

Quality Assurance of Cyber-Physical Systems

Mathematical Metatheory, Machine Learning and Automated Driving

物理情報システム研究の新地平

自動運転や機械学習をも包括する数学的基盤

Slides available: bit.ly/2SdJpIY

Ichiro Hasuo 蓮尾一郎

National Institute of Informatics, SOKENDAI
ERATO HASUO Metamathematics for Systems Design Project

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

On ERATO MMSD

* JST ERATO Project, 2016/10-2022/03

Our goal:

formal methods for cyber-physical systems (CPS)

- Extend formal methods, from software to CPS
- * Safety, reliability, V&V (Verification & Validation). "Check if a system behaves as expected"
- * Automated driving as a strategic target domain.

 Collaboration with U Waterloo: www.autonomoose.net

- * Theory: abstract mathematical metatheory
 - → scale out to diverse applications
- Practice: real-world systems (not only toy examples)

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

On ERATO MMSD

* JST ERATO Project, 2016/10-2022/03

Our goal:

formal methods for cyber-physical systems (CPS)

- Extend formal methods, from software to CPS
- * Safety, reliability, V&V (Verification & Validation). "Check if a system behaves as expected"
- * Automated driving as a strategic target domain.

 Collaboration with U Waterloo: www.autonomoose.net

- * Theory: abstract mathematical metatheory
 - → scale out to diverse applications
- Practice: real-world systems (not only toy examples)

Our Organization

International and multi-disciplinary. "creative chaos"

Kyoto U RIMS Site:
Categorical
Infrastructure
Leader:
Masahito Hasegawa

Group 0 @ NII:

Metatheoretical Integration Leader: Shin-ya Katsumata

Featured today: Kenta Cho Clovis Eberhart Natsuki Urabe

Group 3 @ NII:
Formal Methods and
Intelligence
Leader: Fuyuki Ishikawa

Featured today: Masaki Waga Paolo Arcaini

Kyushu U Site:
Optimization for
CPS V&V
Leader:
Hayato Waki

Osaka U Site:
Control Theory for
CPS
Leader:
Toshimitsu Ushio

Group 1 @ NII:
Heterogeneous Formal Methods
Leader: Ichiro Hasuo

Featured today: Etienne Andre Akihisa Yamada Toru Takisaka Chao Huang

Group 2 @ U Waterloo: Formal Methods in Industry Leader: Krzysztof Czarnecki

National Institute of Informatics & Japan Science and Technology Agency

Cyber-Physical Systems: Control Theory and Formal Methods/Software Science

- * Cyber-Physical System (CPS)
 - * "A mechanism that is controlled or monitored by computer-based algorithms, tightly integrated with the Internet and its users" (Wikipedia)
 - * Physical plant (continuous) + Digital control (discrete)
 - * In US: NSF Key Area of Research (2006-)
- * Formal methods: Logical proofs for "correctness" of (discrete) programs
 - * Model checking [Pnueli, Clarke, Emerson, Sifakis, ...]
 - * Theorem Proving (Coq, Agda, ...) [Milner, Coquand, Leroy, Voevodsky, ...]
- * Control Theory: Analysis of continuous dynamics
 - * Stability, Lyapunov function, ...
- * Their similarity is widely recognized
 - * Toru Takisaka's talk on martingale synthesis for probabilistic programs (later)

National Institute of Informatics & Japan Science and Technology Agency

CPS Research, So Far (the V&V Aspect)

Formal Methods

Collaboration

Analysis

Control Theory

x'=f(x,u)

National Institute of Informatics & Japan Science and Technology Agency

CPS Research, So Far (the V&V Aspect)

Formal Methods Control Theory

Collaboration

Analysis

x' = f(x, u)

- * Problem: scalability, esp. for real-world CPSs
 - * Require complete understanding of a white-box model
 - * Insist on being absolutely sound and correct
 - * Little tolerance to uncertainty and noise
 - → don't get along with statistical machine learning

National Institute of Informatics & Japan Science and Technology Agency

CPS Research: Our Comprehensive Approach

Control Theory

Formal Methods

National Institute of Informatics & Japan Science and Technology Agency

CPS Research: Our Comprehensive Approach

Control Theory

Formal Methods

Statistical Machine Learning

Software Engineering

National Institute of Informatics & Japan Science and Technology Agency

CPS Research: Our Comprehensive Approach

Control Theory

Mathematical Metatheory

Formal Methods

Statistical Machine Learning

Software Engineering

National Institute of Informatics & Japan Science and Technology Agency

Bidirectional Collaboration with Statistical Machine Learning

Statistical ML	Inductive (learn from data)	Uncertainty (data is noisy)	(Typically) Black Box
Formal Methods, Control Th.	Deductive (Infer from absolute axioms)	Mathematical & Logical Rigor	White Box

National Institute of Informatics & Japan Science and Technology Agency

Bidirectional Collaboration with Statistical Machine Learning

Statistical ML

Inductive (learn from data)

Uncertainty (data is noisy)

(Typically)
Black Box

Formal Methods, Control Th.

Deductive (Infer from absolute axioms)

Mathematical & Logical Rigor

White Box

Formal Methods Control Theory

National Institute of Informatics & Japan Science and Technology Agency

Bidirectional Collaboration with Statistical Machine Learning

Statistical ML

Inductive (learn from data)

Uncertainty (data is noisy)

(Typically)
Black Box

Formal Methods, Control Th.

Deductive (Infer from absolute axioms)

Mathematical & Logical Rigor

White Box

Formal Methods Control Theory

National Institute of Informatics & Japan Science and Technology Agency

Bidirectional Collaboration with Statistical Machine Learning

Statistical ML

Inductive (learn from data)

Uncertainty (data is noisy)

(Typically)
Black Box

Formal Methods, Control Th.

Deductive (Infer from absolute axioms)

* Accelerate search/

optimization

constraint solving/

Mathematical & Logical Rigor

White Box

Formal Methods Control Theory

National Institute of Informatics & Japan Science and Technology Agency

Bidirectional Collaboration with Statistical Machine Learning

Statistical ML

Formal Methods, Control Th.

Inductive (learn from data)

Deductive (Infer from absolute axioms)

* Accelerate search/

Uncertainty (data is noisy)

Mathematical & Logical Rigor

(Typically)

Black Box

White Box

constraint solving/ optimization

Formal Methods Control Theory

Statistical ML

- * Acknowledge that ML components are unreliable
- * Wrap them with "safety envelopes,"
- within which ML optimizes

safety requirement system model

safety layer (rigorous)

efficiency safety envelope

learning layer (black-box, stochastic)

[Akametalu, Kaynama, Fisac, Zeilinger, Gillula controller & Tomlin, CDC'14]

Key: system-level architecture for collaboration between logic and ML. Separation of concerns

Bidirectional Collaboration with Statistical Machine Learning

Statistical ML

Formal Methods, Control Th.

Inductive (learn from data)

Deductive (Infer from absolute axioms)

* Accelerate search/

Uncertainty (data is noisy)

Mathematical & Logical Rigor

(Typically)

Black Box

White Box

constraint solving/ optimization

Formal Methods Control Theory

- * Acknowledge that ML components are unreliable
- * Wrap them with "safety envelopes,"
- within which ML optimizes

National Institute of Informatics & Japan Science and Technology Agency

Software Engineering and Empirical Application of Formal Methods and Control Theory

- * Challenges in industrial application
 - * Scalability: real systems are complex
 - Need complete white-box models
 - * Unrealistic. Components from suppliers, neural nets, ...
 - * Industry practitioners need not appreciate rigorous proofs
 - * How do we check axioms (= environmental assumptions)?

Software Engineering and Empirical Application of Formal Methods and Control Theory

- * Challenges in industrial application
 - * Scalability: real systems are complex
 - Need complete white-box models
 - * Unrealistic. Components from suppliers, neural nets, ...
 - * Industry practitioners need not appreciate rigorous proofs
 - * How do we check axioms (= environmental assumptions)?

- * → We focus on supporting empirical quality assurance methods (i.e. testing)
 - * What software engineering has been doing for years
 - * Testing, runtime verification, ...
 - * Ample use of deductive techniques from formal methods
 - * Examples: from specifications to score functions, optimize test cases, ...
 - * Talks by Etienne Andre, Masaki Waga, Paolo Arcaini

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

Exit Strategy (in Application)

* Outlets

- * Industry collaboration: a few companies
- * Automated Driving Vehicle Project "Autonomoose" (U Waterloo). (Mostly) nonproprietary software stack for automated driving

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

Exit Strategy (in Application)

* Outlets

- * Industry collaboration: a few companies
- * Automated Driving Vehicle Project "Autonomoose" (U Waterloo). (Mostly) nonproprietary software stack for automated driving

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

Exit Strategy (in Application)

* Outlets

- * Industry collaboration: a few companies
- * Automated Driving Vehicle Project "Autonomoose" (U Waterloo). (Mostly) nonproprietary software stack for automated driving
- * Goal 1: our advanced quality assurance techniques, put to real use
 - Safety is rarely a competition area
 - * → we aim at standards (ISO 26262, SOTIF, ...)

ERATO 蓮尾メタ数理システムデザインプロジェクト ERATO Metamathematics for Systems Design Project

国立情報学研究所 & 科学技術振興機構

National Institute of Informatics & Japan Science and Technology Agency

EPATO MMSD

Exit Strategy (in Application)

* Outlets

- * Industry collaboration: a few companies
- * Automated Driving Vehicle Project "Autonomoose" (U Waterloo). (Mostly) nonproprietary software stack for automated driving
- * Goal 1: our advanced quality assurance techniques, put to real use
 - Safety is rarely a competition area
 - * → we aim at standards (ISO 26262, SOTIF, ...)
- * Goal 2: offer software platform for developing, verifying and validating automated driving software
 - For industry and academia
 - * Perception → Object Recognition → Path Planning → Path Tracing,
 - + Simulation + Testing, V&V —

Strategic contribution areas

- Improvement of each component /
 - + Interface between components, DSL (domain specific language)
 - → the whole framework
- Our unique strength: advanced V&V techniques + their theoretical foundation + programming language theory

National Institute of Informatics & Japan Science and Technology Agency

CPS Research: Our Comprehensive Approach

Mathematical metatheory

Control Theory

Formal Methods

Statistical Machine Learning

Software Engineering

National Institute of Informatics & Japan Science and Technology Agency

CPS Research: Our Comprehensive Approach

National Institute of Informatics & Japan Science and Technology Agency

CPS Research: Our Comprehensive Approach

National Institute of Informatics & Japan Science and Technology Agency

CPS Research: Our Comprehensive Approach

