Let C be an L-category and F : C→ C be a lax L-functor.
Then CoalgF is an L-category; moreover the forgetful functor CoalgF

U→ C is
a (strict, non-lax) L-functor.

2. Dually, if F : C → C is an oplax L-functor, then the category AlgF of F -
algebras is an L-category. Moreover the forgetful functor AlgF → C is an
L-functor.

3. Given a microcosm model X ∈ C for L, the slice category C/X is an L-category;
moreover the functor C/X

dom−→ C is an L-functor. �
These results can be derived from a more general result (Lemma 5.3.12) concerning
inserters. The notion of inserters can be defined in any 2-category; here for simplicity
we focus on inserters in the specific 2-category CAT.

11Meaning: F : C → D is the 1-component of such a lax natural transformation C ⇒ D.

5.3 Formalizing the microcosm principle 133

5.3.11 Definition (Inserters). Let F,G : C ⇒ D be two functors with the same
domain and codomain. An inserter Ins(F,G) for F and G consists of

– a category Ins(F,G);

– a functor Ins(F,G) R→ C; and

– a natural transformation ρ : FR ⇒ GR (below left) which is universal: each
triple (B, B, β) such as below right

C
F

Ins(F,G)
R

R

⇓ ρ D
C

G

C
F

B

B

B

⇓ β D
C G

induces a unique mediating functor B : B → Ins(F,G) such that B = R ◦ B
and β = ρ ◦ B.

B
B

B

⇓ β

B

C F

D

Ins(F,G)

R

R

⇓ ρ

C
G

By the universality it is obvious that an inserter, if it exists, is unique up-to-isomorphism.

This 2-categorical notion of inserters comes from [74, 131]; see also [54]. Examples
include slice categories, categories of algebras and of coalgebras:

C/X = Ins(C
id→ C , C

!→ 1 X→ C) ,

AlgF = Ins(C
F→ C , C

id→ C) , CoalgF = Ins(C
id→ C , C

F→ C) .

These description of the three categories as inserters allows us to instantiate the
following lemma to Proposition 5.3.10.

5.3.12 Lemma. Let C and D be L-categories, and F,G : C ⇒ D be two functors. If
F is an oplax L-functor and G is a lax L-functor, then the inserter Ins(F,G) is an
L-category. Moreover the functor Ins(F,G) R→ C is an L-functor; in this sense the
L-structure on Ins(F,G) is a lifting of the one on C.

Proof. We have to define, for each arrow k
a→ n in L, its interpretation Ins(F,G)k �a�→

Ins(F,G)n. Note here that the codomain itself is an inserter:

Ins(F,G)n ∼= Ins(Cn F n

→ Cn, Cn Gn

→ Cn) .

134 5 Foundational study: concurrency and the microcosm principle

We obtain such an interpretation Ins(F,G)k �a�→ Ins(Fn, Gn) by the following 2-cell,
via universality of the inserter Ins(Fn, Gn).

Ck
�a�C

F k ⇓ Fa

Cn
Fn

Ins(F,G)k

Rk

Rk

⇓ ρk Dk �a�D Dn

Ck

�a�C

Gk ⇓Ga

Cn Gn

Here the 2-cell ρ is the one accompanying Ins(F,G); Fa comes from oplax naturality
of F ; and Ga comes from lax naturality of G.

Functoriality of the operation Ins(F,G) : L → CAT thus induced follows from
universality of inserters. Moreover, L-functoriality of Ins(F,G) R→ C (i.e. naturality
of Ins(F,G) R⇒ C : L→ CAT) holds because �a� arises as a “mediating” functor. �
Facts on L-objects

5.3.13 Proposition. 1. A lax L-functor preserves L-objects. Hence so does an
L-functor.

2. A final object of an L-category C, if it exists, is an L-object. The inner L-
structure is induced by finality.

Proof. 1. A vertical composition of lax natural transformations is again a lax natural
transformation. Hence the following vertical composition gives rise to an L-object
FX in an L-category D.

L

1

C
⇓ X

⇓ F

D

CAT

2. Straightforward. �
When we fix an L-category C, the notion of morphisms between L-objects in C is

formalized as suitable modifications (see [19]).

5.3.14 Definition (Morphisms of L-objects). Let C be an L-category, and X,Y be
L-objects in C. A morphism f from X to Y is a modification of the following type.

L

1
f

C

X ⇓� ⇓ Y
CAT

L-objects in C and morphisms between them form a category; we shall denote it by
L-objC.

5.3 Formalizing the microcosm principle 135

Let us spell out the definition. Such a modification f consists of 2-cells fk : Xk ⇒ Yk

in CAT, for each k ∈ L, from X’s k-component to Y ’s.

1

Xk = (X, . . . , X)

Yk = (Y, . . . , Y)

⇓ fk Ck

Additionally, these components fk of f are required to be compatible with lax natu-
rality of X and Y , in the following sense.

k
in L

a

n

1
Xk

⇓
Xa

in CAT
Ck

�a�

1
Xn

Yn

⇓ fn Cn

=

1
Xk

Yk

⇓ fk Ck

�a�

1
Yn

⇓ Ya
Cn

(5.19)

A special case is when an arrow a is a projection πi : k → 1; in this case the mediating
2-cells Xπi

and Yπi
are in fact identities because X and Y are product-preserving

(Definition 5.3.7). The equality (5.19) in this special case proves that each component
fk of f is identified with a tuple

(X, . . . , X)
fk = (f, . . . , f)

(Y, . . . , Y) in Ck,

where we identify f ’s 1-component with an arrow f : X → Y in C.
When the arrow a in (5.19) is thought of as an algebraic operation, the equality

requires that the arrow f : X → Y in C should be compatible with the inner interpre-
tations Xa and Ya of a. For illustration let us take a = m : 2→ 1, a binary operation.

The 2-cell on the left in (5.19) corresponds to the arrow X ⊗X
μX

→ X
f→ Y ; the one

on the right corresponds to X ⊗X
f⊗f→ Y ⊗ Y

μY

→ Y . Therefore the equality in (5.19)
instantiates to the following oft-seen diagram for a “morphism of algebras.”

X ⊗X
f ⊗ f

μX
Y ⊗ Y

μY

X
f

Y

This diagram as an instance of (5.19) justifies Definition 5.3.14 of morphisms of L-
objects, that is, morphisms of (inner) L-algebras.

It is standard that a limit lim(J → Sets) in Sets is presented as the set of
“coherent elements” [96, Theorem V.1.1]; this is essentially due to the isomorphism
S ∼= Sets(1, S). Similar arguments, but using C ∼= CAT(1, C) instead, lead to the
following result. Its proof is straightforward.

136 5 Foundational study: concurrency and the microcosm principle

5.3.15 Proposition. The category L-objC is a lax FP-limit of the diagram C : L→
CAT. That is, the canonical cone from L-objC over C : L → CAT is universal
among the lax cones over C : L→ CAT

L

ΔB

C

⇓β
CAT

which are product-preserving (meaning β ◦ H is strictly natural; see Definition 5.3.7).�

5.4 Microcosm structures in coalgebras

In this section we return to our original question and apply the framework we just
introduced to coalgebraic settings. We present our main result in this chapter (The-
orem 5.4.2), which generalizes the previous compositionality result (Theorem 5.2.1).
Here the constructs in Section 5.2 (such as sync) will appear again, now in their
generalized form.

Lax L-functors generalize sync

In Section 5.2 we observed that an endofunctor F with sync : FX⊗FY → F (X⊗Y)
allows a lifting of an ⊗-structure on C to an ⊗⊗⊗-structure on CoalgF . In the current
generalized setting where we consider an arbitrary algebraic theory L, what corre-
sponds to this endofunctor F with sync is a lax L-endofunctor F (Definition 5.3.9).
To illustrate this, look at the following lax naturality diagram for a binary operation
m in L = Mon.

2in Mon
m

1

C2in CAT F2 = F × F

�m� = ⊗ ⇓
Fm

C2

�m� = ⊗
C

F
C

(5.20)

The 2-component is F2 = F ×F because the lax natural transformation F is product-
preserving; see (5.18). The mediating 2-cell Fm in (5.20) is identified with a natural
transformation

FX ⊗ FY −→ F (X ⊗ Y) ;

this is what we previously called sync.

5.4.1 Remark. Moreover, Fm (identified with sync) becomes automatically compat-
ible with equational properties such as associativity, in the sense of (5.8). This is
because of the coherence condition (just like (5.13)) on F ’s mediating 2-cells. For

5.4 Microcosm structures in coalgebras 137

example, using coherence we have the following equalities much like in (5.14).

3

in Mon

id×m m×id

2
m

2
m

1

C3

in CAT
F×F×F

⇓
Fid×m

C3

�id×m�

C2

⇓
Fm

C2

�m�

C
F

C

=

C3

⇓
Fm◦(id×m)

=Fm◦(m×id)

C3

C1 C1

=

C3
F×F×F

⇓
Fm×id

C3

�m×id�

C2

⇓
Fm

C2

�m�

C
F

C

(5.21)

The composed 2-cell on the left corresponds to a natural transformation

FX ⊗ (FY ⊗ FZ)
FX⊗sync−→ FX ⊗ F (Y ⊗ Z)

sync−→ F (X ⊗ (Y ⊗ Z)) ;

the one on the right corresponds to

(FX ⊗ FY)⊗ FZ
sync⊗FZ−→ F (X ⊗ Y)⊗ FZ

sync−→ F ((X ⊗ Y)⊗ Z) .

Hence the equalities above in (5.21) prove: if F is a lax Mon-functor, then its sync
(identified with the 2-cell Fm) is automatically “associative” in the sense of (5.8).

General compositionality

Among the ingredients for the previous compositionality result (Theorem 5.2.1), an
endofunctor F with sync has now been generalized to a lax L-functor F . The other
ingredient—the base category C with a tensor ⊗—has an immediate generalization
as an L-category C. These generalized notions constitute an appropriate setting for
the following main result of this chapter.

5.4.2 Theorem (General compositionality). Let C be an L-category and F : C→ C

be a lax L-functor. Assume further that ζ : Z
∼=→ FZ is the final coalgebra. Then:

1. The category CoalgF of F -coalgebras is an L-category.

2. So is the slice category C/Z.

3. The functor beh : CoalgF → C/Z is a (non-lax) L-functor. It makes the
following diagram of L-functors commute.

CoalgF
beh

U

C/Z

domC

Proof. 1. This is the same as Proposition 5.3.10.1.
2. ζ ∈ CoalgF is an L-object (Proposition 5.3.13.2); so is Z = Uζ (Proposi-

tions 5.3.13.1 and 5.3.10.1); hence C/Z is an L-category (Proposition 5.3.10.2).
3. Straightforward by finality. �

138 5 Foundational study: concurrency and the microcosm principle

In fact, the theorem also generalizes our previous result (Theorem 5.2.4) stating:
if sync is “associative,” then ⊗⊗⊗ on CoalgF is associative. Indeed, the statement
of the above Theorem 5.4.2.1—CoalgF being an L-category—means, not only that
operations are interpreted in CoalgF , but also that all the equational properties spec-
ified in L are satisfied in CoalgF . The assumption in the previous Theorem 5.2.4—
associativity of sync—is present in the generalized Theorem 5.4.2, in the form of F ’s
being a lax L-functor (see Remark 5.4.1).

We describe concretely what are the lifted algebraic structures on CoalgF and
on C/X in Proposition 5.3.10; such a concrete description is helpful in seeing that
Theorem 5.4.2.3 indeed implies coalgebraic compositionality expressed as the equa-
tion (5.4). An operation a : k → 1 in L is interpreted in CoalgF and C/X as follows,
respectively, using Fa from lax naturality of F and the inner algebraic structure Xa

on X.

�a�CoalgF
:
(FX1

X1

c1 , . . . ,
FXk

Xk

ck

)
�−→

F �a�(
−→
X)

�a�(
−−→
FX)

(Fa)−→X

�a�(
−→
X)

�a�(−→c)
,

�a�C/X :
(Y1

y1

X

, . . . ,
Yk

yk

X

)
�−→

�a�(
−→
Y)
�a�(−→y)

�a�(
−→
X)
Xa

X

.

These generalize the lifted binary operations ⊗⊗⊗ on CoalgF (5.5) and ⊗ on C/Z (5.7).
Note the use of Fa (in place of sync) and Xa (in place of ‖).

5.5 Parallel composition of coalgebras in K�(T)

Our main results—Theorem 5.2.1 and generalized Theorem 5.4.2—apply to our coal-
gebraic framework for trace semantics (Chapter 2) as well. In this case we take
a suitable Kleisli category as the base category C; coinduction now captures trace
semantics (as opposed to bisimilarity captured in C = Sets).

In this section we shall describe some specific issues regarding this Kleisli setting.
In Section 5.5.1 the ingredients for our parallel composition framework, namely:

– an algebraic structure ⊗ on the base category C = K�(T), and

– a synchronization natural transformation which lifts ⊗ on the base category to
⊗⊗⊗ on coalgebras,

are reduced to certain constructs in Sets. In Section 5.5.2 we further investigate the
relationship between parallel composition and forward/backward simulations (Chap-
ter 3).

5.5 Parallel composition of coalgebras in K�(T) 139

5.5.1 Trace equivalence is a congruence

The following is the relevant setting from Chapter 2. The functor F on Sets is lifted to
F on K�(T) with the help of a distributive law λ : FT ⇒ TF . Systems are presented
as F -coalgebras (in K�(T)) and coinduction there yields trace semantics.

CoalgF K�(T) F

Sets FT

We shall show that, when we apply the parallel composition framework (Theorem 5.2.1)
to this Kleisli setting, we can reduce the ingredients in K�(T)—namely F , ⊗ and
sync—to the following constructs in Sets.

F : K�(T)→ K�(T)
to F : Sets→ Sets and λ : FT ⇒ TF ;

⊗ on K�(T)
to (× on Sets, and) ξ : TX × TY → T (X × Y);

sync : FX ⊗ FY → F (X ⊗ Y) in K�(T)
to sync : FX × FY → F (X × Y) in Sets, compatible with λ and ξ.

The first item (reduction of F to F and λ) is already described in Section 2.2.
We obtain a tensor ⊗ on K�(T) as a lifting of Cartesian products × on Sets. Such

a lifting is available when the monad T comes with a natural transformation

ξX,Y : TX × TY → T (X × Y)

which is compatible with the monad structure in the obvious way:

X × Y
η×η

η

TX × TY
ξ

T (X × Y)

T 2X × T 2Y
ξ

μ×μ

T (TX × TY)
Tξ

T 2(X × Y)
μ

TX × TY
ξ

T (X × Y) .
(5.22)

The lifted tensor
⊗ : K�(T)×K�(T) −→ K�(T)

acts as products on objects: X ⊗ Y = X × Y . Its action on arrows is defined as
follows, using the natural transformation ξ.

X ⊗ Y
f⊗g−→ V ⊗W in K�(T)

X × Y
f×g−→ TV × TW

ξV,W−→ T (V ×W) in Sets
(5.23)

The natural transformation ξ’s compatibility with η and μ (5.22) is needed to ensure
that the lifted ⊗ is a bifunctor.

140 5 Foundational study: concurrency and the microcosm principle

The monads L, P and D of our interest—which specify types of branching, see
Chapter 2—are equipped with such ξ. Indeed, those monads are commutative and
their double strength dst (2.13) serves as ξ. Consequently the Kleisli category K�(T)
for T ∈ {L,P,D} has a tensor ⊗ which arises in the way described above.

In order to further lift this tensor ⊗ on K�(T) to parallel composition operator ⊗⊗⊗
on CoalgF (Theorem 5.2.1), we need a synchronization

sync : FX ⊗ FY −→ F (X ⊗ Y) in K�(T).

This sync in K�(T) can be obtained as a lifting of sync in Sets, in case the latter is
suitably compatible with λ and ξ.

5.5.1 Proposition. Assume the following.

– F is an endofunctor on Sets equipped with a natural transformation

syncX,Y : FX × FY −→ F (X × Y) ;

– T is a monad on Sets with a natural transformation

ξX,Y : TX × TY −→ T (X × Y)

satisfying the compatibility condition (5.22); and

– we have a distributive law λ : FT ⇒ TF relating them.

Assume further that the natural transformations sync, ξ and λ make the following
diagram commute.

FTX ⊗ FTY
sync

λ⊗ λ

F (TX ⊗ TY)
Fξ

FT (X ⊗ Y)
λ

TFX ⊗ TFY
ξ

T (FX ⊗ FY)
T sync

TF (X ⊗ Y)
(5.24)

If this is the case, then

syncX,Y := η ◦ syncX,Y : FX ⊗ FY −→ F (X ⊗ Y) in K�(T)

is indeed a natural transformation.
Consequently, the category K�(T) with the tensor ⊗ (induced by ξ) and the end-

ofunctor F with sync thus obtained satisfy the assumptions of Theorem 5.2.1. This
ensures that behavior by coinduction (giving trace semantics) satisfies compositional-
ity (5.4).

5.5 Parallel composition of coalgebras in K�(T) 141

Proof. We shall show the naturality of sync = η ◦ syncX,Y . Let f : X → V and
g : Y →W be arrows in K�(T).

F (f ⊗K�(T) g) ◦K�(T) syncX,Y

= μ ◦ T (F (f ⊗K�(T) g)) ◦ sync

= μ ◦ Tλ ◦ TF (f ⊗K�(T) g) ◦ η ◦ sync

= μ ◦ Tλ ◦ TFξ ◦ TF (f × g) ◦ η ◦ sync by def. of ⊗K�(T)

= μ ◦ η ◦ λ ◦ Fξ ◦ F (f × g) ◦ sync naturality of η

= λ ◦ Fξ ◦ sync ◦ (Ff × Fg) unit law, naturality of sync

= T sync ◦ ξ ◦ (λ× λ) ◦ (Ff × Fg) assumption
= μ ◦ Tη ◦ T sync ◦ ξ ◦ (λ× λ) ◦ (Ff × Fg) unit law

= sync ◦K�(T) (Ff ⊗K�(T) Fg) . �
5.5.2 Example. To look at more concrete examples, let us take the powerset monad
T = P modeling non-deterministic branching, and F = {�} + Σ × modeling the
transition-type “terminate, or output and continue.” This is the leading example in
Chapter 2. An F -coalgebra X → FX in K�(P) is an LTS with explicit termination;
by coinduction it is assigned a map X → P(Σ∗) in Sets which gives the terminating
sequences of actions. For this choice of F , one possible choice of sync : FX × FY →
F (X × Y) is as follows.

sync : ({�}+ Σ×X)× ({�}+ Σ× Y) −→ {�}+ Σ× (X × Y)(
(a, x) , (a, y)

)
�−→ (a, (x, y)),

(u, v) �−→ � otherwise.
(5.25)

We can easily check that this sync is compatible with the canonical ξ and λ in the
sense of (5.24). Therefore this sync on Sets lifts to sync on K�(P) and Theorem 5.2.1
applies. We conclude that trace equivalence (captured by coinduction) is a congruence
with respect to the parallel composition obtained from this sync.

5.5.3 Example. When we replace T = P in the previous Example 5.5.2 by the
subdistribution monad D, the systems have probabilistic branching and coinduction
captures trace distribution semantics. The sync in (5.25) is well-behaved in this case
too; it is lifted to sync on K�(D) and by Theorem 5.2.1 we conclude that the equiva-
lence modulo trace distribution semantics is a congruence.

Generalization to an arbitrary L

We have described how we can obtain a parallel composition framework in K�(T)
from suitable constructs in Sets. We have focused on a simple setting where we only
consider one binary operation (for parallel composition) and no equational proper-
ties. Let us generalize our observation to an arbitrary algebraic theory L. A general
principle which yields the compatibility condition (5.24) will be revealed in its course.

142 5 Foundational study: concurrency and the microcosm principle

5.5.4 Proposition. 1. Let C be an L-category, and T : C → C be a monad such
that:

– its functor part is a lax L-functor; and
– the mediating 2-cells Ta (of T as a lax L-functor) are compatible with the

monad structure in an obvious way. Namely, for each arrow a : k → n in
L,

·
�a�

⇓ηk

id

T k

⇓
Ta

·
�a�

·
T n

·
=

·
�a�

id

= ·
�a�

·
id

⇓ηn

T n

·

· T k

·
�a�

T k

⇓μk

T k

⇓
Ta

·
�a�

·
T n

·

=

· T k

�a�
⇓Ta

·
�a�

T k

⇓Ta

·
�a�·

T n

·
T n

⇓μnT n

·

Then the Kleisli category K�(T) is an L-category; moreover the canonical Kleisli
inclusion C→ K�(T) is an L-functor.

2. Assume further that we have a lax L-functor F : C→ C and a distributive law
λ : FT ⇒ TF , which are altogether compatible in the following sense. For each
arrow a : k → n in L,

· F k

·
T k

F k

�a�

⇓λk ·
�a�· T k

⇓
Fa

⇓Ta·
F n

·
·

T n

=

· F k

·
T k

�a�

·
�a�· F n

⇓ Ta ⇓Fa

·
T n

F n

⇓λn ·
·

T n

(5.26)

Then the lifted functor F : K�(T)→ K�(T) is a lax L-functor. If moreover there
is a final F -coalgebra (which is the case in the setting of Chapter 2), the general
compositionality result (Theorem 5.4.2) applies to F -coalgebras. �

This proposition (whose proof is straightforward) generalizes the previous observa-
tions. Specifically, a monad T which satisfies the assumption of Proposition 5.5.4.1
replaces a monad T with a natural transformation ξ : TX ⊗TY → T (X ⊗Y); the re-
sulting L-structure on K�(T) replaces the previous ⊗ on K�(T). The condition (5.26)
can be thought of as a “coherence condition on a modification λ : FT � TF between
lax natural transformations” (see e.g. [19]); it instantiates to the previous condi-
tion (5.24).

5.5 Parallel composition of coalgebras in K�(T) 143

5.5.2 Simulations are compositional

Let us continue our investigation and look at the relationship between parallel compo-
sition and forward/backward simulations. Our principal result here is: forward/backward
similarity relations �F and �B (Definitions 3.2.8 and 3.2.9) are compositional, that
is,

FX

X
c �F

FY

Y
d =⇒

⎛
⎝ FX

X
c ⊗⊗⊗

FV

V
e

⎞
⎠ �F

⎛
⎝ FY

Y
d ⊗⊗⊗

FV

V
e

⎞
⎠ . (5.27)

A sufficient condition for this compositionality is described as a simple order-theoretic
property of the tensor⊗ onK�(T). This condition can be further reduced to a property
of ξ, a natural transformation which lifts × on Sets to ⊗ on K�(T) (Section 5.5.1).

The above compositionality (5.27) is concerned with the forward similarity �F;
similar results hold also for the backward similarity relation �B and the backward-
forward one �BF. The compositionality (5.27) also focuses on the first argument of
the operator ⊗⊗⊗; compositionality with respect to the second argument is proved in
the same way as well.

Throughout this section we ignore explicit start state maps which, together with
F -coalgebras, formed (T, F)-systems in Chapter 3. We do so for simplicity of presen-
tation; incorporating start state maps again can be done in a straightforward way.

5.5.5 Proposition. Let (F, T, λ) be a trace situation (Theorem 2.3.3). Assume fur-
ther that

– the Kleisli category K�(T) has a tensor ⊗; and

– the lifted functor F : K�(T) → K�(T) comes with a natural transformation
sync : FX ⊗ FY → F (X ⊗ Y),

so that we have a parallel composition operator ⊗⊗⊗ for F -coalgebras (Theorem 5.2.1).
If the tensor

⊗ : K�(T)×K�(T) −→ K�(T)

is locally monotone, then the similarity relations �F, �B and �BF are compositional
as in (5.27).

Proof. Local monotonicity of ⊗ on K�(T) means:

Xin K�(T)

f f ′�
V

,

Y

g g′�
W

=⇒
X ⊗ Y

f ⊗ g f ′ ⊗ g′�
V ⊗W

.

Let us focus on the compositionality (5.27), that is, compositionality of �F with
respect to the first argument. By assumption we have a forward simulation f from c

144 5 Foundational study: concurrency and the microcosm principle

to d.

FY
Ffin K�(T) FX

Y
d

f

X

c

By local monotonicity of ⊗, this yields the lower inequality in the following diagram.
The upper square commutes by naturality of sync; the whole diagram stipulates that
f ⊗ V is a forward simulation from c⊗⊗⊗ e to d⊗⊗⊗ e.

F (Y ⊗ V)
F (f ⊗ V)

F (X ⊗ V)

FY ⊗ FV

syncY,V

Ff ⊗ V FX ⊗ FV

syncX,V

Y ⊗ V

d⊗ e

f ⊗ V

d⊗⊗⊗ e

X ⊗ V

c⊗ e

c⊗⊗⊗ e

Hence we have shown that c⊗⊗⊗ e �F d⊗⊗⊗ e.
Compositionality of �B is proved by similar arguments. That of �BF follows from

the characterization (3.10) of �BF. �
Can we further interpret the condition in the previous result (namely local mono-

tonicity of ⊗) in terms of more elementary constructs? We have shown that ⊗ on
K�(T) is obtained from a natural transformation

ξX,Y : TX × TY → T (X × Y) in Sets

compatible with the monad structure of T . In fact, a monotone ξ induces a locally
monotone ⊗.

5.5.6 Proposition. Let us take the setting of Proposition 5.5.5, except for local
monotonicity of ⊗ : K�(T)×K�(T)→ K�(T). Assume further that

– the tensor ⊗ : K�(T) × K�(T) → K�(T) arises from × on Sets via a natural
transformation ξ, as in (5.23);

– the Cppo-enriched structure of K�(T) arises from the Cppo-structures of sets
TY , in a pointwise manner. That is,

X

g

f

� Y in K�(T) if and only if ∀x ∈ X. f(x) �TY g(x) .

This is indeed the case for T ∈ {L,P,D}; see Lemma 2.2.6.

If the function ξX,Y : TX × TY → T (X × Y) is monotone for each X and Y , then
the tensor ⊗ on K�(T) is locally monotone. Therefore by Proposition 5.5.5 similarity
relations �F, �B and �BF are compositional. �

5.6 Summary and future work 145

Each monad T ∈ {L,P,D} of our interest (specifying branching type) comes with a
natural transformation ξ which is given by T ’s double strength dst; see (2.14). It is
easy to see that a component of such ξ is monotone. Hence, in order for Proposi-
tion 5.5.6 to apply, what we still need is only a proper sync natural transformation.

5.6 Summary and future work

In this chapter we have observed that the microcosm principle (as called by Baez and
Dolan) brings new mathematical insights into computer science. Specifically, we have
looked into parallel composition of coalgebras, which would serve as a mathematical
basis for the study of concurrency. As a purely mathematical expedition, we have
presented a 2-categorical formalization of the microcosm principle, where an algebraic
theory is presented by a Lawvere theory. Turning back to our original motivation,
the formalization was applied to coalgebras and produced some general results which
ensure compositionality and equational properties such as associativity.

There are many questions yet to be answered. Some of them have been already
mentioned, namely: extending the expressive power of sync (Remark 5.2.3), and a
proper treatment of “pseudo” algebraic structures (Section 5.3.3).

On the application side, one direction of future work is to establish a relationship
between sync and (syntactic) formats for process algebras. Our sync represents a
certain class of operational rules; formats are a more syntactic way to do the same.
Formats which guarantee certain good properties (such as commutativity, see [102])
have been actively studied. Such a format should be obtained by translating e.g. a
“commutative” sync into a format.

Another applicational direction is an abstract, categorical account of testing equiv-
alences as introduced in [30].12 In the testing framework parallel composition plays
a crucial role: a system C to be tested is composed with another system T which
represents a test; the behavior of C ‖ T (typically outputting “OK”) tells us if the
system C passes the test T or not. Therefore the current work (studying parallel
composition of coalgebras) is a first step towards “coalgebraic testing.”

On the mathematical side, one direction is to identify more instances of the mi-
crocosm principle. Mathematics abounds with the (often implicit) idea of nested
algebraic structures. To name a few: a topological space in a topos which is itself a
“generalized topological space”; a category of domains which itself carries a “structure
as a domain.” We wish to turn such an informal statement into a mathematically
rigorous one, by generalizing the current formalization of the microcosm principle.
As a possible first step towards this direction, we are working on formalizing the mi-
crocosm principle for finitary monads which are known to be roughly the same thing
as Lawvere theories.

Another direction is a search for n-folded nested algebraic structures. In the
current work we have concentrated on two levels of interpretation. We are not (yet)

12The word “testing” here means something different from the one in testing situations (Sec-
tion 2.5).

146 5 Foundational study: concurrency and the microcosm principle

aware of examples with three or more levels; an example might be an internal category
in an internal category.

The simplicial category Δ [96, Section VII.5] can be thought of as a “univer-
sal” microcosm model for the theory Mon of monoids, in the sense of [96, Proposi-
tion VII.5.1]. Further investigation is needed to make clear in which exact sense it is
universal; and to generalize the construction of such a universal model to an arbitrary
algebraic theory L. The construction of Δ seems much related to the construction
called categorification [8].

Appendix A

Preliminaries

A.1 Initial/final sequences

Here we recall the standard construction [5] of an initial algebra (or a final coalgebra)
via the initial (or final) sequence. Notice that the base category need not be Sets.

Let C be a category with an initial object 0, and F : C → C be an endofunctor.
The initial sequence1 of F is a diagram

0
¡

F0
F ¡

· · ·
Fn−1 ¡

Fn0
Fn ¡

· · ·

where ¡ : 0→ X is the unique arrow.
Now assume that:

– the initial sequence has an ω-colimit2 (Fn0 αn−→ A)n<ω;

– the functor F preserves that ω-colimit.

Then we have two cocones (αn)n<ω and (Fαn−1)n<ω over the initial sequence. More-
over, the latter is again a colimit: hence we have mediating isomorphisms between
these cones.

A

α−1∼=

(colimit)

· · · Fn0

αn

Fαn−1

Fn ¡
Fn+10

αn+1

Fαn

· · ·

FA

α

(colimit)

A.1.1 Proposition. The F -algebra α : FA
∼=→ A is initial.

1In this thesis we consider only initial/final sequences of length ω.
2An ω-colimit is a colimit of a diagram whose shape is the ordinal ω.

147

148 A Preliminaries

Proof. For future reference we prove the dual result: see Proposition A.1.2. �
The dual of this construction yields a final F -coalgebra. Assume that the base

category C has a terminal object 1. The final sequence of F is

1 !
F1 F ! · · · Fn−1 !

Fn1 Fn ! · · · ,

where ! : X → 1 is the unique arrow. Assume that it has an ωop-limit (Z
ζn−→

Fn1)n<ω, and also that F preserves that ωop-limit. We have the following situation.

Z

ζ−1 ∼=

(limit)

· · · Fn1

ζn

Fζn−1

Fn !
Fn+11

ζn+1

Fζn

· · ·

FZ

ζ

(limit)

A.1.2 Proposition. The coalgebra ζ : Z
∼=→ FZ is final.

Proof. Any F -coalgebra c : X → FX induces a cone (X
γn−→ Fn1)n<ω over the final

sequence in the following way.

γ0 = ! : X −→ 1 , γn+1 = Fγn ◦ c .

Now we can prove the following: for an arrow f : X → Z, f is a morphism of
coalgebras from c to ζ if and only if f is a mediating arrow from the cone (γn)n<ω to
the limit (ζn)n<ω. Hence such a morphism of coalgebras uniquely exists. �

It is easy to see that every shapely functor in Sets preserves ω-colimits and ωop-
limits. Hence we have the following.

A.1.3 Lemma. A shapely functor F has both an initial algebra and a final coalgebra
in Sets. �

A.2 Limit-colimit coincidence

We recall some relevant notions and results from [127]. The idea is that in a suit-
able order-enriched setting, (co)limits are equivalently described as an order-theoretic
notion of O-(co)limits. Due to the inherent coincidence between O-limits and O-
colimits, we also obtain the so-called limit-colimit coincidence.

limit colimit

O-limit
obvious coincidence

O-colimit

The notions of O-(co)limits are stated in terms of embedding-projection pairs which
we can define in an order-enriched category. In the sequel we assume the Cppo-
enriched structure.

A.2 Limit-colimit coincidence 149

A.2.1 Definition (Embedding-projection pairs). Let C be a Cppo-enriched cate-
gory. A pair of arrows

X
e

p
Y

in C is said to be an embedding-projection pair if we have p ◦ e = id and e ◦ p � id.
Diagrammatically presented,

X
e

id

Y
p id
�

X e Y.

By p ◦ e = id we automatically have that e is a mono and p is an epi. Both split.

A.2.2 Proposition. Let (e, p), (e′, p′) : X 	 Y be two embedding-projection pairs
with the same domain and codomain. Then e � e′ holds if and only if p′ � p. As a
consequence, one component of an embedding-projection pair determines the other. �
This proposition justifies the notation eP for the projection corresponding to a given
embedding e, and pE for the embedding corresponding to a given projection p. It is
easy to check that

(e ◦ f)P = fP ◦ eP and (p ◦ q)E = qE ◦ pE .

A.2.3 Definition (O-(co)limits). Let X0
f0→ X1

f1→ · · · be an ω-chain in a Cppo-
enriched C. A cocone (Xn

σn→ C)n<ω over this chain is said to be an O-colimit if:

– each σn is an embedding;

– the sequence of arrows (C
σP

n
Xn

σn
C)n<ω is increasing. Moreover its

join taken in the cpo C(C,C) is idC .

C
σ0

σP
0

σ1 σP
1 · · ·

X0
f0

X1
f1

· · ·

Dually, a cone (C
γn→ Yn)n<ω over an ωop-chain Y0

g0← Y1
g1← · · · is an O-limit if:

each γn is a projection, and the sequence (γE
n ◦ γn : C → C)n<ω is increasing and its

join is idC .

The following proposition establishes the equivalence between (co)limits and O-
(co)limits. For its full proof the reader is referred to [127].

150 A Preliminaries

A.2.4 Proposition (Propositions A–D in [127]). Let X0
e0→ X1

e1→ · · · be an ω-chain
where each en is an embedding.

1. Let (Xn
σn→ C)n<ω be the colimit over the chain. Then each σn is also an

embedding. Moreover, (σn)n<ω is an O-colimit.

2. Conversely, an O-colimit (Xn
σn→ C)n<ω over the chain is a colimit.

Dually, let X0
p0← X1

p1← · · · be an ωop-chain where each pn is a projection.

3. Let (D τn→ Xn)n<ω be a limit over the chain. Then each τn is also a projection.
Moreover (τn)n<ω is an O-limit.

4. Conversely, an O-limit (D τn→ Xn)n<ω over the chain is a limit.

Proof. For later reference we present the proof of (4). Let (B
βn→ Xn)n<ω be an

arbitrary cone over the chain X0
p0← X1

p1← · · · . First we prove the uniqueness of a
mediating map f : B → D.

f = idD ◦ f =
(⊔

n<ω(τE
n ◦ τn)

)
◦ f (τn)n<ω is an O-limit

=
⊔

n<ω(τE
n ◦ τn ◦ f) composition is continuous

=
⊔

n<ω(τE
n ◦ βn) f is mediating .

We conclude the proof by showing that the sequence (τE
n ◦ βn)n<ω is increasing,

hence such f indeed exists.

τE
n ◦ βn = τE

n ◦ pn ◦ βn+1 = τE
n+1 ◦ pE

n ◦ pn ◦ βn+1 � τE
n+1 ◦ βn+1

The last inequality holds because pE
n ◦ pn � id from the definition of embedding-

projection pairs. �
A.2.5 Theorem (Limit-colimit coincidence). Let X0

e0→ X1
e1→ · · · be an ω-chain

where each en is an embedding, and (Xn
σn→ C)n<ω be the colimit over the chain.

Then each σn is an embedding, and the cone (C
σP

n→ Xn)n<ω is a limit over the ωop-

chain X0
eP
0← X1

eP
1← · · · .

C

X0

σ0

e0
X1

σ1

e1
· · ·

: colimit =⇒

C

X0

σP
0

eP
0

X1

σP
1

eP
1

· · ·
: limit

Dually, the limit of an ωop-chain of projections consists of projections. By taking
the corresponding embeddings we obtain a colimit of an ω-chain of embeddings.

A.2 Limit-colimit coincidence 151

Proof. We prove the first statement. By Proposition A.2.4 each σn is an embedding,

and moreover (σn)n<ω is an O-colimit. Now obviously (σP
n)n<ω is a cone over X0

eP
0←

X1
eP
1← · · · . Here we use the inherent coincidence of O-(co)limits: namely, the condition

that (σn)n<ω is an O-colimit is exactly the same as that (σP
n)n<ω is an O-limit. We

use Proposition A.2.4 to conclude the proof. �

152 A Preliminaries

Bibliography

[1] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The Spi
calculus. In Fourth ACM Conference on Computer and Communications Secu-
rity, pp. 36–47. ACM Press, 1997. 100

[2] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D.M. Gabbai and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, vol. 3, pp.
1–168. Oxford Univ. Press, 1994. 35, 43

[3] L. Aceto, W. Fokkink and C. Verhoef. Structural operational semantics. In
J. Bergstra, A. Ponse and S. Smolka, editors, Handbook of Process Algebra, pp.
197–292. Elsevier, 2001. 112

[4] P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14, Stanford, 1988. 9

[5] J. Adámek and V. Koubek. Least fixed point of a functor. Journ. Comp. Syst.
Sci, 19(2):163–178, 1979. 37, 147

[6] Anonymity bibliography, 2007. http://freehaven.net/anonbib. 88

[7] N. Attrapadung, Y. Cui, D. Galindo, G. Hanaoka, I. Hasuo, H. Imai, K. Mat-
suura, P. Yang and R. Zhang. Relations among notions of security for identity
based encryption schemes. In Latin American Theoretical Informatics Sympo-
sium (LATIN ’06), vol. 3887 of Lect. Notes Comp. Sci., pp. 130–141. Springer,
Berlin, 2006.

[8] J.C. Baez and J. Dolan. Categorification. Contemp. Math., 230:1–36, 1998. 146

[9] J.C. Baez and J. Dolan. Higher dimensional algebra III: n-categories and the
algebra of opetopes. Adv. Math, 135:145–206, 1998. 18, 117

153

154 Bibliography

[10] M. Barr. Terminal coalgebras in well-founded set theory. Theor. Comp. Sci.,
114(2):299–315, 1993. Corrigendum in Theor. Comp. Sci. 124:189–192, 1994. 9

[11] M. Barr and C. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
Available online. 28, 30, 125

[12] F. Bartels. On generalised coinduction and probabilistic specification formats.
Distributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam,
2004. 27, 58, 118

[13] J.A. Bergstra and J.W. Klop. ACPτ : A universal axiom system for process
specification. In M. Wirsing and J.A. Bergstra, editors, Algebraic Methods, vol.
394 of Lecture Notes in Computer Science, pp. 447–463. Springer, 1987. 121

[14] I. Beylin and P. Dybjer. Extracting a proof of coherence for monoidal categories
from a proof of normalization for monoids. In S. Berardi and M. Coppo, editors,
TYPES, vol. 1158 of Lect. Notes Comp. Sci., pp. 47–61. Springer, 1995. 128

[15] M. Bhargava and C. Palamidessi. Probabilistic anonymity. In M. Abadi and
L. de Alfaro, editors, CONCUR 2005, vol. 3653 of Lect. Notes Comp. Sci., pp.
171–185. Springer, 2005. 87, 88, 90, 92, 93, 96, 99, 100, 112

[16] R. Bird and O. de Moor. Algebra of Programmming. Prentice Hall Int. Series
in Comput. Sci., 1996. 27, 44, 45

[17] M.M. Bonsangue and A. Kurz. Duality for logics of transition systems. In
V. Sassone, editor, FoSSaCS, vol. 3441 of Lect. Notes Comp. Sci., pp. 455–469.
Springer, 2005. 26, 51, 55

[18] M.M. Bonsangue and A. Kurz. Presenting functors by operations and equations.
In L. Aceto and A. Ingólfsdóttir, editors, FoSSaCS, vol. 3921 of Lect. Notes
Comp. Sci., pp. 172–186. Springer, 2006. 26, 51, 55

[19] F. Borceux. Handbook of Categorical Algebra, vol. 50, 51 and 52 of Encyclopedia
of Mathematics. Cambridge Univ. Press, 1994. 19, 35, 36, 124, 128, 129, 134,
142

[20] S. Briais. ABC bisimulation checker. http://lamp.epfl.ch/∼sbriais/abc/,
2003. 112

[21] D. Cancila and F. Honsell. A coalgebraic description of web interactions. In
C. Blundo and C. Laneve, editors, ICTCS, vol. 2841 of Lecture Notes in Com-
puter Science, pp. 271–283. Springer, 2003. 63

[22] K. Chatzikokolakis, C. Palamidessi and P. Panangaden. Probability of error in
information-hiding protocols. In IEEE Computer Security Foundations Sympo-
sium (CSF20), pp. 341–354. 2007. 88

Bibliography 155

[23] K. Chatzikokolakis and C. Palamidessi. Probable innocence revisited. Theor.
Comp. Sci., 367(1–2):123–138, 2006. 89, 94, 99, 101

[24] K. Chatzikokolakis and C. Palamidessi. Making random choices invisible to the
scheduler. In L. Caires and V.T. Vasconcelos, editors, CONCUR, vol. 4703 of
Lect. Notes Comp. Sci., pp. 42–58. Springer, 2007. 112

[25] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journ. of Cryptology, 1(1):65–75, 1988. 90

[26] L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud Univ. Nijmegen, 2006. 58

[27] T. Chothia. Analysing the MUTE anonymous file-sharing system using the
pi-calculus. In E. Najm, J.F. Pradat-Peyre and V. Donzeau-Gouge, editors,
FORTE, vol. 4229 of Lect. Notes Comp. Sci., pp. 115–130. Springer, 2006. 112

[28] T. Chothia. Securing pseudo identities in an anonymous peer-to-peer file-sharing
network. In International Conference on Security and Privacy in Communica-
tion Networks (SecureComm 2007). 2007. 112

[29] T. Chothia, S. Orzan, J. Pang and M.T. Dashti. A framework for automatically
checking anonymity with mCRL. In The 2nd Symposium on Trustworthy Global
Computing (TGC 2006), Lect. Notes Comp. Sci. 2006. 112

[30] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor.
Comp. Sci., 34:83–133, 1984. 145

[31] M.P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Distin-
guished Dissertations in Computer Science. Cambridge Univ. Press, 1996. 27,
42, 43

[32] M.P. Fiore. A coinduction principle for recursive data types based on bisimu-
lation. Inf. & Comp., 127(2):186–198, 1996. 58, 63, 70, 77

[33] M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda
Informatica, University of Twente, 94–28, 1994. 37

[34] P.J. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio
and G. Rosolini, editors, Como Conference on Category Theory, no. 1488 in
Lect. Notes Math., pp. 95–104. Springer, Berlin, 1991. 27, 42, 43

[35] P.J. Freyd. Remarks on algebraically compact categories. In M.P. Fourman,
P.T. Johnstone and A.M. Pitts, editors, Applications of Categories in Computer
Science, no. 177 in LMS, pp. 95–106. Cambridge Univ. Press, 1992. 27, 42, 43

[36] D. Galindo and I. Hasuo. Security notions for identity based encryption. Cryp-
tology ePrint Archive, Report 2005/253, 2005.

156 Bibliography

[37] F.D. Garcia, I. Hasuo, W. Pieters and P. van Rossum. Provable anonymity. In
R. Küsters and J. Mitchell, editors, 3rd ACM Workshop on Formal Methods
in Security Engineering (FMSE05), pp. 63–72. ACM Press, Alexandria , VA,
U.S.A., Nov. 2005. 88

[38] S.J. Garland, N.A. Lynch and M. Vaziri. IOA: a language for specifying, pro-
gramming, and validating distributed systems. MIT Laboratory for Computer
Science, 1997. 86

[39] R.J. van Glabbeek. The linear time–branching time spectrum I; the semantics
of concrete, sequential processes. In J.A. Bergstra, A. Ponse and S.A. Smolka,
editors, Handbook of Process Algebra, chap. 1, pp. 3–99. Elsevier, 2001. Available
at http://boole.stanford.edu/pub/spectrum1.ps.gz. 21, 26, 54, 59, 86, 100

[40] R.J. van Glabbeek, S.A. Smolka and B. Steffen. Reactive, generative, and
stratified models of probabilistic processes. Inf. & Comp., 121:59–80, 1995. 45

[41] J.Y. Halpern and K.R. O’Neill. Anonymity and information hiding in multiagent
systems. Journ. of Computer Security, 13(3):483–512, 2005. 88, 89, 93, 94, 99,
100

[42] I. Hasuo and B. Jacobs. Coalgebraic trace semantics for probabilistic systems.
In P. Mosses, J. Power and M. Seisenberger, editors, CALCO-jnr Workshop.
2005. 27

[43] I. Hasuo and B. Jacobs. Context-free languages via coalgebraic trace seman-
tics. In J.L. Fiadeiro, N. Harman, M. Roggenbach and J.J.M.M. Rutten, edi-
tors, International Conference on Algebra and Coalgebra in Computer Science
(CALCO’05), vol. 3629 of Lect. Notes Comp. Sci., pp. 213–231. Springer, Berlin,
2005. 14, 27, 31, 48, 49

[44] I. Hasuo, B. Jacobs and A. Sokolova. Generic trace theory. In N. Ghani and A.J.
Power, editors, International Workshop on Coalgebraic Methods in Computer
Science (CMCS 2006), vol. 164 of Elect. Notes in Theor. Comp. Sci., pp. 47–65.
Elsevier, Amsterdam, 2006. 14, 27

[45] I. Hasuo, B. Jacobs and A. Sokolova. The microcosm principle and concurrency
in coalgebra. In FoSSaCS, Lect. Notes Comp. Sci. 2008. To appear. 19

[46] I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Her-
manns, editors, International Conference on Concurrency Theory (CONCUR
2006), vol. 4137 of Lect. Notes Comp. Sci., pp. 406–420. Springer, Berlin, 2006.
16

[47] I. Hasuo, B. Jacobs and A. Sokolova. Generic trace semantics via coinduction.
Logical Methods in Comp. Sci., 3(4:11), 2007. 14, 27

Bibliography 157

[48] I. Hasuo, B. Jacobs and T. Uustalu. Categorical views on computations on
trees (extended abstract). In L. Arge, C. Cachin, T. Jurdzinski and A. Tarlecki,
editors, ICALP, vol. 4596 of Lecture Notes in Computer Science, pp. 619–630.
Springer, 2007.

[49] I. Hasuo and R. Kashima. Kripke completeness of first-order constructive logics
with strong negation. Logic Journal of the IGPL, 11(6):615–646, 2003.

[50] I. Hasuo and Y. Kawabe. Probabilistic anonymity via coalgebraic simulations.
In R. De Nicola, editor, European Symposium on Programming (ESOP 2007),
vol. 4421 of Lect. Notes Comp. Sci., pp. 379–394. Springer, 2007. 17, 157

[51] I. Hasuo, Y. Kawabe and H. Sakurada. Probabilistic anonymity via coalgebraic
simulations, 2007. Extended version of [50]. Submitted for publication. 17

[52] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency. Journ. ACM, 32(1):137–161, 1985. 86

[53] O.M. Herescu and C. Palamidessi. Probabilistic asynchronous pi-calculus. In
J. Tiuryn, editor, FoSSaCS, vol. 1784 of Lect. Notes Comp. Sci., pp. 146–160.
Springer, 2000. 112

[54] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. & Comp., 145:107–152, 1998. 38, 133

[55] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985. 27,
121

[56] C.A.R. Hoare. Data refinement in a categorical setting, 1987. Unpublished
manuscript. 63, 70, 83

[57] D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: A
modular approach. Journal of Computer Security, 12(1):3–36, 2004. 88

[58] J. Hughes and B. Jacobs. Simulations in coalgebra. Theor. Comp. Sci., 327(1-
2):71–108, 2004. 42, 63, 81, 82

[59] M. Hyland and A.J. Power. Discrete Lawvere theories and computational effects.
Theor. Comp. Sci., 366(1–2):144–162, 2006. 124

[60] B. Jacobs. Semantics of weakening and contraction. Ann. Pure & Appl. Logic,
69(1):73–106, 1994. 66

[61] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam,
1999. v, 53, 125

[62] B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors,
Coalgebraic Methods in Computer Science, vol. 106 of Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2004. 26, 27, 33, 48, 49

158 Bibliography

[63] B. Jacobs and I. Hasuo. Freyd is Kleisli, for Arrows. In C. McBride and
T. Uustalu, editors, Workshop on Mathematically Structured Functional Pro-
gramming (MSFP 2006), eWiC. 2006.

[64] B. Jacobs and J. Hughes. Simulations in coalgebra. In H.P. Gumm, editor,
Coalgebraic Methods in Computer Science, no. 82(1) in Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2003. 63, 81, 82

[65] B. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222–259, 1997. 3, 7, 19, 23, 27

[66] B. Jacobs. Introduction to coalgebra. Towards mathematics of states and ob-
servations, 2005. Draft of a book, http://www.cs.ru.nl/B.Jacobs/PAPERS/.
3, 4, 19, 23

[67] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions
and languages. In K. Futatsugi, J.P. Jouannaud and J. Meseguer, editors,
Essays Dedicated to Joseph A. Goguen, vol. 4060 of Lect. Notes Comp. Sci., pp.
375–404. Springer, 2006. 27, 50, 118

[68] B. Jacobs and I. Hasuo. Semantics and logic for security protocols. Journ. of
Computer Security, 2007. To appear.

[69] C.B. Jay. A semantics for shape. Science of Comput. Progr., 25:251–283, 1995.
34

[70] P.T. Johnstone, A.J. Power, T. Tsujishita, H. Watanabe and J. Worrell. An ax-
iomatics for categories of transition systems as coalgebras. In Logic in Computer
Science. IEEE, Computer Science Press, 1998. 121, 122

[71] Y. Kawabe, K. Mano, H. Sakurada and Y. Tsukada. Backward simulations
for anonymity. In International Workshop on Issues in the Theory of Security
(WITS ’06). 2006. 17, 61, 87, 88, 101, 104, 107, 112, 113

[72] Y. Kawabe, K. Mano, H. Sakurada and Y. Tsukada. Theorem-proving
anonymity of infinite state systems. Inform. Process. Lett., 101(1):46–51, 2007.
17, 87, 88, 101, 104, 107, 112

[73] G.M. Kelly. Basic Concepts of Enriched Category Theory. No. 64 in LMS.
Cambridge Univ. Press, 1982. 35

[74] G.M. Kelly. Elementary observations on 2-categorical limits. Bull. Austr. Math.
Soc., 39:301–317, 1989. 133

[75] M. Kick, A.J. Power and A. Simpson. Coalgebraic semantics for timed processes.
Inf. & Comp., 204(4):588–609, 2006. 25, 27, 118

[76] Y. Kinoshita and J. Power. Data refinement and algebraic structure. Acta
Informatica, 36:693–719, 2000. 63, 70, 83, 84

Bibliography 159

[77] N. Klarlund and F.B. Schneider. Verifying safety properties using infinite-state
automata. Tech. Rep. 89-1039, Department of Computer Science, Cornell Uni-
versity, Ithaca, New York, 1989. 79

[78] B. Klin. From bialgebraic semantics to congruence formats. In Workshop on
Structural Operational Semantics (SOS 2004), vol. 128 of Elect. Notes in Theor.
Comp. Sci., pp. 3–37. 2005. 27, 58, 118

[79] B. Klin. Bialgebraic operational semantics and modal logic. In Logic in Com-
puter Science, pp. 336–345. IEEE Computer Society, 2007. 26, 27, 118

[80] B. Klin. Coalgebraic modal logic beyond Sets. In MFPS XXIII, vol. 173, pp.
177–201. Elsevier, Amsterdam, 2007. 26, 51, 53, 54

[81] A. Kock. Monads on symmetric monoidal closed categories. Arch. Math.,
XXI:1–10, 1970. 33

[82] A. Kock and G.E. Reyes. Doctrines in categorical logic. In J. Barwise, edi-
tor, Handbook of Mathematical Logic, pp. 283–313. North-Holland, Amsterdam,
1977. 19, 124

[83] C. Kupke, A. Kurz and Y. Venema. Stone coalgebras. Theor. Comp. Sci.,
327(1-2):109–134, 2004. 26

[84] C. Kupke, A. Kurz and D. Pattinson. Algebraic semantics for coalgebraic logics.
Elect. Notes in Theor. Comp. Sci., 106:219–241, 2004. 51

[85] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD
thesis, Universität München, April 2000. 26

[86] A. Kurz. Coalgebras and modal logic. Course notes for ESSLLI, 2001.
http://www.helsinki.fi/esslli/. 3, 19

[87] A. Kurz. Coalgebras and their logics. SIGACT News, 37(2):57–77, 2006. 26, 51

[88] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. &
Comp., 94(1):1–28, 1991. 84, 85

[89] F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Semi-
nario Matematico e Fisico. Rendiconti di Milano, 43:135–166, 1973. Reprinted
in Theory and Applications of Categories, 1:1–37, 2002. 35

[90] F.W. Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic
Problems in the Context of Functorial Semantics of Algebraic Theories. PhD
thesis, Columbia University, 1963. Reprints in Theory and Applications of
Categories, 5 (2004) 1–121. 117, 124, 125

[91] E.A. Lee. Making concurrency mainstream. Invited talk at CONCUR 2006,
2006. 115

160 Bibliography

[92] M. Lenisa, A.J. Power and H. Watanabe. Distributivity for endofunctors,
pointed and co-pointed endofunctors, monads and comonads. In H. Reichel,
editor, Coalgebraic Methods in Computer Science, vol. 33 of Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 2000. 32

[93] M. Lenisa, J. Power and H. Watanabe. Category theory for operational seman-
tics. Theor. Comp. Sci., 327(1–2):135–154, 2004. 32

[94] N. Lynch and F. Vaandrager. Forward and backward simulations. I. Untimed
systems. Inf. & Comp., 121(2):214–233, 1995. 15, 61, 62, 71, 74, 79, 82, 89

[95] N.A. Lynch, R. Segala and F.W. Vaandrager. Compositionality for probabilistic
automata. In R.M. Amadio and D. Lugiez, editors, CONCUR 2003, vol. 2761
of Lect. Notes Comp. Sci., pp. 204–222. Springer, 2003. 84, 85

[96] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 2nd
edn., 1998. 2, 19, 28, 30, 38, 128, 135, 146

[97] J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software
Engineering, pp. 1136–1145. John Wiley & Sons, 1994. 110

[98] R. Milner. A Calculus of Communicating Systems. Lect. Notes Comp. Sci.
Springer, Berlin, 1980. 9

[99] R. Milner. Communication and Concurrency. Prentice-Hall, 1989. 121

[100] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92,
1991. 124

[101] O. de Moor. Inductive data types for predicate transformers. Inform. Process.
Lett., 43:113–117, 1992. 27, 44, 45

[102] M.R. Mousavi, M.A. Reniers and J.F. Groote. A syntactic commutativity for-
mat for SOS. Inform. Process. Lett., 93(5):217–223, 2005. 145

[103] P.S. Mulry. Lifting theorems for Kleisli categories. In Mathematical Foundations
of Programming Semantics (MFPS IX), pp. 304–319. Springer-Verlag, London,
UK, 1994. 32

[104] K. Nishizawa and A.J. Power. Lawvere theories enriched over a general base.
Journ. of Pure & Appl. Algebra, 2006. To appear. 124

[105] C. Palamidessi and O.M. Herescu. A randomized encoding of the pi-calculus
with mixed choice. Theor. Comp. Sci., 335(2–3):373–404, 2005. 112

[106] A. Pardo. Fusion of recursive programs with computational effects. Theor.
Comp. Sci., 260(1–2):165–207, 2001. 27, 37, 44

Bibliography 161

[107] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI Conference on Theoretical Computer Science, vol.
104 of Lect. Notes Comp. Sci., pp. 15–32. Springer, Berlin, 1981. 9

[108] D. Pattinson. An introduction to the theory of coalgebras. Course notes for
NASSLLI, 2003. http://www.indiana.edu/~nasslli/. 3, 4, 19

[109] D. Pavlović, M. Mislove and J.B. Worrell. Testing semantics: connecting pro-
cesses and process logics. In M. Johnson and V. Vene, editors, Algebraic Method-
ology and Software Technology (AMAST 2006), vol. 4019 of Lect. Notes Comp.
Sci. Springer, 2006. 26, 51

[110] A. Pfitzmann and M. Köhntopp. Anonymity, unobservability, and
pseudonymity: A proposal for terminology. Draft, version 0.17, July 2000.
88

[111] J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In
Category Theory and Computer Science, vol. 29 of Elect. Notes in Theor. Comp.
Sci. Elsevier, Amsterdam, 1999. 26, 27

[112] M.K. Reiter and A.D. Rubin. Crowds: anonymity for Web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998. 88, 89, 90,
93, 94, 99

[113] J. Rohrer. MUTE technical details. http://mutenet.sourceforge.net, 2006.
112

[114] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci.,
249:3–80, 2000. 3, 11, 19, 23, 27

[115] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comp. Sci., 308:1–53, 2003. 50

[116] J.J.M.M. Rutten and D. Turi. Initial algebra and final coalgebra semantics for
concurrency. In J.W. de Bakker, W.P. de Roever and G. Rozenberg, editors,
A Decade of Concurrency, no. 803 in Lect. Notes Comp. Sci., pp. 530–582.
Springer, Berlin, 1994. 26, 27, 49, 118

[117] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded
programs. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop (CSFW’00), pp. 200–214. 2000. 111, 112

[118] D. Sangiorgi. On the origins of bisimulation, coinduction, and fixed points.
Tech. rep., Department of Computer Science, University of Bologna, 2007. 7

[119] S. Schneider and A. Sidiropoulos. CSP and anonymity. In ESORICS ’96:
Proceedings of the 4th European Symposium on Research in Computer Security,
pp. 198–218. Springer-Verlag, London, UK, 1996. 17, 88, 100

162 Bibliography

[120] R. Segala. Modeling and verification of randomized distributed real-time systems.
PhD thesis, MIT, 1995. 58, 61, 84, 85

[121] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journ. Comput., 2(2):250–273, 1995. 95, 112

[122] R. Segala. A compositional trace-based semantics for probabilistic automata. In
International Conference on Concurrency Theory (CONCUR ’95), pp. 234–248.
Springer-Verlag, 1995. 21

[123] A. Serjantov. On the Anonymity of Anonymity Systems. PhD thesis, University
of Cambridge, March 2004. 88

[124] V. Shmatikov. Probabilistic model checking of an anonymity system. Journ. of
Computer Security, 12(3):355–377, 2004. 88

[125] A.K. Simpson. Recursive types in Kleisli categories, 1992. Unpublished paper,
available at http://homepages.inf.ed.ac.uk/als/Research/. 27, 42

[126] G. Smith and D.M. Volpano. Secure information flow in a multi-threaded im-
perative language. In POPL, pp. 355–364. 1998. 111

[127] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive
domain equations. SIAM Journ. Comput., 11:761–783, 1982. 24, 27, 37, 148,
149, 150

[128] A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis, Techn.
Univ. Eindhoven, 2005. 45, 84

[129] C. Stirling. Bisimulation and language equivalence. In R.J.G.B. de Queiroz,
editor, Logic for concurrency and synchronisation, vol. 18 of Trends in Logic,
pp. 269–284. Kluwer Academic Publishers, Norwell, MA, USA, 2003. 12

[130] M. Stoelinga and F.W. Vaandrager. A testing scenario for probabilistic au-
tomata. In J.C.M. Baeten, J.K. Lenstra, J. Parrow and G.J. Woeginger, editors,
ICALP, vol. 2719 of Lect. Notes Comp. Sci., pp. 464–477. Springer, 2003. 26

[131] R. Street. Fibrations and Yoneda’s lemma in a 2-category. In G.M. Kelly,
editor, Proc. Sydney Category Theory Seminar 1972/1973, no. 420 in Lect.
Notes Math., pp. 104–133. Springer, Berlin, 1974. 133

[132] R. Tix, K. Keimel and G.D. Plotkin. Semantic domains for combining probabil-
ity and non-determinism. Elect. Notes in Theor. Comp. Sci., 129:1–104, 2005.
58

[133] V. Trnková. General theory of relational automata. Fund. Informaticae, 3:189–
233, 1980. 33

Bibliography 163

[134] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In
Logic in Computer Science, pp. 280–291. IEEE, Computer Science Press, 1997.
27, 58, 118, 122

[135] D. Turi and J.J.M.M. Rutten. On the foundations of final semantics: non-
standard sets, metric spaces and partial orders. Math. Struct. in Comp. Sci.,
8(5):481–540, 1998. 58, 63

[136] D. Varacca and G. Winskel. Distributing probabililty over nondeterminism.
Math. Struct. in Comp. Sci., 16(1):87–113, 2006. 58, 85

[137] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state pro-
grams. In FOCS ’85, pp. 327–338. 1985. 58

[138] D.M. Volpano and G. Smith. Probabilistic noninterference in a concurrent
language. Journ. of Computer Security, 7(1), 1999. 111, 112

[139] H. Watanabe, K. Nishizawa and O. Takaki. A coalgebraic representation of
reduction by cone of influence. Elect. Notes in Theor. Comp. Sci., 164(1):177–
194, 2006. 63

Index

accepted language, 12, 22
ACP, 121
algebraic specification, 125
algebraically compact category, 42
anonymity automaton, 95

extended –, 107
anonymized automaton, 102
axiomatic domain theory, 42

backward simulation, 69
for anonymity automaton, 103
for extended anonymity automaton,

109
backward-forward simulation, 74
bisimilarity, 9, 11
bisimulation, 11
black-box view, 6
bottom, 30
branching

non-deterministic –, 4
branching type, 24

CCS, 121
CFG, see context-free grammar
classifying category, 125
coalgebra, 2

Eilenberg-Moore –, 2
final –, 7
functor –, 2

coinduction, 7
– definition principle, 7
– proof principle, 7

commutative monad, 33
completeness

of simulation, 74
compositionality, 115

coalgebraic –, 120
general –, 137

computer system, 1
concurrency, 115
conditional anonymity, 100
congruence, 116
context-free grammar, 25
Cppo-enriched

category, 35
functor, 36

Crowds, 93
CSP, 121
culprit, 88

denotation, 51
Dining Cryptographers, 90

164

Index 165

distribution monad, 30
distributive law, 32
dynamics, 3, 65

embedding, 149
embedding-projection pair, 149
expressive

testing situation, 54
extended anonymity automaton, 107

FCS-equivalence, 52
final

coalgebra, 7
object, 7

final sequence, 148
finite trace semantics, 46

for (T, F)-system, 67
forward simulation, 69

for anonymity automaton, 103
for extended anonymity automaton,

109
FP-category, 124
FP-functor, 124
functional bisimulation, 6

general soundness theorem, 78
GSOS-rules, 122

hybrid simulation, 74

induction, 7
initial algebra-final coalgebra coincidence,

38
initial sequence, 147
inner model, see L-object
innocent automaton, 109
inserter, 133

labeled transition system, 4
language equivalence, 12
Lawvere theory, 124
lax L-functor, 132
lax morphism of coalgebra, 62
L-category, 126
L-functor, 126

lax –, 132
oplax –, 132

lift monad, 25
lifting

of functor from Sets to K�(T), 32
limit-colimit coincidence, 150
livelock, 48
L-object, 129
local

continuity, 36
monotonicity, 36

LTS, see labeled transition system

microcosm model, 129
microcosm principle, 117
modification, 134, 142
monad, 28

commutative –, 33
monoid, 117
monoidal category, 117

strictly –, 118
monoidal functor, 121
morphism of L-object, 134
morphism of coalgebra, 5

lax –, 62
oplax –, 62

multiset, 25

Nat (category), 124
non-deterministic

automaton, 4
branching, 4

non-interference, 110

O-colimit, 149
O-limit, 149
oplax L-functor, 132
oplax morphism of coalgebra, 62
outer model, see L-category

possibly-infinite trace semantics, 48
powerset monad, 25
preservation of weak pullback, 11
probabilistic anonymity

conditional anonymity, 100

166 Index

probable innocence, 94, 101
strong –, 92, 100

probabilistic simulation, 73
probable innocence, 94, 101
process algebra, 112
projection, 149
pseudo functor, 127

real valuation, 25
relation lifting, 33

shapely functor, 34
similarity, 69, 74
simplicial category, 145
simulation

backward –, 69
backward-forward –, 74
forward –, 69
hybrid –, 74
probabilistic –, 73

skeletal parse tree, 48
sketch, 125
soundness

of simulation, 74, 78
start state map, 65
state, 3
state space, 3
stream automaton, 3
strictly monoidal category, 118
strong probabilistic anonymity, 92, 100
subdistribution monad, 25
synchronization

natural transformation, 120
synchronization tree, 9
syntactic format, 145
system

(T, F)-–, 65

tensor, 119
terminal object, 7
testing equivalence, 52
testing situation, 51
(T, F)-system, 65
timed system, 25
trace

distribution, 22
equivalence, 11
semantics, 13
set, 22

trace semantics
finite –, 46
for (T, F)-system, 67
for anonymity automaton, 98
possibly-infinite –, 48

trace situation, 38
transition, 3
transition type, 25
type system, 111

Summary

The aim of this thesis is to obtain better understanding of the nature of computer
systems, that is, to develop a mathematical theory of computer systems. By computer
systems we mean information-processing systems consisting of computers. We cannot
overemphasize their important roles in the modern world. Unfortunately, however,
computer systems are very much error-prone at the same time. This thesis ultimately
aims at proper understanding of computer systems which will help us getting them
right; we do so through extending the theory of coalgebras.

The use of coalgebras as a mathematical model of state-based systems has been
increasingly recognized in the last couple of decades. We follow this view since, we
believe, the theory of coalgebras has a right balance of (potential) applicability and
mathematical simplicity. The very core of the existing theory of coalgebras that we
start with can be summarized as follows.

– A system is modeled mathematically as a coalgebra;

– a behavior-preserving map between systems as a morphism of coalgebras; and

– the behavior of a system is given by the principle of coinduction.

These points have been established by many authors in a large body of existing work.
In each chapter of this thesis, however, we try to shed new light on them.

Our most emphasis is on, among the three points listed above, the principle of
coinduction which assigns to a system (i.e. a coalgebra) its behavior in the form of the
unique map to a final coalgebra. In the standard setting where the base category is
Sets, the behavior thus captured respects bisimilarity—which is one possible choice
in the spectrum of many different notions of behavioral equivalences. In Chapter 2
we establish an appropriate mathematical framework to capture a different notion of
behavior—namely trace semantics—also by coinduction. To put it briefly, when we
move the base category from Sets to a suitable Kleisli category, then the notion of

167

168 Summary

behaviors captured by coinduction shifts from bisimilarity to trace semantics. This
works equally for both (non-deterministic) trace set semantics and (probabilistic)
trace distribution semantics.

Then a natural question arises: what is a morphism of coalgebras in a Kleisli
category? In Chapter 3 it is given an interpretation as a forward/backward simulation.
Use of simulations is an important technique in formal verification of systems, in
which the soundness theorem plays a crucial role. Our categorical formulation of
simulations allows us to prove a generic soundness theorem which works for a wide
variety of systems (e.g. non-deterministic or probabilistic) and whose proof is once-
for-all by simple categorical arguments. This—together with Chapter 2—establishes
a generic, coalgebraic theory of traces and simulations.

It is this generic theory which is exploited in Chapter 4 to verify anonymity of
network protocols. More specifically, we start with an existing simulation-based proof
method for non-deterministic anonymity; we make it probabilistic to obtain a proof
method for probabilistic anonymity. This technical jump from non-determinism to
probability is minor for us since, in the generic theory of traces and simulations
established earlier in Chapter 2–3, different types of branching (non-determinism vs.
probability) are modeled exactly in the same manner, only by different parameters.
In other words, what one can do in a non-deterministic setting can be also done in a
probabilistic setting.

Finally, in Chapter 5 we deal with the issue of concurrency which is a major chal-
lenge in the study of computer systems. In our coalgebraic study of systems, compo-
sitionality—compatibility of behavior and concurrency—is one of our first concerns.
An attempt to formulate compositionality in coalgebraic terms reveals significance of
higher-dimensional algebraic structures, the so-called microcosm principle. This is
how we come to a highly abstract mathematical expedition of formalizing the micro-
cosm principle in 2-categories. It is more than just an abstract nonsense: we apply the
obtained formalization to the original coalgebraic setting and derive a generic com-
positionality theorem. It automatically ensures compositionality for a certain class of
concurrency situations.

Samenvatting (Dutch summary)

Het doel van dit proefschrift is om een beter inzicht in de aard van computersystemen
te bereiken, dat wil zeggen, om een wiskundige theorie van computersystemen te
ontwikkelen. Met computersystemen bedoelen we informatieverwerkende systemen
die bestaan uit computers. Hun belangrijke rol in de moderne wereld is nauwelijks te
overdrijven. Tegelijkertijd zijn computersystemen helaas echter zeer bevattelijk voor
fouten. Door hun karakter goed te doorzien, draagt dit proefschrift uiteindelijk bij
aan een foutloze constructie van computersystemen; we doen dit door de theorie van
coalgebras uit te breiden.

Het gebruik van coalgebras is de afgelopen decennia opgeëist als een wiskundig
model van toestandsystemen. Wij hangen deze visie aan omdat, volgens ons, de
theorie van coalgebras de juiste balans vindt tussen (mogelijke) toepasbaarheid en
wiskundige eenvoud. Het hart van de bestaande theorie van coalgebras waar we mee
beginnen kan als volgt worden samengevat.

– Een systeem wordt wiskundig gemodelleerd als een coalgebra;

– een gedragsrespecterende afbeelding tussen systemen als een morfisme van coal-
gebras; en

– het gedrag van een systeem wordt vastgelegd door het principe van coinductie.

Deze visie is bewerkstelligd door vele auteurs, in een groot aantal bestaande werken.
Desondanks probeert ieder hoofdstuk van dit proefschrift om er nieuw licht op te
werpen.

Van de drie bovengenoemde punten leggen we de meeste nadruk op het principe
van coinductie, dat van ieder systeem (coalgebra) haar gedrag vastlegt in de vorm
van een unieke afbeelding naar een finale coalgebra. In de gebruikelijke situatie, waar
de basiscategorie Sets is, respecteert het aldus vastgelegde gedrag bisimilariteit—
wat trouwens slechts een van de mogelijke keuzes is uit een spectrum van gedragse-

169

170 Samenvatting (Dutch summary)

quivalenties. Hoofdstuk 2 bewerkstelligt een passend wiskundig raamwerk om ook
een andere notie van gedrag—namelijk trace semantiek—door coinductie te vangen.
Kort gezegd: als we de basiscategorie van Sets naar een geschikte Kleisli categorie
verplaatsen, dan verandert de notie van gedrag zoals vastgelegd door coinductie van
bisimilariteit naar trace semantiek. Dit werkt net zo goed voor (non-deterministische)
trace verzamelingssemantiek als voor (probabilistische) trace distributiesemantiek.

Een natuurlijke vraag werpt zich dan op: wat is een morfisme van coalgebras in een
Kleisli categorie? In hoofdstuk 3 wordt dit ingevuld als een interpretatie van een voor-
waarts/achterwaarts simulatie. Het gebruik van simulaties is een belangrijke techniek
in formele verificatie van systemen, waar soundnessstellingen een cruciale rol spe-
len. Onze categorische formulering van simulaties stelt ons in staat om een generieke
soundnessstelling te bewijzen, die opgaat voor een breed scala aan systemen (zoals
non-deterministische en probabilistische), en het bewijs waarvan eens-en-voor-al is
door eenvoudige categorische argumenten. Dit—gecombineerd met Hoofdstuk 2—
geeft een generieke, coalgebräısche theorie van traces en simulaties.

Het is deze generieke theorie die we inzetten in Hoofdstuk 4 om anonimiteit van
netwerkprotocollen te verifiëren. Preciezer gezegd beginnen we met een bestaande
bewijsmethode voor non-deterministische anonimiteit gebaseerd op simulaties, en
maken haar probabilistisch om een bewijsmethode te krijgen voor probabilistische
anonimiteit. Deze technische sprong van non-determinisme naar probabilisme is voor
ons een kleine, omdat in de generieke theorie van traces en simulaties van Hoofd-
stuk 2–3, verschillende soorten vertakking (non-determinisme en probabilisme) op
precies dezelfde manier gemodelleerd worden, op verschillende parameters na. An-
ders gezegd, wat met non-determinisme bereikt kan worden, kan ook probabilistisch
gedaan worden.

Hoofdstuk 5 behandelt tenslotte de kwestie van concurrency, een grote uitdaging
binnen de studie van computer systemen. In onze coalgebräısche studie van syste-
men is compositionaliteit—compatibiliteit van gedrag en concurrency—een van de
eerste aandachtspunten. Een poging om compositionaliteit in coalgebräısche termen
te formuleren onthult het belang van hoger-dimensionale algebräısche structuren, het
zogenaamde microcosmos principe. Zo komen we tot een zeer abstracte wiskundige
expeditie om het microcosmos principe te formalizeren met 2-categorieen. Dit is meer
dan enkel abstracte onzin: we passen de verkregen formalizatie toe op de originele
coalgebräısche situatie en leiden zo een generieke compostionaliteitsstelling af. Deze
verzekert compositionaliteit voor een bepaalde klasse van situaties met concurrency.

Curriculum vitae

Born on 27 September 1978 in Omuta, Japan

1994–1997 La Salle High School, Kagoshima, Japan

1997–2002 BSc in Mathematics, University of Tokyo, Japan

2002–2004 MSc in Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, Japan. Thesis title: Kripke Completeness of First-Order Constructive
Logics with Strong Negation, supervised by dr. Ryo Kashima

2004–2008 PhD student in Security of Systems group, Institute for Computing and
Information Sciences, Radboud University Nijmegen, the Netherlands

2007– Assistant Professor, Research Institute for Mathematical Sciences, Kyoto Uni-
versity, Japan

2007– Researcher, PRESTO Research Promotion Program, Japan Science and Tech-
nology Agency

171

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: theoreti-
cal and experimental aspects. Faculty of
Mathematics and Natural Sciences, UL.
2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of Industrial
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Under-
standing Legacy Software Systems. Fac-
ulty of Natural Sciences, Mathematics
and Computer Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable
Construction: Algorithms and Complex-
ity. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-time
and Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics and
Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and
Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Fil-
tering: Concepts and Algorithms. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Sys-
tems. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2002-13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfac-
tion and Data Mining. Faculty of Math-
ematics and Natural Sciences, UL. 2002-
14

S. Andova. Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

Y.S. Usenko. Linearization in μCRL.
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To
Be Reused: Techniques for component
composition and construction. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Representa-
tions. Faculty of Natural Sciences,

Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Ver-
ification in Process Algebras with Data
and Timing. Faculty of Mathematics
and Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations
of Catalytic Reactions. Faculty of Math-
ematics and Computer Science, TU/e.
2003-06

M.E.M. Lijding. Real-time Scheduling
of Tertiary Storage. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-09

M.H. ter Beek. Team Automata – A
Formal Approach to the Modeling of Col-
laboration Between System Components.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A
Functional Approach to Software Com-
ponents. Faculty of Mathematics and
Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ra-
tios for the Differencing Method. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive The-
orem Proving. Faculty of Mathematics
and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane sys-
tems. Faculty of Mathematics and Nat-
ural Sciences, UL. 2004-03

S. Maneth. Models of Tree Transla-
tion. Faculty of Mathematics and Natu-
ral Sciences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduc-
tion and Probabilistic Specification For-
mats. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formaliza-
tion and Applications. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of
Technology Management, TU/e. 2004-
08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Re-
active Systems. Faculty of Mathematics
and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms and
Proofs. Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell.
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning
Algorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed Budgets. Faculty of Math-
ematics and Computer Science, TU/e.
2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Technol-
ogy Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position
Estimation Using a Single Base Station.
Faculty of Mathematics and Computer
Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified Distribution. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured Documents. Faculty of Mathemat-
ics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quan-
titative Prediction of Quality Attributes
for Component-Based Software Architec-
tures. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Super-
visory Machine Control by Predictive-
Reactive Scheduling. Faculty of Mechan-
ical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -Theory
and Tool Support- . Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-
03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty of
Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network

Reliability. Faculty of Science, UU.
2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Math-
ematics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Error
Messages. Faculty of Science, UU. 2005-
13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simulation
Relations. Faculty of Science, Mathe-
matics and Computer Science, RU. 2005-
14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty of
Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Nat-
ural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical

Engineering, Mathematics & Computer
Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of Math-
ematics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences, UL.
2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Mathemat-
ics and Computing Sciences, RUG. 2007-
03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and

Coverage. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2007-
11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of

Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J.Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2007-19

W.Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Con-
troversy. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in

Source Code. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Faculty
of Mechanical Engineering, TU/e. 2008-
05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing, and
Assimilation of Language Conglomer-
ates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness

Alive: Design and Formal Verification
of Optimistic Fair Exchange Protocols.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Mathe-
matics and Computer Science, RU. 2008-
09

	Preface
	Introduction
	Computer systems
	Coalgebras as systems
	Theory of coalgebras
	Thesis outline
	Information for reading

	Trace semantics via coinduction
	Overview
	Coalgebras in a Kleisli category
	Final coalgebra in a Kleisli category
	Finite trace semantics via coinduction
	Trace semantics as testing equivalence
	Summary and future work

	Generic forward and backward simulations
	Overview
	Coalgebraic forward and backward simulations
	Soundness and completeness theorems
	Related work
	Summary and future work

	Case study: probabilistic anonymity
	Overview
	Motivating examples
	Formalizing notions for probabilistic anonymity
	Verifying strong anonymity with probabilistic simulations
	Verifying probable innocence with probabilistic simulations
	Related work
	Summary and future work

	Foundational study: concurrency and the microcosm principle
	Overview
	Parallel composition of coalgebras
	Formalizing the microcosm principle
	Microcosm structures in coalgebras
	Parallel composition of coalgebras in K(T)
	Summary and future work

	Appendix Preliminaries
	Initial/final sequences
	Limit-colimit coincidence

	Bibliography
	Index
	Summary
	Samenvatting (Dutch summary)
	Curriculum vitae

